JP2004237575A - Laminated lumber and its production method - Google Patents

Laminated lumber and its production method Download PDF

Info

Publication number
JP2004237575A
JP2004237575A JP2003029242A JP2003029242A JP2004237575A JP 2004237575 A JP2004237575 A JP 2004237575A JP 2003029242 A JP2003029242 A JP 2003029242A JP 2003029242 A JP2003029242 A JP 2003029242A JP 2004237575 A JP2004237575 A JP 2004237575A
Authority
JP
Japan
Prior art keywords
wood
laminated
pieces
small
square
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029242A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
正宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiken Co Ltd
Original Assignee
Ibiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiken Co Ltd filed Critical Ibiken Co Ltd
Priority to JP2003029242A priority Critical patent/JP2004237575A/en
Publication of JP2004237575A publication Critical patent/JP2004237575A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide laminated lumber 1 which is low in dimensional change rate and volume/weight increase rates, high in flexural strength, block shearing strength, etc., and excellent in dimensional stability and various physical properties. <P>SOLUTION: In the laminated lumber 1, a number of small square wood pieces 11 or small rectangular wood pieces 12 of a prescribed thickness are laminated/bonded. The wood pieces 11 and 12 are arranged horizontally. Wood fibers are arranged in multiple directions. In the vertical arrangement of the fibers, they are arranged alternately. The wood pieces 11 and 12 are laminated/bonded together through the application of an adhesive. The laminated lumber 1 comprises dimensionally stable lumber having different direction fiber arrangement formed by the wood fibers arranged in multiple directions or alternately. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、寸法変化率、体積・重量増加率が小さく、反面曲げ強度、ブロック剪断強度等が大きく、寸法安定性及び諸物理的特性に優れた集成材及びその製造方法に関する。
【0002】
【従来の技術】
従来の集成材9は、図9(ト)〜(チ)に示すごとく、挽き板又は小角材などの構成単位(以下、エレメントともいう)の木材繊維を互いにほぼ平行(図9(ト)〜(リ)参照)にして接着剤によって、長さ、幅、厚さの方向に集成して接合したものである(非特許文献1参照)。
【0003】
そのため、木材繊維を平行にして多数積層接合されているので、製材製品と同様に同一方向には曲げ強度等が大きく、いわゆる一軸材料であり、例えば造作用集成材として柱、鴨居、敷居、長押に用いられている。
