JP2013061025A - Fluid dynamic bearing device and motor equipped with the same - Google Patents

Fluid dynamic bearing device and motor equipped with the same Download PDF

Info

Publication number
JP2013061025A
JP2013061025A JP2011200411A JP2011200411A JP2013061025A JP 2013061025 A JP2013061025 A JP 2013061025A JP 2011200411 A JP2011200411 A JP 2011200411A JP 2011200411 A JP2011200411 A JP 2011200411A JP 2013061025 A JP2013061025 A JP 2013061025A
Authority
JP
Japan
Prior art keywords
lid member
dynamic pressure
bearing
fluid dynamic
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011200411A
Other languages
Japanese (ja)
Inventor
Toshiaki Niwa
稔明 丹羽
Shohei Oka
翔平 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011200411A priority Critical patent/JP2013061025A/en
Priority to PCT/JP2012/071980 priority patent/WO2013038913A1/en
Publication of JP2013061025A publication Critical patent/JP2013061025A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1675Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at only one end of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Abstract

PROBLEM TO BE SOLVED: To reduce a cost in a fluid dynamic bearing device where an opening part at one end of a cylindrical member is sealed by a cover member while securing required bearing performance.SOLUTION: In the fluid dynamic bearing device 1, a lower end opening of a housing 7 which is the cylindrical member is sealed by the disc-shaped cover member 10. The cover member 10 is formed by punching a metal plate and has a burr 10f at one edge of an outer circumferential surface 10c. After being formed in the punching process, the cover member 10 is fitted into the space in the lower end opening of the housing 7 with the burr 10f facing outward. The cover member 10 is fixed to the lower end of the housing 7 and the lower end opening of the housing 7 is sealed by plastically deforming the lower end of the housing 7 toward the inner diameter while enfolding the burr 10f.

Description

本発明は、流体動圧軸受装置及びこれを備えるモータの改良に関する。   The present invention relates to an improvement in a fluid dynamic bearing device and a motor including the same.

流体動圧軸受装置は、ラジアル軸受隙間に形成される流体の潤滑膜(油膜)で、軸部材を軸受部材に対して相対回転自在に非接触支持する軸受装置である。この流体動圧軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、ディスク駆動装置(例えば、HDD等の磁気ディスク駆動装置や、CD、DVD、ブルーレイディスク等の光ディスク駆動装置)のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、電気機器のファンモータ等のモータ用軸受装置として好適に使用されている。   The fluid dynamic pressure bearing device is a bearing device that supports a shaft member in a non-contact manner so as to be relatively rotatable with respect to the bearing member by a fluid lubricating film (oil film) formed in a radial bearing gap. This fluid dynamic pressure bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. Recently, a disk drive device (for example, a magnetic disk drive device such as an HDD or the like, a CD) In addition, it is suitably used as a motor bearing device such as a spindle motor of an optical disc driving apparatus such as a DVD or a Blu-ray disc, a polygon scanner motor of a laser beam printer (LBP), or a fan motor of an electric device.

流体動圧軸受装置の一構成例として、例えば下記の特許文献1に記載されているように、軸部材と、両端が開口し、内周に軸部材を挿入した筒状部材としてのハウジングと、ハウジングの一端開口部を封口する蓋部材とを備え、軸部材の外周面に面するラジアル軸受隙間に形成される流体の潤滑膜(油膜)で軸部材がラジアル方向に支持されるものが挙げられる。この流体動圧軸受装置において、蓋部材は、ステンレス鋼、銅合金、アルミニウム合金等の金属材料で円盤状に形成され、接着や圧入等の適宜の手段でハウジングの一端開口部の内周に固定されている。   As one configuration example of the fluid dynamic bearing device, for example, as described in Patent Document 1 below, a shaft member, a housing as a cylindrical member having both ends opened and the shaft member inserted into the inner periphery, And a lid member that seals the opening at one end of the housing, and the shaft member is supported in the radial direction by a fluid lubricating film (oil film) formed in a radial bearing gap facing the outer peripheral surface of the shaft member. . In this fluid dynamic pressure bearing device, the lid member is formed in a disk shape from a metal material such as stainless steel, copper alloy, aluminum alloy, etc., and is fixed to the inner periphery of one end opening of the housing by an appropriate means such as adhesion or press-fitting. Has been.

特開2004−144205号公報Japanese Patent Laid-Open No. 2004-144205

上記の構成を有する流体動圧軸受装置のコスト低減を目的として、蓋部材を金属の打ち抜き加工品(プレス切断品)とする試みがなされている。金属板の厚み方向に切断刃を侵入させることによって金属板を打ち抜き、これによって円盤状の蓋部材100を得ると、この蓋部材100の外周面には、打ち抜き加工の開始側から終了側に向けて、せん断部101、破断部102及びかえり103が順に形成される場合[図7(a)参照]と、せん断部101及びかえり103が形成される場合[図7(b)参照]とがある。つまり、金属板を打ち抜くことで円盤状の蓋部材100を形成すると、蓋部材100の外周面の一端部(蓋部材100の一端外周縁部)にかえり103が形成される。なお、せん断部101とは、金属板に対して切断刃の側面が摺動することによって形成される塑性変形面であり、一般には凹凸のない平滑面に形成される。一方、破断部102は、微小な凹凸を有する粗面に形成され、かえり103は、打ち抜き加工終了側の一端外周縁部に突設された突起物である。そのため、金属板を打ち抜いて得られる蓋部材を、圧入、接着、溶接等、広く採用されている固定手段でハウジングの開口部内周にそのまま固定しようとすると、種々の問題が生じ得る。   For the purpose of reducing the cost of the fluid dynamic bearing device having the above-described configuration, attempts have been made to use a lid member as a metal punched product (press-cut product). When a metal plate is punched by intruding a cutting blade in the thickness direction of the metal plate, thereby obtaining a disc-shaped lid member 100, the outer peripheral surface of the lid member 100 is directed from the punching start side to the end side. Thus, there are a case where the shearing portion 101, the fracture portion 102 and the burr 103 are formed in order [see FIG. 7A], and a case where the shearing portion 101 and the burr 103 are formed [see FIG. 7B]. . That is, when the disc-shaped lid member 100 is formed by punching a metal plate, the burr 103 is formed at one end portion of the outer peripheral surface of the lid member 100 (one outer peripheral edge portion of the lid member 100). The shearing portion 101 is a plastically deformed surface formed by sliding the side surface of the cutting blade with respect to the metal plate, and is generally formed on a smooth surface without unevenness. On the other hand, the fracture portion 102 is formed on a rough surface having minute irregularities, and the burr 103 is a protrusion projecting from one outer peripheral edge on the punching end side. Therefore, if the lid member obtained by punching the metal plate is fixed as it is to the inner periphery of the opening portion of the housing by a widely adopted fixing means such as press fitting, adhesion, welding, etc., various problems may occur.

すなわち、外周面(一端外周縁部)にかえりを有する蓋部材をハウジングの開口部内周に圧入すると、圧入抵抗を受けることによってかえりの一部又は全部が脱落してコンタミとなる他、ハウジングの形状によっては、ハウジングに対する蓋部材の姿勢精度に悪影響が及ぶ。ハウジングに対する蓋部材の姿勢精度が確保されないと、特に蓋部材の内底面で軸部材がスラスト一方向に支持されるような場合には、軸部材のスラスト一方向における回転精度に悪影響が及ぶ。また、蓋部材をハウジングの開口部内周に接着固定しても、かえりを接着剤で完全に被覆することが難しく、流体動圧軸受装置の運転中等にかえりが脱落してコンタミとなる可能性がある。例えば、多量の接着剤を塗布すればかえり全体を被覆することも可能ではあるが、余剰の接着剤が蓋部材の端面上で固化等することにより、軸受性能に悪影響が及ぶおそれがある。また、蓋部材をハウジングの開口部内周に溶接固定しようにも、かえりの存在が所定の溶接精度・溶接強度を確保する上での障害となる。そのため、ハウジングの一端開口を所定の態様で封口することができず、流体の外部漏洩等、致命的な問題を招来するおそれがある。   That is, when a lid member having a burr on the outer peripheral surface (one outer peripheral edge) is press-fitted into the inner periphery of the opening of the housing, a part or all of the burr will fall off due to a press-fitting resistance, and the shape of the housing In some cases, the accuracy of the attitude of the lid member relative to the housing is adversely affected. If the posture accuracy of the lid member with respect to the housing is not ensured, particularly when the shaft member is supported in one thrust direction on the inner bottom surface of the lid member, the rotational accuracy of the shaft member in one thrust direction is adversely affected. In addition, even if the lid member is bonded and fixed to the inner periphery of the opening of the housing, it is difficult to completely cover the burr with an adhesive, and the burr may fall off during operation of the fluid dynamic bearing device, etc., resulting in contamination. is there. For example, it is possible to cover the entire burr by applying a large amount of adhesive, but the excess adhesive may solidify on the end surface of the lid member, which may adversely affect the bearing performance. Further, even if the lid member is fixed to the inner periphery of the opening of the housing by welding, the presence of the burr becomes an obstacle to securing a predetermined welding accuracy and welding strength. For this reason, the one end opening of the housing cannot be sealed in a predetermined manner, which may cause a fatal problem such as external leakage of fluid.

以上で示した各種問題は、打ち抜き加工で形成した蓋部材の外周面に研削・研磨等の仕上げ加工を施し、蓋部材の外周面を平滑化することで解消することができる。しかしながら、このようにすると、工程数が増大する分、蓋部材を金属の打ち抜き加工品としたことによるコストメリットが失われる。   The various problems described above can be solved by subjecting the outer peripheral surface of the lid member formed by punching to a finishing process such as grinding and polishing, and smoothing the outer peripheral surface of the lid member. However, if this is done, the cost merit resulting from the use of the metal punching product as the lid member is lost as the number of steps increases.

かかる実情に鑑み、本発明の目的は、筒状部材の一端開口部が蓋部材にて封口される流体動圧軸受装置において、必要とされる軸受性能を確保しつつ、そのコスト低減を図ることにある。   In view of such circumstances, an object of the present invention is to reduce the cost while ensuring the required bearing performance in a fluid dynamic pressure bearing device in which one end opening of a cylindrical member is sealed with a lid member. It is in.

