JP2013059870A - Method for manufacturing modified woody material - Google Patents

Method for manufacturing modified woody material Download PDF

Info

Publication number
JP2013059870A
JP2013059870A JP2011198089A JP2011198089A JP2013059870A JP 2013059870 A JP2013059870 A JP 2013059870A JP 2011198089 A JP2011198089 A JP 2011198089A JP 2011198089 A JP2011198089 A JP 2011198089A JP 2013059870 A JP2013059870 A JP 2013059870A
Authority
JP
Japan
Prior art keywords
temperature
wood
heat treatment
modified
wood material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011198089A
Other languages
Japanese (ja)
Inventor
Kenichi Kadota
賢一 門田
Yuji Ichikawa
裕司 市川
Akira Inde
晃 印出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HILDEBRAND KK
Sumitomo Forestry Co Ltd
Original Assignee
HILDEBRAND KK
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HILDEBRAND KK, Sumitomo Forestry Co Ltd filed Critical HILDEBRAND KK
Priority to JP2011198089A priority Critical patent/JP2013059870A/en
Publication of JP2013059870A publication Critical patent/JP2013059870A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a modified woody material, which can manufacture a modified woody material having high dimensional accuracy and excellent in dimensional stability efficiently in a good yield.SOLUTION: The method for manufacturing a modified woody material includes a heating treatment where a woody material 1 obtained by combining components, such as veneer, with each other is subjected to a heat treatment with a high temperature of 180°C or higher. The woody material is such as a laminated veneer lumber (LVL), plywood, or laminated lumber.

Description

本発明は、改質木質材の製造方法に関する。   The present invention relates to a method for producing a modified wood material.

木材を改質する方法として、含水率50〜200%程度の木材を、通常の強制乾燥に加え、200℃前後の高温で一定時間熱処理することにより、高い寸法安定性を得ることが可能なことが知られている(特許文献1参照)。しかし、熱処理時の木材収縮のバラツキが大きく、寸法精度の高い木材を得るためには、処理後に再度研削が必要であり、製造工程で歩留りの大幅な低下を招く。また、高温での長時間の熱処理によってヘミセルロースの分解が進み、強度の低下が起きる。   As a method of modifying wood, high dimensional stability can be obtained by heat treating wood with a moisture content of about 50 to 200% at a high temperature around 200 ° C. for a certain period of time in addition to normal forced drying. Is known (see Patent Document 1). However, in order to obtain wood with high dimensional accuracy due to large variations in wood shrinkage during heat treatment, grinding is necessary again after the treatment, resulting in a significant reduction in yield in the manufacturing process. Moreover, the decomposition of hemicellulose progresses due to long-time heat treatment at a high temperature, resulting in a decrease in strength.

斯かる問題が生じにくい熱処理の方法としては、特許文献2には、高温飽和水蒸気を用いた木材の改質処理方法が記載され、特許文献3には、熱盤を用いて圧縮固定した状態の木材に高圧水蒸気を供給する木材の熱処理方法が記載されている。しかし、水蒸気での処理では熱回収効率が低く、熱盤を用いる方法では、熱盤に木材からの樹脂成分が付着し易いなどの問題がある。   As a heat treatment method in which such a problem is unlikely to occur, Patent Document 2 describes a method for modifying wood using high-temperature saturated steam, and Patent Document 3 describes a state of being compressed and fixed using a hot platen. A wood heat treatment method for supplying high pressure steam to wood is described. However, the heat recovery efficiency is low in the treatment with steam, and the method using the hot platen has a problem that the resin component from the wood easily adheres to the hot platen.

また、木材の寸法安定性を高めるために薬剤を用いる方法も提案されている(例えば、特許文献4,5参照)。しかし、薬剤を用いる方法は、塗布だけでは効果が限定的であり、含浸処理する場合においても、含浸ムラが生じることは避けられない上、十分な効果を得るためには、相当量の含浸が必要となりコスト高となる恐れがある。   In addition, a method using a chemical for improving the dimensional stability of wood has been proposed (see, for example, Patent Documents 4 and 5). However, the method using a chemical has a limited effect only by coating, and even in the case of impregnation treatment, uneven impregnation is unavoidable, and a considerable amount of impregnation is necessary to obtain a sufficient effect. This is necessary and may increase costs.

また、特許文献6には、高温下で所定時間加熱処理して得られるサーモウッド(熱処理木材)を複数枚貼り合わせて集成材とすることが記載されている。即ち、特許文献6では、集成材の個々の要素である製材品の段階で高温処理をしている。そのため、熱処理した個々の要素に反りや変形が生じ易く、それらを貼り合わせる前に、そのそれぞれに研削処理を施す必要がある等、集成材を効率良く生産することができない。   Patent Document 6 describes that a plurality of thermowoods (heat treated wood) obtained by heat treatment for a predetermined time at a high temperature are bonded together to form a laminated material. That is, in Patent Document 6, high-temperature treatment is performed at the stage of a lumber product that is an individual element of the laminated material. Therefore, the heat-treated individual elements are likely to be warped and deformed, and it is necessary to perform a grinding process on each of them before they are bonded together.

特表平9−502508号公報Japanese National Patent Publication No. 9-502508 特開2010−269593号公報JP 2010-269593 A 公開2004−345175号公報Publication 2004-345175 特開2005−199638号公報Japanese Patent Laid-Open No. 2005-199638 特開2004−114501号公報JP 2004-114501 A 特開2005−88228号公報JP 2005-88228 A

従って、本発明の目的は、寸法精度が高く、寸法安定性にも優れた改質木質材を歩留り良く効率的に製造することのできる改質木質材の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a modified wood material that can efficiently produce a modified wood material having high dimensional accuracy and excellent dimensional stability with a high yield.

本発明は、構成要素どうしを結合して得た木質材を180℃以上の高温で加熱処理することを特徴とする、改質木質材の製造方法を提供することにより、上記目的を達成したものである。   The present invention achieves the above object by providing a method for producing a modified wood material, characterized in that the wood material obtained by joining the constituent elements is heat-treated at a high temperature of 180 ° C. or higher. It is.

本発明の改質木質材の製造方法によれば、寸法精度が高く、寸法安定性にも優れた改質木質材を歩留り良く効率的に製造することができる。   According to the method for producing a modified wood material of the present invention, a modified wood material having high dimensional accuracy and excellent dimensional stability can be efficiently produced with a high yield.

図1は、本発明における木質材の一例であるLVL(単板積層材)を示す斜視図である。FIG. 1 is a perspective view showing an LVL (single plate laminate) which is an example of a wood material in the present invention. 図2は、本発明における木質材の他の一例であるエンドグレインパネルを示す斜視図である。FIG. 2 is a perspective view showing an end grain panel which is another example of the wood material in the present invention. 図3は、高温加熱処理を行う際の温度制御の一例を示すグラフである。FIG. 3 is a graph showing an example of temperature control when performing high-temperature heat treatment. 図4は、エンドグレインパネルの製造方法の一例を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining an example of a method of manufacturing an end grain panel.

