JP2013060516A - プロピレン系樹脂成形体 - Google Patents

プロピレン系樹脂成形体 Download PDF

Info

Publication number
JP2013060516A
JP2013060516A JP2011199198A JP2011199198A JP2013060516A JP 2013060516 A JP2013060516 A JP 2013060516A JP 2011199198 A JP2011199198 A JP 2011199198A JP 2011199198 A JP2011199198 A JP 2011199198A JP 2013060516 A JP2013060516 A JP 2013060516A
Authority
JP
Japan
Prior art keywords
propylene
based resin
shape
pattern
structure pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011199198A
Other languages
English (en)
Other versions
JP5732359B2 (ja
Inventor
Akira Takai
晃 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Original Assignee
Japan Polypropylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2011199198A priority Critical patent/JP5732359B2/ja
Publication of JP2013060516A publication Critical patent/JP2013060516A/ja
Application granted granted Critical
Publication of JP5732359B2 publication Critical patent/JP5732359B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】射出成形により微細構造パターンが表面に転写された成形品であって、微細凹凸の転写性に優れ、また寸法精度に優れた精密成形体を提供する。
【解決手段】下記(i)〜(iv)を満たすプロピレン系樹脂を溶融して押出し、押出された樹脂を、表面に微細凹凸構造パターンを有する連続冷却装置を用いて固化させることにより微細凹凸構造パターンが表面に転写された成形体であって、前記微細凹凸構造パターンは、幅が0.01〜100μmの範囲にあり、高さ又は深さが0.1〜500μmの範囲にある凸部及び/又は凹部から構成されていることを特徴とするプロピレン系樹脂成形体。
(i)プロピレンと0.8〜10重量%のエチレンとの共重合体である。
(ii)示差走査熱量測定(DSC)による結晶化開始温度が111℃以下。
(iii)MFRが0.1〜30g/10分。
(iv)曲げ弾性率が1100MPa以下。
【選択図】なし