上記の目的を達成するために創案された本発明は、軸部材と、両端が開口し、内周に軸部材を挿入した筒状部材と、筒状部材の一端開口部を封口する蓋部材とを備え、軸部材の外周面に面するラジアル軸受隙間に形成される流体の潤滑膜で軸部材がラジアル方向に支持され、蓋部材の内底面で軸部材がスラスト一方向に支持される流体動圧軸受装置において、蓋部材が、金属板の打ち抜きで形成され、外周面の一端部にかえりを有するものであり、打ち抜き後の蓋部材がかえりを外側に向けた状態で筒状部材の一端開口部に嵌合され、筒状部材の一端部を、加締めによりかえりを巻き込みながら内径側に塑性変形させることで、蓋部材を筒状部材に固定したことを特徴とする。   The present invention devised to achieve the above object includes a shaft member, a cylindrical member having both ends opened and a shaft member inserted into the inner periphery, and a lid member for sealing one end opening of the cylindrical member, The fluid motion is such that the shaft member is supported in the radial direction by the fluid lubrication film formed in the radial bearing gap facing the outer peripheral surface of the shaft member, and the shaft member is supported in one thrust direction on the inner bottom surface of the lid member. In the pressure bearing device, the lid member is formed by punching a metal plate and has a burr at one end portion of the outer peripheral surface, and the one end opening of the cylindrical member with the burr member facing the burr outward The lid member is fixed to the cylindrical member by being plastically deformed to the inner diameter side while winding the burr by caulking.

本発明に係る流体動圧軸受装置では、金属板を打ち抜いて形成され、外周面の一端部(一端外周縁部)にかえりを有する蓋部材が、かえりを外側に向けた状態で筒状部材の一端開口部に嵌合される。そのため、蓋部材を筒状部材の一端開口部に嵌合(配置)する段階において、筒状部材とかえりの接触が回避されるので、筒状部材との接触に伴うかえりの脱落、ひいてはコンタミ発生による軸受性能の低下が可及的に防止される。加えて、本発明では、筒状部材の一端部を、加締めにより蓋部材のかえりを巻き込みながら内径側に塑性変形させることで、蓋部材を筒状部材に固定した。このようにすれば、筒状部材に形成した加締め部で、蓋部材のかえりを蓋部材の外底面に押し付けながら被覆することができるので、かえりの脱落によるコンタミの発生を防止することができる。以上から、本発明によれば、打ち抜き加工(プレス切断)された蓋部材をそのまま用いたとしても、コンタミの発生を可及的に防止することができる。従って、必要とされる軸受性能を確保しつつ、流体動圧軸受装置のコスト低減を図ることができる。   In the fluid dynamic pressure bearing device according to the present invention, a lid member formed by punching a metal plate and having a burr on one end portion (one outer peripheral edge portion) of the outer peripheral surface is a cylindrical member with the burr facing outward. One end is fitted into the opening. For this reason, contact between the tubular member and the burr is avoided at the stage where the lid member is fitted (arranged) to the one end opening of the tubular member. The deterioration of bearing performance due to is prevented as much as possible. In addition, in the present invention, the lid member is fixed to the cylindrical member by plastically deforming one end of the cylindrical member toward the inner diameter side while winding the burr of the lid member by caulking. In this way, the crimping portion formed on the cylindrical member can be covered while pressing the burr of the lid member against the outer bottom surface of the lid member, so that the occurrence of contamination due to the fall off of the burr can be prevented. . From the above, according to the present invention, even when the punched lid member (press cutting) is used as it is, the occurrence of contamination can be prevented as much as possible. Accordingly, the cost of the fluid dynamic bearing device can be reduced while ensuring the required bearing performance.

上記構成において、加締め部と蓋部材の外底面との間に空間を形成し、この空間に充填した接着剤でかえりを被覆しても良い。このようにすれば、筒状部材に対する蓋部材の固定力向上が図られると共に、かえりの脱落が一層効果的に防止される。なお、加締め部は、筒状部材の周方向で部分的(特に、かえりが存在する部分)に形成しても良いし、筒状部材の全周に亘って形成しても良い。また、上記空間の空間幅を、加締め部の基端側に向かって漸次縮小させても良い。空間に充填した接着剤に毛細管力の引き込み作用が作用し、接着剤を空間内に適切に保持することができるからである。   In the above configuration, a space may be formed between the caulking portion and the outer bottom surface of the lid member, and the burr may be covered with an adhesive filled in the space. In this way, the fixing force of the lid member with respect to the cylindrical member can be improved, and the burr can be more effectively prevented from falling off. The caulking portion may be formed partially (particularly in the portion where the burr exists) in the circumferential direction of the tubular member, or may be formed over the entire circumference of the tubular member. Further, the space width of the space may be gradually reduced toward the proximal end side of the crimped portion. This is because the capillary force pulling action acts on the adhesive filled in the space, and the adhesive can be appropriately held in the space.

蓋部材を筒状部材の一端開口部に隙間嵌めし、互いに対向する筒状部材の内周面と蓋部材の外周面との間の半径方向隙間に、接着剤を充填しても(充填・固化させても)良い。このようにすれば、筒状部材に対する蓋部材の固定強度が高まることに加え、筒状部材の一端開口の封止性が高まることから、潤滑流体の外部漏洩が効果的に防止され、流体動圧軸受装置の信頼性を高めることができる。また、打ち抜き加工された蓋部材の外周面に、凹凸面状の破断部が存在したとしても[図7(a)参照]、蓋部材を隙間嵌めすれば、筒状部材の一端開口部に蓋部材を嵌合する段階で、筒状部材と蓋部材の破断部との摺動に起因したコンタミ発生を可及的に防止することができる。なお、蓋部材の外周面に破断部が存在する場合、接着剤(接着剤層)に対する蓋部材の接触面積が増大するので、筒状部材に対する蓋部材の接着強度を高める上で有利となる。   The lid member is fitted into the opening at one end of the cylindrical member, and the radial gap between the inner circumferential surface of the cylindrical member and the outer circumferential surface of the lid member facing each other is filled with adhesive (filling / filling). It may be solidified). In this way, in addition to increasing the fixing strength of the lid member with respect to the cylindrical member, the sealing performance of the one end opening of the cylindrical member is enhanced, so that external leakage of the lubricating fluid is effectively prevented, and fluid movement is prevented. The reliability of the pressure bearing device can be increased. Further, even if there is an uneven surface-like fractured portion on the outer peripheral surface of the punched lid member [see FIG. 7 (a)], if the lid member is fitted with a gap, the lid is attached to one end opening of the cylindrical member. At the stage of fitting the members, it is possible to prevent as much contamination as possible from sliding between the tubular member and the broken portion of the lid member. In addition, when the fracture | rupture part exists in the outer peripheral surface of a cover member, since the contact area of the cover member with respect to an adhesive agent (adhesive layer) increases, it becomes advantageous when raising the adhesive strength of the cover member with respect to a cylindrical member.

筒状部材に段差面を設け、この段差面に蓋部材の内底面を当接させることができる。このようにすれば、筒状部材に対する蓋部材の軸方向相対位置を正確に決定付けることができるので、例えば蓋部材の内底面でスラスト軸受部が構成されるような場合には、スラスト軸受部の軸受性能を容易に確保することができる。また、筒状部材の段差面と加締め部とで蓋部材を軸方向両側から挟持することができるので、筒状部材に対する蓋部材の固定強度がより一層向上する。   A step surface can be provided on the cylindrical member, and the inner bottom surface of the lid member can be brought into contact with the step surface. In this way, the axial relative position of the lid member with respect to the cylindrical member can be accurately determined. For example, when the thrust bearing portion is configured on the inner bottom surface of the lid member, the thrust bearing portion The bearing performance can be easily secured. Moreover, since the lid member can be clamped from both sides in the axial direction by the stepped surface and the crimping portion of the cylindrical member, the fixing strength of the lid member with respect to the cylindrical member is further improved.

互いに対向する軸部材の端面と蓋部材の内底面との間にスラスト軸受隙間を形成すれば、いわゆる動圧軸受からなるスラスト軸受部を構成することができるので、スラスト方向(スラスト一方向)の支持能力や静粛性を高める上で有利となる。この場合、スラスト軸受隙間を形成する一方の面となる蓋部材の内底面には、スラスト軸受隙間に流体動圧を発生させるスラスト動圧発生部を設けることができ、このスラスト動圧発生部は、金属板の打ち抜きで蓋部材を形成するのと同時に、蓋部材の内底面に型成形することができる。このようにすれば、別工程でスラスト動圧発生部を形成する手間を省くことができるので、動圧軸受からなるスラスト軸受部を低コストに構成することができる。   If a thrust bearing gap is formed between the end surfaces of the shaft members facing each other and the inner bottom surface of the lid member, a thrust bearing portion composed of a so-called dynamic pressure bearing can be formed, so that the thrust direction (one thrust direction) It is advantageous in increasing the support ability and quietness. In this case, a thrust dynamic pressure generating part that generates fluid dynamic pressure in the thrust bearing gap can be provided on the inner bottom surface of the lid member that is one surface forming the thrust bearing gap. The lid member can be formed on the inner bottom surface of the lid member simultaneously with the formation of the lid member by punching the metal plate. In this way, it is possible to save the trouble of forming the thrust dynamic pressure generating portion in a separate process, and thus it is possible to configure the thrust bearing portion including the dynamic pressure bearing at low cost.

上記構成において、筒状部材の内周には、軸部材の外周面との間にラジアル軸受隙間を形成する軸受スリーブを固定することができる。このようにすれば、流体動圧軸受装置の各部に求められる要求特性を最適化し易くなる。なお、筒状部材と軸受スリーブとが一体的に設けられたもの(軸受部材)を用いることも可能である。このようにすれば、部品点数や組立工数の削減を通じて流体動圧軸受装置の低コスト化を図る上で有利となる。   In the above configuration, a bearing sleeve that forms a radial bearing gap with the outer peripheral surface of the shaft member can be fixed to the inner periphery of the cylindrical member. In this way, it becomes easy to optimize the required characteristics required for each part of the fluid dynamic bearing device. It is also possible to use a member (bearing member) in which a cylindrical member and a bearing sleeve are provided integrally. This is advantageous in reducing the cost of the fluid dynamic bearing device by reducing the number of parts and the number of assembly steps.