一方、造作用集成材として、例えば階段用手摺材、カウンター、建具枠材などの二次加工品として用いられている。
【0004】
一方、特許文献2によれば、「直方体の木材片を長さ幅方向に貼着して板状体となし、該板状体の表裏面に所定板厚さの木質単板を木材繊維が直交するよう貼着し該板状体を数枚多数積層接合して柱状体を構成する」ことが提案されている。
【0005】
他方、特許文献3によれば、図10に示すごとく、「所定板厚さの短形小片を水平方向配列に接合して板状体となし、該板状体をその木材繊維を互いに直交させて奇数板の板厚み方向に多数積層接合した集成材」が提案されている。
【0006】
そして、特許文献4によれば、図11及び図12に示すごとく、「木材繊維と平行にして小板片、小角片の素材を得て、これら素材を木材繊維と平行するように多数積層接合して角材等を得るに当り、素材として野地板を用い、この野地板の接合方向の軸線に対して30〜60度傾斜するようにして広面積の集成材を形成し、この集成材の複数を構成野地板が交叉するように重合接合して製品を得る建築用集成材」が提案されている。
【0007】
また、本出願人は、特許文献5及び特許文献6により「木材繊維が多方向に配列された集成材を用いた『階段用踊場部材』及び『寸法精度安定階段』の特許出願」を提案している。
これらは、いずれも寸法変化率が小さく、寸法安定性に優れた階段を提供することを目的としているものである。
【0008】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に記載の集成材9は、挽材の木材繊維が同一方向で、集成材9全体の木材繊維も同一方向となり偏向している。そのため、集成材9の寸法の伸縮は、木材繊維の伸縮に応じて寸法変化率が支配される。
したがって、従来の集成材9は、図9に示すごとく、矢印方向である木材繊維方向に伸縮することになる。
また、図13に示すごとく、集成材96上に大きな衝撃荷重が加わると、木材繊維が同一であるため割れや破損部分960が生じ易い問題がある。
【0009】
これは、従来の集成材9を階段95に用いた場合には、図14に示すごとく、側板91の接合部分において、破損部分960や亀裂を生じ易い。
同様に、図15に示すごとく、階段95の踏板92に用いた場合においても、突出寸法(ル)が大きいと側板91との接合部近傍で破損部分960が生じ易い問題がある。
しかも、図16に示すごとく、従来の集成材9にドリル93を用いて穴を開ける場合においても、木材繊維と同一方向か接合部分近傍で破損部分960を生じ易い問題もある。
【0010】
一方、特許文献2に記載の集成材9は、表裏面に貼着した木質単板(化粧材)は中心層部分に比較して板の厚さが一般には薄い。そのため、前記柱状体は前記板状体である中心層部分の木材繊維方向に支配され、木質単板の木材繊維方向によっては、柱状体の寸法変化率や反りは緩和されず、寸法安定性に問題がある。
【0011】
他方、特許文献3に記載の集成材9は、短形木質小片91、92の板厚さが全て同一であっても、多層構成集成材9は、全体が奇数枚積層接着されたものである。そのため、図10に示すごとく、例えば3枚のエレメントにより、構成されている場合においては、木材繊維が矢印方向の2枚のエレメントの木材繊維方向に支配されて寸法変化率が大きくなる問題がある。
また、特許文献3の記載によれば、「木質下地単板の樹種は、ナラやケヤキの広葉樹木材でも、ヒノキやマツのごとき針葉樹木であっても良い。」とされている(特許文献2の公報の段落〔0017〕及び〔0022〕参照)。
【0012】
そのため、一般には広葉樹木材の方が針葉樹木材よりも曲げ強度や硬度は大きく、しかも本発明の実施例において後述するごとく、浸漬剥離試験による集成材の体積・重量増加率は小さい。
これは、針葉樹木材の方が広葉樹木材よりも一般に成長が早く、多孔質部分(組織)が多いからであるとされている。
【0013】
したがって、針葉樹木材は、広葉樹木材に比較して多孔質部分より吸水して体積・重量増加率が大きくなるものと推察される。
ところが、木材の寸法変化率は、一般に上記体積・重量増加率に相応(比例)して大きくなると考えられている。
そのため、針葉樹木材の方が、広葉樹木材よりも、比較的寸法変化率が大きくなり、寸法安定性に劣ると共に、反りや歪み又はねじれなどの狂いが大きくなる。
その結果、特許文献3に記載の木材繊維9は、木材繊維方向が多い「短形木質小片」としてのエレメントの木材繊維方向に支配されて、寸法変化率や体積・重量増加率が決まることが考えられる。
【0014】
このことは、特許文献4に記載の集成材9においても同様の問題点が存在する。
即ち、図11及び図12に示すごとく、素材である「野地板」97の木材繊維方向は、その板厚さや樹種によって支配され決定される。