Description

本発明は、プロピレン系樹脂成形体に関し、詳しくは、直線状のスリットを有するダイから溶融樹脂を押出し、その溶融樹脂を表面に微細凹凸構造パターンを有する連続冷却装置を用いて固化させることにより微細構造パターンが表面に転写された成形品であって、微細凹凸の転写性に優れ、また寸法精度に優れた精密成形体に関する。
近年、生物工学、生化学、医療、医薬、微生物検査、食品等の分野においては、分析対象となる生体分子を高精度に検査・分析・解析する技術として、バイオチップを用いる方法が使われてきつつある。
バイオチップとは、バイオ分子(DNA、たんぱく質、糖鎖等)を基板上に多数固定したもので、バイオチップ上のバイオ分子と特異的に相互作用する標的分子や化合物などを、大量かつ同時並行的に検出し、主に生体分子の機能解析、操作の集積化、センシングなどに利用されるデバイスの総称である。具体的には例えば、支持体基板上にDNA断片等を高度に集積化したDNAチップ(DNAマイクロアレイ)、タンパク質を固定化したタンパク質チップ(プロテインチップ、プロテインアレイ)、糖鎖や糖タンパク質、糖脂質などの複合糖質を固定化した糖鎖チップ、細胞や微生物を固定化した細胞チップ、マイクロ流路を用いた分析システムのラボオンチップ等が知られている。
バイオチップの形態としては、平板状の基板上に各種生理活性物質がスポットされ固定化されている形態であり、検査・操作の効率の点、および微少量のサンプルを迅速分析できるため高度に集積化されてきており、近年、微細加工技術を利用したバイオチップが注目されている。
このバイオチップは、従来、ガラス製のものが主流であり、ガラス基板でチップを作成するためには、たとえば、ガラス基板に金属、フォトレジスト樹脂をコートし、微細構造パターン(又はチャンネル等)を焼いた後にエッチング処理を行う方法がある。しかしガラスは大量生産に向かず非常に高コストであるため、プラスチック化が望まれている。
プラスチック製のバイオチップは、種々のプラスチックを用いて射出成形等の各種の成形方法で製造することが可能である(例えば、特許文献1参照)。
従来、このような精密成形に用いる樹脂としてポリメタクリル酸(PMMA)に代表される(メタ)アクリル樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂等が挙げられている。
しかしながら、アクリル樹脂は高い寸法精度と剛性を示すものの、成形時には予備乾燥(例えば、80℃、2〜6時間程度)が必要であり、ポリカーボネート樹脂は高い寸法精度と剛性と耐衝撃性を有するものの、高い成形温度(シリンダー温度250〜320℃程度)が必要で二酸化炭素が発生しやすく、また予備乾燥(例えば、80℃、2〜6時間程度)が同じく必要である。また、環状ポリオレフィン樹脂は、高い寸法精度と剛性を有し、予備乾燥を要しない特長を有するものの、成形温度(シリンダー温度220〜300℃程度)が必要で二酸化炭素が発生しやすく、また何しろこの樹脂は高価である。
特許文献2には、ポリプロピレン系樹脂と、ポリプロピレンに非相溶ポリマーと共役ジエンエラストマーからなるブロック共重合体の水素添加物からなる樹脂組成物がマイクロ部品の射出成形に好適であることを提案している。しかしながら、この樹脂組成物は、高価な水添エラストマーを必須とするものであり、またエラストマーの添加は、添加量によって成形品の収縮率が変化するため、寸法安定性は不十分である。また、使用するプロピレン系樹脂についての開示はなく、市販のホモポリプロピレンとランダムポリプロピレンを使用した実施例があるのみであり、その転写性は十分なものであるとはいい難い。特に、近年、その型表面が、高度に微細化している状況下において、良好な転写性は大きな課題である。
また、前記した特許文献1にあるような射出成形では大面積への均一な転写性は困難である。直線状のスリットダイから押しだされた溶融樹脂を、表面に微細凹凸構造パターンを有するロール、あるいは金属ベルト等の連続冷却装置で冷却、固化させながら連続的に転写を行えば、大面積に均一な微細構造パターンを転写することが可能となり、効率よく経済的にチップ基板を製造でき、大量生産に適している。
特開平2005−178069号公報 特開平2006−183060号公報
そして、バイオチップに限らず、光学用途(拡散板、導光板等)等においても、上記したような微細構造パターンが高度に微細化する状況下において、微細凹凸の転写性、さらに寸法精度に優れた精密成形体を提供することが必要となってきており、これを、予備乾燥が不要で軽量(比重0.91)で低コストなプロピレン系樹脂で、しかもこれを大面積での転写が可能な押出成形により提供することができれば、このような精密成形品の普及やその分野での利用が急速に高まることが期待され、これらの性能をバランスよく向上させたプロピレン系樹脂の精密成形品を開発することが望まれていた。
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、特定のプロピレン系樹脂材料を溶融して押出し、押出された樹脂を、表面に微細凹凸構造パターンを有する連続冷却装置を用いて固化させることにより、特定の高度に微細化された微細構造パターンが表面に転写されたプロピレン系樹脂成形体が得られることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下のプロピレン系樹脂成形体を提供する。
[1]下記(i)〜(iv)を満たすプロピレン系樹脂を溶融して押出し、押出された樹脂を、表面に微細凹凸構造パターンを有する連続冷却装置を用いて固化させることにより微細凹凸構造パターンが表面に転写された成形体であって、前記微細凹凸構造パターンは、幅が0.01〜100μmの範囲にあり、高さ又は深さが0.1〜500μmの範囲にある凸部及び/又は凹部から構成されていることを特徴とするプロピレン系樹脂成形体。
(i)プロピレンと0.8〜10重量%のエチレンとの共重合体である。
(ii)示差走査熱量測定(DSC)による結晶化開始温度が111℃以下。
(iii)MFR(JIS K7210:1999に準拠、230℃、荷重2.16kg)が0.1〜30g/10分。
(iv)曲げ弾性率(JIS K7203:1982に準拠)が1100MPa以下。
[2]前記プロピレン系樹脂は、メタロセン系触媒によって製造されたものであることを特徴とする上記[1]に記載のプロピレン系樹脂成形体。
[3]前記プロピレン系樹脂は、100℃、30分の保持時間で発生するガス成分をガスクロマトグラフで分析した際に検出されるアウトガス総量が100ppm以下であることを特徴とする上記[1]又は[2]に記載のプロピレン系樹脂成形体。
[4]前記微細構造パターンが、溝状、突起状、錐状、穴状、壁状、格子状、ハニカム状、鋸歯状のパターンあるいはこれらの複数の混合パターンであることを特徴とする上記[1]〜[3]のいずれかに記載のプロピレン系樹脂成形体
[5]成形体が、バイオチップ、分析用チップ、導光板、拡散板、記憶基板、超撥水性基板又はモスアイ構造体である上記[1]〜[4]のいずれかに記載のプロピレン系樹脂成形体。
本発明のプロピレン系樹脂成形体は、押出成形により微細構造パターンが表面に転写された成形品であって、100μm以下の幅、及び高さ又は深さが500μm以下という高度の微細構造パターンの転写が確実に行われ、また寸法精度に優れた精密成形体を達成することができる。