軸部材の外周面には、ラジアル軸受隙間に流体動圧を発生させるラジアル動圧発生部を設けることができる。ラジアル動圧発生部は、ラジアル軸受隙間を介して軸部材の外周面と対向する面(例えば、軸受スリーブの内周面)に形成することも可能であるが、ラジアル動圧発生部は微小な動圧溝を円周方向に複数設けて構成される場合が多く、この種の動圧溝を軸受スリーブの内周面に精度良く形成しようとすると製造コストが増大する可能性が高くなる。これに対して、軸部材の外周面にラジアル動圧発生部を設ける場合には、転造や研削等の比較的簡便な手段を組み合わせることで微小な動圧溝も精度良く形成することができるので、製造コストの低廉化を図る上で有利となる。   A radial dynamic pressure generating portion that generates fluid dynamic pressure in the radial bearing gap can be provided on the outer peripheral surface of the shaft member. The radial dynamic pressure generating portion can be formed on a surface (for example, the inner peripheral surface of the bearing sleeve) facing the outer peripheral surface of the shaft member through the radial bearing gap, but the radial dynamic pressure generating portion is minute. In many cases, a plurality of dynamic pressure grooves are provided in the circumferential direction, and if this type of dynamic pressure groove is formed on the inner peripheral surface of the bearing sleeve with high accuracy, there is a high possibility that the manufacturing cost will increase. On the other hand, when the radial dynamic pressure generating portion is provided on the outer peripheral surface of the shaft member, a minute dynamic pressure groove can be accurately formed by combining relatively simple means such as rolling and grinding. Therefore, it is advantageous in reducing the manufacturing cost.

以上で述べた本発明に係る流体動圧軸受装置は、ステータコイルと、ロータマグネットとを備えたモータ、例えばディスク駆動装置用のスピンドルモータに組み込んで好適に使用可能である。   The fluid dynamic pressure bearing device according to the present invention described above can be suitably used by being incorporated in a motor provided with a stator coil and a rotor magnet, for example, a spindle motor for a disk drive device.

以上に示すように、本発明によれば、筒状部材の一端開口部が蓋部材にて封口される流体動圧軸受装置において、必要とされる軸受性能を確保しつつ、そのコスト低減を図ることができる。   As described above, according to the present invention, in a fluid dynamic pressure bearing device in which one end opening of a cylindrical member is sealed with a lid member, the required bearing performance is secured and the cost is reduced. be able to.

流体動圧軸受装置が組み込まれた情報機器用スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the spindle motor for information equipment with which the fluid dynamic pressure bearing apparatus was integrated. 本発明の第1実施形態に係る流体動圧軸受装置の含軸断面図である。1 is a cross-sectional view including a shaft of a fluid dynamic bearing device according to a first embodiment of the present invention. (a)図は軸受スリーブの断面図、(b)図は軸受スリーブの下側端面を示す図である。(A) is a sectional view of the bearing sleeve, and (b) is a diagram showing a lower end surface of the bearing sleeve. 蓋部材の内底面を示す図である。It is a figure which shows the inner bottom face of a cover member. (a)〜(c)図は、ハウジングに対する蓋部材の固定プロセスを段階的に示す要部拡大断面図である。(A)-(c) figure is a principal part expanded sectional view which shows the fixing process of the cover member with respect to a housing in steps. 本発明の第2実施形態に係る流体動圧軸受装置の含軸断面図である。It is a shaft-containing sectional view of a fluid dynamic bearing device according to a second embodiment of the present invention. (a)(b)図共に、打ち抜き加工で形成された蓋部材の要部を模式的に示す図である。(A) (b) Both figures are figures which show typically the principal part of the cover member formed by punching.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、流体動圧軸受装置が組み込まれた情報機器用スピンドルモータの一構成例を概念的に示す。このスピンドルモータは、HDD等のディスク駆動装置に用いられるものであり、軸部材2を回転自在に支持する流体動圧軸受装置1と、軸部材2に固定されたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、モータベース6とを備えている。ステータコイル4はモータベース6の外周に取付けられ、ロータマグネット5はディスクハブ3の内周に取付けられる。流体動圧軸受装置1の軸受部材9は、モータベース6の内周に固定される。ディスクハブ3にはディスクDが一又は複数枚(図示例は2枚)保持されている。以上の構成において、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、それによって、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment in which a fluid dynamic pressure bearing device is incorporated. The spindle motor is used in a disk drive device such as an HDD, and includes a fluid dynamic bearing device 1 that rotatably supports a shaft member 2, a disk hub 3 fixed to the shaft member 2, and a radial direction, for example. The stator coil 4 and the rotor magnet 5 that are opposed to each other through the gap, and the motor base 6 are provided. The stator coil 4 is attached to the outer periphery of the motor base 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bearing member 9 of the fluid dynamic bearing device 1 is fixed to the inner periphery of the motor base 6. The disk hub 3 holds one or a plurality of disks D (two in the illustrated example). In the above configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the electromagnetic force between the stator coil 4 and the rotor magnet 5, whereby the disk hub 3 and the disk D held by the disk hub 3 are rotated. It rotates integrally with the shaft member 2.

図2に、本発明の第1実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、軸部材2と、軸部材2が内周に挿入された軸受部材9と、軸受部材9の一端開口部を封口する蓋部材10とを構成部材として備え、内部空間には流体としての潤滑油(密な散点ハッチングで示す)が充填されている。本実施形態では、軸部材2の外周に配置された円筒状の軸受スリーブ8と、両端が開口し、軸受スリーブ8を内周に固定した円筒状のハウジング7とで軸受部材9が構成され、蓋部材10は、ハウジング7の一端開口部の内周に固定される。従って、本実施形態では、ハウジング7が、本発明でいう筒状部材に相当する。なお、以下では、説明の便宜上、蓋部材10が設けられた側を下側、その軸方向反対側を上側という。   FIG. 2 shows a fluid dynamic bearing device 1 according to the first embodiment of the present invention. The fluid dynamic pressure bearing device 1 includes a shaft member 2, a bearing member 9 in which the shaft member 2 is inserted on the inner periphery, and a lid member 10 that seals one end opening of the bearing member 9 as constituent members. The space is filled with lubricating oil (indicated by dense scattered dot hatching) as a fluid. In the present embodiment, a bearing member 9 is constituted by a cylindrical bearing sleeve 8 disposed on the outer periphery of the shaft member 2 and a cylindrical housing 7 having both ends opened and the bearing sleeve 8 fixed to the inner periphery. The lid member 10 is fixed to the inner periphery of one end opening of the housing 7. Therefore, in the present embodiment, the housing 7 corresponds to the cylindrical member referred to in the present invention. Hereinafter, for convenience of explanation, the side on which the lid member 10 is provided is referred to as the lower side, and the opposite side in the axial direction is referred to as the upper side.

軸受スリーブ8は、焼結金属の多孔質体で円筒状に形成される。軸受スリーブ8の上側端面8cには、環状溝8c1と、外径端が環状溝8c1に繋がった径方向溝8c2とが形成されており、軸受スリーブ8の外周面8dには、円周方向の一又は複数箇所に軸方向溝8d1が形成されている(本実施形態では円周方向の三箇所。図3(b)を参照)。軸受スリーブ8は、多孔質樹脂に代表されるその他の多孔質体、黄銅等の軟質金属などで形成することも可能である。   The bearing sleeve 8 is formed of a sintered metal porous body in a cylindrical shape. An annular groove 8c1 and a radial groove 8c2 having an outer diameter end connected to the annular groove 8c1 are formed on the upper end surface 8c of the bearing sleeve 8, and a circumferential direction 8d of the bearing sleeve 8 is provided in the circumferential direction. The axial direction groove | channel 8d1 is formed in the one or several places (In this embodiment, three places of the circumferential direction. Refer FIG.3 (b)). The bearing sleeve 8 can also be formed of other porous bodies represented by porous resin, soft metals such as brass.

軸受スリーブ8の内周面8aには、対向する軸部21の外周面21aとの間にラジアル軸受隙間を形成するラジアル軸受面となる円筒状領域が軸方向の二箇所に離隔して設けられている。ラジアル軸受面となる各円筒状領域には、図3に示すように、軸方向に対して傾斜した複数の動圧溝Aaをヘリングボーン形状に配列してなるラジアル動圧発生部A1,A2がそれぞれ形成されている。上側のラジアル動圧発生部A1においては、上側領域の動圧溝Aaの軸方向寸法X1が下側領域の動圧溝Aaの軸方向寸法X2よりも大きくなっている。一方、下側のラジアル動圧発生部A2においては、上側領域の動圧溝Aaおよび下側領域の動圧溝Aaの軸方向寸法が上記軸方向寸法X2と等しくなっている。動圧溝Aaは、ヘリングボーン形状に限らず、スパイラル形状に形成(配列)することもできる。   On the inner peripheral surface 8 a of the bearing sleeve 8, a cylindrical region serving as a radial bearing surface that forms a radial bearing gap with the outer peripheral surface 21 a of the opposed shaft portion 21 is provided at two positions in the axial direction. ing. As shown in FIG. 3, radial cylindrical pressure regions A1 and A2 each having a plurality of dynamic pressure grooves Aa inclined in the axial direction are arranged in a herringbone shape in each cylindrical region serving as a radial bearing surface. Each is formed. In the upper radial dynamic pressure generating portion A1, the axial dimension X1 of the dynamic pressure groove Aa in the upper region is larger than the axial dimension X2 of the dynamic pressure groove Aa in the lower region. On the other hand, in the lower radial dynamic pressure generating portion A2, the axial dimensions of the upper region dynamic pressure groove Aa and the lower region dynamic pressure groove Aa are equal to the axial dimension X2. The dynamic pressure grooves Aa are not limited to the herringbone shape but can be formed (arranged) in a spiral shape.

軸受スリーブ8の下側端面8bには、対向するフランジ部22の上側端面22aとの間に第1スラスト軸受部T1のスラスト軸受隙間を形成するスラスト軸受面となる環状領域が設けられており、この環状領域には、図3(b)に示すように、スパイラル形状の動圧溝Baを円周方向に複数配列してなるスラスト動圧発生部Bが形成されている。なお、動圧溝Baはヘリングボーン形状に形成することも可能である。また、スラスト動圧発生部Bは、対向するフランジ部22の上側端面22aに形成することもできる。   The lower end surface 8b of the bearing sleeve 8 is provided with an annular region serving as a thrust bearing surface that forms a thrust bearing gap of the first thrust bearing portion T1 with the upper end surface 22a of the opposing flange portion 22. In this annular region, as shown in FIG. 3B, a thrust dynamic pressure generating portion B is formed by arranging a plurality of spiral-shaped dynamic pressure grooves Ba in the circumferential direction. The dynamic pressure groove Ba can also be formed in a herringbone shape. The thrust dynamic pressure generating part B can also be formed on the upper end surface 22a of the opposing flange part 22.