特許文献4によれば、接合する構成野地板(2枚)の板厚さが同一とはされておらず、特許文献1に記載の集成材と同様に「野地板」の木材繊維方向も同一であることを前提としている問題点がある。
【0015】
一方、特許文献5及び特許文献6は、本発明と同様に、「木材繊維が多方向に配列された集成材」からなる「階段」又は「階段踊場部材」について提案するに止まり、集成材の製造方法については具体的に記載されていない。
そのため、異方向性繊維配列の集成材を具体的には、どのような製造方法で得るかについて記載されていない。
【0016】
【非特許文献1】
「木造住宅123の常識」(日本実業出版社発行)
58〜67頁「特に集成材についての記載の項」
【特許文献2】
特開平10−217211号公報
【特許文献3】
特開2001−232609号公報
【特許文献4】
特開平09−123127号公報
【特許文献5】
特願2002−258033号
「階段用踊場部材」
【特許文献6】
特願2002−343583号
「寸法精度安定階段」
【0017】
【課題を解決するための手段】
上記問題点を解決するため、本発明が採った手段は、下記の通りである。なお、本発明を更に具体的に説明するため、実施例において使用する図面の符号を付して、以下説明する。
まず、請求項1に記載の発明が採った手段は、所定板厚さの正方形小木片ないしは長方形小木片を多数積層接合した集成材であって、
前記正方形小木片、長方形小木片は水平方向配列として木材繊維が多方向に配列され、かつ垂直方向配列は互い違い配列され、これら正方形小木片、長方形小木片には接着剤塗布を介して多数積層接合されてなり、
前記木材繊維が多方向に配列ないしは互い違い配列により形成された異方向性繊維配列を有してなる寸法安定木材からなることを特徴とする集成材1を提供するものである。(図1参照)
これにより、寸法変化率及び体積・重量増加率が小さく、反面曲げ強度やブロック剪断強度が大きく、諸物理的特性及び寸法安定性に優れた集成材1を得ることができる(実施例1〜実施例5参照)。
【0018】
また、請求項2に記載の発明が採った手段は、寸法安定木材は木造建築廃材、木工製作端材、製材未利用廃材から自動的選別手段を介して樹種、板厚さ、板重量、板面積、経時年数別により選別され欠陥部分除去木材にしたことを特徴とする集成材1を提供するものである。
これにより広葉樹木材と針葉樹木材や経時年数を木材中の化学成分量や組織形態変化の態様を判別し、自動選別機を用いて素材の樹種と用途との関係を判別することが出来る。また、現時点では、余り積極的にリサイクル利用されていない資源の循環利用を図り、環境改善に貢献することが出来る。
【0019】
そして、請求項3に記載の発明が採った手段は、集成材の少なくとも表面側には化粧材を貼着し、他面側にはバランス用部材を貼着してなる化粧張り集成材であることを特徴とする集成材1を提供するものである。(図1の最下段図参照)。
これにより、集成材1の外観より見える表面側部分と裏面側や外部より見えない他の側面部分との水分含有量や空気中の湿分吸収による木材内での水分移動の調整が可能となる。そのため、水分移動や熱により生じる集成材1の反りや歪み及びねじれなどの不良木材の発生を減少させることが出来るため、加工精度が高い階段部材、家具や箱物収納具部材を得ることが出来る。
【0020】
一方、請求項4に記載の発明が採った手段は、集成材又は集成材の原料である挽き板を含むサンドイッチ構造として形成される集成材の一形態としてのランバー合板であることを特徴とする集成材1を提供するものである。
これにより、階段構成用部材、家具構成用部材、ドア床壁面用部材などへの用との拡大と、その高精度加工が可能となる。
【0021】
他方、異方向性繊維配列は、寄木形状配列、千鳥状配列、多方向に配列、互い違い配列又はこれらの組み合せ配列(図3(イ)〜(ヘ)、図4、図5参照)であることを特徴とする集成材1を提供するものである。
これにより、木材繊維の異方向性繊維配列が多様化してランダムで均整がとれた諸物理的特性、例えば曲げ強度やブロック剪断強度が向上する。
【0022】
また、請求項6に記載の発明が採った手段は、異方向性繊維配列を有する異方向性繊維配列又はランバン合板は、造作用集成材、構造用集成材、化粧張り集成材、多軸構成部材であって、階段構成用部材、ドア床壁面用部材、家具構成用部材としての用途があることを特徴とする集成材1を提供する。
これは、従来の集成材を階段構成用部材、ドア床壁面用部材、家具構成用部材に用いると、強い衝撃荷重により材料破壊である割れや破損を生じていた(図13〜図16参照)のに対し、本発明の集成材は木材繊維の異方向性繊維配列のバランスが良好であるため、反りや歪み・ねじれを生じることが減少し、寸法安定性や諸物理的特性に優れた品質安定性が得られるからである。
【0023】