本発明のプロピレン系樹脂成形体は、一般に転写性が悪いとされてきたプロピレン系樹脂として、特定のエチレン共重合量を有し、その結晶化温度が特定温度以下で、曲げ弾性率が1100MPa以下のプロピレン・エチレン共重合体を用いることにより、精密成形時の結晶化開始が遅くなり、流動性を失うまでの時間が長くなることによって固化に至る間の、微細凹凸構造終端部への樹脂の滲入が向上して転写率が向上する。また、特にプロピレン系樹脂として、メタロセン系触媒によって製造された樹脂を使用すると、これらの特徴に加えて、アウトガス量が減少して、連続冷却装置である転写ロールや冷却ベルト等の汚染が低減されて表面外観が優れるという効果を奏することができる。
本発明のプロピレン系樹脂成形体は、下記(i)〜(iv)を満たすプロピレン系樹脂を溶融して押出し、押出された樹脂を、表面に微細凹凸構造パターンを有する連続冷却装置を用いて固化させることにより微細凹凸構造パターンが表面に転写された成形体であって、前記微細凹凸構造パターンは、幅が0.01〜100μmの範囲にあり、高さ又は深さが0.1〜500μmの範囲にある凸部及び/又は凹部から構成されていることを特徴とする。
(i)プロピレンと0.8〜10重量%のエチレンとの共重合体である。
(ii)示差走査熱量測定(DSC)による結晶化開始温度が110℃以下。
(iii)MFR(JIS K7210:1999に準拠、230℃、荷重2.16kg)が0.1〜30g/10分。
(iv)曲げ弾性率(JIS K7203:1982に準拠)が1100MPa以下。
以下、本発明をさらに詳細に説明する。
[1]プロピレン系樹脂
本発明に使用するプロピレン系樹脂は、(i)プロピレンと0.8〜10重量%のエチレンとの共重合体であって、(ii)示差走査熱量測定(DSC)による結晶化開始温度が110℃以下、(iii)MFR(JIS K7210:1999に準拠、230℃、荷重2.16kg)が15〜100g/10分であり、さらに(iv)曲げ弾性率(JIS K7203:1982に準拠)が1100MPa以下である。
このようなプロピレン系樹脂は、優れた転写率を発現し、優れた精密成形体を得ることができる。
プロピレン系樹脂のエチレン含量が0.8重量%未満であると、プロピレン系樹脂の結晶性が高まり、転写性が低下する。一方、10重量%を超えると、物性バランス(剛性など)が低下する。好ましいエチレン含量は、1.5〜9.0重量%、より好ましくは2.5〜8.0重量%、特に好ましくは3.0〜6.0重量%である。
プロピレン・エチレン共重合体は、プロピレン・エチレンランダム共重合体であってもよく、またプロピレン・エチレンブロック共重合体であってもよい。
なお、ここでいうブロック共重合体とは、プロピレン、エチレンがブロック共重合したいわゆるリアルブロック共重合体あるいはグラフト共重合体を含むだけでなく、当ポリオレフィン業界でいうところのブロック共重合体、すなわち、逐次重合(多段重合)により得られるプロピレン・エチレン系樹脂組成物も特に好ましい態様として包含される。
また、エチレン含量は赤外分光分析法(IR)あるいはNMRにて測定する値である。
プロピレン系樹脂は、結晶化開始温度が111℃以下であり、好ましくは100℃以下であり、通常下限は90℃以上であることが重要である。結晶化開始温度が111℃を超える場合は、溶融樹脂の固化時間が早くなるため、転写率が悪化する。
結晶化開始温度は、示差走査熱量計(DSC)を用い、JIS−K7121に準じ、冷却速度毎分10℃で測定した値であり、具体的には実施例に記載の方法で行った。
結晶化開始温度の調節は、周知であり、共重合するエチレン量の調整及び結晶化核剤の添加、低融点の重合体添加により行われる。また、市販品より選択することでも可能である。
また、融解ピーク温度は、125℃以上であることが好ましい。融解ピーク温度がこのような範囲にあると、121℃の滅菌工程等における耐熱性が良くなる傾向にある。
本発明に使用するプロピレン系樹脂は、MFR(230℃、2.16kg荷重)が0.1〜30g/10分である。0.1g/10分未満であると、押出時の吐出が低下し生産性が下がり、さらに転写性が悪化する。一方、30g/10分を超えると、溶融張力が低下し安定して連続冷却装置に引き込むことが困難となる。MFRは、好ましくは0.1〜20g/10分、より好ましくは0.1〜15g/10分、とりわけ好ましくは0.1〜5g/10分である。
なお、プロピレン系樹脂のMFRは、JIS K7210:1982に準拠して測定する値である。
MFRの調整は周知であり、重合条件である温度や圧力を調節したり、重合時において水素等の連鎖移動剤の添加量を制御したりすることにより、容易に行うことができる。また、市販品より選択することでも可能である。
本発明で使用されるプロピレン系樹脂の曲げ弾性率(FM)は、1100MPa以下である必要があり、好ましくは1000MPa未満、より好ましくは950MPa以下、更には900MPa以下、特には850MPa以下であるのが好ましく、その下限は通常300MPa以上である。曲げ弾性率が1100MPa以下であると転写性が良好であり、1100MPaを超えると、転写性が悪く、また転写された成形品が損なわれる等の不具合の可能性が高い。
なお、曲げ弾性率は、JIS K7203:1982に準拠して、測定される。
曲げ弾性率は、プロピレン・エチレン共重合体のエチレン共重合量の調整や重合条件の調整により、容易に調整することができる。また、市販品より選択することでも可能である。
本発明に使用するプロピレン系樹脂は、好ましくは、100℃、30分の保持時間で発生するガス成分をガスクロマトグラフで分析した際に検出されるアウトガス総量が100(質量)ppm以下であることが好ましい。アウトガス量を100ppm以下とすることで、転写ロール等の表面汚染が低減されが優れ、転写ロールや冷却ベルト等の速度がアップし、生産性が向上するので、好ましい。アウトガス量は、より好ましくは50ppm以下であり、さらには30ppm以下であり、特には10ppm以下であることが好ましい。
本発明に使用するプロピレン系樹脂の製造方法としては、各種公知の触媒、例えば、チタン化合物と有機アルミニウムを組み合わせたチーグラー・ナッタ触媒、あるいはメタロセン化合物と助触媒の組み合わせからなるメタロセン触媒を使用した方法が挙げられる。
一般に、チーグラー・ナッタ触媒により製造されるプロピレン・エチレン共重合体は、アウトガスの発生量が多くなりやすく、メタロセン触媒を使用して得られるプロピレン・エチレン共重合体の使用が好ましい。
なお、プロピレン系樹脂は、2種以上併用してもよい。
ここでいうメタロセン触媒とは、(i)シクロペンタジエニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(いわゆるメタロセン化合物)と、(ii)アルミニウムオキシ化合物、上記遷移金属化合物と反応してカチオンに変換することが可能なイオン性化合物またはルイス酸、固体酸微粒子、およびイオン交換性層状珪酸塩から成る化合物群の中から選ばれる少なくとも一種の助触媒と、必要により、(iii)有機アルミニウム化合物とからなる触媒であり、本発明に係る成分(A)のプロピレン・エチレン共重合体の製造が可能である公知の触媒は、いずれも使用できる。
メタロセン化合物は、プロピレンの立体規則性重合が可能な架橋型のメタロセン化合物が好ましく、特に好ましくはプロピレンのアイソ規則性重合が可能なメタロセン化合物であり、例えば、特開平2−131488号公報、特開平2−76887号公報、特開平4−211694号公報、特開平4−300887号公報、特開平5−43616号公報、特開平6−100578号公報、特開平5−209013号公報、特開平6−239914号公報、特開平11−240909号公報、特開平6−184179号公報、特表2003−533550号公報などに開示されたものが挙げられる。