軸部材2は、軸部21と、軸部21の下端に一体又は別体に設けられたフランジ部22とを備え、ここでは高剛性の溶製材(例えばSUS420J2等のステンレス鋼)で軸部21とフランジ部22とが一体形成されている。軸部21の外周面21aのうち、軸受スリーブ8の内周面8aのラジアル軸受面(ラジアル動圧発生部A1,A2)間領域に対向する領域には、内径側に後退した円筒状の中逃げ部23が設けられている。軸部21の外周面21aにこのような中逃げ部23を設けたことにより、概ね径一定の円筒面に形成された軸受スリーブ8の内周面8aと中逃げ部23との間に、ラジアル軸受隙間よりも隙間幅の大きい半径方向隙間が形成される。この半径方向隙間は、潤滑油溜りとして機能させることができるので、軸受運転中には、軸方向上下に隣接した2つのラジアル軸受隙間を潤沢な潤滑油で満たすことが可能となる。これにより、ラジアル方向における回転精度の安定化が図られる。また、上記半径方向隙間の隙間幅がラジアル軸受隙間のそれよりも大きく確保されていることから、ロストルクを小さくすることができ、モータの低消費電力化に寄与する。   The shaft member 2 includes a shaft portion 21 and a flange portion 22 provided integrally or separately at the lower end of the shaft portion 21. Here, the shaft portion 21 is made of a highly rigid melted material (for example, stainless steel such as SUS420J2). And the flange portion 22 are integrally formed. Of the outer peripheral surface 21 a of the shaft portion 21, a region facing the region between the radial bearing surfaces (radial dynamic pressure generating portions A 1, A 2) of the inner peripheral surface 8 a of the bearing sleeve 8 has a cylindrical shape that is retracted toward the inner diameter side. An escape portion 23 is provided. By providing such an intermediate escape portion 23 on the outer peripheral surface 21 a of the shaft portion 21, a radial is provided between the inner peripheral surface 8 a of the bearing sleeve 8 formed on a cylindrical surface having a substantially constant diameter and the intermediate escape portion 23. A radial gap having a larger gap width than the bearing gap is formed. Since this radial gap can function as a lubricating oil reservoir, it is possible to fill two radial bearing gaps adjacent in the axial direction with abundant lubricating oil during bearing operation. This stabilizes the rotational accuracy in the radial direction. Further, since the gap width of the radial gap is ensured to be larger than that of the radial bearing gap, the loss torque can be reduced, which contributes to lower power consumption of the motor.

筒状部材としてのハウジング7は、溶製材(例えば、黄銅やステンレス鋼等の中実の金属材料)で軸方向両端が開口した略円筒状に形成されており、円筒状の側部7aと、側部7aの上端から内径側に延びたリング状のシール部7bとを一体に有する。側部7aには、相対的に小径の小径内周面7a1と、相対的に大径の大径内周面7a2とが設けられており、小径内周面7a1と大径内周面7a2とは、軸方向と直交する方向に延びる段差面7a3を介して繋がっている。小径内周面7a1の内周には、接着、圧入、圧入接着(圧入と接着の併用)、溶接等の適宜の手段で軸受スリーブ8が固定されている。一方、大径内周面7a2の内周には、蓋部材10が、その内底面10aの外径側領域を段差面7a3に当接させた状態で固定されており、これにより、ハウジング7(軸受部材9)に対する蓋部材10の軸方向相対位置が決定付けられ、両スラスト軸受部T1,T2のスラスト軸受隙間の隙間幅が規定値に管理される。   The housing 7 as a cylindrical member is formed in a substantially cylindrical shape with both ends in the axial direction being made of a molten material (for example, a solid metal material such as brass or stainless steel), and a cylindrical side portion 7a; A ring-shaped seal portion 7b extending from the upper end of the side portion 7a to the inner diameter side is integrally provided. The side portion 7a is provided with a relatively small-diameter small-diameter inner peripheral surface 7a1 and a relatively large-diameter large-diameter inner peripheral surface 7a2, and the small-diameter inner peripheral surface 7a1 and the large-diameter inner peripheral surface 7a2 Are connected via a step surface 7a3 extending in a direction orthogonal to the axial direction. A bearing sleeve 8 is fixed to the inner periphery of the small-diameter inner peripheral surface 7a1 by appropriate means such as adhesion, press-fitting, press-fitting adhesion (combination of press-fitting and adhesion), and welding. On the other hand, the lid member 10 is fixed to the inner periphery of the large-diameter inner peripheral surface 7a2 in a state where the outer diameter side region of the inner bottom surface 10a is in contact with the stepped surface 7a3. The axial relative position of the lid member 10 with respect to the bearing member 9) is determined, and the gap width of the thrust bearing gap between the thrust bearing portions T1 and T2 is managed to a specified value.

シール部7bの内周面7b1は、下方に向けて漸次縮径したテーパ面状に形成され、対向する軸部21の外周面21aとの間に下方に向けて径方向寸法を漸次縮小させたくさび状のシール空間Sを形成する。シール部7bの下側端面7b2の内径側領域には、軸受スリーブ8の上側端面8cが当接しており、ハウジング7に対する軸受スリーブ8の軸方向における相対的な位置決めがなされている。シール部7bの下側端面7b2の外径側領域は、外径側に向かって徐々に上側に後退しており、軸受スリーブ8の上側端面8cおよび上部外周チャンファとの間に環状隙間を形成している。環状隙間の内径端部は、軸受スリーブ8の上側端面8cの環状溝8c1に繋がっている。   The inner peripheral surface 7b1 of the seal portion 7b is formed in a tapered surface shape that is gradually reduced in diameter downward, and the radial dimension is gradually reduced downward between the outer peripheral surface 21a of the opposing shaft portion 21. A wedge-shaped seal space S is formed. The upper end surface 8c of the bearing sleeve 8 is in contact with the inner diameter side region of the lower end surface 7b2 of the seal portion 7b, and the bearing sleeve 8 is positioned relative to the housing 7 in the axial direction. The outer diameter side region of the lower end surface 7b2 of the seal portion 7b is gradually retracted upward toward the outer diameter side, and an annular gap is formed between the upper end surface 8c of the bearing sleeve 8 and the upper outer peripheral chamfer. ing. An inner diameter end portion of the annular gap is connected to an annular groove 8 c 1 on the upper end surface 8 c of the bearing sleeve 8.

蓋部材10は、ハウジング7の大径内周面7a2の内周に固定されてハウジング7の下端開口部を封口している。この蓋部材10は、ステンレス鋼、銅合金、アルミニウム合金等の金属板を打ち抜くことで円盤状に形成された打ち抜き加工品(プレス切断品)であり、打ち抜き後に特段の後加工を施すことなくそのまま使用されている。図示例の、蓋部材10の外周面10cには、打ち抜き加工に伴って形成された、せん断部10d、破断部10e及びかえり10fが存在する。なお、上述したように、せん断部10eは、金属板に対して切断刃の側面が摺動することによって形成される平滑面である。また、破断部102は、微小な凹凸が連続した粗面(凹凸面)である。また、かえり10fは、元々は、打ち抜き加工終了側の一端外周縁部に突設された突起物であるが、図2に示す完成品としての流体動圧軸受装置1においては、ハウジング7に形成された加締め部12により内径側に塑性変形している。   The lid member 10 is fixed to the inner periphery of the large-diameter inner peripheral surface 7 a 2 of the housing 7 and seals the lower end opening of the housing 7. This lid member 10 is a punched product (press-cut product) formed into a disk shape by punching a metal plate such as stainless steel, copper alloy, aluminum alloy, etc., and is directly applied without any special post-processing after punching. It is used. In the illustrated example, the outer peripheral surface 10c of the lid member 10 includes a shearing portion 10d, a fracture portion 10e, and a burr 10f that are formed in accordance with the punching process. As described above, the shearing portion 10e is a smooth surface formed by sliding the side surface of the cutting blade with respect to the metal plate. Moreover, the fracture | rupture part 102 is a rough surface (uneven surface) where the minute unevenness | corrugation continued. Further, the burr 10f is originally a protrusion projecting from the outer peripheral edge of one end on the punching end side, but is formed in the housing 7 in the fluid dynamic bearing device 1 as a finished product shown in FIG. The crimped portion 12 is plastically deformed toward the inner diameter side.

蓋部材10の内底面(上側端面)10aには、対向するフランジ部22の下側端面22bとの間に第2スラスト軸受部T2のスラスト軸受隙間を形成するスラスト軸受面となる環状領域が設けられている。スラスト軸受面となる環状領域には、図4に示すように、複数の動圧溝Caをスパイラル形状に配列してなるスラスト動圧発生部Cが形成されている。このスラスト動圧発生部Cは、金属板を打ち抜くことで蓋部材10を形成するのと同時に型成形されている。なお、スラスト動圧発生部Cは、対向するフランジ部22の下側端面22bに形成することもできる。   The inner bottom surface (upper end surface) 10a of the lid member 10 is provided with an annular region serving as a thrust bearing surface that forms a thrust bearing gap of the second thrust bearing portion T2 between the lower end surface 22b of the opposing flange portion 22. It has been. As shown in FIG. 4, a thrust dynamic pressure generating portion C formed by arranging a plurality of dynamic pressure grooves Ca in a spiral shape is formed in the annular region serving as the thrust bearing surface. The thrust dynamic pressure generating portion C is molded at the same time as the lid member 10 is formed by punching a metal plate. The thrust dynamic pressure generating portion C can also be formed on the lower end surface 22b of the opposing flange portion 22.

