JP2013064372A - Low pressure turbine bypass control device, and power plant - Google Patents

Low pressure turbine bypass control device, and power plant Download PDF

Info

Publication number
JP2013064372A
JP2013064372A JP2011204151A JP2011204151A JP2013064372A JP 2013064372 A JP2013064372 A JP 2013064372A JP 2011204151 A JP2011204151 A JP 2011204151A JP 2011204151 A JP2011204151 A JP 2011204151A JP 2013064372 A JP2013064372 A JP 2013064372A
Authority
JP
Japan
Prior art keywords
pressure turbine
low
pressure
steam
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011204151A
Other languages
Japanese (ja)
Other versions
JP5524923B2 (en
Inventor
Yuki Nakano
祐樹 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011204151A priority Critical patent/JP5524923B2/en
Publication of JP2013064372A publication Critical patent/JP2013064372A/en
Application granted granted Critical
Publication of JP5524923B2 publication Critical patent/JP5524923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a low pressure turbine bypass control device, capable of evading an unnecessary open operation of a low pressure turbine bypass valve and enabling a stable operation under each operating condition, even in the operating condition different from normal conditions such as an increase of pressure at an inlet of an intermediate and low pressure turbine during a normal load operation.SOLUTION: The control device captures a bypass condition of the high pressure water supply heater (opening and closing of the high pressure water supply heater bypass valve 28), when in the operating condition different from the normal conditions such as the increase of pressure at the inlet of the intermediate and low pressure turbine during the normal load operation, for example, when the water supply to a boiler 1 is switched from the side of a high pressure water supply heater 30 to the side of a high pressure water supply heater bypass pipe 29. Then the control device performs switching from a function generator (A) 42 in the normal operating condition to a function generator (B) 43 calculated based on a heat balance calculation in the condition, and also performs the setting of control pressure of the low pressure turbine bypass valve 12 and controls the opening/closing of the low pressure turbine bypass valve 12.

Description

本発明は、低圧タービンバイパス制御装置及び発電プラントに関する。   The present invention relates to a low-pressure turbine bypass control device and a power plant.

高圧タービンと中低圧タービンを有する火力発電プラントでは、高圧タービンをバイパスし高圧タービン排気管へ蒸気を排出する高圧タービンバイパス管と、中低圧タービンをバイパスし復水器へ蒸気を排出する低圧タービンバイパス管が設けられている。従来、低圧タービンバイパス管に設けられた低圧タービンバイパス弁を制御する低圧タービンバイパス制御装置としては、例えば、特許文献1に記載のように、プラント起動時の起動モードの違いにより異なるプラントの目標初負荷に見合った再熱蒸気圧力の目標値を設定し、低圧タービンバイパス弁を制御する低圧タービンバイパス制御装置や、蒸気の一部を工場のプロセス蒸気として用いる蒸気タービンプラントにおいて、特許文献2に記載のように、タービン停止またはボイラ単独運転時においても、プロセス(工場)蒸気の供給を可能とする低圧タービンバイパス制御装置が提案されている。   In a thermal power plant having a high-pressure turbine and a medium- and low-pressure turbine, a high-pressure turbine bypass pipe that bypasses the high-pressure turbine and discharges steam to the high-pressure turbine exhaust pipe, and a low-pressure turbine bypass that bypasses the medium- and low-pressure turbine and discharges steam to the condenser A tube is provided. Conventionally, as a low-pressure turbine bypass control device that controls a low-pressure turbine bypass valve provided in a low-pressure turbine bypass pipe, for example, as described in Patent Document 1, target initial values of different plants are different depending on the start-up mode at the time of plant start-up. Patent Document 2 describes a low-pressure turbine bypass control device that sets a target value of a reheat steam pressure corresponding to a load and controls a low-pressure turbine bypass valve, or a steam turbine plant that uses part of steam as process steam in a factory. As described above, a low-pressure turbine bypass control device that enables supply of process (factory) steam even when the turbine is stopped or the boiler is operating independently has been proposed.

特開平2−11807号公報JP-A-2-11807 特開平10−325306号公報Japanese Patent Laid-Open No. 10-325306

高圧タービンをバイパスし高圧タービン排気管へ排出された蒸気は再熱器で加熱され、中低圧タービンに供給される。また、高圧タービンまたは高圧タービン排気管から蒸気が抽気され、給水加熱器等に蒸気が供給される。このような発電プラントにおいて、通常負荷運転時は、蒸気発生器から発生した蒸気は全量高圧タービンに供給され、高圧タービンで仕事をした蒸気は再熱器により加熱され、全量中低圧タービンへ供給され、高圧タービンバイパス管と低圧タービンバイパス管にそれぞれ設けられた高圧タービンバイパス弁及び低圧タービンバイパス弁は全閉で待機状態にある。この状態から、高圧タービンまたは高圧タービン排気管から給水加熱器への蒸気の排出が無くなる事象が発生した場合、高圧タービン排気量が増加するため、中低圧タービン入口圧力が上昇し、通常負荷運転時の熱バランスと異なる運転状態になる。このため、この状態で負荷運転を継続しようとした場合、低圧タービンバイパス弁が開動作となり、不要な蒸気の排出によりタービン負荷運転の外乱となる。従来、特許文献1や2を含め、通常負荷運転時に中低圧タービン入口圧力が上昇する通常と異なる運転状態となった場合の中低圧タービン入口圧力の圧力制御(低圧タービンバイパス弁の開閉制御による中低圧タービン入口圧力の圧力制御)について対策したものはない。   The steam that bypasses the high-pressure turbine and is discharged to the high-pressure turbine exhaust pipe is heated by the reheater and supplied to the medium- and low-pressure turbine. Further, steam is extracted from the high-pressure turbine or the high-pressure turbine exhaust pipe, and the steam is supplied to a feed water heater or the like. In such a power plant, during normal load operation, all the steam generated from the steam generator is supplied to the high pressure turbine, and the steam that has worked in the high pressure turbine is heated by the reheater and supplied to the medium to low pressure turbine. The high-pressure turbine bypass valve and the low-pressure turbine bypass valve respectively provided in the high-pressure turbine bypass pipe and the low-pressure turbine bypass pipe are fully closed and in a standby state. From this state, if an event occurs in which steam is no longer discharged from the high-pressure turbine or high-pressure turbine exhaust pipe to the feed water heater, the high-pressure turbine exhaust volume increases. The operating state is different from the heat balance. For this reason, when trying to continue the load operation in this state, the low-pressure turbine bypass valve is opened, resulting in disturbance of the turbine load operation due to the discharge of unnecessary steam. Conventionally, including the Patent Documents 1 and 2, the pressure control of the medium / low pressure turbine inlet pressure (when the low pressure turbine bypass valve is controlled to open / close) There is no countermeasure for low-pressure turbine inlet pressure control.

本発明は、通常負荷運転時に中低圧タービン入口圧力が上昇する通常と異なる運転状態となった場合でも不要な低圧タービンバイパス弁の開動作を回避し、且つ各運転状態にて安定した運転を可能とする低圧タービンバイパス制御装置を提供することを目的とする。   The present invention avoids unnecessary opening operation of the low-pressure turbine bypass valve and enables stable operation in each operation state even when the operation pressure is different from the normal operation state in which the medium-low pressure turbine inlet pressure increases during normal load operation. An object of the present invention is to provide a low-pressure turbine bypass control device.

上記課題を解決するため、本発明は、低圧タービンバイパス弁の開閉制御を、通常運転時に中低圧タービン入口圧力が上昇する通常と異なる運転状態となった場合、中低圧タービン入口圧力の制御設定圧力を、その状態での熱バランス計算に基づく設定に切り換えて開閉制御するようにしたものである。   In order to solve the above-described problems, the present invention provides a control setting pressure for the medium-low pressure turbine inlet pressure when the low-pressure turbine bypass valve opening / closing control is in an operation state different from normal in which the medium-low pressure turbine inlet pressure increases during normal operation. Is switched to a setting based on the heat balance calculation in that state, and the open / close control is performed.