以下、本発明をその好ましい実施形態に基づいて詳細に説明する。
本発明においては、構成要素どうしを結合して得た木質材に対して高温による加熱処理(以下、高温加熱処理ともいう)を行う。
本発明における木質材としては、(1)LVL、(2)合板、(3)集成材、(4)パーティクルボード、(5)ファイバーボード、(6)OSB、(7)OSL(Oriented Strand Lumber)、(8)LSL(Laminated Strand Lumber)等が挙げられる。木質材は、構成要素どうしを結合して得られるもので、製材品、無垢材は含まれない。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
In the present invention, heat treatment at high temperature (hereinafter, also referred to as high temperature heat treatment) is performed on the wood material obtained by joining the constituent elements.
As the wood material in the present invention, (1) LVL, (2) plywood, (3) laminated wood, (4) particle board, (5) fiber board, (6) OSB, (7) OSL (Oriented Strand Number) (8) LSL (Laminated Strand Number) and the like. The wood is obtained by combining the components, and does not include lumber or solid wood.

(1)LVL
LVL(Laminated Veneer Lumber,単板積層材)は、ロータリーレースやスライサーなどにより木材を切削して得た単板(veneer)を、繊維方向を平行にして複数枚重ね、それらを熱圧接着して得られる木質材である。LVLは、軸材として用いる改質木質材を得る観点等から、図1に示すLVL(単板積層材)1のように、一方向(X方向、繊維配向方向)に長い形状を有していることが好ましい。軸材として用いる改質木質材は、例えば、木造住宅等における、柱、梁、桁、間柱、土台、根太、棟木、垂木、母屋、小屋束筋交等として用いられる。
(1) LVL
LVL (Laminated Veneer Lamber) is a laminate of veneers obtained by cutting wood with a rotary lace or slicer, etc., with the fiber directions parallel to each other, and hot-pressure bonding them. It is a wood material obtained. LVL has a long shape in one direction (X direction, fiber orientation direction) like LVL (single plate laminated material) 1 shown in FIG. 1 from the viewpoint of obtaining a modified wood material used as a shaft material. Preferably it is. The modified wood material used as the shaft material is used as, for example, a pillar, a beam, a girder, a stud, a base, a joist, a purlin, a rafter, a purlin, a shed bundle, etc. in a wooden house or the like.

LVLは、厚み方向の総ての層の単板の繊維の配向方向が揃っていることが好ましいが、厚み方向の一部(例えば、表裏面それぞれから2番目の層)に、繊維の配向方向が他の層と交差する層を有していても良い。但し、厚み方向の中央部に、繊維方向を平行にして積層された複数の単板からなるコア部を有することが好ましく、該コア部を構成する単板の積層数は、LVLの単板の全積層数の半分以上であることが好ましい。LVL全体の単板の積層数は、例えば、7〜32層とすることができ、12〜22層であることが好ましい。
LVLの単板を得る木材の樹種としては、従来、LVLの製造に用いられている各種のものを特に制限なく用いることができ、例えば、杉、檜、カラマツ等の国産材の他、ラジアータパイン、ロシアカラマツ、ダグラスファー等の外国産材が挙げられる。
Although it is preferable that the orientation direction of the single plate fiber of all the layers in the thickness direction is aligned, the LVL has a fiber orientation direction in a part of the thickness direction (for example, the second layer from each of the front and back surfaces). May have a layer intersecting with another layer. However, it is preferable to have a core portion composed of a plurality of single plates laminated in parallel with the fiber direction at the center in the thickness direction, and the number of single plates constituting the core portion is the number of single plates of LVL. It is preferable that it is half or more of the total number of laminated layers. The number of laminated single plates of the entire LVL can be, for example, 7 to 32 layers, and preferably 12 to 22 layers.
As the wood species for obtaining the LVL veneer, various kinds of trees conventionally used for the production of LVL can be used without particular limitation, for example, domestic timber such as cedar, firewood, larch, and radiata pine. And foreign materials such as Russian larch and Douglas fir.

また、LVLの表裏面を形成する単板は、単板の木表と木裏のうち木表側をLVLの表裏面に配することが好ましい。単板をロータリーレース等で、かつらむきして製造する場合、単板を平面状に拡げる際に木裏側には細かい割れが生じやすいのに対して、木表側には、そのような割れが少ないので、木表側をLVLの表裏面に配することにより、経年劣化による表面割れを減少させることができる。   Moreover, it is preferable that the single board which forms the front and back of LVL arrange | positions the front and back of the LVL on the front and back of the LVL. When manufacturing a veneer with a rotary lace, etc., when the veneer is spread out, fine cracks are likely to occur on the back of the wood when the veneer is expanded flat, whereas there are few such cracks on the front of the wood. Therefore, surface cracks due to aging can be reduced by arranging the front and back surfaces of the tree on the front and back surfaces of the LVL.

(2)合板
合板は、ロータリーレースやスライサーなどにより木材を切削して得た単板を、繊維方向が互い違いとなるように複数枚重ねて熱圧接着して得られる木質材である。
(2) Plywood A plywood is a woody material obtained by stacking a plurality of single plates obtained by cutting wood with a rotary lace, a slicer, or the like, and stacking them with each other so that the fiber directions are alternated.

(3)集成材
集成材は、ひき板又は小角材などを、繊維方向を互いに平行にして、長さ、幅及び厚さ方向に集成接着してなる狭義の集成材の他、ひき板又は小角材などを、直交する2方向(長さ及び幅の2方向等)に集成接着したものも含まれる。但し、本発明における集成材には、LVL及び合板は含まれない。
(3) Glued Glue Glue is not limited to Glue in a narrow sense, which is made by laminating and bonding a long plate, a small square, etc. in the length, width and thickness directions with the fiber directions parallel to each other. Also included is a material in which square bars or the like are assembled and bonded in two orthogonal directions (two directions of length and width, etc.). However, the laminated material in the present invention does not include LVL and plywood.

集成材には、図2に示すように、ひき板や小角材から得たブロック状の小片21を、それぞれの両木口面21a,21bがパネルの上下面2a,2bを形成するように集成接着してなるエンドグレインパネル2も含まれる。
エンドグレインパネルは、低比重材からなることが好ましい。即ち、エンドグレインパネルは、その構成要素である小片が、低比重の樹種から得られた低比重材からなることが好ましい。エンドグレインパネルを低比重材の小片から構成すると、後の高温加熱処理の際に、ブロック状の小片どうし間に隙間が生じにくくなる。そのため、小片間の密着度の高い断熱性に優れた改質エンドグレインパネルを得ることができる。
低比重材の原木の樹種としては、ファルカタ、バルサ、キリ、スギ等が挙げられるが、特にバルサであることが好ましい。熱改質後のエンドグレインパネルの比重は、0.08〜0.25g/cm3、特に0.10〜0.20g/cm3であることが好ましい。改質エンドグレインパネルは、例えば、断熱性能や軽量性を活かして、家屋や船舶等における断熱材や内装材等として用いられる。
As shown in FIG. 2, the laminated material is a block-like piece 21 obtained from a saw board or a small square piece, and the laminated ends 21a and 21b form the upper and lower surfaces 2a and 2b of the panel. An end grain panel 2 is also included.
The end grain panel is preferably made of a low specific gravity material. That is, in the end grain panel, it is preferable that a small piece as a constituent element is made of a low specific gravity material obtained from a low specific gravity tree species. If the end grain panel is composed of small pieces of low specific gravity material, it is difficult for gaps to be generated between the block-shaped small pieces during the subsequent high-temperature heat treatment. Therefore, it is possible to obtain a modified end grain panel having a high degree of adhesion between small pieces and excellent in heat insulation.
Examples of the tree species of low specific gravity raw wood include Falkata, Balsa, Kiri, Sugi, etc., with Balsa being particularly preferred. The specific gravity of the end grain panel after thermal reforming is preferably 0.08 to 0.25 g / cm 3 , particularly preferably 0.10 to 0.20 g / cm 3 . The modified end grain panel is used, for example, as a heat insulating material or an interior material in a house, a ship or the like by taking advantage of heat insulating performance and light weight.