具体的には、好ましい例示として、ジメチルシリレンビス[1−(2−メチル−4−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4−(1−ナフチル)−インデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4,5−ベンゾインデニル)]ジルコニウムジクロリド、ジメチルシリレン[1−(2−メチル−4−(4−t−ブチルフェニル)インデニル)][1−(2−i−プロピル−4−(4−t−ブチルフェニル)インデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−メチル−4−フェニル−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1−(2−エチル−4−(2−フルオロビフェニリル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルゲルミレンビス[1−(2−エチル−4−(4−クロロフェニル)−4H−アズレニル)]ジルコニウムジクロリド、ジメチルゲルミレンビス[1−(2−エチル−4−フェニルインデニル)]ジルコニウムジクロリドなどの珪素あるいはゲルミル基で架橋したインデニル系またはアズレニル系ジルコニウム錯体化合物を挙げることできる。
また、上記において、ジルコニウムをハフニウムに置き換えた化合物も同様に好ましく使用できる。また、2種以上の錯体を使用することもできる。また、クロリドは、他のハロゲン化合物、メチル、ベンジル等の炭化水素基、ジメチルアミド、ジエチルアミド等のアミド基、メトキシ基、フェノキシ基等のアルコキシド基、ヒドリド基等に置き換えることができる。
これらの内、2位と4位に置換基を有し、珪素あるいはゲルミル基で架橋したビスインデニル基あるいはアズレニル基を配位子とするメタロセン化合物が好ましい。
助触媒については、アルミニウムオキシ化合物としてメチルアルミノキサン、イソブチルアルミノキサンなどが、また、上記遷移金属化合物と反応してカチオンに変換することが可能なイオン性化合物としては、N,N−ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、トリフェニルカルビルテトラキスペンタフルオロフェニルボレートなどが挙げられる。また、ルイス酸としては、トリスペンタフェニルボレートが、また、固体酸微粒子としては、アルミナ、シリカ−アルミナなどが、さらに、イオン交換性層状珪酸塩としては、2:1型構造を有する珪酸塩、例えば、化学処理をしてもよいモンモリロナイト、ベントナイト、雲母などが挙げられる。
これら化合物が溶媒などに可溶である場合、多孔質の微粒子状無機あるいは有機担体に担持して使用することが可能であり、好ましい。上記助触媒の中で、好ましくはイオン交換性層状珪酸塩である。
有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウムなどのトリアルキルアルミニウム、ジアルキルアルミニウムハライド、アルキルアルミニウムセスキハライド、アルキルアルミニウムジハライド、アルキルアルミニウムハイドライド、有機アルミニウムアルコキサイドなどが挙げられる。
重合法としては、前記触媒の存在下に、不活性溶媒を用いたスラリー法、溶液法、実質的に溶媒を用いない気相法や、あるいは重合モノマーを溶媒とするバルク重合法などが挙げられる。所望のMFRやエチレン含量に制御するためには、例えば、重合温度、コモノマー量、水素添加量を調節することができる。
[2]添加剤
本発明に使用するプロピレン系樹脂には、プロピレン系重合体の安定剤などとして使用されている各種酸化防止剤、造核剤、中和剤、滑剤、光安定剤等の添加剤を配合することができる。
具体的には、酸化防止剤としては、ビス(2,6−ジ−t−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−フォスファイト、ジ−ステアリル−ペンタエリスリトール−ジ−フォスファイト、ビス(2,4−ジ−t−ブチルフェニル)ペンタエリスリトール−ジ−フォスファイト、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレン−ジ−フォスフォナイト、テトラキス(2,4−ジ−t−ブチル−5−メチルフェニル)−4,4’−ビフェニレン−ジ−フォスフォナイト等のリン系酸化防止剤、2,6−ジ−t−ブチル−p−クレゾール、テトラキス[メチレン(3,5−ジ−t−ブチル−4−ヒドロキシヒドロシンナメート)]メタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ハイドロキシベンジル)ベンゼン、トリス(3,5−ジ−t−ブチル−4−ハイドロキシベンジル)イソシアヌレート等のフェノール系酸化防止剤、ジ−ステアリル−β,β’−チオ−ジ−プロピオネート、ジ−ミリスチル−β,β’−チオ−ジ−プロピオネート、ジ−ラウリル−β,β’−チオ−ジ−プロピオネート等のチオ系酸化防止剤等が挙げられる。
結晶化核剤としては、公知の造核剤が使用でき、その具体例としては、例えばソルビトール系透明化核剤、アミン/アミド系透明性核剤、有機リン酸塩系透明化核剤および芳香族リン酸エステル類、タルクなど既知の造核剤を挙げることができる。
中和剤の具体例としては、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウムなどの金属脂肪酸塩、ハイドロタルサイト(商品名、協和化学工業製、マグネシウムアルミニウム複合水酸化物塩)、ミズカラック(商品名、水澤化学工業製、リチウムアルミニウム複合水酸化物塩)などが挙げられる。
滑剤としては、既知の滑剤が使用できるが、好ましいその具体例としては、オレイン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド等の脂肪酸アミド、ステアリン酸ブチル、シリコーンオイル等が挙げられる。
また、本発明のプロピレン系樹脂成形体は、この組成物の特性を最大限維持しながら、他の特性または機能を付与する為に、それ以外の重合体、共重合体、エラストマーを任意にブレンドすることができる。具体的には、エチレン−アクリレート共重合体、エチレン−酢酸ビニル共重合体、エチレン−アクリロニトリル共重合体、天然ゴム、ジエン系ゴム、クロロプレンゴム、ニトリルゴム、多糖類、天然樹脂などの、各種樹脂またはエラストマーを該プロピレン径樹脂組成物100重量部に対して、1〜30重量部程度任意にブレンドすることが可能である。
同様に、フィラーとして、アルミナ、カーボンブラック、炭酸カルシウム、シリカ、石膏、タルク、マイカ、カオリン、クレー、酸化チタン、アルミナのような各種無機質フィラーを1〜30重量部、好ましくは、1〜10重量部を任意にブレンドすることが可能である。
[3]プロピレン系成形体
本発明の成形体は、幅が0.01〜100μmの範囲、好ましくは0.01〜10μmの範囲にあり、高さ又は深さが0.1〜500μmの範囲、好ましくは1〜500μmの範囲にある凸部及び/又は凹部から構成されている微細構造パターンを表面に有する。