例えば、高圧タービン中間段から蒸気を供給し、ボイラへの給水と熱交換する給水加熱器と、該給水加熱器をバイパスし給水をボイラへ供給する給水加熱器バイパス管を有する発電プラントにおいて、ボイラへの給水が給水加熱器側から給水加熱器バイパス側へ切替わり、給水加熱器への給水が断たれ高圧タービン中間段から供給される蒸気との熱交換がされない場合、高圧タービン中間段から給水加熱器への蒸気の流れが無くなり、高圧タービンの排気量が増加するため、中低圧タービン入口圧力が上昇し、高圧タービン初段圧力と中低圧タービン入口圧力の関係が変化する。この熱バランスが変化した状態で運転を継続した場合には、中低圧タービン入口圧力の上昇により、低圧タービンバイパス弁が不要な開動作となり、タービン負荷に外乱を与えてしまう。本発明では、これを回避するよう、給水加熱器のバイパス条件をとらえ、給水加熱器をバイパスした状態での熱バランス計算により算出した、高圧タービン初段圧力に基づいた設定に、中低圧タービン入口圧力の圧力設定値を切り替えることで、通常負荷運転時と同様の制御を可能とするものである。   For example, in a power generation plant having a feed water heater that supplies steam from a middle stage of a high-pressure turbine and exchanges heat with feed water to a boiler, and a feed water heater bypass pipe that bypasses the feed water heater and feeds feed water to the boiler. When the feed water to the feed water heater side is switched from the feed water heater side to the feed water heater bypass side and the feed water to the feed water heater is cut off and heat exchange with the steam supplied from the high pressure turbine intermediate stage is not performed, Since there is no steam flow to the heater and the displacement of the high-pressure turbine increases, the intermediate / low-pressure turbine inlet pressure rises, and the relationship between the high-pressure turbine first stage pressure and the intermediate / low-pressure turbine inlet pressure changes. If the operation is continued in a state where the heat balance is changed, the low pressure turbine bypass valve is opened unnecessarily due to an increase in the intermediate / low pressure turbine inlet pressure, and the turbine load is disturbed. In the present invention, in order to avoid this, the bypass condition of the feed water heater is captured, and the setting based on the high pressure turbine first stage pressure calculated by the heat balance calculation in a state where the feed water heater is bypassed is set to the medium / low pressure turbine inlet pressure. By switching the pressure set value, it is possible to perform the same control as during normal load operation.

本発明によれば、通常負荷運転時に中低圧タービン入口圧力が上昇する通常と異なる運転状態となった場合でも不要な低圧タービンバイパス弁の開動作を回避し、且つ各運転状態にて安定した運転が可能となる。   According to the present invention, it is possible to avoid unnecessary opening operation of the low-pressure turbine bypass valve even when the operation state is different from the normal operation state in which the medium-low pressure turbine inlet pressure increases during normal load operation, and stable operation in each operation state. Is possible.

本発明の一実施例が適用される汽力発電プラントの系統と低圧タービンバイパス制御系統(実施例1)を示す図である。It is a figure which shows the system | strain and low-pressure turbine bypass control system (Example 1) of the steam power plant to which one Example of this invention is applied. 本発明の実施例1に用いられる、高圧タービン初段圧力に基づいて中低圧タービン入口の制御設定圧力(低圧タービンバイパス弁の開閉制御の圧力)を出力する関数発生器における高圧タービン初段圧力と制御設定圧力との関係を示す図で、通常運転時の関係を示す図である。High pressure turbine first stage pressure and control setting in a function generator that outputs a control set pressure (pressure for opening / closing control of a low pressure turbine bypass valve) at a medium to low pressure turbine inlet based on the high pressure turbine first stage pressure used in Embodiment 1 of the present invention It is a figure which shows the relationship with a pressure, and is a figure which shows the relationship at the time of normal driving | operation. 本発明の実施例1に用いられる、高圧タービン初段圧力に基づいて中低圧タービン入口の制御設定圧力(低圧タービンバイパス弁の開閉制御の圧力)を出力する関数発生器における高圧タービン初段圧力と制御設定圧力との関係を示す図で、高圧給水加熱器バイパス運転時の関係を示す図である。High pressure turbine first stage pressure and control setting in a function generator that outputs a control set pressure (pressure for opening / closing control of a low pressure turbine bypass valve) at a medium to low pressure turbine inlet based on the high pressure turbine first stage pressure used in Embodiment 1 of the present invention It is a figure which shows the relationship with a pressure, and is a figure which shows the relationship at the time of a high voltage | pressure feed water heater bypass operation. 本発明の一実施例が適用される汽力発電プラントの系統と低圧タービンバイパス制御系統(実施例2)を示す図である。It is a figure which shows the system | strain and low-pressure turbine bypass control system (Example 2) of the steam power plant to which one Example of this invention is applied. 本発明の一実施例が適用される汽力発電プラントの系統と低圧タービンバイパス制御系統(実施例3)を示す図である。It is a figure which shows the system | strain and low-pressure turbine bypass control system (Example 3) of the steam power plant to which one Example of this invention is applied.

以下、図面を用いて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例が適用される汽力発電プラントの系統と低圧タービンバイパス制御系統を示す図である。本実施例1では、高圧給水加熱器バイパス弁の開動作をとらえ、制御設定となる関数演算器を切替える機能を有している。   FIG. 1 is a diagram showing a steam power plant system and a low-pressure turbine bypass control system to which an embodiment of the present invention is applied. In the present Example 1, it has the function to catch the opening operation of a high pressure feed water heater bypass valve, and to switch the function computing unit used as a control setting.