他方、請求項7に記載の発明が採った手段は、原木の水分調整等のための調湿乾燥工程と、該原木を所定板厚さ、正方形小木片、長方形小木片の挽き材とする調板・製材工程と、所定板厚さの正方形小木片、長方形小木片を木材繊維が異方向性繊維配列されるようレイアウトする設計工程と、該正方形小木片、長方形小木片を水平方向配列し、かつ正方形小木片と長方形小木片とが互い違い配列となるよう垂直方向配列させるための仮配列、仮接合後に、正方形小木片、長方形小木片の接合面に接着剤塗布を介し、予備乾燥して挽き板を前記設計工程により正方形小木片、長方形小木片をレイアウトした所定の位置に移動させた後に配置してプレス成形の準備をする挽材片所定配置工程と、前記挽材片所定配置された正方形小木片、長方形小木片を多数積層接合するプレス加圧成形する成形工程と、該成形工程により得られた成形物を所定期間調湿状態で放置して養生工程と、製材、仕上げ、検査、荷造りを行う最終工程とよりなることを特徴とする集成材の製造方法を提供するものである。
これにより、寸法変化率及び体積・重量増加率が小さく、反面曲げ強度やブロック剪断強度が大きく、諸物理的特性及び寸法安定性等の品質安定性に優れた集成材1を効率良く、かつ有利に得ることが出来る。
【0024】
また、請求項8に記載の発明の採った手段は、木造建築廃材、木工製作端材、製材未利用廃材、天然木材のいずれか又はその組み合わせ木材を自動的選別手段を介して樹種、板厚さ、板重量、板面積、時経列別に選別された欠陥部分除去木材であることを特徴とする集成材1の製造方法を提供するものである。
これにより、広葉樹木材と針葉樹木材や経時年数を木材中の化学成分及び組織形態の態様を判別し、自動選別機を用いて効率よく、かつ有効に判別出来る。また、素材である所定板厚さ(例えば、10〜30ミリメートル)の正方形小木片11、長方形小木片12の樹種と用途との関係を判別しながら、水平方向配列としての多方向に配列及び垂直方向配列としての互い違い配列をコンピュータによりレイアウトして、異方向性繊維配列の設計を効率良く、かつ有利に行うことが出来る。
また、現時点では、余り積極的にリサイクル利用されていない資源の循環利用を図り、環境改善に適した集成材1の製造方法を提供することが出来る。
【0025】
そして、請求項9及び請求項10に記載された発明が採用した手段は、自動的選別手段は、水分測定器、温度測定器、寸法測定器、重量測定器、木材の化学成分測定器、諸物理特性測定器、X線照射分折装置、電磁波誘導分折装置のいずれか1種又はこれらの組合せからなることを特徴とする集成材1の製造方法を提供するものである。
これにより、原木の欠陥部分除去木材は、木材の諸物理的特性(例えば、曲げ強度や圧縮強度)と、X線照射分折装置や電磁波透分析装置、光透過装置のいずれかを用いて木材欠陥部分を検出し、該部分を切断除去手段により、効率良く、かつ有利に除去することが出来る。
【0026】
一方、請求項11に記載の発明が採用した手段は、樹種は、ブナ、ケヤキ、カバ、アピトン、ミズナラ、イタヤカエデ、カシ、シオジ、タモ、ニレから選ばれた1種又は1種以上の広葉樹堅牢木材である集成材1を効率よく、かつ有利に提供するものである。
これにより、集成材1に使用する正方形小木片11、長方形小木片12の表面硬度は向上し、高強度で寸法変化率が小さく寸法安定性に優れた素材(エレメント)を得ることが出来る。なお、広葉樹堅牢木材は、一般に針葉樹多孔質木材に比較して、2〜3割程度、表面硬度が向上するため、耐摩耗性等の耐久性が向上する。
そして、広葉樹堅牢木材は針葉樹木材に比較して、一般には、正方形小木片11や長方形小木片12を試験片として測定した「気乾比重」及び「引張強度」や「圧縮強度」、更には曲げ強度や剪断強度などの諸物理的特性が優れている。
【0027】
さらに請求項12に記載された発明が採用した手段は、所定板厚さが10〜30ミリメートルで、正方形小木片は20〜80ミリメートル四方、長方形小木片の幅(ヨコ寸法)は20〜50ミリメートル、タテ寸法は30〜100ミリメートルであることを特徴とする集成材1を提供するものである。
これにより、木造建築廃材、木工製作端材、製材未利用廃材より効率良く、かつ有利に正方形小木片11や長方形小木片12を得ることが出来ると共に、集成材1の製造方法において正方形小木片11、長方形小木片12の取扱いや保管が便利である。
【0028】
【発明の実施の形態】
本発明に係る集成材及びその製造方法について、実施の形態を実施例及び図面を用いて、図面の符号を付して具体的に説明する。
請求項に記載の発明によれば、「所定板厚さの正方形小木片11ないしは長方形小木片12を多数積層接合した集成材」である。
所定板厚さとしては、例えば、請求項12に記載のごとく、10〜30ミリメートルであることが好ましい。正方形小木片11や長方形小木片12が得られ易く、かつ集成材1の製造方法において、運搬や保管に便利だからである。特に、本発明においては、原木は木造建築廃材、木工製作端材、製材未利用廃材を積極的にリサイクル利用することが好ましい。それは、原木の入手が困難であること、並びに原木の乱採による地球の砂漠化防止の観点において、現時点で余り循環利用されたり、焼却処分を行い、炭酸ガスやダイオキシンなどの排出による大気(環境)汚染の防止を図ることが急務だからである。