このような微細構造パターンの好ましい例示としては、溝状、突起状、錐状、穴状、壁状、格子状、ハニカム状、鋸歯状のパターンあるいはこれらの複数が複合した混合パターンが挙げられる。また、微細構造パターンは、連続した繰り返しパターンであっても、不連続なものであってもよい。
本発明のプロピレン系樹脂成形体は、押出成形によりプロピレン系樹脂を溶融押し出しし、直線状のスリットダイから押しだされた溶融樹脂を、少なくとも一方の表面に微細凹凸構造パターンを有するロール、あるいは金属ベルトと、もう一つのロールまたは金属ベルトとで余裕樹脂を夾みながら冷却、固化させることで、成形体表面に微細構造パターンが転写される。
押し出し成形条件としては、ダイから押し出される際の樹脂の温度が、通常150〜280℃、好ましくは160〜260℃の成形温度、冷却装置の温度は通常0〜120℃、好ましくは10〜100℃が採用される。
[4]成形体の用途
本発明のプロピレン系樹脂成形体は、高度の、また高集積度の微細構造パターン表面を有するので、形状・寸法精度、反りや平面度等の要求レベルが厳しい分野向けの製品として有用である。
その例を挙げると、導光板、拡散板、偏光板等のフラットパネルディスプレイ用部材、回折格子、フレネルレンズ、プリズムシート、光ディスク等の光学分野;バイオチップ、キャピラリー電気泳動用チップ、マイクロ分析チップ等の(バイオ)分析用チップ;光(磁気)記録ディスク用のスタンパー;回路基板や記憶基板、ファインピッチコネクタ等の電気電子分野;超撥水性基板やモスアイ(無反射)構造体等の高機能表面材等が挙げられ、特に、バイオチップ、分析用チップ、導光板、拡散板、記憶基板、超撥水性基板又はモスアイ構造体に好適である。
以下、実施例により、本発明をさらに詳細に説明するが、本発明は、これらの記載により何ら限定されるものではない。
なお、各実施例および比較例において、プロピレン系樹脂および他の成分としては以下のものを使用し、プロピレン系樹脂の物性測定は以下の方法で行った。
1.物性測定法
(1)エチレン含有量
13C−NMRにより組成を検定したエチレン・プロピレンコポリマーを基準物質として733cm−1の特性吸収体を用いる赤外分光法により、コポリマー中のエチレン含量を測定した。ペレットをプレス成形により約500ミクロンの厚さのフィルムとしたものを用いた。
(2)示差走査熱量測定法(DSC)
セイコーインスツルメンツ社製DSC6200を用い、JIS−K7121「プラスチックの転移温度測定方法」に準拠し、成分(A)のサンプル5mgを採り、200℃で10分間保持した後、40℃まで10℃/分の冷却速度で結晶化させ、このときのDSC曲線から結晶化開始温度及び結晶化ピーク温度、結晶化エンタルピーを測定・算出した。続いて、10℃/分の昇温速度で融解させたときのDSC曲線から融解ピーク温度、融解終了温度、融解エンタルピーを測定・算出した。
(3)MFR
JIS K7210:1999に準じ、加熱温度230℃、荷重21.18Nにて測定した。
(4)曲げ弾性率
東芝機械製EC100射出成形機により、成形温度200℃、金型温度40℃で、90×10×4mmの試験片を作製し、JIS K7203:1982に準拠して、試験速度2mm/分、支点間距離64mm、試験温度23℃、80℃で測定した。
2.使用材料
[プロピレン系樹脂]
以下の製造例1〜5により製造したPP2〜PP6、及び、市販のプロピレン系樹脂PP1、PP7を使用した。このうちPP5〜PP7は、それ単独では本発明で規定する(i)〜(iv)の条件を満たさない樹脂である。
(製造例1:PP2の製造)
プロピレン−エチレンランダム共重合体の製造
内容積270Lの攪拌装置付き液相重合槽、内容積400Lの失活槽、スラリー循環ポンプ、循環ライン液力分級器、濃縮器、向流ポンプおよび洗浄液受け槽からなる失活洗浄システム、二重管式熱交換器と流動フラッシュ槽からなる高圧脱ガスシステム、さらに低圧脱ガス槽および乾燥器などを含む後処理系を組み込んだプロセスにより、プロピレン・エチレン共重合体の連続製造を実施した。上記で製造した予備重合触媒を流動パラフィン(東燃社製:ホワイトレックス335)に濃度15重量%で分散させて、触媒成分として0.35g/hrで液相重合槽に導入した。さらにこの重合槽に液状プロピレンを40kg/hr、エチレンを1.9kg/hr、水素を0.02g/hr、トリイソブチルアルミニウムを18g/hrで連続的に供給し、内温を70℃に保持し、重合を行った。液相重合槽からポリマーと液状プロピレンの混合スラリーをポリマーとして12.0kg/hrとなるように失活洗浄槽に抜き出した。このとき重合槽の触媒の平均滞留時間は、1.3時間であった。失活洗浄槽には、失活剤としてエタノールを21.0g/hrで供給した。さらに液状プロピレンを40kg/hr供給し、ジャケットによる加熱で内温を50℃に保った。ポリマーは分級器の下部から高圧脱ガス槽へ抜き出し、さらに低圧脱ガス槽を経て、乾燥器で乾燥を行った。乾燥器の内温80℃、滞留時間が1時間となるように調整し、さらに室温の乾燥窒素をパウダーの流れの向流方向に12m/hrの流量で流した。乾燥後のポリマーは、ホッパーから取り出した。一方、分級器、濃縮器を経て、ポリマーと分離された液状プロピレンは、40kg/hrで洗浄液受け槽に抜き出した。得られた重合体のエチレン含量=3.4wt%、MFR=2g/10分、Tm=126℃であった。
(製造例2:PP3の製造)
製造例1において、エチレンの供給量を1.35kgに減少し、その他は製造例2に準拠してプロピレン・エチレンの共重合を行った。得られた重合体のエチレン含量=2.3wt%、MFR=2g/10分、Tm=133℃であった。
(製造例3:PP4の製造)
・触媒の製造
攪拌翼、温度計、ジャケット、冷却コイルを備えた100Lの反応器に、Mg(OEt):30molを仕込み、次いで、Ti(OBu)を、仕込んだMg(OEt)中のマグネシウムに対して、Ti(OBu)/Mgのモル比が0.60となるように仕込んだ。さらに、トルエンを19.2kg仕込み、攪拌しながら昇温した。139℃で3時間反応させた後、130℃に降温して、MeSi(OPh)のトルエン溶液を、先に仕込んだMg(OEt)中のマグネシウムに対して、MeSi(OPh)/Mgのモル比が0.67になるように添加した。なお、ここで用いたトルエン量は、7.8kgであった。添加終了後、130℃で2時間反応させ、その後、室温に降温し、Si(OEt)を添加した。Si(OEt)の添加量は、先に仕込んだMg(OEt)中のマグネシウムに対して、Si(OEt)/Mgのモル比が0.056となるようにした。
次に、得られた反応混合物に対して、マグネシウム濃度が、0.57(mol/L・TOL)になるように、トルエンを添加した。さらに、フタル酸ジエチル(DEP)を、先に仕込んだMg(OEt)中のマグネシウムに対して、DEP/Mgのモル比が0.10になるように添加した。得られた混合物を、引き続き攪拌しながら−10℃に冷却し、TiClを2時間かけて滴下して均一溶液を得た。なお、TiClは、先に仕込んだMg(OEt)中のマグネシウムに対して、TiCl/Mgのモル比が4.0になるようにした。TiCl添加終了後、攪拌しながら0.5℃/minで15℃まで昇温し、同温度で1時間保持した。次いで、再び0.5℃/minで50℃まで昇温し、同温度で1時間保持した。さらに、1℃/minで118℃まで昇温し、同温度で1時間処理を行った。処理終了後、攪拌を停止し、上澄み液を除去した後、トルエンで、残液率=1/73になるように洗浄し、スラリーを得た。