本実施例1の概要は、蒸気発生器(ボイラ)、該蒸気発生器から発生された蒸気により駆動する高圧タービン、該高圧タービンの排出蒸気を加熱する再熱器、該再熱器で加熱した再熱蒸気により駆動する中低圧タービン、復水器、蒸気発生器からの蒸気を高圧タービンをバイパスし高圧タービン排気管(低温再熱管)へ導く高圧タービンバイパス弁を有する高圧タービンバイパス管、再熱器により加熱された再熱蒸気を中低圧タービンをバイパスし復水器へ導く低圧タービンバイパス弁を有する低圧タービンバイパス管、高圧タービンの中間段から供給される蒸気によって蒸気発生器への給水を加熱する給水加熱器(高圧給水加熱器)、該給水加熱器をバイパスし蒸気発生器へ給水を導く給水加熱器バイパス弁を有する給水加熱器バイパス管を有する発電プラントにおいて、起動・停止・緊急停止時等の余剰蒸気が発生する過渡運転状態に、再熱器出口の再熱蒸気圧力上昇を抑えるために低圧タービンバイパス管から余剰蒸気を復水器へ排出し、中低圧タービン入口圧力を低圧タービンバイパス弁にて制御する低圧タービンバイパス制御装置であって、低圧タービンバイパス弁が、起動・停止・緊急停止時には、高圧タービン初段圧力に基づいた圧力設定にて制御され、通常負荷運転時には、負荷運転を阻害しない状態となるように該圧力設定にバイアスを加えることで全閉となるよう制御され、そして、給水加熱器バイパス弁が開き、給水加熱器への給水が断たれ高圧タービン中間段から供給される蒸気との熱交換がされず、高圧タービンから給水加熱器への蒸気の流れが無くなり、高圧タービンの排気量が増加して、中低圧タービン入口圧力が上昇し、高圧タービン初段圧力と中圧タービン入口圧力の関係が変化し、この熱バランスが変化した状態で運転を継続する際に、低圧タービンバイパス弁が不要な開動作となりタービン負荷に外乱を与えてしまうことを回避するように、給水加熱器バイパス弁の開動作をとらえ、給水加熱器バイパス後の熱バランス計算により算出した、高圧タービン初段圧力に基づいた設定に、中低圧タービン入口の圧力設定値を切り替えて制御されるようにしたものである。   The outline | summary of this Example 1 is heated with the steam generator (boiler), the high pressure turbine driven with the steam generated from the steam generator, the reheater which heats the exhaust steam of the high pressure turbine, and the reheater. High-pressure turbine bypass pipe having a high-pressure turbine bypass valve that bypasses the high-pressure turbine to the high-pressure turbine exhaust pipe (low-temperature reheat pipe), and reheats the medium- and low-pressure turbine driven by the reheat steam, the condenser, and the steam generator The low-pressure turbine bypass pipe with a low-pressure turbine bypass valve that leads the reheated steam heated by the generator to the condenser and bypasses the medium- and low-pressure turbine, and heats the feed water to the steam generator by the steam supplied from the intermediate stage of the high-pressure turbine Feed water heater (high pressure feed water heater), feed water heater bypass pipe having a feed water heater bypass valve that bypasses the feed water heater and guides the feed water to the steam generator In order to suppress the rise in reheat steam pressure at the outlet of the reheater during transient operation where surplus steam is generated during startup, shutdown, emergency stop, etc., the surplus steam from the low pressure turbine bypass pipe to the condenser This is a low-pressure turbine bypass control device that controls the intermediate and low-pressure turbine inlet pressure with a low-pressure turbine bypass valve.When the low-pressure turbine bypass valve is started, stopped, or emergency stopped, the pressure setting is based on the first-stage pressure of the high-pressure turbine. During normal load operation, it is controlled to be fully closed by applying a bias to the pressure setting so that the load operation is not hindered, and the feed water heater bypass valve is opened to the feed water heater. The water supply is cut off, heat is not exchanged with the steam supplied from the intermediate stage of the high-pressure turbine, and there is no steam flow from the high-pressure turbine to the water heater. When the high-pressure turbine displacement increases, the medium- and low-pressure turbine inlet pressure rises, the relationship between the high-pressure turbine first stage pressure and the intermediate-pressure turbine inlet pressure changes, and the operation continues with this heat balance changed. The low-pressure turbine bypass valve was opened unnecessarily to avoid disturbing the turbine load, and the open operation of the feed water heater bypass valve was captured and calculated by heat balance calculation after the feed water heater bypass. The setting is based on the first-stage pressure of the high-pressure turbine, and is controlled by switching the pressure setting value at the inlet of the medium- and low-pressure turbine.

以下、図面に基づいて詳細に説明する。ボイラ1にて発生した蒸気は、主蒸気配管2を通り、主蒸気止弁5と主蒸気加減弁6を介して高圧タービン7に流入し、仕事をした後、低温再熱蒸気として排出され、低温再熱管8を通り再熱器9に導かれ、再熱器9により加熱された後、高温再熱蒸気となり、高温再熱管10を通り、再熱蒸気止弁14とインターセプト弁15を介して中圧タービン16に流入する。蒸気は、中圧タービン16で仕事をした後、低圧タービン17に流入し、仕事をした後、復水器18へ排出され、凝縮されて復水となる。復水ポンプ19で昇圧された復水は、復水管20を通り、脱気器水位調節弁23を介して、低圧加熱器24に流入して加熱され、そして脱気器25にて脱気された後、給水ポンプ26にて昇圧され、高圧給水加熱器30で加熱され、ボイラ1へ給水として供給される。高圧給水加熱器30には、高圧タービン中間段から、抽気止弁32が設けられた抽気管31を介して抽気蒸気が供給され、給水を抽気蒸気により加熱する。また、必要に応じて、低温再熱管または中圧タービン中間段からの抽気蒸気が供給される高圧給水加熱器30が設置される。   Hereinafter, it demonstrates in detail based on drawing. The steam generated in the boiler 1 passes through the main steam pipe 2, flows into the high-pressure turbine 7 through the main steam stop valve 5 and the main steam control valve 6, and after working, is discharged as low-temperature reheat steam. After being led to the reheater 9 through the low-temperature reheat pipe 8 and heated by the reheater 9, it becomes high-temperature reheat steam, passes through the high-temperature reheat pipe 10, and passes through the reheat steam stop valve 14 and the intercept valve 15. It flows into the intermediate pressure turbine 16. After working in the intermediate pressure turbine 16, the steam flows into the low pressure turbine 17, and after working, is discharged to the condenser 18, condensed, and becomes condensed water. The condensate whose pressure has been increased by the condensate pump 19 passes through the condensate pipe 20, flows into the low-pressure heater 24 through the deaerator water level control valve 23, is heated, and is degassed by the deaerator 25. After that, the pressure is raised by the feed water pump 26, heated by the high pressure feed water heater 30, and supplied to the boiler 1 as feed water. The high-pressure feed water heater 30 is supplied with extraction steam from an intermediate stage of the high-pressure turbine through an extraction pipe 31 provided with an extraction stop valve 32 to heat the feed water with the extraction steam. Moreover, the high pressure feed water heater 30 to which the extraction steam from the low temperature reheat pipe or the intermediate pressure turbine intermediate stage is supplied is installed as necessary.

また、起動・停止・緊急停止時等にタービンに通気できない余剰蒸気が発生する過渡運転状態においては、ボイラ1から発生した蒸気は、高圧タービンバイパス弁4を有する高圧タービンバイパス管3を通り、再熱器9で加熱される。再熱器9で加熱された蒸気は、高温再熱蒸気管10から低圧タービンバイパス弁12を有する低圧タービンバイパス管11を通り、減温器13を介して復水器18へ排出される。減温器13には減温弁22が設けられた減温水管21を介して復水器18からの復水が供給される。このように、高圧タービンバイパス管は高圧タービンをバイパスし、低圧タービンバイパス管は中圧タービン及び低圧タービンをバイパスする。本実施例では、中圧タービンを用いているが、中圧タービンを省略することも可能である。このことから本発明では、中圧タービンと低圧タービンとを併せて中低圧タービンと総称し、中低圧タービンという場合、中圧タービン及び低圧タービンの組み合わせと低圧タービンだけの場合の両方を含むものとする。   Further, in a transient operation state in which surplus steam that cannot be passed to the turbine is generated at the time of start / stop / emergency stop, the steam generated from the boiler 1 passes through the high-pressure turbine bypass pipe 3 having the high-pressure turbine bypass valve 4 and is recycled. Heated by the heater 9. The steam heated by the reheater 9 passes through the low pressure turbine bypass pipe 11 having the low pressure turbine bypass valve 12 from the high temperature reheat steam pipe 10 and is discharged to the condenser 18 via the temperature reducer 13. Condensate from the condenser 18 is supplied to the temperature reducer 13 via a temperature reduction water pipe 21 provided with a temperature reduction valve 22. Thus, the high pressure turbine bypass pipe bypasses the high pressure turbine, and the low pressure turbine bypass pipe bypasses the intermediate pressure turbine and the low pressure turbine. In this embodiment, an intermediate pressure turbine is used, but the intermediate pressure turbine may be omitted. Therefore, in the present invention, the medium-pressure turbine and the low-pressure turbine are collectively referred to as a medium-low pressure turbine, and the term “medium-low pressure turbine” includes both the combination of the medium-pressure turbine and the low-pressure turbine and only the low-pressure turbine.

また、給水管27には、高圧給水加熱器30をバイパスして、給水をボイラ1に供給するための高圧給水加熱器バイパス弁28と高圧給水加熱器バイパス管29が設けられている。   The feed water pipe 27 is provided with a high pressure feed water heater bypass valve 28 and a high pressure feed water heater bypass pipe 29 for bypassing the high pressure feed water heater 30 and supplying feed water to the boiler 1.

次に、低圧タービンバイパス弁の制御について説明する。   Next, control of the low pressure turbine bypass valve will be described.