(4)パーティクルボード
パーティクルボードは、木材の切削や破砕等により得た小片(エレメント)を接着剤と共に混合してマット状としたものを熱圧締して得られる木質ボードである。
(5)ファイバーボード(繊維板)
ファイバーボードは、木材の蒸射・解繊等により得た木材繊維(エレメント)を接着剤と混合してマット状としたものを熱圧締して得られる木質ボードである。ファイバーボードとしては、MDF(中比重繊維板)、やハードボード(HB)、インシュレーションボードが挙げられる。
(6)OSB
OSB(Oriented Strand Board,配向性ストランドボード)は、薄い削片状にした原料のエレメントを配向させて積層、接着したものである。エレメントは、パーティクルボードに用いられるものより面積が大きく薄い形状をしており木材の異方性をより多く残している。
(4) Particle board The particle board is a wood board obtained by hot pressing a piece (element) obtained by cutting or crushing wood with an adhesive to form a mat.
(5) Fiber board
The fiber board is a wood board obtained by heat-pressing a mat-like material obtained by mixing wood fibers (elements) obtained by evaporating and defibrating wood with an adhesive. Examples of the fiber board include MDF (medium specific gravity fiber board), hard board (HB), and insulation board.
(6) OSB
OSB (Oriented Strand Board, oriented strand board) is obtained by orienting, laminating and adhering elements of a thin piece of raw material. The element has a larger area and thinner shape than that used for particleboard, leaving more wood anisotropy.

本発明の好ましい実施態様においては、上述した各木質材を、それぞれに記載した構成要素どうしを結合させて製造する。木質材の製造方法としては、木質材の種類に応じてその木質材を製造する従来公知の方法を特に制限なく用い得るが、構成要素どうしの結合に用いる接着剤としては、後述する高温加熱処理の際に、接着剤が熱劣化する観点から、メラミン樹脂接着剤、フェノール樹脂接着剤等の熱硬化型の接着剤を用いることが好ましく、特に、フェノール樹脂接着剤を用いることがより好ましい。   In a preferred embodiment of the present invention, each of the above-mentioned wood materials is manufactured by combining the constituent elements described above. As a method for producing a wood material, a conventionally known method for producing the wood material according to the type of the wood material can be used without any particular limitation. However, as an adhesive used for bonding components, a high-temperature heat treatment described later can be used. In this case, from the viewpoint of thermal deterioration of the adhesive, it is preferable to use a thermosetting adhesive such as a melamine resin adhesive or a phenol resin adhesive, and it is more preferable to use a phenol resin adhesive.

また、木質材の構成要素は、他の構成要素と接合する前に、含水率が12%以下となるまで乾燥させておくことが好ましい。木質材に対して加熱処理を施す前の構成要素単独の段階で乾燥させておくことにより、原木から改質木質材を得るまでのトータルの処理時間を短縮させることができ、また、原木から改質木質材を得るまでのトータルでの歩留まりを向上させたりすることができる。   Moreover, it is preferable to dry the constituent elements of the wood material until the moisture content becomes 12% or less before joining with the other constituent elements. By drying the wood material at the stage of the component alone before the heat treatment, the total processing time to obtain the modified wood material from the raw wood can be shortened. It is possible to improve the total yield until the quality wood material is obtained.

次いで、得られた木質材に対して高温による加熱処理を行う。
高温加熱処理は、180℃以上の高温下に木質材を所定時間置くことにより行う。高温加熱処理の温度は250℃以下であることが好ましい。木質材を、180〜250℃の範囲(より好ましくは180〜230℃の範囲)の高温で処理する時間は、60分以上であることが好ましく、より好ましくは1〜5時間であり、更に好ましくは2〜4時間である。
高温加熱処理により木質材は、吸湿性が低下し、吸湿や吸水による寸法の変化や腐朽が生じにくいものに改質される。
Next, heat treatment at a high temperature is performed on the obtained wood material.
The high temperature heat treatment is performed by placing the wood material at a high temperature of 180 ° C. or higher for a predetermined time. The temperature of the high temperature heat treatment is preferably 250 ° C. or lower. The time for treating the wood material at a high temperature in the range of 180 to 250 ° C. (more preferably in the range of 180 to 230 ° C.) is preferably 60 minutes or more, more preferably 1 to 5 hours, and still more preferably. Is 2 to 4 hours.
Due to the high-temperature heat treatment, the wood material is modified so that the hygroscopicity is reduced and the dimensional change or decay due to moisture absorption or water absorption hardly occurs.

この高温加熱処理には、例えば、木質材を内部に収容可能な加熱室、該加熱室内の空気を180℃以上の高温に加温可能な加熱手段、該加熱室内の温度を空気の入れ換え等により低下させる降温手段を備えた加熱装置が好ましく用いられる。加熱室は、内部に複数本の木質材を、相互間に隙間を設けて多数配置できるものが好ましい。また、木質材は、その周囲を空気が流通可能な状態に支持して処理することが好ましい。加熱室は、内部に温度ムラが生じないように内部の空気を攪拌する手段を備えたものが好ましい。   This high-temperature heat treatment includes, for example, a heating chamber that can contain a wood material, heating means that can heat the air in the heating chamber to a high temperature of 180 ° C. or higher, and the temperature in the heating chamber is changed by air exchange. A heating device provided with a temperature lowering means for lowering is preferably used. The heating chamber is preferably one in which a plurality of wood materials can be arranged in the interior with a gap between them. Moreover, it is preferable that the wood material is processed while supporting the surroundings so that air can flow. The heating chamber is preferably provided with a means for stirring the air inside so as not to cause temperature unevenness inside.

加熱手段としては、電熱ヒータや、蒸気等の熱媒が内部を流通する加熱管等を用いることができる。降温手段としては、例えば、加熱室内の熱を外部に逃がす熱交換器を設けることができる。また、加熱装置は、木質材を、大気圧下で加熱可能なものが好ましい。   As the heating means, an electric heater, a heating tube through which a heat medium such as steam circulates, or the like can be used. As the temperature lowering means, for example, a heat exchanger that releases the heat in the heating chamber to the outside can be provided. Further, the heating device is preferably capable of heating the wood material under atmospheric pressure.