ここで、ハウジング7に対する蓋部材10の固定態様について詳述する。図2中の拡大図に示すように、ハウジング7(側部7a)の下端部には、先端部が基端部よりも内径側に位置するように軸方向に対して傾斜した加締め部12が、蓋部材10のかえり10fを巻き込むようにして(蓋部材10のかえり10fを蓋部材10の外端面10bに押し付けるようにして)側部7aと一体的に設けられている。これにより、蓋部材10は、軸方向上側に附勢され、内底面10aの外径側領域を側部7aの段差面7a3に当接させた状態でハウジング7の大径内周面7a2の内周に固定されている。加締め部12は、その先端部が蓋部材10のかえり10fよりも内径側に位置して流体動圧軸受装置1の最下端部を構成している。   Here, the manner of fixing the lid member 10 to the housing 7 will be described in detail. As shown in the enlarged view of FIG. 2, the lower end portion of the housing 7 (side portion 7 a) has a caulking portion 12 that is inclined with respect to the axial direction so that the distal end portion is located on the inner diameter side of the base end portion. However, it is provided integrally with the side portion 7a so as to wind the burr 10f of the lid member 10 (so that the burr 10f of the lid member 10 is pressed against the outer end surface 10b of the lid member 10). As a result, the lid member 10 is urged upward in the axial direction, and the inner surface of the large-diameter inner peripheral surface 7a2 of the housing 7 is brought into contact with the stepped surface 7a3 of the side portion 7a. It is fixed on the circumference. The front end portion of the crimping portion 12 is positioned on the inner diameter side of the burr 10 f of the lid member 10 and constitutes the lowermost end portion of the fluid dynamic pressure bearing device 1.

加締め部12は、ハウジング7の全周に亘って設けられており、蓋部材10の外底面10bとの間に環状空間13を形成している。環状空間13には、接着剤14が充填されて固化しており、この接着剤14で蓋部材10のかえり10fが被覆(捕捉)されている。加締め部12は、上記したように、先端部を相対的に内径側に位置させるようにして軸方向に対して傾斜していることから、加締め部12と蓋部材10の外底面10bとの間に形成される環状空間13は、その空間幅を加締め部12の基端側に向けて漸次縮小させたテーパ形状(楔形状)を呈する。また、本実施形態の蓋部材10は、その外径寸法がハウジング7の大径内周面7a2の内径寸法よりも小さく設定され、大径内周面7a2の内周に隙間嵌めされている。従って、互いに対向する蓋部材10の外周面10cとハウジング7の大径内周面7a2との間には、微小な半径方向隙間15が全周に亘って形成されており、この半径方向隙間15には接着剤14が充填されて固化している。   The caulking portion 12 is provided over the entire circumference of the housing 7, and forms an annular space 13 between the outer bottom surface 10 b of the lid member 10. The annular space 13 is solidified by being filled with an adhesive 14, and the burr 10 f of the lid member 10 is covered (captured) with the adhesive 14. As described above, the caulking portion 12 is inclined with respect to the axial direction so that the distal end portion is positioned relatively on the inner diameter side. Therefore, the caulking portion 12 and the outer bottom surface 10b of the lid member 10 The annular space 13 formed between the two has a tapered shape (wedge shape) in which the space width is gradually reduced toward the proximal end side of the caulking portion 12. Further, the lid member 10 of the present embodiment has an outer diameter dimension set smaller than an inner diameter dimension of the large-diameter inner peripheral surface 7a2 of the housing 7, and is fitted into the inner periphery of the large-diameter inner peripheral surface 7a2. Therefore, a minute radial gap 15 is formed over the entire circumference between the outer peripheral surface 10c of the lid member 10 and the large-diameter inner peripheral surface 7a2 of the housing 7 facing each other. Is filled with an adhesive 14 and solidified.

以上で示したハウジング7に対する蓋部材10の固定構造は、以下のようにして得ることができる。まず、図5(a)に示すように、金属板を打ち抜くことで円盤状に形成された蓋部材10を、特段の後加工を施すことなく、そのまま、ハウジング7の大径内周面7a2の内周に隙間嵌めする。このとき、蓋部材10は、打ち抜き加工に伴って外周面10cの一端部(一端外周縁部)に突設されたかえり10fを軸受外側に向けた(配置した)状態で、大径内周面7a2の内周に隙間嵌めされる。ハウジング7の側部7aの下端(図5(a)では上端)には、加締め加工を受けて塑性変形することにより加締め部12となる環状の凸部7cが一体形成されている。   The fixing structure of the lid member 10 to the housing 7 shown above can be obtained as follows. First, as shown in FIG. 5 (a), the lid member 10 formed into a disk shape by punching a metal plate is left on the large-diameter inner peripheral surface 7a2 of the housing 7 without any special post-processing. Fit a gap on the inner circumference. At this time, the lid member 10 has a large-diameter inner peripheral surface in a state in which the burr 10f projecting from one end portion (one outer peripheral edge portion) of the outer peripheral surface 10c with the punching process is directed (arranged) to the bearing outer side. A gap is fitted to the inner periphery of 7a2. At the lower end (upper end in FIG. 5 (a)) of the side portion 7a of the housing 7, an annular convex portion 7c that becomes the crimped portion 12 is integrally formed by undergoing plastic deformation upon being crimped.

次いで、ハウジング7の下端部を、加締めによりかえり10dを巻き込みながら内径側に塑性変形させ、加締め部12を形成する。ここでは、図5(b)に示すように、ハウジング7の下端部に設けた環状の凸部7cに加圧力を付与し、かえり10dを巻き込む(被覆する)ように環状の凸部7cを内径側に塑性変形させる(傾倒させる)ことにより、加締め部12をハウジング7の全周に亘って形成する。このような加締め部12を形成することにより、蓋部材10のかえり10fが軸受内部側に加圧されて塑性変形し、さらには蓋部材10の内底面10aがハウジング7の段差面7a3に押し付けられる。これにより、蓋部材10は、ハウジング7に対する軸方向の相対的な位置決めがなされた状態で、ハウジング7の側部7aの段差面7a3と、ハウジング7の下端部に形成された加締め部12とで軸方向両側から挟持されるようにしてハウジング7の大径内周面7a2の内周に加締め固定される。   Next, the lower end portion of the housing 7 is plastically deformed toward the inner diameter side while winding the burr 10d by caulking to form the caulking portion 12. Here, as shown in FIG. 5B, pressure is applied to the annular projection 7c provided at the lower end of the housing 7, and the annular projection 7c has an inner diameter so as to wind (cover) the burr 10d. The caulking portion 12 is formed over the entire circumference of the housing 7 by being plastically deformed (tilted) to the side. By forming such a caulking portion 12, the burr 10 f of the lid member 10 is pressurized and plastically deformed toward the inside of the bearing, and further, the inner bottom surface 10 a of the lid member 10 is pressed against the step surface 7 a 3 of the housing 7. It is done. As a result, the lid member 10 is positioned relative to the housing 7 in the axial direction, and the stepped surface 7a3 of the side portion 7a of the housing 7 and the crimping portion 12 formed on the lower end portion of the housing 7 Thus, it is fixed by caulking to the inner periphery of the large-diameter inner peripheral surface 7a2 of the housing 7 so as to be sandwiched from both sides in the axial direction.

そして、図5(c)に示すように、加締め部12と蓋部材10の外底面10bとの間に形成された環状空間13に接着剤14を充填・固化させ、蓋部材10のかえり10fを接着剤14で被覆する。また、蓋部材10の外周面10cとハウジング7の大径内周面7a2との間に形成される微小な半径方向隙間15にも接着剤14を充填し、固化させる。これにより、蓋部材10がハウジング7の大径内周面7a2の内周に接着固定され、ハウジング7の下端開口が封口される。なお、半径方向隙間15に接着剤14を充填するには、例えば、加締め部12を形成するのに先立って半径方向隙間15に接着剤14を充填する、加締め部12を全周に亘って形成する途中に、半径方向隙間15に接着剤14を充填する方法等を採用することができる。   And as shown in FIG.5 (c), the adhesive 14 is filled and solidified in the annular space 13 formed between the crimping part 12 and the outer bottom face 10b of the lid member 10, and the burr 10f of the lid member 10 is solidified. Is coated with an adhesive 14. The minute radial gap 15 formed between the outer peripheral surface 10 c of the lid member 10 and the large-diameter inner peripheral surface 7 a 2 of the housing 7 is also filled with the adhesive 14 and solidified. Thereby, the lid member 10 is bonded and fixed to the inner periphery of the large-diameter inner peripheral surface 7a2 of the housing 7, and the lower end opening of the housing 7 is sealed. In order to fill the adhesive 14 in the radial gap 15, for example, the adhesive 14 is filled in the radial gap 15 before the caulking part 12 is formed. In the middle of forming, a method of filling the adhesive 14 in the radial gap 15 can be employed.

以上の構成からなる流体動圧軸受装置1において、軸受スリーブ8の内周面8aの上下二箇所に離隔形成したラジアル軸受面と、これに対向する軸部21の外周面21aとの間にそれぞれラジアル軸受隙間が形成される。そして軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力が動圧溝Aaの動圧作用によって高められ、その結果、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が軸方向の二箇所に離隔形成される。これと同時に、フランジ部22の上側端面22aとこれに対向する軸受スリーブ8の下側端面8bに設けたスラスト軸受面との間、および、フランジ部22の下側端面22bとこれに対向する蓋部材10の上側端面10aに設けたスラスト軸受面との間に、スラスト軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間に形成される油膜の圧力が、動圧溝Ba,Caの動圧作用によってそれぞれ高められ、その結果、軸部材2をスラスト一方向に非接触支持する第1スラスト軸受部T1および軸部材2をスラスト他方向に支持する第2スラスト軸受部T2が形成される。   In the fluid dynamic pressure bearing device 1 having the above-described configuration, a radial bearing surface formed at two positions on the upper and lower sides of the inner peripheral surface 8a of the bearing sleeve 8 and an outer peripheral surface 21a of the shaft portion 21 facing the radial bearing surface are respectively provided. A radial bearing gap is formed. As the shaft member 2 rotates, the pressure of the oil film formed in both radial bearing gaps is increased by the dynamic pressure action of the dynamic pressure groove Aa, and as a result, the radial bearing portion that supports the shaft member 2 in the radial direction in a non-contact manner. R1 and R2 are spaced apart from each other in two axial directions. At the same time, between the upper end surface 22a of the flange portion 22 and the thrust bearing surface provided on the lower end surface 8b of the bearing sleeve 8 facing this, and the lower end surface 22b of the flange portion 22 and the lid facing this. A thrust bearing gap is formed between each of the thrust bearing surfaces provided on the upper end surface 10a of the member 10. As the shaft member 2 rotates, the pressure of the oil film formed in the thrust bearing gaps is increased by the dynamic pressure action of the dynamic pressure grooves Ba and Ca. As a result, the shaft member 2 is not moved in the thrust direction. A first thrust bearing T1 that supports the contact and a second thrust bearing T2 that supports the shaft member 2 in the thrust other direction are formed.