起動・停止・緊急停止時等の余剰蒸気が発生する過渡状態では、再熱器出口の再熱蒸気圧力上昇を抑えるために、高圧タービン初段圧力40に基づいた中圧タービン入口圧力の制御設定圧力にて低圧タービンバイパス弁が制御され、低圧タービンバイパス管から余剰蒸気を復水器へ排出する。図2Aは、通常運転時における、高圧タービン初段圧力に基づき中圧タービン入口の制御設定圧力を求めるための関数設定器(A)42の内容を示すもので、この関数設定器(A)42に基づき圧力設定される。この関数は、通常運転時の熱バランス計算により算出される。   In a transient state where surplus steam is generated such as during start-up / stop / emergency stop, in order to suppress the increase in the reheat steam pressure at the reheater outlet, the control set pressure of the intermediate pressure turbine inlet pressure based on the high pressure turbine first stage pressure 40 is set. The low pressure turbine bypass valve is controlled at, and surplus steam is discharged from the low pressure turbine bypass pipe to the condenser. FIG. 2A shows the contents of the function setter (A) 42 for obtaining the control set pressure at the inlet of the intermediate pressure turbine based on the first-stage pressure of the high-pressure turbine during normal operation. The pressure is set based on this. This function is calculated by calculating the heat balance during normal operation.

通常負荷運転時の低圧タービンバイパス制御は、図1及び図2Aに示すように、高圧タービン初段圧力40に基づいて関数演算器(A)42で得られた制御設定圧力にバイアス値46を加算した値で制御する。このように制御するため、全閉状態を保持し、通常の負荷運転を阻害しないよう運用されている。尚、低圧タービンバイパス弁12は高圧タービンバイパス弁4に協調して動作させるため、高圧タービンバイパス弁4が全閉時に低圧タービンバイパス弁12も閉動作となるよう、バイアス値46は高圧タービンバイパス弁4全閉の条件にて関数発生器(A)42の出力に加算器45において加算される。これによって、低圧タービンバイパス弁12も全閉待機となる。   In the low pressure turbine bypass control during normal load operation, as shown in FIGS. 1 and 2A, a bias value 46 is added to the control set pressure obtained by the function calculator (A) 42 based on the high pressure turbine first stage pressure 40. Control by value. In order to control in this way, it is operated so that the fully closed state is maintained and normal load operation is not hindered. Since the low pressure turbine bypass valve 12 is operated in cooperation with the high pressure turbine bypass valve 4, the bias value 46 is set so that the low pressure turbine bypass valve 12 is also closed when the high pressure turbine bypass valve 4 is fully closed. 4 Adder 45 adds to the output of function generator (A) 42 under the fully closed condition. As a result, the low-pressure turbine bypass valve 12 is also in a fully closed standby.

ここで、通常運転時に、高圧給水加熱器バイパス弁28が開き、給水ポンプ26からボイラ1への給水の供給が給水管27から高圧給水加熱器バイパス管29に切り替わると、高圧給水加熱器30でのタービン抽気との熱交換がなくなるため、抽気の流れが遮断される。抽気が遮断されると高圧タービン7、低温再熱蒸気管8からの蒸気の排出がなくなり、再熱器9から中圧タービン16に流入する蒸気量が増加し、中圧タービン入口圧力41が上昇する。   When the high-pressure feed water heater bypass valve 28 is opened during normal operation and the feed water supply from the feed water pump 26 to the boiler 1 is switched from the feed water pipe 27 to the high-pressure feed water heater bypass pipe 29, the high-pressure feed water heater 30 Since there is no heat exchange with the turbine bleed air, the flow of bleed air is blocked. When the bleed air is shut off, steam is no longer discharged from the high pressure turbine 7 and the low temperature reheat steam pipe 8, the amount of steam flowing from the reheater 9 into the intermediate pressure turbine 16 increases, and the intermediate pressure turbine inlet pressure 41 increases. To do.

このとき、関数演算器(A)42に使用していた高圧タービン初段圧力40と中圧タービン入口圧力41の熱バランスが通常運転時から変化する。このため、通常運転時に低圧タービンバイパス制御に使用していた関数発生器(A)42に基づき設定された圧力値以上に、中圧タービン入口圧力41が上昇し、低圧タービンバイパス弁12が開動作となり、高温再熱蒸気が復水器18に排出され負荷運転に外乱を与え、またエネルギー損失となる。この低圧タービンバイパス弁12の不要な開動作を回避するために、図1に示すように、高圧給水加熱器バイパス弁28の開動作をとらえて、信号切替え器44により、バイパスした状態での熱バランス計算により算出した関数発生器(B)43に制御設定を切替える。このことで、給水加熱器バイパス運転時にも通常負荷運転時と同様に熱バランスに基づいた設定にて低圧タービンバイパス弁12の制御が可能となる。なお、図中、47は偏差演算器、48はPI演算器を示す。   At this time, the heat balance between the high-pressure turbine first-stage pressure 40 and the intermediate-pressure turbine inlet pressure 41 used in the function calculator (A) 42 changes from that during normal operation. Therefore, the intermediate pressure turbine inlet pressure 41 rises above the pressure value set based on the function generator (A) 42 used for the low pressure turbine bypass control during normal operation, and the low pressure turbine bypass valve 12 opens. Thus, the high-temperature reheat steam is discharged to the condenser 18 to disturb the load operation, and energy is lost. In order to avoid the unnecessary opening operation of the low-pressure turbine bypass valve 12, as shown in FIG. 1, the opening operation of the high-pressure feed water heater bypass valve 28 is caught and the heat in the bypassed state is detected by the signal switch 44. The control setting is switched to the function generator (B) 43 calculated by the balance calculation. As a result, the low-pressure turbine bypass valve 12 can be controlled with the setting based on the heat balance in the feed water heater bypass operation as in the normal load operation. In the figure, 47 indicates a deviation calculator and 48 indicates a PI calculator.

また、関数発生器(A)42及び関数発生器(B)43は、各負荷条件での熱バランス計算に基づいて関数を作成しているため、負荷上昇・降下等により負荷条件が変化した場合においても、図2A及び図2Bに示すように、中圧タービン入口圧力41は常に関数発生器(A)42または関数発生器(B)43上の圧力にあり、安定した低圧タービンバイパス制御が可能となる。図2A及び図2Bは、実施例1に使用した関数発生器を示し、通常運転時と高圧給水加熱器バイパス運転時の関数を比較し、実際の運転圧力との関係を示すものである。図2Aが通常運転時の関数発生器(A)42、図2Bが高圧給水加熱器バイパス時の関数発生器(B)43を示している。   In addition, since the function generator (A) 42 and the function generator (B) 43 create a function based on the heat balance calculation under each load condition, the load condition changes due to load increase / decrease etc. 2A and 2B, the intermediate pressure turbine inlet pressure 41 is always at the pressure on the function generator (A) 42 or the function generator (B) 43, and stable low-pressure turbine bypass control is possible. It becomes. FIG. 2A and FIG. 2B show the function generator used in Example 1, comparing the functions during normal operation and high-pressure feed water heater bypass operation, and showing the relationship with the actual operation pressure. FIG. 2A shows the function generator (A) 42 during normal operation, and FIG. 2B shows the function generator (B) 43 when bypassing the high-pressure feed water heater.

本実施例によれば、過剰な高圧タービン排気蒸気の増加により中低圧タービン入口圧力が異常に上昇するような事象で、中低圧タービン入口圧力と高圧タービン初段圧力の関係が通常運転時と異なる熱バランスとなった場合にも、低圧タービンバイパス弁が閉状態を保持することができる。また、中低圧タービン入口圧力が上昇し、高圧タービン初段圧力と中低圧タービン入口圧力との熱バランスが変化した場合にも、中圧タービン入口の制御設定値を本事象時の熱バランスに合わせた圧力設定に切替えることで、熱バランスが変化した状態のまま負荷上昇・停止等の操作に対しても安定したバイパス弁の制御が可能となる。   According to the present embodiment, in the event that the intermediate / low pressure turbine inlet pressure rises abnormally due to an increase in excess high pressure turbine exhaust steam, the relationship between the intermediate / low pressure turbine inlet pressure and the high pressure turbine first stage pressure is different from that during normal operation. Even when the balance is achieved, the low-pressure turbine bypass valve can be kept closed. In addition, when the intermediate / low pressure turbine inlet pressure rises and the thermal balance between the high pressure turbine first stage pressure and the intermediate / low pressure turbine inlet pressure changes, the control setting value of the intermediate pressure turbine inlet is adjusted to the heat balance at the time of this event. By switching to the pressure setting, it is possible to control the bypass valve stably even for operations such as load increase / stop while the heat balance is changed.