図3は、高温加熱処理を行う際の温度制御の一例を示すグラフである。
図3のグラフに示されるように、高温加熱処理は、好ましくは、昇温工程、高温維持工程及び降温工程を経て行う。
昇温工程では、木質材を収容した加熱室内の温度を、蒸気を併用した加熱により100℃付近まで一気に上昇させ、次いで、蒸気を併用しない加熱により、加熱室内の温度を、高温維持工程の180℃以上の設定温度(図示例では215℃)まで徐々に上昇させる。
そして、高温維持工程では、加熱室内の温度を前記の設定温度(図示例では215℃)に所定時間維持し、降温工程では、熱交換器での冷却や無酸素の気体を導入することが好ましい。
FIG. 3 is a graph showing an example of temperature control when performing high-temperature heat treatment.
As shown in the graph of FIG. 3, the high temperature heat treatment is preferably performed through a temperature raising step, a high temperature maintaining step, and a temperature lowering step.
In the temperature raising step, the temperature in the heating chamber containing the wood material is rapidly increased to around 100 ° C. by heating combined with steam, and then the temperature in the heating chamber is increased to 180 ° in the high temperature maintaining step by heating without using steam. The temperature is gradually raised to a set temperature of ℃ or higher (215 ° C in the illustrated example).
In the high temperature maintaining process, it is preferable to maintain the temperature in the heating chamber at the set temperature (215 ° C. in the illustrated example) for a predetermined time, and in the temperature decreasing process, cooling in a heat exchanger or introducing oxygen-free gas. .

高温加熱処理は、昇温工程において加熱室内の温度が180℃以上となった時点から、降温工程において温度が180℃未満となるまで継続される。
高温加熱処理は、190〜240℃の範囲の温度を、1〜5時間維持して行うことがより好ましく、200〜230℃の範囲の温度を2〜4時間維持して行うことが更に好ましい。また、高温加熱処理は、木質材の材中心部の温度が180℃以上に達するまで行うことが好ましく、材中心部の温度が190℃以上に達するまで行うことがより好ましい。また、高温加熱処理は、材中心部の温度が、高温維持工程の設定温度に達するまで行うことが更に好ましい。図3のグラフ中、「室温」は、加熱室内の温度、「材温」は、木質材の材中心部の温度である。材中心部の温度は、木質材が軸材の場合、長手方向中央部における断面の中心部の温度である。
The high temperature heat treatment is continued from the time when the temperature in the heating chamber becomes 180 ° C. or higher in the temperature raising step until the temperature becomes lower than 180 ° C. in the temperature lowering step.
The high-temperature heat treatment is more preferably performed by maintaining a temperature in the range of 190 to 240 ° C. for 1 to 5 hours, and more preferably by maintaining a temperature in the range of 200 to 230 ° C. for 2 to 4 hours. The high temperature heat treatment is preferably performed until the temperature at the center of the wood material reaches 180 ° C. or higher, and more preferably, the temperature at the center of the wood reaches 190 ° C. or higher. Further, it is more preferable that the high-temperature heat treatment is performed until the temperature of the material center reaches the set temperature of the high-temperature maintenance step. In the graph of FIG. 3, “room temperature” is the temperature in the heating chamber, and “material temperature” is the temperature at the center of the wood material. The temperature at the center of the material is the temperature at the center of the cross section at the center in the longitudinal direction when the wooden material is a shaft.

このような高温加熱処理により木質材が改質されて改質木質材が得られる。
上述した加熱装置の構成や温度の変化のさせ方は、あくまでも一例であり、温度の昇温速度、高温維持工程の温度や時間、降温工程の降温速度等は、適宜に変更して実施することができる。
The wood material is modified by such high-temperature heat treatment to obtain a modified wood material.
The above-described configuration of the heating device and how to change the temperature are merely examples, and the temperature increase rate, the temperature and time of the high temperature maintenance process, the temperature decrease rate of the temperature decrease process, etc. should be changed as appropriate. Can do.

高温加熱処理後の改質木質材は、必要に応じて、プレーナー加工、面取り加工、穴あけ加工、溝加工、本実加工等の後処理を行う。
また、改質木質材には、意匠性の向上の観点から、樹脂フィルムや化粧紙等の化粧用のシートを貼着しても良く、意匠性の向上や耐水性や耐候性の向上の観点から有色又は無色の塗装を施しても良い。
The modified wood material after the high-temperature heat treatment is subjected to post-processing such as planar processing, chamfering processing, drilling processing, grooving processing, and actual processing as necessary.
In addition, from the viewpoint of improving the designability, a modified sheet such as a resin film or decorative paper may be attached to the modified wooden material. From the viewpoint of improving the designability and improving water resistance and weather resistance. To colored or colorless coating.

本発明の改質木質材の製造方法で製造された改質木質材は、多様な用途に用いることができ、その用途に特に制限はないが、吸湿性が低く、耐腐朽性に優れる点から、建物の外装材、ウッドデッキ材、戸外に設置する机、椅子、花台等の構成部材、外構フェンスや花壇の柵、植物のプランターの構成部材、子供の遊具の構成部材等として用いたり、吸湿性が低く、寸法安定性に優れる点から、木造住宅等における前述した各種の軸材、屋根、天井、壁、床等の下地材として用いる面材、住宅の内装、外装材、家具の構成部材等として用いたり、吸湿性が低く、断熱性の安定性に優れる点から、断熱材、船舶の内部等の、湿気の多い場所に用いられる断熱材等として用いたりすることが好ましい。また、手すり等の強度を必要とする部材として用いることも好ましい。   The modified wood material produced by the method for producing a modified wood material of the present invention can be used for various applications, and there is no particular limitation on its use, but it has low hygroscopicity and excellent corrosion resistance. , Building exterior materials, wood deck materials, outdoor components such as desks, chairs, flower beds, exterior fences and flower bed fences, plant planter components, children's playground equipment components, etc. Because of its low dimensional stability and excellent dimensional stability, the various shaft members mentioned above in wooden houses, etc., face materials used as base materials for roofs, ceilings, walls, floors, etc., house interiors, exterior materials, furniture components It is preferably used as a heat insulating material, a heat insulating material used in a place with high humidity such as the inside of a ship, etc. from the viewpoint of low hygroscopicity and excellent thermal stability. It is also preferable to use it as a member that requires strength such as a handrail.