次に、ここで得られたスラリーに、室温で、トルエンとTiClを添加した。なお、TiClは、先に仕込んだMg(OEt)中のマグネシウムに対して、TiCl/Mg(OEt)のモル比が5.0となるようにした。また、トルエンは、TiCl濃度が、2.0(mol/L・TOL)になるように調製した。このスラリーを攪拌しながら昇温し、118℃で1時間反応を行った。反応終了後、攪拌を停止し、上澄み液を除去した後、トルエンで、残液率=1/150となるように洗浄し、固体成分のスラリーを得た。さらに上記で得られた固体成分のうち、400gを、攪拌翼、温度計、冷却ジャケットを有する別の反応器に移送し、ノルマルヘキサンを加えて、固体成分の濃度として5.0(g/l)になるように希釈した。得られたスラリーを攪拌しながら、15℃で、トリメチルビニルシラン、トリエチルアルミニウム(TEA)およびt−ブチルメチルジエトキシシラン(TBMDES)を添加した。なお、TEA、トリメチルビニルシラン、TBMDESの添加量は、それぞれ、上記固体成分中の固体成分1gに対して、3.1(mmol)、0.2(ml)、0.2(ml)となるようにした。添加終了後、引き続き攪拌しながら、15℃で1時間保持し、さらに、30℃に昇温して、同温度で2時間攪拌した。
・予備重合
次に、再び15℃に降温し、同温度を保持しながら、反応器の気相部に、1.2kgのプロピレンガスを72分かけて定速でフィードして予備重合を行った。フィード終了後、攪拌を停止して上澄み液を除去した後、ノルマルヘキサンで洗浄を行い、予備重合触媒成分のスラリーを得た。なお、残液率は、1/12とした。得られた予備重合触媒成分は、上記固体成分1gあたり、3.1gのプロピレン重合体を有していた。
・重合
重合は製造例1で用いたのと同じ反応器システムを用いて行った。上記で得られた予備重合触媒成分を流動パラフィン(東燃社製:ホワイトレックス335)に濃度2重量%で分散させて、触媒成分として0.2g/hrで導入した。この反応器に液状プロピレンを32.8kg/hr、エチレンを0.21kg/hr、水素を0.3g/hr、トリエチルアルミニウムを6.6g/hr、TBEDMSを0.011g/hrで連続的に供給し、内温を70℃に保持し重合を行った。液相重合槽からポリマーと液状プロピレンの混合スラリーをポリマーとして13.8kg/hrとなるように失活洗浄槽に抜き出した。このとき重合槽の触媒の平均滞留時間は、1.3時間であった。失活洗浄槽には、失活剤としてエタノールを21.0g/hrで供給した。さらに液状プロピレンを40kg/hr供給し、ジャケットによる加熱で内温を50℃に保った。ポリマーは分級器の下部から高圧脱ガス槽へ抜き出し、さらに低圧脱ガス槽を経て、乾燥器で乾燥を行った。乾燥器の内温80℃、滞留時間が1時間となるように調整し、さらに室温の乾燥窒素をパウダーの流れの向流方向に12m/hrの流量で流した。乾燥後のポリマーは、ホッパーから取り出した。一方、分級器、濃縮器を経て、ポリマーと分離された液状プロピレンは、40kg/hrで洗浄液受け槽に抜き出した。得られた重合体の固体触媒1g当たりの収量は69.0kg、エチレン含量=3.4wt.%、MFR=2g/10分、Tm=141℃であった。
(製造例4:PP5の製造)
製造例1において、エチレンの供給量を0.40kgに減少し、その他は製造例2に準拠してプロピレン・エチレンの共重合を行った。得られた重合体のエチレン含量=0.9wt%、MFR=2g/10分、Tm=141℃であった。
(製造例5:PP6の製造)
製造例3において、エチレンの供給量を0.15kgに減少し、その他は製造例4に準拠してプロピレン・エチレンの共重合を行った。得られた重合体のエチレン含量=2.4wt%、MFR=2g/10分、Tm=148℃であった。
プロピレン系樹脂として、以下の市販品を使用した。
(PP1)プロピレン・エチレンブロック共重合体:
「ウェルネクスRFG4VA」(商品名、日本ポリプロ社製)
メタロセン触媒、エチレン濃度5.5重量%、MFR5g/10分
(PP7)プロピレン単独重合体:
「ノバテックMA1B」(商品名、日本ポリプロ社製)
チーグラー・ナッタ触媒、エチレン濃度0重量%、MFR21g/10分 以上のPP1〜PP7のエチレン含量、MFR、結晶化開始温度、曲げ弾性率は表1及び表2に示される。
[添加剤]
(i)リン系酸化防止剤:
トリス(2,4−ジ−tert−ブチルフェノール)フォスファイト
イルガフォス168(Irgafos168、商品名、チバ社製)、
(ii)ヒンダードフェノール系酸化防止剤:
テトラキス[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシルフェニル)プロピオネート]メタン
イルガノックス1010(Irganox1010、商品名、チバ社製)
(iii)中和剤:
ステアリン酸カルシウム
CaSt(商品名、日東化成社製)
(実施例1〜6、比較例1〜9)
上記した各プロピレン系樹脂(PP1)〜(PP89)に上記添加剤を下記表1及び表2に記載の配合割合(重量%)で準備し、スーパーミキサーでドライブレンドした後、35ミリ径の2軸押出機を用いて溶融混練し、ダイ出口部温度200℃でダイから押し出してペレット化した。
得られたペレットにつき、下記の評価を行った。
また得られたペレットを用い、以下の条件にしたがって下記の微細パターン表面を有する成形品を成形し、転写率の評価を行った。
各種の評価方法は以下の通りである。
(1)転写性:
下記の押出成形機を用い、下記の波板状のパターン内表面を有する冷却ロールを使用し、下記の成形条件にて微細パターンを有する成型品を得た。作製した成形品を、3Dレーザー式画像解析装置(キーエンス社VK−9500)を用いて、粗さRaを測定し、金型と成形品の波板表面の頂点の高さの差が10μm以下を、転写性良好とした。
<成形条件>
・押出機:IKG製「PMS30−32」
・ダイのスリット幅:100mm
・冷却装置:中空・通水金属ロ−ル(3本が縦一列に並び、1本目と3本目が上下に動き、高さが固定された2本目のロールとの間でそれぞれクリアランスと接圧の調整が可能。2本目には下記の微細パターン加工がなされ、溶融樹脂は最初に1〜2本目の間に導かれ、ここで転写が行われる。)
・ロールクリアランス:0.5mm
・シート厚み:0.5mm
・ライン速度:2m/min
・溶融樹脂温度:210℃
・ロール通水温度:20℃
上記各評価の結果を表1および表2に示す。
Figure 2013060516
Figure 2013060516
(実施例7〜8、比較例4)
実施例1と同様にして、下記表3に記載のプロピレン系樹脂と添加剤を使用して、ペレットを製造した。得られたペレットにつき、下記の評価を行った。
・アウトガス量:
100℃、30分の保持時間で発生するガス成分をガスクロマトグラフで分析した(単位:質量ppm)。
・金型汚染試験:
東芝機械製IS100GN射出成形機と、100×100×2mmの平板成形品の金型とを用いて評価を行った。評価に先立って金型を十分に清掃して汚れや曇りを十分に除去した後、金型に約8割充填される程度のショートショットの条件で、50ショット連続して成形した。成形条件は、樹脂温度240℃、金型温度40℃とした。その後、充填末端付近の金型表面の汚染状況を目視で確認し、以下の基準で判定した。
○:目視では汚れが確認できない
×:目視で汚れが認められる
Figure 2013060516
本発明のプロピレン系樹脂成形体は、微細凹凸の転写性に優れ、また寸法精度に優れ、高度のまた高集積度の微細構造パターン表面を有するので、形状・寸法精度、反りや平面度等の要求レベルが厳しい分野向けの製品として有用であり、産業上の利用性は非常に高いものがある。