図3は、本発明の一実施例が適用される汽力発電プラントの系統と低圧タービンバイパス制御系統を示す図である。本実施例2は、抽気止弁の開動作をとらえ、制御設定となる関数演算器を切替える機能を有している。   FIG. 3 is a diagram showing a steam power plant system and a low-pressure turbine bypass control system to which one embodiment of the present invention is applied. The second embodiment has a function of catching the opening operation of the bleed stop valve and switching the function computing unit as the control setting.

本実施例2の概要は、実施例1と同様に、低圧タービンバイパス弁が、起動・停止・緊急停止時にはタービン初段圧力に基づいた圧力設定にて制御され、通常負荷運転時には負荷運転を阻害しないように該圧力設定にバイアスを加えることで低圧タービンバイパス弁は全閉となるように制御され、そして、本実施例2では、給水加熱器バイパス弁の開動作に替えて、何らかの要因により高圧タービン中間段から給水加熱器への抽気管に設置された抽気止弁が閉まった場合、高圧タービンの排気量が増加し、中低圧タービン入口圧力が上昇し、高圧タービン初段圧力と中低圧タービン入口圧力の関係が変化し、この熱バランスが変化した状態で運転を継続する際に、低圧タービンバイパス弁が不要な開動作となり、タービン負荷に外乱を与えてしまうことを回避するよう、抽気止弁閉動作をとらえ、抽気止弁閉後の熱バランス計算により算出した、高圧タービン初段圧力に基づいた設定に、圧力設定値(中低圧タービン入口の圧力設定値)を切り替えて制御されるようにしたものである。   The outline of the second embodiment is the same as that of the first embodiment. The low-pressure turbine bypass valve is controlled by the pressure setting based on the turbine first stage pressure at the time of start / stop / emergency stop, and does not hinder the load operation at the normal load operation. Thus, by adding a bias to the pressure setting, the low-pressure turbine bypass valve is controlled to be fully closed. In the second embodiment, instead of opening the feed water heater bypass valve, the high-pressure turbine When the bleed stop valve installed in the bleed pipe from the intermediate stage to the feed water heater is closed, the displacement of the high pressure turbine increases, the medium and low pressure turbine inlet pressure rises, the high pressure turbine first stage pressure and the medium and low pressure turbine inlet pressure When the operation is continued with this thermal balance changed, the low-pressure turbine bypass valve is opened unnecessarily, causing disturbance to the turbine load. In order to avoid this, the setting of the pressure setting value (the pressure setting value at the inlet of the medium / low pressure turbine) is set based on the first-stage pressure of the high pressure turbine, which is calculated by calculating the heat balance after closing the bleeding stop valve. ) To be controlled.

以下、図面に基づいて詳細に説明する。基本的な構成は図1と同様である。   Hereinafter, it demonstrates in detail based on drawing. The basic configuration is the same as in FIG.

本実施例2では、図1に示した実施例1の高圧給水加熱器バイパス弁28の開動作をとらえる代わりに、高圧タービン7から供給される抽気管31に設置された抽気止弁32の閉動作をとらえ、通常運転時に低圧タービンバイパス制御に使用していた関数発生器(A)42から、抽気止弁閉状態での熱バランス計算により算出した関数発生器(B)43に制御設定を切替える。これによって、抽気止弁閉時にも通常負荷運転時と同様に熱バランスに基づいた設定にて低圧タービンバイパス弁12の制御が可能となる。   In the second embodiment, instead of capturing the opening operation of the high pressure feed water heater bypass valve 28 of the first embodiment shown in FIG. 1, the bleed stop valve 32 installed in the bleed pipe 31 supplied from the high pressure turbine 7 is closed. The control setting is switched from the function generator (A) 42 used for low-pressure turbine bypass control during normal operation to the function generator (B) 43 calculated by heat balance calculation when the bleed valve is closed. . Thereby, even when the bleed valve is closed, the low pressure turbine bypass valve 12 can be controlled with the setting based on the heat balance as in the normal load operation.

また、関数発生器(A)42及び関数発生器(B)43は、各負荷条件での熱バランス計算に基づいて関数を作成しているため、負荷上昇・降下等により負荷条件が変化した場合においても、実施例1と同様に、中圧タービン入口圧力41は常に関数発生器(A)42または関数発生器(B)43上の圧力にあり、安定した低圧タービンバイパス制御が可能となる。   In addition, since the function generator (A) 42 and the function generator (B) 43 create a function based on the heat balance calculation under each load condition, the load condition changes due to load increase / decrease etc. As in the first embodiment, the intermediate pressure turbine inlet pressure 41 is always at the pressure on the function generator (A) 42 or the function generator (B) 43, and stable low-pressure turbine bypass control is possible.

図4は、本発明の一実施例が適用される汽力発電プラントの系統と低圧タービンバイパス制御系統を示す図である。本実施例3では、プロセス蒸気止弁の開動作をとらえ、制御設定となる関数演算器を切替える機能を有している。   FIG. 4 is a diagram showing a steam power plant system and a low-pressure turbine bypass control system to which one embodiment of the present invention is applied. The third embodiment has a function of catching the opening operation of the process steam stop valve and switching the function computing unit as the control setting.

本実施例2の概要は、蒸気発生器、該蒸気発生器から発生された蒸気により駆動する高圧タービン、該高圧タービンの排出蒸気を加熱する再熱器、該再熱器で加熱した再熱蒸気により駆動する中低圧タービン、復水器と、蒸気発生器からの蒸気を高圧タービンをバイパスし高圧タービン排気管へ導く高圧タービンバイパス弁を有する高圧タービンバイパス管、再熱器により加熱された再熱蒸気を中低圧タービンをバイパスし復水器へ導く低圧タービンバイパス弁を有する低圧タービンバイパス管、高圧タービンまたは、排気管からの抽気を工場等の別の設備で利用するよう供給するプロセス蒸気管を有する蒸気発生プラントにおいて、起動・停止・緊急停止時等の余剰蒸気が発生する過渡運転状態に、再熱器出口の再熱蒸気圧力上昇を抑えるために低圧タービンバイパス管から余剰蒸気を復水器へ排出し、中低圧タービン入口圧力を低圧タービンバイパス弁にて制御する低圧タービンバイパス制御装置であって、低圧タービンバイパス弁が、起動・停止・緊急停止時には高圧タービン初段圧力に基づいた圧力設定にて制御され、通常負荷運転時には負荷運転を阻害しない状態になるように該圧力設定にバイアスを加えることで全閉となるように制御され、そして、高圧タービン、または、排気管から蒸気を供給するプロセス蒸気が遮断され、高圧タービンの排気量が増加して、中低圧タービン入口圧力が上昇し、高圧タービン初段圧力と中低圧タービン入口圧力の関係が変化した状態で、通常の圧力設定のまま運転を継続する際に、低圧タービンバイパス弁が不要な開動作となり、タービン負荷に外乱を与えてしまうことを回避するよう、プロセス蒸気遮断の条件をとらえ、プロセス蒸気遮断後の熱バランス計算により算出した、初段圧力に基づいた設定に圧力設定値(中低圧タービン入口の圧力設定値)を切り替えて制御されるようにしたものである。   The outline of the second embodiment is that a steam generator, a high-pressure turbine driven by steam generated from the steam generator, a reheater that heats exhaust steam of the high-pressure turbine, and reheat steam heated by the reheater Reheat heated by a reheater, having a high pressure turbine bypass pipe having a high pressure turbine bypass valve that bypasses the high pressure turbine and leads the steam from the steam generator to the high pressure turbine exhaust pipe A low-pressure turbine bypass pipe having a low-pressure turbine bypass valve that bypasses the medium- and low-pressure turbine and leads to the condenser, a high-pressure turbine, or a process steam pipe that supplies the extracted air from the exhaust pipe to be used in another facility such as a factory. Suppress the rise of reheat steam pressure at the reheater outlet in the transient operation state where surplus steam is generated at the start, stop, emergency stop, etc. For this purpose, a low-pressure turbine bypass control device that discharges surplus steam from the low-pressure turbine bypass pipe to the condenser and controls the intermediate-low pressure turbine inlet pressure with the low-pressure turbine bypass valve. It is controlled with a pressure setting based on the first stage pressure of the high-pressure turbine at the time of emergency stop, and is controlled to be fully closed by applying a bias to the pressure setting so that the load operation is not hindered during normal load operation, and The high-pressure turbine or the process steam supplying steam from the exhaust pipe is shut off, the displacement of the high-pressure turbine increases, the medium- and low-pressure turbine inlet pressure rises, and the relationship between the high-pressure turbine first stage pressure and the medium- and low-pressure turbine inlet pressure When the operation is continued with the normal pressure setting in a state where has changed, the low pressure turbine bypass valve becomes an unnecessary opening operation, In order to avoid disturbing the bin load, the process steam shut-off condition is taken and the pressure set value (at the low-pressure turbine inlet is set to the setting based on the first stage pressure calculated by the heat balance calculation after the process steam shut-off. The pressure setting value) is switched and controlled.