また、シール空間Sが、ハウジング7の内部側に向かって径方向寸法を漸次縮小させたくさび形状を呈しているため、シール空間S内の潤滑油は毛細管力による引き込み作用によってハウジング7の内部側に向けて引き込まれる。また、シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間S内に保持する。そのため、ハウジング7内部からの潤滑油漏れが効果的に防止される。   Further, since the seal space S has a wedge shape in which the radial dimension is gradually reduced toward the inner side of the housing 7, the lubricating oil in the seal space S is pulled into the inner side of the housing 7 by a pulling action due to capillary force. It is drawn toward. Further, the seal space S has a buffer function for absorbing the volume change amount accompanying the temperature change of the lubricating oil filled in the internal space of the housing 7, and the oil surface of the lubricating oil is kept within the range of the assumed temperature change. It is always held in the seal space S. Therefore, lubricating oil leakage from the inside of the housing 7 is effectively prevented.

また、ラジアル動圧発生部A1を構成する上下の動圧溝Aaの軸方向寸法差により、軸部材2の回転時、ラジアル軸受隙間に介在する潤滑油のポンピング力は上側領域が下側領域に比べて相対的に大きくなる。そのため、軸部材2が回転すると、軸受スリーブ8の内周面8aと軸部21の外周面21a1との間の隙間に介在する潤滑油は下方に流動し、第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d1で形成される軸方向の流体通路11→軸受スリーブ8の上部外周チャンファ等で形成される環状空間→軸受スリーブ8の環状溝8c1および径方向溝8c2で形成される流体通路という経路を循環して、ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。   Further, due to the axial dimensional difference between the upper and lower dynamic pressure grooves Aa constituting the radial dynamic pressure generating portion A1, the pumping force of the lubricating oil interposed in the radial bearing gap during the rotation of the shaft member 2 causes the upper region to move to the lower region. It becomes relatively large compared. Therefore, when the shaft member 2 rotates, the lubricating oil interposed in the gap between the inner peripheral surface 8a of the bearing sleeve 8 and the outer peripheral surface 21a1 of the shaft portion 21 flows downward, and the thrust bearing of the first thrust bearing portion T1. Clearance → Axial fluid passage 11 formed by the axial groove 8d1 of the bearing sleeve 8 → annular space formed by the upper outer chamfer of the bearing sleeve 8, etc. → formed by the annular groove 8c1 and the radial groove 8c2 of the bearing sleeve 8 The fluid passage is circulated and is drawn again into the radial bearing gap of the radial bearing portion R1.

このような構成とすることで、潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。上記の循環経路には、シール空間Sが連通しているので、何らかの理由で潤滑油中に気泡が混入した場合でも、気泡が潤滑油に伴って循環する際にシール空間S内の潤滑油の油面(気液界面)から外気に排出される。従って、気泡による悪影響は一層効果的に防止される。   By adopting such a configuration, the pressure balance of the lubricating oil is maintained, and at the same time, the generation of bubbles accompanying the generation of local negative pressure, the occurrence of lubricant leakage and vibration due to the generation of bubbles, etc. The problem can be solved. Since the sealing space S communicates with the above circulation path, even if bubbles are mixed in the lubricating oil for some reason, when the bubbles circulate with the lubricating oil, the lubricating oil in the sealing space S It is discharged from the oil surface (gas-liquid interface) to the outside air. Therefore, adverse effects due to bubbles can be prevented more effectively.

以上で示したように、本発明に係る流体動圧軸受装置1では、金属板を打ち抜いて形成され、外周面10cの一端部(一端外周縁部)にかえり10fを有する蓋部材10が、かえり10fを外側に向けた状態でハウジング7の大径内周面7a2(下端開口部)に嵌合される。そのため、蓋部材10をハウジング7の下端開口部に嵌合(配置)する段階において、ハウジング7とかえり10fの接触が回避されるので、ハウジング7との接触に伴うかえり10fの脱落、ひいてはコンタミ発生による軸受性能の低下が可及的に防止される。また、上記態様で蓋部材10をハウジング7に嵌合したことにより、蓋部材10のかえり10fがハウジング7の段差面7a3に接触しないので、ハウジング7に対する蓋部材10の固定精度が確保されないような事態が生じるのを可及的に防止することができる。加えて、本発明では、ハウジング7の下端部(環状凸部7c)を、加締めにより蓋部材10のかえり10fを巻き込みながら内径側に塑性変形させることで、蓋部材10をハウジング7に固定した。このようにすれば、ハウジング7に形成した加締め部12で、蓋部材10のかえり10fを蓋部材10の外底面10bに押し付けながら被覆することができるので、かえり10fの脱落によるコンタミの発生を防止することができる。以上から、本発明によれば、打ち抜き加工された蓋部材10をそのまま用いたとしても、コンタミの発生を可及的に防止することができる。従って、必要とされる軸受性能を確保しつつ、流体動圧軸受装置1のコスト低減を図ることができる。   As described above, in the fluid dynamic pressure bearing device 1 according to the present invention, the lid member 10 formed by punching a metal plate and having the burr 10f on one end portion (one end outer peripheral portion) of the outer circumferential surface 10c is burred. It is fitted to the large-diameter inner peripheral surface 7a2 (lower end opening) of the housing 7 with 10f facing outward. Therefore, contact between the housing 7 and the burr 10f is avoided at the stage where the lid member 10 is fitted (arranged) to the lower end opening of the housing 7, so that the burr 10f falls off due to contact with the housing 7, and thus contamination occurs. The deterioration of bearing performance due to is prevented as much as possible. Further, since the lid member 10 is fitted to the housing 7 in the above-described manner, the burr 10f of the lid member 10 does not contact the stepped surface 7a3 of the housing 7, so that the accuracy of fixing the lid member 10 to the housing 7 is not ensured. A situation can be prevented as much as possible. In addition, in the present invention, the lid member 10 is fixed to the housing 7 by plastically deforming the lower end portion (annular convex portion 7c) of the housing 7 to the inner diameter side while winding the burr 10f of the lid member 10 by caulking. . In this way, the caulking portion 12 formed in the housing 7 can cover the burr 10f of the lid member 10 while pressing the burr 10f against the outer bottom surface 10b of the lid member 10. Therefore, the occurrence of contamination due to the fall off of the burr 10f is prevented. Can be prevented. From the above, according to the present invention, even if the punched lid member 10 is used as it is, the occurrence of contamination can be prevented as much as possible. Therefore, the cost of the fluid dynamic bearing device 1 can be reduced while ensuring the required bearing performance.

また、ハウジング7の全周に亘って加締め部12を形成し、この加締め部12と蓋部材10の外底面10bとの間に形成した環状空間13に充填した接着剤14で蓋部材10のかえり10fを被覆した。これにより、ハウジング7に対する蓋部材10の固定力向上が図られると共に、かえり10fの脱落が一層効果的に防止される。特に、環状空間13の空間幅を、加締め部12の基端側に向かって漸次縮小させたことから、環状空間13に充填した接着剤14に毛細管力の引き込み作用が作用する。そのため、接着剤14を環状空間13内に適切に保持することが、すなわちかえり10fを適切に被覆することができる。   Further, the crimping portion 12 is formed over the entire circumference of the housing 7, and the lid member 10 is formed with the adhesive 14 filled in the annular space 13 formed between the crimping portion 12 and the outer bottom surface 10 b of the lid member 10. Nokaeri 10f was coated. As a result, the fixing force of the lid member 10 to the housing 7 can be improved, and the burr 10f can be more effectively prevented from falling off. In particular, since the space width of the annular space 13 is gradually reduced toward the proximal end side of the caulking portion 12, a capillary force pulling action acts on the adhesive 14 filled in the annular space 13. Therefore, the adhesive 14 can be appropriately held in the annular space 13, that is, the burr 10f can be appropriately covered.

さらに本実施形態では、蓋部材10をハウジング7の大径内周面7a2(下端開口部)に隙間嵌めし、互いに対向するハウジング7の大径内周面7a2と蓋部材10の外周面10cとの間の半径方向隙間15に接着剤14を充填し、固化させたことから、ハウジング7に対する蓋部材10の固定力が一層高まると共に、ハウジング7の下端開口の封止性が一層高まる。また本実施形態の蓋部材10は、その外周面10cに、凹凸面状の破断部10eを有するものであるが、蓋部材10を隙間嵌めすれば、ハウジング7の下端開口部に蓋部材10を嵌合(配置)する段階で、ハウジング7の大径内周面7a2と蓋部材10の外周面10cの破断部10eとの摺動、ひいては破断部10eの脱落によるコンタミ発生を可及的に防止することができる。なお、蓋部材10の外周面10cに凹凸面状の破断部10eが存在することから、半径方向隙間15に充填した接着剤14に対する蓋部材10の接触面積が増大する。これにより、ハウジング7に対する蓋部材10の接着強度を高めることができる。   Furthermore, in this embodiment, the lid member 10 is fitted into the large-diameter inner circumferential surface 7a2 (lower end opening) of the housing 7 with a gap, and the large-diameter inner circumferential surface 7a2 of the housing 7 and the outer circumferential surface 10c of the lid member 10 facing each other. Since the adhesive 14 is filled in the gaps 15 in the radial direction and solidified, the fixing force of the lid member 10 to the housing 7 is further enhanced, and the sealing performance of the lower end opening of the housing 7 is further enhanced. Further, the lid member 10 of the present embodiment has an uneven surface-like fractured portion 10e on the outer peripheral surface 10c. However, if the lid member 10 is fitted into the gap, the lid member 10 is attached to the lower end opening of the housing 7. At the stage of fitting (arrangement), the occurrence of contamination due to sliding between the large-diameter inner peripheral surface 7a2 of the housing 7 and the broken portion 10e of the outer peripheral surface 10c of the lid member 10, and by extension, the dropping of the broken portion 10e is prevented as much as possible. can do. In addition, since the uneven | corrugated surface-shaped fracture | rupture part 10e exists in the outer peripheral surface 10c of the cover member 10, the contact area of the cover member 10 with respect to the adhesive agent 14 with which the radial direction clearance 15 was filled increases. Thereby, the adhesive strength of the lid member 10 to the housing 7 can be increased.