本発明の方法で製造した改質木質材どうしを接合して大断面化し、それを梁材、桁材等として用いることもできる。例えば、厚みが25mm以上、幅が50mm以上、長さ200mm以上の改質LVLを複数本製造した後、その改質LVLを厚み方向に複数本積層して、大断面の軸材等として用いることもできる。改質LVLどうし間の接合には、LVLの製造に用いた接着剤と同じ接着剤を用いても良いし、異なる接着剤を用いても良い。また、改質LVLを重ねたものを熱圧締して接合させることも好ましい。   The modified wood materials manufactured by the method of the present invention can be joined to have a large cross section, which can be used as a beam material, a girder material or the like. For example, after manufacturing a plurality of modified LVLs having a thickness of 25 mm or more, a width of 50 mm or more, and a length of 200 mm or more, a plurality of the modified LVLs are laminated in the thickness direction, and used as a shaft member having a large cross section. You can also. For bonding between the modified LVLs, the same adhesive as that used for manufacturing the LVL may be used, or a different adhesive may be used. In addition, it is also preferable that the stacked layers of the modified LVL are joined by hot pressing.

次に、実施例及び比較例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。以下の説明において、特に断らない限り、「部」は「質量部」、「%」は「質量%」を意味する。   Next, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to the following examples. In the following description, “part” means “part by mass” and “%” means “% by mass” unless otherwise specified.

1.LVL及び改質LVLの製造
ロータリーレースでラジアータパインから約3mm厚の生単板を得、それを180℃のロールドライヤーに連続的に導入して乾燥させ、含水率が約6%の単板を得た。得られた単板を、層間にフェノール樹脂系接着剤を介在させて複数枚重ね、それを、熱盤を220℃に加熱したホットプレスで熱圧締して厚み38mmのLVLを得た。そして、そのLVLを切断して、厚み38mm、幅(板目方向の寸法)75mm、長さ(柾目方向の寸法)75mmの寸法の試験片を多数製造した。LVLを構成する単板は、総て繊維の配向方向を平行とした。
1. Manufacture of LVL and modified LVL A raw veneer with a thickness of about 3 mm was obtained from Radiata Pine in a rotary race, and it was continuously introduced into a 180 ° C. roll dryer and dried to obtain a veneer with a moisture content of about 6%. Obtained. A plurality of the obtained single plates were stacked with a phenol resin adhesive interposed between the layers, and they were hot-pressed with a hot press heated at 220 ° C. to obtain an LVL with a thickness of 38 mm. Then, the LVL was cut to produce a large number of test pieces having a thickness of 38 mm, a width (dimension in the plate direction) of 75 mm, and a length (dimension in the mesh direction) of 75 mm. All the single plates constituting the LVL were parallel in the fiber orientation direction.

製造した試験片は、その一部の試験片を、高温加熱処理を行わない未処理の試験片として残し、残りの試験片については、加熱室に収容し、加熱室内の温度を図3に示すグラフのように変化させて高温加熱処理を行った。
高温加熱処理の高温維持工程は、材温が、高温維持工程の設定温度である215℃に達した時点を目安に終了させた。室温を215℃に維持した時間(高温維持工程の時間)は、180分であり、室温が180℃以上であった時間は200分であった。
Some of the manufactured test pieces are left as untreated test pieces that are not subjected to high-temperature heat treatment, and the remaining test pieces are accommodated in a heating chamber, and the temperature in the heating chamber is shown in FIG. High-temperature heat treatment was performed while changing as shown in the graph.
The high temperature maintenance process of the high temperature heat treatment was terminated with the time when the material temperature reached 215 ° C., which is the set temperature of the high temperature maintenance process. The time during which the room temperature was maintained at 215 ° C. (the time for the high temperature maintaining step) was 180 minutes, and the time during which the room temperature was 180 ° C. or higher was 200 minutes.

2.吸湿吸水性、寸法安定性の評価
未処理の試験片と高温加熱処理を行った試験片を、それぞれ8個用意し、それらを、105℃で24時間乾燥して絶乾状態にした後、70℃の温水に1時間浸漬し、次いで、温度20℃、相対湿度60%の恒温恒湿室内に48時間放置して調湿した。
温水浸漬30分後、温水浸漬1時間後、4時間調湿後、24時間調湿後及び48時間調湿後の各時点において試験片の質量、厚み及び幅を測定し、各時点の吸水率、厚み膨潤率及び幅膨潤率を算出した。表1に、未処理の8つの試験片(比較例)の平均値と、高温加熱処理を行った8つの試験片(実施例)の平均値を示した。
2. Evaluation of moisture absorption and dimensional stability Eight untreated specimens and eight specimens subjected to high-temperature heat treatment were prepared and dried at 105 ° C. for 24 hours to be absolutely dry. It was immersed in warm water at 0 ° C. for 1 hour, and then left in a constant temperature and humidity room at a temperature of 20 ° C. and a relative humidity of 60% for 48 hours to adjust the humidity.
After 30 minutes of warm water immersion, 1 hour of warm water immersion, 4 hours of humidity control, 24 hours of humidity control, and 48 hours of humidity control at each time point, the mass, thickness and width of the test piece are measured, and the water absorption rate at each time point. The thickness swelling rate and the width swelling rate were calculated. Table 1 shows the average value of eight untreated specimens (comparative examples) and the average value of eight specimens (examples) subjected to high-temperature heat treatment.

吸水率、厚み膨潤率及び幅膨潤率は、下記式に従って算出した。
吸水率(%)=(A−B)/B ×100
(但し、A:各時点の試験片の質量、B:絶乾状態の試験片の質量)
厚み膨潤率(%)=(C−D)/D ×100
(但し、C:各時点の試験片の厚み、D:絶乾状態の試験片の厚み)
幅膨潤率(%)=(E−F)/F ×100
(但し、E:各時点の試験片の幅、F:絶乾状態の試験片の幅)
The water absorption rate, thickness swelling rate, and width swelling rate were calculated according to the following formula.
Water absorption rate (%) = (A−B) / B × 100
(However, A: Mass of the test piece at each time point, B: Mass of the test piece in the absolutely dry state)
Thickness swelling rate (%) = (C−D) / D × 100
(However, C: the thickness of the test piece at each time point, D: the thickness of the test piece in an absolutely dry state)
Width swelling rate (%) = (E−F) / F × 100
(However, E: width of the test piece at each time point, F: width of the test piece in a completely dry state)

Figure 2013059870
Figure 2013059870

3.強度(曲げヤング係数、曲げ強さ)の評価
上記の「1.LVL及び改質LVLの製造」に記載した方法と同様にして、ラジアータパインから厚み38mmのLVLを得た。但し、LVLの寸法は、厚み(柾目方向)38mm、幅(板目方向の寸法)90mm、長さ(繊維方向の寸法)2000mmとし、同一寸法のLVLを12本以上製造した。
製造した12本のLVLは、そのそれぞれを、長さ方向の中央部で切断し、その半分を、高温加熱処理を行わない未処理の試験片とし、残りの半分を、高温加熱処理を行う試験片とした。高温加熱処理を行う試験片については、加熱室内の温度を図3に示すグラフのように変化させて、上記と同様の高温加熱処理を行った。
3. Evaluation of Strength (Bending Young's Modulus, Bending Strength) LVL having a thickness of 38 mm was obtained from Radiata Pine in the same manner as described in “1. Production of LVL and Modified LVL” above. However, the dimensions of the LVL were 38 mm in thickness (mesh direction), 90 mm in width (dimension in the plate direction), and 2000 mm in length (dimension in the fiber direction), and 12 or more LVLs having the same dimensions were manufactured.
Each of the 12 LVLs produced was cut at the center in the length direction, half of the LVL was an untreated test piece not subjected to high-temperature heat treatment, and the other half was subjected to high-temperature heat treatment. It was a piece. About the test piece which performs high temperature heat processing, the temperature in a heating chamber was changed like the graph shown in FIG. 3, and the high temperature heat processing similar to the above was performed.