以下、図面に基づいて詳細に説明する。基本的な構成は図1と同様である。   Hereinafter, it demonstrates in detail based on drawing. The basic configuration is the same as in FIG.

本実施例3が適用されるプラントは、図1や図3に示した実施例1や2における抽気管31に工場等の別設備に蒸気を供給するプロセス蒸気管33とプロセス蒸気止弁34が設置されたプラントである。そして、本実施例3では、高圧給水加熱器バイパス弁28や抽気止弁32の閉動作をとらえる代わりに、プロセス蒸気止弁34の閉動作をとらえ、通常運転時に低圧タービンバイパス制御に使用していた関数発生器(A)42から、プロセス蒸気止弁閉状態での熱バランス計算により算出した関数発生器(B)43に制御設定を切替える。これよって、プロセス蒸気止弁閉時にも通常負荷運転時と同様に熱バランスに基づいた設定にて低圧タービンバイパス弁12の制御が可能となる。   The plant to which the third embodiment is applied includes a process steam pipe 33 and a process steam stop valve 34 for supplying steam to another facility such as a factory to the extraction pipe 31 in the first and second embodiments shown in FIGS. It is an installed plant. In the third embodiment, instead of capturing the closing operation of the high pressure feed water heater bypass valve 28 and the bleed stop valve 32, the closing operation of the process steam stop valve 34 is captured and used for the low pressure turbine bypass control during normal operation. The control setting is switched from the function generator (A) 42 to the function generator (B) 43 calculated by the heat balance calculation in the process steam stop valve closed state. Thus, even when the process steam stop valve is closed, the low-pressure turbine bypass valve 12 can be controlled with the setting based on the heat balance as in the normal load operation.

また、関数発生器(A)42及び関数発生器(B)43は、各負荷条件での熱バランス計算に基づいて関数を作成しているため、負荷上昇・降下等により負荷条件が変化した場合においても、実施例1と同様に、中圧タービン入口圧力41は常に関数発生器(A)42または関数発生器(B)43上の圧力にあり、安定した低圧タービンバイパス制御が可能となる。   In addition, since the function generator (A) 42 and the function generator (B) 43 create a function based on the heat balance calculation under each load condition, the load condition changes due to load increase / decrease etc. As in the first embodiment, the intermediate pressure turbine inlet pressure 41 is always at the pressure on the function generator (A) 42 or the function generator (B) 43, and stable low-pressure turbine bypass control is possible.

1・・・ボイラ、2・・・主蒸気管、3・・・高圧タービンバイパス管、4・・・高圧タービンバイパス弁、5・・・主蒸気止弁、6・・・主蒸気加減弁、7・・・高圧タービン、8・・・低温再熱管、9・・・再熱器、10・・・高温再熱管、11・・・低圧タービンバイパス管、12・・・低圧タービンバイパス弁、13・・・減温器、14・・・再熱蒸気止弁、15・・・インターセプト弁、16・・・中圧タービン、17・・・低圧タービン、18・・・復水器、19・・・復水ポンプ、20・・・復水管、21・・・減温水管、22・・・減温弁、23・・・脱気器水位調節弁、24・・・低圧給水加熱器、25・・・脱気器、26・・・給水ポンプ、27・・・給水管、28・・・高圧給水加熱器バイパス弁、29・・・高圧給水加熱器バイパス管、30・・・高圧給水加熱器、31・・・抽気管、32・・・抽気止弁、33・・・プロセス蒸気管、34・・・プロセス蒸気止弁、40・・・高圧初段圧力(圧力計)、41・・・中圧タービン入口圧力(圧力計)、42・・・関数発生器(A)、43・・・関数発生器(B)、44・・・信号切替え器、45・・・加算器、46・・・バイアス値(固定値)、47・・・偏差演算器、48・・・PI演算器 1 ... Boiler, 2 ... Main steam pipe, 3 ... High pressure turbine bypass pipe, 4 ... High pressure turbine bypass valve, 5 ... Main steam stop valve, 6 ... Main steam control valve, 7 ... High-pressure turbine, 8 ... Low temperature reheat pipe, 9 ... Reheater, 10 ... High temperature reheat pipe, 11 ... Low pressure turbine bypass pipe, 12 ... Low pressure turbine bypass valve, 13・ ・ ・ Low temperature reducer, 14 ... Reheat steam stop valve, 15 ... Intercept valve, 16 ... Medium pressure turbine, 17 ... Low pressure turbine, 18 ... Condenser, ...・ Condensate pump, 20 ... Condensate pipe, 21 ... Temperature reduction water pipe, 22 ... Temperature reduction valve, 23 ... Deaerator water level control valve, 24 ... Low pressure feed water heater, 25 ..Deaerator, 26 ... Feed pump, 27 ... Feed pipe, 28 ... High pressure feed heater bypass valve, 29 ... High pressure feed heater bypass pipe, 30 ... High pressure feed heater 31 ... Extraction pipe, 32 ... Bleed stop valve, 33 ... Process steam pipe, 34 ... Process steam stop valve, 40 ... High pressure first stage pressure (pressure gauge), 41 ... Medium pressure turbine inlet pressure (pressure gauge), 42 ... -Function generator (A), 43 ... Function generator (B), 44 ... Signal switcher, 45 ... Adder, 46 ... Bias value (fixed value), 47 ... Deviation Calculator, 48 ... PI calculator

Claims (5)