Claims (5)

  1. 下記(i)〜(iv)を満たすプロピレン系樹脂を溶融して押出し、押出された樹脂を、表面に微細凹凸構造パターンを有する連続冷却装置を用いて固化させることにより微細凹凸構造パターンが表面に転写された成形体であって、前記微細凹凸構造パターンは、幅が0.01〜100μmの範囲にあり、高さ又は深さが0.1〜500μmの範囲にある凸部及び/又は凹部から構成されていることを特徴とするプロピレン系樹脂成形体。
    (i)プロピレンと0.8〜10重量%のエチレンとの共重合体である。
    (ii)示差走査熱量測定(DSC)による結晶化開始温度が111℃以下。
    (iii)MFR(JIS K7210:1999に準拠、230℃、荷重2.16kg)が0.1〜30g/10分。
    (iv)曲げ弾性率(JIS K7203:1982に準拠)が1100MPa以下。
  2. 前記プロピレン系樹脂は、メタロセン系触媒によって製造されたものであることを特徴とする請求項1に記載のプロピレン系樹脂成形体。
  3. 前記プロピレン系樹脂は、100℃、30分の保持時間で発生するガス成分をガスクロマトグラフで分析した際に検出されるアウトガス総量が100ppm以下であることを特徴とする請求項1又は2に記載のプロピレン系樹脂成形体。
  4. 前記微細構造パターンが、溝状、突起状、錐状、穴状、壁状、格子状、ハニカム状、鋸歯状のパターンあるいはこれらの複数の混合パターンであることを特徴とする請求項1〜3のいずれかに記載のプロピレン系樹脂成形体。
  5. 成形体が、バイオチップ、分析用チップ、導光板、拡散板、記憶基板、超撥水性基板又はモスアイ構造体である請求項1〜4のいずれかに記載のプロピレン系樹脂成形体。
JP2011199198A 2011-09-13 2011-09-13 プロピレン系樹脂成形体 Active JP5732359B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011199198A JP5732359B2 (ja) 2011-09-13 2011-09-13 プロピレン系樹脂成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011199198A JP5732359B2 (ja) 2011-09-13 2011-09-13 プロピレン系樹脂成形体