このようにして得た12本の未処理の試験片(表2中、未処理1−12と表記)と高温加熱処理を行った12本の試験片(表2中、熱処理1−12と表記)について、木造住宅等の構造材、特に主要構造材として用いることを想定して、曲げヤング係数(GPa)及び曲げ強さ(MPa)を計測した。それらの結果を表2に示した。
曲げヤング係数及び曲げ強さの測定方法は、構造用単板積層材に関して日本農林規格(JAS)に規定される方法に基づいて行った。また、物性比較は、使用される頻度の高い縦使い方向で行った。
なお、曲げヤング係数(GPa)及び曲げ強さ(MPa)は、試験片を、温度20℃、相対湿度60%の恒温恒湿室内に2週間放置し、含水率がほぼ平衡に達してから測定した。表2に、このようにして測定した試験片の平衡含水率を併せて示した。
含水率は下記式に従って算出した。
含水率(%)=W1−W2/W2 ×100
(但し、W1:乾燥前の試験片の質量、W2:絶乾状態の試験片の質量)
The 12 untreated specimens thus obtained (shown as untreated 1-12 in Table 2) and the 12 specimens subjected to high-temperature heat treatment (designated as heat treated 1-12 in Table 2). ), Bending Young's modulus (GPa) and bending strength (MPa) were measured on the assumption that it is used as a structural material such as a wooden house, particularly as a main structural material. The results are shown in Table 2.
The measuring method of bending Young's modulus and bending strength was performed based on the method prescribed | regulated to the Japanese agricultural and forestry standard (JAS) regarding the structural single board laminated material. The physical property comparison was performed in the direction of vertical use, which is frequently used.
The bending Young's modulus (GPa) and bending strength (MPa) were measured after the test piece was left in a constant temperature and humidity room at a temperature of 20 ° C. and a relative humidity of 60% for 2 weeks, and the moisture content reached almost equilibrium. did. Table 2 also shows the equilibrium water content of the test pieces thus measured.
The water content was calculated according to the following formula.
Moisture content (%) = W 1 −W 2 / W 2 × 100
(W 1 : mass of the test piece before drying, W 2 : mass of the test piece in an absolutely dry state)

Figure 2013059870
Figure 2013059870

4.エンドグレインパネル(以下、EGPという)及び改質EGPの製造
図4(a)に示すように、バルサ材からなる複数本の小角材20を、隣り合う小角材20間にメラミン樹脂系接着剤を介在させ横一列に配置し、これらを横方向から加圧して接着一体化させた。次いで、この複合材を、小角材20の木口面が位置する一端から所定の幅で順次切断して、図4(b)に示すように、ブロック状の小片21が複数繋がった棒状中間体22を複数本得た。そして、それらの棒状中間体22を、小片21の木口面21a,21bがパネルの上下面を形成するように向きを代えた後、図4(c)に示すように、その棒状中間体22の側面どうしを、メラミン樹脂系接着剤を介して接合させた。そして、得られたEGPの周囲を平面視矩形状となるように切断して、厚み35mm、幅920mm、長さ1830mmのEGPを得た。
そして、そのEGPを切断して、厚み35mm、幅150mm、長さ150mmの寸法の12個のEGP試験片を得た。
4). Production of End Grain Panel (hereinafter referred to as EGP) and Modified EGP As shown in FIG. 4 (a), a plurality of small square members 20 made of balsa material are bonded between adjacent small square members 20 with a melamine resin adhesive. They were interposed and arranged in a horizontal row, and these were pressed and integrated from the horizontal direction. Next, the composite material is sequentially cut at a predetermined width from one end where the wood end face of the small-angled member 20 is located, and as shown in FIG. 4B, a rod-like intermediate body 22 in which a plurality of block-like pieces 21 are connected. I got several. Then, after changing the direction of the rod-like intermediate bodies 22 so that the end surfaces 21a and 21b of the small pieces 21 form the upper and lower surfaces of the panel, as shown in FIG. The side surfaces were joined via a melamine resin adhesive. And the circumference | surroundings of obtained EGP were cut | disconnected so that it might become a planar view rectangular shape, and thickness 35mm, width 920mm, and length 1830mm EGP were obtained.
Then, the EGP was cut to obtain 12 EGP test pieces having a thickness of 35 mm, a width of 150 mm, and a length of 150 mm.

12個のEGP試験片は、そのうちの6個を、高温加熱処理を行わない未処理の試験片とし、残りの6個を、高温加熱処理を行う試験片とした。高温加熱処理を行う試験片については、加熱室内の温度を図3に示すグラフのように変化させて、上記と同様の高温加熱処理を行った。   Of the 12 EGP test pieces, six of them were untreated test pieces that were not subjected to high-temperature heat treatment, and the remaining six pieces were test pieces that were subjected to high-temperature heat treatment. About the test piece which performs high temperature heat processing, the temperature in a heating chamber was changed like the graph shown in FIG. 3, and the high temperature heat processing similar to the above was performed.

5.改質EGPの評価
このようにして得た6個の未処理の試験片と高温加熱処理を行った6個の試験片について、それらを、105℃で24時間乾燥して絶乾状態にした後、温度80℃、相対湿度90%の恒温恒湿器内に入れて、24時間吸湿させた。
絶乾状態と吸湿後の試験片について、質量、寸法等を計測して試験片の含水率及び比重を算出すると共に試験片の熱伝導率を測定し、表3に、未処理の6個の試験片(比較例)の平均値と、高温加熱処理を行った6個の試験片(実施例)の平均値を示した。
5. Evaluation of Modified EGP Six untreated test pieces obtained in this way and six test pieces subjected to high-temperature heat treatment were dried at 105 ° C. for 24 hours to be absolutely dry. Then, it was placed in a constant temperature and humidity chamber at a temperature of 80 ° C. and a relative humidity of 90%, and absorbed for 24 hours.
About the test piece after an absolutely dry state and moisture absorption, mass, a dimension, etc. are measured, the moisture content and specific gravity of a test piece are calculated, and the thermal conductivity of a test piece is measured. The average value of the test piece (comparative example) and the average value of six test pieces (examples) subjected to high-temperature heat treatment are shown.

熱伝導率は、京都電子工業(株)製の熱伝導率計(QTM−500)を用いて、ホットワイヤ法にて計測した。   The thermal conductivity was measured by a hot wire method using a thermal conductivity meter (QTM-500) manufactured by Kyoto Electronics Industry Co., Ltd.