蒸気発生器と、該蒸気発生器から発生した蒸気により駆動する高圧タービンと、該高圧タービンの排出蒸気を加熱する再熱器と、該再熱器で加熱した再熱蒸気により駆動する中低圧タービンと、復水器と、前記蒸気発生器からの蒸気を前記高圧タービンをバイパスし高圧タービン排気管へ導く高圧タービンバイパス弁を有する高圧タービンバイパス管と、前記再熱器により加熱された再熱蒸気を前記中低圧タービンをバイパスし前記復水器へ導く低圧タービンバイパス弁を有する低圧タービンバイパス管と、前記高圧タービンの中間段からの抽気蒸気によって前記蒸気発生器への給水を加熱する給水加熱器と、該給水加熱器をバイパスし前記蒸気発生器へ給水を導く給水加熱器バイパス弁を有する給水加熱器バイパス管とを有する蒸気発生プラントにおける前記低圧タービンバイパス弁の開閉制御を行う低圧タービンバイパス弁制御装置であって、
前記低圧タービンバイパス弁は、前記高圧タービンの初段圧力に基づいて設定される前記中低圧タービンの入口の制御設定圧力を、前記中低圧タービンの入口圧力が超えないように開閉制御され、
通常負荷運転時に前記中低圧タービンの入口圧力が上昇する通常運転時と異なる運転状態となった場合、前記制御設定圧力を、その運転状態での熱バランス計算に基づく設定に切り換えるようにしたことを特徴とする低圧タービンバイパス弁制御装置。
Steam generator, high-pressure turbine driven by steam generated from the steam generator, reheater for heating exhaust steam of the high-pressure turbine, and medium-low pressure turbine driven by reheat steam heated by the reheater A condenser, a high-pressure turbine bypass pipe having a high-pressure turbine bypass valve for bypassing the steam from the steam generator to the high-pressure turbine exhaust pipe, and the reheat steam heated by the reheater A low-pressure turbine bypass pipe having a low-pressure turbine bypass valve that bypasses the medium-low pressure turbine and leads to the condenser, and a feed water heater that heats the feed water to the steam generator by the extracted steam from the intermediate stage of the high-pressure turbine And a steam generator bypass pipe having a feed water heater bypass valve that bypasses the feed water heater and guides feed water to the steam generator. Wherein a low-pressure turbine bypass valve controller controls the opening and closing of the low-pressure turbine bypass valve in cement,
The low-pressure turbine bypass valve is controlled to open and close so that the inlet pressure of the medium-low pressure turbine does not exceed the control set pressure of the inlet of the medium-low pressure turbine, which is set based on the initial stage pressure of the high-pressure turbine,
If the operation pressure differs from that during normal operation when the inlet pressure of the medium / low pressure turbine increases during normal load operation, the control set pressure is switched to a setting based on the heat balance calculation in that operation state. A low-pressure turbine bypass valve control device.
請求項1において、
通常負荷運転時に、前記蒸気発生器への給水が前記給水加熱器側から前記給水加熱器バイパス管側へ切替わる運転状態となった場合、前記制御設定圧力を、前記給水加熱器をバイパスした運転状態での熱バランス計算に基づく設定に切り換えるようにしたことを特徴とする低圧タービンバイパス弁制御装置。
In claim 1,
During normal load operation, when the water supply to the steam generator is switched to the feed water heater bypass pipe side from the feed water heater side, the control set pressure is bypassed the feed water heater. A low-pressure turbine bypass valve control device that switches to a setting based on a heat balance calculation in a state.
請求項1において、
通常負荷運転時に、前記高圧タービンの中間段から前記給水加熱器へ抽気蒸気を導く抽気管に設けられた抽気止弁が閉まった運転状態となった場合、前記制御設定圧力を、前記抽気止弁が閉まった運転状態での熱バランス計算に基づく設定に切り換えるようにしたことを特徴とする低圧タービンバイパス弁制御装置。
In claim 1,
During normal load operation, when the extraction stop valve provided in the extraction pipe for introducing extraction steam from the intermediate stage of the high-pressure turbine to the feed water heater is closed, the control set pressure is set to the extraction stop valve. A low-pressure turbine bypass valve control device, wherein the setting is switched to a setting based on a heat balance calculation in an operating state in which the engine is closed.
蒸気発生器と、該蒸気発生器から発生した蒸気により駆動する高圧タービンと、該高圧タービンの排出蒸気を加熱する再熱器と、該再熱器で加熱した再熱蒸気により駆動する中低圧タービンと、復水器と、前記蒸気発生器からの蒸気を前記高圧タービンをバイパスし高圧タービン排気管へ導く高圧タービンバイパス弁を有する高圧タービンバイパス管と、前記再熱器により加熱された再熱蒸気を前記中低圧タービンをバイパスし前記復水器へ導く低圧タービンバイパス弁を有する低圧タービンバイパス管と、前記高圧タービンまたは前記高圧タービン排気管からの抽気蒸気を工場等の別の設備に供給するプロセス蒸気管とを有する蒸気発生プラントにおける前記低圧タービンバイパス弁の開閉制御を行う低圧タービンバイパス弁制御装置であって、
前記低圧タービンバイパス弁は、前記高圧タービンの初段圧力に基づいて設定される前記中低圧タービンの入口の制御設定圧力を、前記中低圧タービンの入口圧力が超えないように開閉制御され、
通常負荷運転時に、前記プロセス蒸気管が遮断された運転状態となった場合、前記制御設定圧力を、前記プロセス蒸気管が遮断された運転状態での熱バランス計算に基づく設定に切り換えるようにしたことを特徴とする低圧タービンバイパス弁制御装置。
Steam generator, high-pressure turbine driven by steam generated from the steam generator, reheater for heating exhaust steam of the high-pressure turbine, and medium-low pressure turbine driven by reheat steam heated by the reheater A condenser, a high-pressure turbine bypass pipe having a high-pressure turbine bypass valve for bypassing the steam from the steam generator to the high-pressure turbine exhaust pipe, and the reheat steam heated by the reheater A low-pressure turbine bypass pipe having a low-pressure turbine bypass valve that bypasses the medium-low pressure turbine and leads it to the condenser, and a process for supplying extracted steam from the high-pressure turbine or the high-pressure turbine exhaust pipe to another facility such as a factory A low-pressure turbine bypass valve control device that controls opening and closing of the low-pressure turbine bypass valve in a steam generation plant having a steam pipe Te,
The low-pressure turbine bypass valve is controlled to open and close so that the inlet pressure of the medium-low pressure turbine does not exceed the control set pressure of the inlet of the medium-low pressure turbine, which is set based on the initial stage pressure of the high-pressure turbine,
In normal load operation, when the process steam pipe is shut off, the control set pressure is switched to the setting based on the heat balance calculation in the operation state where the process steam pipe is shut off. A low-pressure turbine bypass valve control device.
蒸気発生器と、該蒸気発生器から発生した蒸気により駆動する高圧タービンと、該高圧タービンの排出蒸気を加熱する再熱器と、該再熱器で加熱した再熱蒸気により駆動する中低圧タービンと、復水器と、前記蒸気発生器からの蒸気を前記高圧タービンをバイパスし高圧タービン排気管へ導く高圧タービンバイパス弁を有する高圧タービンバイパス管と、前記再熱器により加熱された再熱蒸気を前記中低圧タービンをバイパスし前記復水器へ導く低圧タービンバイパス弁を有する低圧タービンバイパス管と、前記高圧タービンの中間段からの抽気蒸気によって前記蒸気発生器への給水を加熱する給水加熱器と、該給水加熱器をバイパスし前記蒸気発生器へ給水を導く給水加熱器バイパス弁を有する給水加熱器バイパス管と、起動・停止・緊急停止時等の余剰蒸気が発生する過渡運転状態に、前記再熱器出口の再熱蒸気圧力上昇を抑えるように前記低圧タービンバイパス管から余剰蒸気を前記復水器へ排出し、前記中低圧タービン入口圧力を前記低圧タービンバイパス弁にて制御する低圧タービンバイパス制御装置とを有する発電プラントであって、
低圧タービンバイパス制御装置は、起動・停止・緊急停止時には、前記低圧タービンバイパス弁を、前記高圧タービン初段圧力に基づいた圧力設定にて制御し、
通常負荷運転時には、前記圧力設定にバイアスを加えることで前記低圧タービンバイパス弁が全閉となるように制御し、
通常負荷運転時に前記中低圧タービンの入口圧力が上昇する通常運転時と異なる運転状態となった場合には、前記圧力設定を、その運転状態での熱バランス計算に基づく設定に切り換えるようにしたことを特徴とする発電プラント。
Steam generator, high-pressure turbine driven by steam generated from the steam generator, reheater for heating exhaust steam of the high-pressure turbine, and medium-low pressure turbine driven by reheat steam heated by the reheater A condenser, a high-pressure turbine bypass pipe having a high-pressure turbine bypass valve for bypassing the steam from the steam generator to the high-pressure turbine exhaust pipe, and the reheat steam heated by the reheater A low-pressure turbine bypass pipe having a low-pressure turbine bypass valve that bypasses the medium-low pressure turbine and leads to the condenser, and a feed water heater that heats the feed water to the steam generator by the extracted steam from the intermediate stage of the high-pressure turbine A feed water heater bypass pipe having a feed water heater bypass valve that bypasses the feed water heater and guides the feed water to the steam generator, and start / stop / emergency Excess steam is discharged from the low-pressure turbine bypass pipe to the condenser so as to suppress an increase in reheat steam pressure at the outlet of the reheater in a transient operation state where surplus steam is generated such as when stopped, and the medium-low pressure turbine A power plant having a low-pressure turbine bypass control device for controlling an inlet pressure with the low-pressure turbine bypass valve,
The low-pressure turbine bypass control device controls the low-pressure turbine bypass valve with a pressure setting based on the first-stage pressure of the high-pressure turbine at the time of start / stop / emergency stop,
During normal load operation, the low pressure turbine bypass valve is controlled to be fully closed by applying a bias to the pressure setting,
When the operation state is different from the normal operation in which the inlet pressure of the medium / low pressure turbine rises during normal load operation, the pressure setting is switched to the setting based on the heat balance calculation in the operation state. A power plant characterized by
JP2011204151A 2011-09-20 2011-09-20 Low pressure turbine bypass control device and power plant Active JP5524923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204151A JP5524923B2 (en) 2011-09-20 2011-09-20 Low pressure turbine bypass control device and power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204151A JP5524923B2 (en) 2011-09-20 2011-09-20 Low pressure turbine bypass control device and power plant