以上、本発明の一実施形態に係る流体動圧軸受装置1について説明を行ったが、本発明は、以上で説明した実施形態に係る流体動圧軸受装置1に限定適用されるものではない。以下、本発明を適用可能な他の実施形態に係る流体動圧軸受装置1について図面を参照しながら説明する。以下に示す他の実施形態においては、説明を簡略化する観点から、上述した実施形態と実質的に同一の構成には同一の参照番号を付し、重複説明を省略する。   The fluid dynamic bearing device 1 according to the embodiment of the present invention has been described above, but the present invention is not limited to the fluid dynamic bearing device 1 according to the embodiment described above. Hereinafter, a fluid dynamic bearing device 1 according to another embodiment to which the present invention is applicable will be described with reference to the drawings. In the other embodiments described below, from the viewpoint of simplifying the description, the same reference numerals are given to substantially the same configurations as those of the above-described embodiments, and the duplicate description will be omitted.

図6は、本発明の第2実施形態に係る流体動圧軸受装置1の含軸断面図である。同図に示す流体動圧軸受装置1が図2に示すものと異なる主な点は、ラジアル軸受部R1,R2のラジアル軸受隙間に流体動圧を発生させるラジアル動圧発生部A1,A2(図6中、クロスハッチングで示す動圧溝Aa)を、軸受スリーブ8の内周面8aとラジアル軸受隙間を介して対向する軸部21の外周面21aに形成した点にある。   FIG. 6 is an axial cross-sectional view of the fluid dynamic bearing device 1 according to the second embodiment of the present invention. The main difference of the fluid dynamic pressure bearing device 1 shown in FIG. 2 from that shown in FIG. 2 is that the radial dynamic pressure generators A1, A2 generate fluid dynamic pressure in the radial bearing gaps of the radial bearing portions R1, R2. 6, the dynamic pressure grooves Aa) indicated by cross-hatching are formed on the outer peripheral surface 21 a of the shaft portion 21 facing the inner peripheral surface 8 a of the bearing sleeve 8 via the radial bearing gap.

ここで、焼結金属製とされる軸受スリーブ8の内周面8aに動圧溝Aaを形成するために広く採用されている手法は、円筒状に形成した焼結体の内周に、外周面に動圧溝形状に対応した溝型部を有するコアロッドを挿入し、その状態で焼結体に軸方向両側から圧迫力を加えることにより、焼結体の内周面をコアロッドの外周面に食い付かせて溝型部の形状を焼結体の内周面に転写し、その後、圧迫力の解放により生じる焼結体のスプリングバックを利用して、焼結体の内周からコアロッドを抜き取る、というものである。しかしながら、軸受スリーブ8の軸方向寸法が大きくなれば、動圧溝Aaを加工する際、相当に大きな圧迫力を焼結体に加える必要がある。そのため、内部の密度のばらつきが大きくなる、軸受スリーブ8の各部に精度劣化が生じるなど、加工精度の限界が生じる。   Here, a widely adopted technique for forming the dynamic pressure groove Aa on the inner peripheral surface 8a of the bearing sleeve 8 made of sintered metal is the outer periphery of the sintered body formed in a cylindrical shape. By inserting a core rod having a groove mold part corresponding to the dynamic pressure groove shape on the surface, and applying a pressing force to the sintered body from both sides in the axial direction in this state, the inner peripheral surface of the sintered body becomes the outer peripheral surface of the core rod. The shape of the groove part is transferred to the inner peripheral surface of the sintered body, and then the core rod is pulled out from the inner periphery of the sintered body using the spring back of the sintered body that is generated by releasing the compression force. That's it. However, if the axial dimension of the bearing sleeve 8 increases, it is necessary to apply a considerably large pressing force to the sintered body when the dynamic pressure groove Aa is processed. For this reason, there is a limit in processing accuracy, such as a large variation in internal density and a deterioration in accuracy in each part of the bearing sleeve 8.

これに対して軸部21の外周面21aに動圧溝Aaを設ける場合には、転造や研削等の比較的簡便な手段を組み合わせることで微小な動圧溝Aaを精度良く形成し易く、しかも軸受スリーブ8の内周面8aを凹凸のない平滑な円筒面に形成することができる。従って、この場合、焼結金属製の軸受スリーブ8の製造工程は、焼結体に対して内周面および外周面の矯正加工(サイジング)を行うことで完了し、上記したような内周面に動圧溝を型成形する工程を設ける必要がない。従って、軸受スリーブ8の形状の単純化を通じて軸受の精度確保が図られ、軸受スリーブ8、ひいては流体動圧軸受装置1全体としての特性確保が可能となる。   On the other hand, when the dynamic pressure groove Aa is provided on the outer peripheral surface 21a of the shaft portion 21, it is easy to form the minute dynamic pressure groove Aa with high accuracy by combining relatively simple means such as rolling and grinding. In addition, the inner peripheral surface 8a of the bearing sleeve 8 can be formed into a smooth cylindrical surface having no irregularities. Therefore, in this case, the manufacturing process of the bearing sleeve 8 made of sintered metal is completed by performing a correction process (sizing) on the inner peripheral surface and the outer peripheral surface of the sintered body, and the inner peripheral surface as described above. There is no need to provide a step of molding the dynamic pressure groove. Therefore, the accuracy of the bearing can be ensured through simplification of the shape of the bearing sleeve 8, and the characteristics of the bearing sleeve 8, and consequently the fluid dynamic pressure bearing device 1 as a whole, can be ensured.

なお、溶製材からなる軸部21(軸素材)の外周面に転造で動圧溝Aaを形成する場合、熱処理後の軸素材の外周面に転造加工を施すのが望ましい。転造により生じる肉の盛り上がり量を、未熱処理の軸素材に転造加工を施す場合に比べて小さくすることができるので、その後の仕上げ加工を簡便化することが、あるいは仕上げ加工を省略することができるからである。   In addition, when forming the dynamic pressure groove Aa by rolling on the outer peripheral surface of the shaft portion 21 (shaft material) made of melted material, it is desirable to subject the outer peripheral surface of the shaft material after heat treatment to rolling. The amount of swell of meat produced by rolling can be reduced compared to the case of rolling the unheat-treated shaft material, so that the subsequent finishing process can be simplified or the finishing process can be omitted. Because you can.

以上の実施形態では、ハウジング7の下端に一体的に設けた環状の凸部7cを内径側に塑性変形させることによって加締め部12を形成したが、加締め部12を形成するに際して、必ずしも環状の凸部7cを設ける必要はない。例えばハウジング7の平坦面状下端面を塑性変形させることで加締め部12を形成することも可能である。また、加締め部12は、必ずしもハウジング7の全周に亘って形成する必要はなく、かえり10fが存在する周方向領域にのみ形成するようにしても良い。   In the above embodiment, the caulking portion 12 is formed by plastic deformation of the annular convex portion 7c integrally provided at the lower end of the housing 7 toward the inner diameter side. It is not necessary to provide the convex portion 7c. For example, the caulking portion 12 can be formed by plastically deforming the flat lower end surface of the housing 7. Further, the caulking portion 12 is not necessarily formed over the entire circumference of the housing 7, and may be formed only in a circumferential region where the burr 10f exists.

また、以上の実施形態では、外周面10cに、破断部10eを有する蓋部材10を用いた関係上、蓋部材10をハウジング7の下端開口部に隙間嵌めしたが、プレス切断の実施態様によっては、蓋部材10の外周面10cに、凹凸面状の破断部10eが形成されない場合もある[図7(b)を参照]。このような蓋部材10を用いる場合には、蓋部材10をハウジング7の下端開口部に嵌合する段階で蓋部材10の外周面10cがハウジング7の大径内周面7a2に対して摺動しても、外周面10cに破断部10eが形成されている場合と比較して、コンタミの発生確率が大幅に低下することから、ハウジング7の下端開口部に対する蓋部材10の嵌合を、必ずしも隙間嵌めにて行う必要はない。   In the above embodiment, the lid member 10 is fitted into the lower end opening of the housing 7 due to the use of the lid member 10 having the fracture portion 10e on the outer peripheral surface 10c. In some cases, the concavo-convex fracture portion 10e is not formed on the outer peripheral surface 10c of the lid member 10 (see FIG. 7B). When such a lid member 10 is used, the outer peripheral surface 10 c of the lid member 10 slides with respect to the large-diameter inner peripheral surface 7 a 2 of the housing 7 when the lid member 10 is fitted into the lower end opening of the housing 7. Even if compared with the case where the fractured portion 10e is formed on the outer peripheral surface 10c, the probability of occurrence of contamination is greatly reduced. Therefore, the fitting of the lid member 10 to the lower end opening of the housing 7 is not necessarily performed. There is no need to do this with a gap fit.

また、以上の実施形態では、ハウジング7に、軸部21の外周面21aとの間にシール空間Sを形成するシール部7bを一体的に設けたが、シール部7bは別部材とすることも可能である(図示省略)。また、以上の実施形態では、軸受部材9を、筒状部材としてのハウジング7と、ハウジング7の内周に固定した軸受スリーブ8とで構成したが、軸受部材9は、軸受スリーブ8に相当する部分と、ハウジング8に相当する部分とが一体的に設けられたものとすることも可能である(図示省略)。   Moreover, in the above embodiment, the seal part 7b which forms the seal space S between the housing 7 and the outer peripheral surface 21a of the shaft part 21 is integrally provided, but the seal part 7b may be a separate member. It is possible (not shown). Further, in the above embodiment, the bearing member 9 is constituted by the housing 7 as a cylindrical member and the bearing sleeve 8 fixed to the inner periphery of the housing 7, but the bearing member 9 corresponds to the bearing sleeve 8. It is also possible that the part and the part corresponding to the housing 8 are provided integrally (not shown).

また、以上の実施形態では、ヘリングボーン形状等の動圧溝Aaを円周方向に複数配列したラジアル動圧発生部を設けることによって動圧軸受からなるラジアル軸受部R1,R2を構成したが、動圧軸受からなるラジアル軸受部R1,R2は、ラジアル軸受隙間を介して対向する二面の何れか一方に、軸方向溝を円周方向に複数配したステップ面、あるいは多円弧面を形成することで構成することもできる。また、ラジアル軸受部R1,R2の何れか一方又は双方は、いわゆる真円軸受で構成することもできる。   Further, in the above embodiment, the radial bearing portions R1 and R2 including the dynamic pressure bearing are configured by providing the radial dynamic pressure generating portion in which a plurality of the dynamic pressure grooves Aa having a herringbone shape or the like are arranged in the circumferential direction. The radial bearing portions R1 and R2 made of a hydrodynamic bearing form a step surface having a plurality of axial grooves in the circumferential direction or a multi-arc surface on one of two surfaces facing each other through a radial bearing gap. It can also be configured. Further, either one or both of the radial bearing portions R1 and R2 can be constituted by a so-called perfect circle bearing.