Publications (2)

Publication Number Publication Date
JP2013060516A true JP2013060516A (ja) 2013-04-04
JP5732359B2 JP5732359B2 (ja) 2015-06-10

Family

ID=48185464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011199198A Active JP5732359B2 (ja) 2011-09-13 2011-09-13 プロピレン系樹脂成形体

Country Status (1)

Country Link
JP (1) JP5732359B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024549A (ja) * 2013-07-25 2015-02-05 大日本印刷株式会社 撥水性フィルムおよびその製造方法、積層体、ならびに包装材料
JP2015222208A (ja) * 2014-05-23 2015-12-10 株式会社日立ハイテクノロジーズ 生体分析用のデバイス、分析装置および分析方法
JPWO2016067937A1 (ja) * 2014-10-31 2017-11-09 株式会社ウインテック 熱曲げ偏光シートの包装体および射出偏光レンズ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156516A (ja) * 2000-09-08 2002-05-31 Idemitsu Petrochem Co Ltd 再帰反射シート
JP2011042152A (ja) * 2008-09-05 2011-03-03 Sumitomo Chemical Co Ltd 表面形状転写樹脂シートの製造方法
JP2011143717A (ja) * 2009-12-18 2011-07-28 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂製シートの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156516A (ja) * 2000-09-08 2002-05-31 Idemitsu Petrochem Co Ltd 再帰反射シート
JP2011042152A (ja) * 2008-09-05 2011-03-03 Sumitomo Chemical Co Ltd 表面形状転写樹脂シートの製造方法
JP2011143717A (ja) * 2009-12-18 2011-07-28 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂製シートの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024549A (ja) * 2013-07-25 2015-02-05 大日本印刷株式会社 撥水性フィルムおよびその製造方法、積層体、ならびに包装材料
JP2015222208A (ja) * 2014-05-23 2015-12-10 株式会社日立ハイテクノロジーズ 生体分析用のデバイス、分析装置および分析方法
JPWO2016067937A1 (ja) * 2014-10-31 2017-11-09 株式会社ウインテック 熱曲げ偏光シートの包装体および射出偏光レンズ

Also Published As

Publication number Publication date
JP5732359B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
CN101490166B (zh) 聚丙烯组合物的应用
JP5732359B2 (ja) プロピレン系樹脂成形体
WO2019197582A1 (en) 3d printed article comprising polypropylene
JP5677916B2 (ja) プロピレン系樹脂成形体
CN1246131A (zh) 聚丙烯类双向位伸膜
WO1999014270A1 (fr) Composition de polypropylene
JP2005132992A (ja) プロピレン−エチレンランダムブロック共重合体及びその製造方法
KR102388031B1 (ko) 펠렛형 폴리프로필렌 수지 및 그 제조방법
JP4122264B2 (ja) ポリオレフィン系樹脂組成物及びその成形体
CN101842435B (zh) 树脂组合物及发泡成型体
JP2009528424A (ja) 高溶融強度ポリプロピレンを調製するためのプロセス
JP3210039B2 (ja) プロピレン共重合体組成物
JP2006188563A (ja) 柔軟性に優れたポリプロピレン系樹脂組成物
JP2002003661A (ja) ポリエチレン樹脂組成物、そのフィルム、多孔フィルム、成形体、および多孔フィルムの製造方法
CN107429015B (zh) 用于手柄应用的基于丙烯的聚合物组合物
EP3636710A1 (en) Foamable polypropylene composition
CN100392010C (zh) 聚烯烃树脂改性剂,聚烯烃树脂组合物和取向聚烯烃膜
JP2001213923A (ja) ポリオレフィン組成物およびその製造方法。
TW200528494A (en) Method of granulating soft polyolefin resin and granules thereof
US20230101204A1 (en) Polyamide composition
JP5010802B2 (ja) 高剛性ポリプロピレン系組成物及び製造法
JP2003183461A (ja) 導電性樹脂組成物及び成形品
BR112021003596B1 (pt) Composições de polipropileno espumável
EP2002955A2 (en) Process for producing molded object by injection molding
JP2021017496A (ja) 分岐状ポリプロピレン系重合体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5732359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250