Publications (2)

Publication Number Publication Date
JP2013064372A true JP2013064372A (en) 2013-04-11
JP5524923B2 JP5524923B2 (en) 2014-06-18

Family

ID=48188074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204151A Active JP5524923B2 (en) 2011-09-20 2011-09-20 Low pressure turbine bypass control device and power plant

Country Status (1)

Country Link
JP (1) JP5524923B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128588A (en) * 2014-05-08 2015-11-18 알스톰 테크놀러지 리미티드 Oxy boiler power plant oxygen feed system heat integration
CN109611166A (en) * 2018-11-20 2019-04-12 华电电力科学研究院有限公司 A kind of solidifying pumping back heating system and operation method for more low pressure (LP) cylinder Variable Conditions of Steam Turbine
CN110056402A (en) * 2019-03-26 2019-07-26 华电电力科学研究院有限公司 Steam surplus energy utility for coal-fired thermal power unit power peak regulation couples extraction for heat supply system and adjusting method
CN111749740A (en) * 2019-03-28 2020-10-09 三菱日立电力系统株式会社 Power generation facility and output increase control method for power generation facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113706A (en) * 1978-02-24 1979-09-05 Toshiba Corp Method of contolling turbine bypass system
JPS5535107A (en) * 1978-09-01 1980-03-12 Hitachi Ltd Turbine bypass control system
JPS59145309A (en) * 1983-02-09 1984-08-20 Hitachi Ltd Afc controller of turbine bypass thermal power plant
JPS62225705A (en) * 1986-03-26 1987-10-03 Hitachi Ltd Control device for reheated steam pressure relief
JPH0211807A (en) * 1988-06-29 1990-01-16 Hitachi Ltd Low pressure turbine bypass controller
JPH02271004A (en) * 1989-04-13 1990-11-06 Toshiba Corp Low pressure turbine bypass valve controller
JPH10325306A (en) * 1997-05-27 1998-12-08 Hitachi Ltd Low pressure turbine bypass control device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113706A (en) * 1978-02-24 1979-09-05 Toshiba Corp Method of contolling turbine bypass system
JPS5535107A (en) * 1978-09-01 1980-03-12 Hitachi Ltd Turbine bypass control system
JPS59145309A (en) * 1983-02-09 1984-08-20 Hitachi Ltd Afc controller of turbine bypass thermal power plant
JPS62225705A (en) * 1986-03-26 1987-10-03 Hitachi Ltd Control device for reheated steam pressure relief
JPH0211807A (en) * 1988-06-29 1990-01-16 Hitachi Ltd Low pressure turbine bypass controller
JPH02271004A (en) * 1989-04-13 1990-11-06 Toshiba Corp Low pressure turbine bypass valve controller
JPH10325306A (en) * 1997-05-27 1998-12-08 Hitachi Ltd Low pressure turbine bypass control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128588A (en) * 2014-05-08 2015-11-18 알스톰 테크놀러지 리미티드 Oxy boiler power plant oxygen feed system heat integration
KR102332878B1 (en) * 2014-05-08 2021-12-01 제네럴 일렉트릭 테크놀러지 게엠베하 Oxy boiler power plant oxygen feed system heat integration
CN109611166A (en) * 2018-11-20 2019-04-12 华电电力科学研究院有限公司 A kind of solidifying pumping back heating system and operation method for more low pressure (LP) cylinder Variable Conditions of Steam Turbine
CN109611166B (en) * 2018-11-20 2023-09-05 华电电力科学研究院有限公司 Condensing back-pumping heat supply system for variable working conditions of multi-low pressure cylinder steam turbine and operation method
CN110056402A (en) * 2019-03-26 2019-07-26 华电电力科学研究院有限公司 Steam surplus energy utility for coal-fired thermal power unit power peak regulation couples extraction for heat supply system and adjusting method
CN110056402B (en) * 2019-03-26 2023-11-28 华电电力科学研究院有限公司 Steam complementary energy utilization coupling steam extraction heat supply system and adjusting method
CN111749740A (en) * 2019-03-28 2020-10-09 三菱日立电力系统株式会社 Power generation facility and output increase control method for power generation facility
CN111749740B (en) * 2019-03-28 2022-09-06 三菱重工业株式会社 Power generation facility and output increase control method for power generation facility

Also Published As

Publication number Publication date
JP5524923B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN102966385B (en) Steam turbine plant and operation method therefor
EP2423460B1 (en) Systems and methods for pre-warming a heat recovery steam generator and associated steam lines
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JP5727951B2 (en) Steam supply system and method for controlling steam supply system
RU2009148415A (en) DEVICE FOR STARTING A STEAM TURBINE UNDER NOMINAL PRESSURE
JP2013502538A (en) Power plant system with overload control valve
JP2010014114A (en) Steam turbine overload valve and method associated with the same
US10287921B2 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP2012167571A (en) Uniaxial combined cycle power generation plant, and method of operating the same
JP5725913B2 (en) Combined cycle plant
JP2010163892A (en) Steam turbine facility, and method of operating feed water pump drive turbine
JP6071421B2 (en) Combined cycle plant, method for stopping the same, and control device therefor
JP5783458B2 (en) Increased output operation method in steam power plant
JP6231228B2 (en) Combined cycle gas turbine plant
JP2015124710A (en) Control device and activation method
JP2013245604A (en) Cooling system for high temperature part of gas turbine
EP2594764B1 (en) Steam turbine facility, and method for operating the same
JP4415189B2 (en) Thermal power plant
JP6603526B2 (en) Steam turbine equipment and operation method of steam turbine equipment
KR101604219B1 (en) Method for controlling a thermal power plant using regulator valves
CN110382842B (en) Gas turbine combined cycle plant and control method for gas turbine combined cycle plant
US11125166B2 (en) Control system, gas turbine, power generation plant, and method of controlling fuel temperature
JP5656754B2 (en) Power generation facility for waste incinerator and control method thereof
US10167742B2 (en) Steam cycle, and method for operating a steam cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140410

R150 Certificate of patent or registration of utility model

Ref document number: 5524923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250