Figure 2013059870
Figure 2013059870

表1中の実施例と比較例の結果の対比から、本発明で製造した改質木質材は、吸湿吸水性が低下し、吸湿吸水に対する寸法安定性が向上していることが判る。また、表2中の含水率の平均値を比較すると、未処理(比較例)の平均値が11.5%であるのに対して熱処理(実施例)の平均値は5.4%であり、本発明で製造した改質木質材は、温度20℃、相対湿度60%という通常の環境下でも、改質前に比して、吸湿しにくくなっていることが判る。また、表3中の吸湿後の含水率の値の比較から、本発明で製造した改質木質材は、温度80℃相対湿度90%という高温高湿度の過酷な環境でも、吸湿しにくくなっていることが判る。   From the comparison of the results of Examples and Comparative Examples in Table 1, it can be seen that the modified woody material produced in the present invention has reduced moisture absorption and water absorption and improved dimensional stability against moisture absorption. Moreover, when the average value of the moisture content in Table 2 is compared, the average value of the heat treatment (Example) is 5.4% while the average value of the untreated (Comparative Example) is 11.5%. It can be seen that the modified wood material produced in the present invention is less susceptible to moisture absorption than before the modification even under a normal environment of a temperature of 20 ° C. and a relative humidity of 60%. In addition, from the comparison of moisture content values after moisture absorption in Table 3, the modified wood material produced in the present invention is difficult to absorb moisture even in a severe environment of high temperature and high humidity of 80% relative humidity 90%. I know that.

また、本発明では、木質材の構成要素を結合して木質材とした後に高温加熱処理を行うため、製材品や無垢材に高温処理する場合に比べて、高温加熱処理のデメリットである木材の節目等が加熱により弱くなるという欠点が顕在化しにくく、強度に優れた改質木質材が得られる。
例えば、表2は、LVLの場合であるが、曲げヤング係数及び曲げ強さの平均値を比較したとき、曲げ強さは、高温加熱処理により65.48MPaから53.31MPaと低下しているが、曲げヤング係数(曲げ剛性)は、高温加熱処理により11.38GPaから12.81GPaへと向上している。日本農林規格(JAS)には、構造用単板積層材の等級が、曲げヤング係数と曲げ強さの観点から規定されているが、曲げ強さは、改質の前後を問わずに比較的容易に満たすことができる一方、曲げヤング係数は、基準を満たすことが難しい場合がある。本発明の方法で改質LVLを製造する場合、曲げ強さの低下を少しの低下に抑えつつ、曲げヤング係数を向上させることができるという効果は、構造材、特に主要構造材として用いる改質LVLを製造する観点から特に有用である。
In addition, in the present invention, since the high-temperature heat treatment is performed after combining the constituent elements of the wood material into the wood material, compared with the case of high-temperature treatment to lumber or solid wood, the demerit of the high-temperature heat treatment of wood The disadvantage that the knots and the like are weakened by heating is not easily revealed, and a modified wood material having excellent strength can be obtained.
For example, Table 2 shows the case of LVL, but when the average values of bending Young's modulus and bending strength are compared, the bending strength is reduced from 65.48 MPa to 53.31 MPa due to high-temperature heat treatment. The bending Young's modulus (flexural rigidity) is improved from 11.38 GPa to 12.81 GPa by high-temperature heat treatment. The Japanese Agricultural Standards (JAS) defines the grade of structural single-plate laminates in terms of bending Young's modulus and bending strength, but the bending strength is relatively high before and after modification. While it can be easily met, the bending Young's modulus can be difficult to meet criteria. When the modified LVL is produced by the method of the present invention, the effect of being able to improve the bending Young's modulus while suppressing the decrease in bending strength to a small degree is the modified material used as a structural material, particularly as a main structural material. This is particularly useful from the viewpoint of manufacturing LVL.

また、本発明においては、構成要素を結合して木質材とした後に高温加熱処理を行うため、高温加熱処理によってもネジレや反り等の変形が生じにくい。そのため、製材品や無垢材に高温加熱処理する場合に比べて、寸法精度の高い改質木質材が得られる。本発明においても、高温加熱処理の改質木質材に、後処理として、プレーナーやサンダーを掛けても良いが、無垢材に高温加熱処理した場合に比べると、その切削量を少量に抑えることができる。例えば、LVLの表裏面の単板の切削量は、該単板の質量の10%以下等に抑えることも容易である。
また、LVL等の木質材は、原木から製材品や無垢材を得る場合に比して、原木を有効利用できるため、構成要素の段階や後処理の段階でのプレーナーやサンダーによる無駄を低減可能なこととも相俟って、吸湿性が低く寸法安定性等に優れた改質木質材を歩留り良く効率的に製造することができる。
Further, in the present invention, since the high-temperature heat treatment is performed after the constituent elements are combined to form a wood material, deformation such as twisting and warping hardly occurs even by the high-temperature heat treatment. Therefore, a modified wood material with high dimensional accuracy can be obtained as compared with a case where a lumber product or a solid material is subjected to high-temperature heat treatment. In the present invention, the modified wood material subjected to the high-temperature heat treatment may be subjected to a planer or a sander as a post-treatment, but the amount of cutting can be suppressed to a small amount as compared with the case where the solid material is subjected to the high-temperature heat treatment. it can. For example, the cutting amount of the single plate on the front and back surfaces of the LVL can be easily suppressed to 10% or less of the mass of the single plate.
In addition, wood materials such as LVL can be used more effectively than raw wood, so it is possible to reduce the waste caused by the planer and sander at the component stage and after-treatment stage. In combination with this, it is possible to efficiently produce a modified wood material having low hygroscopicity and excellent dimensional stability and the like with a high yield.

また、単板、小片等の構成要素の段階で乾燥を行うことが、原木から最終製品までのトータルでの歩留まりを向上させることが好ましい。単板、小片等の体積比表面積が大きい状態で乾燥することにより、内部応力を取り去った状態で構成要素どうしを結合させることができ、製材品と比べて、高温加熱処理時の変形を少なくすることができる。これにより、熱処理工程での歩留ロスを小さくして、原木から最終製品までのトータルでの歩留まりを向上させることができる。   Moreover, it is preferable to improve the total yield from the raw wood to the final product by performing drying at the stage of the constituent elements such as a single plate and small pieces. By drying with a large volume specific surface area such as veneer and small pieces, it is possible to combine the components with the internal stress removed, reducing deformation during high-temperature heat treatment compared to lumber products. be able to. Thereby, the yield loss in the heat treatment process can be reduced, and the total yield from the raw wood to the final product can be improved.