また、以上の実施形態では、スラスト動圧発生部B,Cをスパイラル形状、あるいはヘリングボーン形状の動圧溝Ba,Caで構成したが、スラスト動圧発生部B,Cの何れか一方又は双方は、径方向に延びる放射状の動圧溝を円周方向に複数配列して構成することもできる。また、スラスト軸受部は、以上で示した動圧軸受ではなく、軸部材2の一端(下端)を蓋部材10の内底面10aで接触支持するピボット軸受で構成することもできる。   Further, in the above embodiment, the thrust dynamic pressure generating portions B and C are configured by the spiral or herringbone-shaped dynamic pressure grooves Ba and Ca, but either one or both of the thrust dynamic pressure generating portions B and C are used. Can be configured by arranging a plurality of radial dynamic pressure grooves extending in the radial direction in the circumferential direction. In addition, the thrust bearing portion may be a pivot bearing in which one end (lower end) of the shaft member 2 is in contact with and supported by the inner bottom surface 10a of the lid member 10 instead of the dynamic pressure bearing described above.

また、以上の実施形態では、流体動圧軸受装置1の内部空間に充填する潤滑流体として潤滑油を用いたが、潤滑グリース、磁性流体、さらには空気等の気体を潤滑流体として用いた流体動圧軸受装置1にも本発明は好ましく適用し得る。   In the above embodiment, the lubricating oil is used as the lubricating fluid that fills the internal space of the fluid dynamic bearing device 1, but the fluid dynamics using a lubricating grease, a magnetic fluid, or a gas such as air as the lubricating fluid. The present invention can also be preferably applied to the pressure bearing device 1.

また、以上では、軸部材2を回転側、軸受部材9を静止側とした流体動圧軸受装置1に本発明を適用した場合について説明を行ったが、これとは逆に、軸部材2を静止側、軸受部材9を回転側とした流体動圧軸受装置1にも本発明は好ましく適用することができる。   In the above description, the case where the present invention is applied to the fluid dynamic bearing device 1 in which the shaft member 2 is the rotating side and the bearing member 9 is the stationary side has been described. The present invention can be preferably applied to the fluid dynamic bearing device 1 having the stationary side and the bearing member 9 as the rotation side.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
8 軸受スリーブ
9 軸受部材
10 蓋部材
10c 外周面
10d せん断部
10e 破断部
10f かえり
12 加締め部
13 環状空間
14 接着剤
15 半径方向隙間
A1,A2 ラジアル動圧発生部
B スラスト動圧発生部
C スラスト動圧発生部
R1、R2 ラジアル軸受部
T1 第1スラスト軸受部
T2 第2スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Fluid dynamic pressure bearing apparatus 2 Shaft member 7 Housing 8 Bearing sleeve 9 Bearing member 10 Lid member 10c Outer peripheral surface 10d Shear part 10e Breaking part 10f Burl 12 Clamping part 13 Annular space 14 Adhesive 15 Radial gap A1, A2 Radial movement Pressure generating part B Thrust dynamic pressure generating part C Thrust dynamic pressure generating part R1, R2 Radial bearing part T1 First thrust bearing part T2 Second thrust bearing part

Claims (8)

軸部材と、両端が開口し、内周に軸部材を挿入した筒状部材と、筒状部材の一端開口部を封口する蓋部材とを備え、軸部材の外周面に面するラジアル軸受隙間に形成される流体の潤滑膜で軸部材がラジアル方向に支持される流体動圧軸受装置において、
蓋部材が、金属板の打ち抜きで形成され、外周面の一端部にかえりを有するものであり、
打ち抜き後の蓋部材が前記かえりを外側に向けた状態で筒状部材の一端開口部に嵌合され、筒状部材の一端部を、加締めにより前記かえりを巻き込みながら内径側に塑性変形させることで、蓋部材を筒状部材に固定したことを特徴とする流体動圧軸受装置。
A radial member gap facing the outer peripheral surface of the shaft member includes a shaft member, a cylindrical member having both ends opened and a shaft member inserted into the inner periphery, and a lid member for sealing one end opening of the cylindrical member. In the fluid dynamic bearing device in which the shaft member is supported in the radial direction by the formed lubricating film of fluid,
The lid member is formed by punching a metal plate, and has a burr at one end of the outer peripheral surface,
The lid member after punching is fitted into one end opening of the cylindrical member with the burr facing outward, and one end of the cylindrical member is plastically deformed to the inner diameter side while winding the burr by caulking. The fluid dynamic pressure bearing device is characterized in that the lid member is fixed to the cylindrical member.
加締め部と蓋部材の外底面との間に空間を形成し、この空間に充填した接着剤で前記かえりを被覆した請求項1に記載の流体動圧軸受装置。   2. The fluid dynamic bearing device according to claim 1, wherein a space is formed between the crimping portion and the outer bottom surface of the lid member, and the burr is covered with an adhesive filled in the space. 蓋部材が筒状部材の一端開口部に隙間嵌めされ、
互いに対向する蓋部材の外周面と筒状部材の内周面との間の半径方向隙間に、接着剤を充填した請求項1に記載の流体動圧軸受装置。
The lid member is fitted into the opening at one end of the cylindrical member,
The fluid dynamic pressure bearing device according to claim 1, wherein an adhesive is filled in a radial gap between the outer peripheral surface of the lid member and the inner peripheral surface of the cylindrical member facing each other.
筒状部材に段差面を設け、この段差面に蓋部材の内底面を当接させた請求項1に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 1, wherein a stepped surface is provided on the cylindrical member, and an inner bottom surface of the lid member is brought into contact with the stepped surface. 互いに対向する軸部材の端面と蓋部材の内底面との間にスラスト軸受隙間が形成され、
スラスト軸受隙間に流体動圧を発生させるスラスト動圧発生部が、金属板の打ち抜きで蓋部材を形成するのと同時に、蓋部材の内底面に型成形された請求項1に記載の流体動圧軸受装置。
A thrust bearing gap is formed between the end surfaces of the shaft members facing each other and the inner bottom surface of the lid member,
The fluid dynamic pressure according to claim 1, wherein the thrust dynamic pressure generating portion that generates fluid dynamic pressure in the thrust bearing gap is formed on the inner bottom surface of the lid member at the same time as the lid member is formed by punching a metal plate. Bearing device.
筒状部材の内周に、軸部材の外周面との間に前記ラジアル軸受隙間を形成する軸受スリーブを固定した請求項1に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 1, wherein a bearing sleeve that forms the radial bearing gap is fixed to an inner periphery of the cylindrical member with an outer peripheral surface of the shaft member. 軸部材の外周面に、ラジアル軸受隙間に流体動圧を発生させるラジアル動圧発生部が形成された請求項1に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 1, wherein a radial dynamic pressure generating portion that generates fluid dynamic pressure in a radial bearing gap is formed on an outer peripheral surface of the shaft member. 請求項1〜7の何れか一項に記載の流体動圧軸受装置と、ステータコイルと、ロータマグネットとを備えるモータ。   A motor comprising the fluid dynamic bearing device according to any one of claims 1 to 7, a stator coil, and a rotor magnet.
JP2011200411A 2011-09-14 2011-09-14 Fluid dynamic bearing device and motor equipped with the same Withdrawn JP2013061025A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011200411A JP2013061025A (en) 2011-09-14 2011-09-14 Fluid dynamic bearing device and motor equipped with the same
PCT/JP2012/071980 WO2013038913A1 (en) 2011-09-14 2012-08-30 Fluid dynamic bearing device and motor equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200411A JP2013061025A (en) 2011-09-14 2011-09-14 Fluid dynamic bearing device and motor equipped with the same

Publications (1)

Publication Number Publication Date
JP2013061025A true JP2013061025A (en) 2013-04-04

Family

ID=47883146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200411A Withdrawn JP2013061025A (en) 2011-09-14 2011-09-14 Fluid dynamic bearing device and motor equipped with the same

Country Status (2)

Country Link
JP (1) JP2013061025A (en)
WO (1) WO2013038913A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610259A (en) * 2014-11-19 2016-05-25 发那科株式会社 Rotor component member, rotating axis, rotor, motor, and machine tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661014B2 (en) * 2001-02-13 2011-03-30 日本電産株式会社 DYNAMIC PRESSURE BEARING DEVICE AND SPINDLE MOTOR HAVING THE DYNAMIC PRESSURE BEARING DEVICE
JP2008275044A (en) * 2007-04-27 2008-11-13 Matsushita Electric Ind Co Ltd Fluid bearing device and its manufacturing method
JP2009236279A (en) * 2008-03-28 2009-10-15 Panasonic Corp Fluid bearing device and spindle motor equipped with the same
JP2010121718A (en) * 2008-11-20 2010-06-03 Panasonic Corp Spindle motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610259A (en) * 2014-11-19 2016-05-25 发那科株式会社 Rotor component member, rotating axis, rotor, motor, and machine tool
CN105610259B (en) * 2014-11-19 2018-07-13 发那科株式会社 Rotor component, rotary shaft, rotor, motor and lathe

Also Published As

Publication number Publication date
WO2013038913A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP6189589B2 (en) Fluid dynamic bearing device and motor including the same
JP2007263228A (en) Dynamic pressure bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP2010065740A (en) Fluid bearing unit and its manufacturing method
JP2006194416A (en) Fluid bearing device
JP6502068B2 (en) Method of manufacturing fluid dynamic bearing device
WO2013038913A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2005337490A (en) Dynamic pressure bearing device
US7789565B2 (en) Fluid dynamic bearing apparatus
JP2009228873A (en) Fluid bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP2006329391A (en) Dynamic pressure bearing arrangement
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP5784777B2 (en) Fluid dynamic bearing device
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP4738831B2 (en) Hydrodynamic bearing device
JP2005265180A (en) Dynamic pressure bearing device
JP4554324B2 (en) Hydrodynamic bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP2004316925A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
JP2004301338A (en) Dynamic pressure type sintering oil impregnation bearing unit
JP2004360921A (en) Dynamic pressure type sintered oil retaining bearing unit
JP2013036475A (en) Fluid dynamic bearing device and motor having the same
JP4738835B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202