また、表3に示すように、本発明で製造した改質木質材は、改質しない場合に比して、熱伝導率が低下していることが判る。これは、高温での加熱処理により、改質木質材が吸水及び吸湿性が低下したことによると考えられるが、高温加熱処理によって熱伝導率が低下しにくくなることは、本発明で製造した改質木質材を、断熱材として用いた場合、その断熱性能が長時間安定に維持されることを意味する。従って、本発明で製造される改質木質材は、断熱材として用いることも好ましく、特に湿気の多い場所に用いられる断熱材としても用いることが好ましい。特に前述した低比重材から形成したEGPは、断熱性能が安定に維持されると共に軽量であることから、船舶の断熱材、例えば船舶の内部の壁や床に配する断熱材等として好ましく用いられる。   Moreover, as shown in Table 3, it can be seen that the modified wood material produced in the present invention has a lower thermal conductivity than the case where the modified wood material is not modified. This is considered to be due to the water absorption and hygroscopicity of the modified wood material being reduced by the heat treatment at high temperature. However, it is difficult to reduce the thermal conductivity by the high temperature heat treatment. When a woody material is used as a heat insulating material, it means that the heat insulating performance is stably maintained for a long time. Therefore, the modified wood material produced in the present invention is also preferably used as a heat insulating material, and particularly preferably used as a heat insulating material used in a humid place. In particular, the EGP formed from the low specific gravity material described above is preferably used as a heat insulating material for a ship, for example, a heat insulating material disposed on a wall or a floor inside a ship, because the heat insulating performance is stably maintained and the weight is light. .

1 LVL(木質材)
2 エンドグレインパネル(集成材、木質材)
21 ブロック状の小片(構成要素)
21a,21b 木口面
22 棒状中間体
1 LVL (wood)
2 End grain panel (glulam, wood)
21 Block-shaped pieces (components)
21a, 21b Kiguchi surface 22 Rod intermediate

Claims (5)

構成要素どうしを結合して得た木質材を180℃以上の高温で加熱処理することを特徴とする、改質木質材の製造方法。   A method for producing a modified wood material, comprising heat-treating a wood material obtained by combining constituent elements at a high temperature of 180 ° C or higher. 構成要素どうしを結合する前に、前記構成要素を、含水率が12%以下となるまで乾燥させる工程を具備する、請求項1記載の改質木質材の製造方法。   The method for producing a modified wood material according to claim 1, further comprising a step of drying the constituent elements until the moisture content becomes 12% or less before joining the constituent elements. 前記木質材がLVLであることを特徴とする請求項1又は2記載の改質木質材の製造方法。   The method for producing a modified wood material according to claim 1 or 2, wherein the wood material is LVL. 前記木質材が集成材であることを特徴とする請求項1又は2記載の改質木質材の製造方法。   The method for producing a modified wood material according to claim 1 or 2, wherein the wood material is a laminated material. 前記集成材が、低比重材からなるエンドグレインパネルであることを特徴とする請求項4記載の改質木質材の製造方法。   The method for producing a modified wood material according to claim 4, wherein the laminated material is an end grain panel made of a low specific gravity material.
JP2011198089A 2011-09-12 2011-09-12 Method for manufacturing modified woody material Pending JP2013059870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198089A JP2013059870A (en) 2011-09-12 2011-09-12 Method for manufacturing modified woody material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198089A JP2013059870A (en) 2011-09-12 2011-09-12 Method for manufacturing modified woody material

Publications (1)

Publication Number Publication Date
JP2013059870A true JP2013059870A (en) 2013-04-04

Family

ID=48185020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198089A Pending JP2013059870A (en) 2011-09-12 2011-09-12 Method for manufacturing modified woody material

Country Status (1)

Country Link
JP (1) JP2013059870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599064A (en) * 2015-12-31 2016-05-25 南京林业大学 Preparation method for steel wire mesh enhanced laminated veneer lumber based on target mechanical property
CN105946085A (en) * 2016-06-08 2016-09-21 王宾 Processing technology of moisture-proof wood board door

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206410U (en) * 1985-06-14 1986-12-26
JPH0445705U (en) * 1990-08-20 1992-04-17
JPH09502508A (en) * 1993-05-12 1997-03-11 ヴァルティオン テクニーリネン タットキムスケスクス Method for improving biodegradation resistance and dimensional stability of cellulosic products
JPH11320511A (en) * 1998-05-19 1999-11-24 Juken Sangyo Co Ltd Deformation preventing processing method for woody material
JP2006335005A (en) * 2005-06-03 2006-12-14 Eidai Co Ltd Heat treatment method of wooden material and wooden material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206410U (en) * 1985-06-14 1986-12-26
JPH0445705U (en) * 1990-08-20 1992-04-17
JPH09502508A (en) * 1993-05-12 1997-03-11 ヴァルティオン テクニーリネン タットキムスケスクス Method for improving biodegradation resistance and dimensional stability of cellulosic products
US5678324A (en) * 1993-05-12 1997-10-21 Valtion Teknillinen Tutkimuskeskus Method for improving biodegradation resistance and dimensional stability of cellulosic products
JPH11320511A (en) * 1998-05-19 1999-11-24 Juken Sangyo Co Ltd Deformation preventing processing method for woody material
JP2006335005A (en) * 2005-06-03 2006-12-14 Eidai Co Ltd Heat treatment method of wooden material and wooden material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599064A (en) * 2015-12-31 2016-05-25 南京林业大学 Preparation method for steel wire mesh enhanced laminated veneer lumber based on target mechanical property
CN105946085A (en) * 2016-06-08 2016-09-21 王宾 Processing technology of moisture-proof wood board door

Similar Documents

Publication Publication Date Title
JP5351026B2 (en) Symmetrical wood flooring using heat-treated wood and method for manufacturing the same
JP6262175B2 (en) Method for producing hybrid wood core laminated lumber
CN201141192Y (en) Composite solid-wood floor plate
RU2325988C1 (en) Laminated butt-end reduced log and method of its production
US20220134715A1 (en) Wood laminate material and method for manufacturing same
CN105014753B (en) The fire-retardant laminated board of fast-growing wood and its production method
JP6841606B2 (en) Wood composite base material and flooring
JP2013059870A (en) Method for manufacturing modified woody material
JPH0716964A (en) Laminated material and its manufacture
CN111391041B (en) Long-strip wood chip or bamboo chip woven laminated wood or board and preparation method thereof
JP5099845B2 (en) Manufacturing method for flat bars
JP6494419B2 (en) Wood chemical treatment method
KR20230012378A (en) Multifunctional hybrid laminated timber for construction and manufacturing method thereof
KR102072913B1 (en) Multi-layer glued structural cross laminated timber panel for perpendicular diaphragm member, manufacturing method thereof and jointing method thereof
JP5954660B2 (en) Wood decorative board, method for producing wooden decorative board
JP2022131290A (en) Laminated plasticity lumber
JP5828586B2 (en) Method for producing water repellent wood
JP2004237575A (en) Laminated lumber and its production method
KR102133086B1 (en) Multi-glued structural cross laminated timber panel for perpendicular diaphragm and floor member and manufacturing method thereof
KR102073481B1 (en) Multi-layer glued structural cross laminated timber panel for perpendicular diaphragm member and manufacturing method thereof
JP3232141U (en) Flooring material compatible with floor heating flooring
JP7387133B2 (en) Laminated materials and methods for manufacturing laminated materials
Sulastiningsih et al. Effects of nodes on the properties of laminated bamboo lumber
JP2023039720A (en) Wooden composite member and floor member
AU2011200418B8 (en) Timber Laminates and Method for Constructing Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104