【0029】
一方、正方形小木片11は、請求項12に記載のごとく、20〜80ミリメートル四方(略四方形も含む)であることが好ましい。前述の理由と同じことによる。
また、長方形小木片12は請求項12に記載のごとく、幅(ヨコ寸法)が20〜50ミリメートルで、縦長さ(タテ寸法)が30〜100ミリメートルであることが好ましい。その理由は、前述の通りである。なお、正方形小木片11、長方形小木片は、挽き材とも呼ばれ、本発明においては、エレメントとも称する。
【0030】
前記木造建築廃材としては、例えば木造建築の解体や修理において排出され焼却処分等されている建築廃棄物などがある。
また、前記木工製作端材としては、例えば家具やドアなどの造作中に廃出され焼却処分等されている端尺木材などがある。
そして、前記製材未利用廃材としては、例えば原木、特に広葉樹堅牢木材を所定の寸法や板厚さに切断し裁断する際に発生する端尺木材などがある。
以上のごとく、木造建築廃材、木工製作端材、製材未利用廃材はもっと大切に有効利用することが資源のリサイクル利用を通じて、地球の環境改善を実現することになる。
【0031】
正方形小木片11ないしは長方形小木片12を多数積層接合した集成材1であって、これら正方形小木片11、長方形小木片12は水平方向配列として、図1及び図2に示すごとく、木材繊維が多方向に配列され、かつ垂直方向配列は互い違い配列されてなる。
前記水平方向配列としては、例えば寄木形状配列(図3〜図4参照)千鳥状配列(図1参照)などがある。また、垂直方向配列としては、例えば多数積層接合において、互い違い配列の一態様である寄木形状配列がある。
【0032】
前記正方形小木片11、長方形小木片12には、接着剤塗布されて多数積層接合される(図1参照)。接着剤としては、例えばユリア樹脂、メラミン樹脂、ユリア・メラミン共縮合樹脂、フェノール樹脂、メラミン変性フェノール樹脂、レゾルシノール樹脂、フェノール・レゾルシノール樹脂、水性高分子イソシアネート系樹脂などがある。
上記多数積層接合としては、例えばコールドプレスで締めつけてクランプする場合と、ねじを直接トルクレンチで締めつける場合とがある。
圧締圧力は、例えば比重の高い樹脂、特に広葉樹堅牢木材の場合においては、10〜15kg/センチメートル平方で、比重が低い場合は8〜10kg/センチメートル平方である。
なお、接着剤塗布は、1接着層当り200〜250g/平方メートル程度で、グルースプレッダや小規模の場合にはローラや刷毛を用いて塗布する。なお、スプレ塗装機やカーテンフローコーターを用いて、大量生産に対応することもできる。
【0033】
集成材1は、木材繊維が多方向に配列ないしは互い違い配列により形成された異方向性繊維配列を有する寸法安定木材からなる。
ここで注目すべきことは、従来の木材繊維9は、特許文献2、3、4によれば、木材繊維が奇数枚のエレメントよりなり、板厚さが各エレメントごとに異なる場合がある。これに対して、本発明のエレメントとしては、請求項12に記載のごとく、10〜30ミリメートルで、しかも全てのエレメントにおいて略同一の板厚さであることである。これにより、集成材1の全体の木材繊維が異方向性繊維配列(以下ランダム配列ともいう)となり、寸法変化率及び体積・重量増加率が小さくなり、かつ曲げ強度やブロック剪断強度などの諸物理的特性及び寸法安定性に優れるようになることである。
【0034】
寸法変化率は木材繊維方向に支配され、集成材のエレメントの全体に対する占有率によって寸法変化率や浸漬剥離試験による体積・重量増加率が大きくなることである。なお、寸法変化率と体積・重量増加率とは比例関係にあると推察されるため、体積・重量増加率を測定により知ることにより寸法変化率の大小を判別することが出来ると考えられるのである。このことは、実施例1〜5において後述する。
【0035】
本発明において、異方向性繊維配列とは木材繊維が多方向に配列され、ランダム配列により、木材繊維が偏向していないことを意味する。また、寸法安定木材とは、例えば浸漬剥離試験により測定した体積・重量増加率が2〜5%以下であり、寸法変化率が1〜3%以下であることをいう。
これにより、従来の集成材9は、1軸方向か直交方向又は30〜60度に偏向しており、エレメントの占有率により、当該占有率の多いエレメントの木材繊維方向に支配されて寸法変化率が定まり、浸漬剥離試験による体積・重量増加率と密接な関係があるものと推察されることである。
【0036】
寸法安定木材は、木造建築廃材、木工製作端材、自動的選別手段であることが好ましい。その理由及び例示は、前述の通り請求項2に記載された発明の採用の理由及び例示と同様である。
また、造作用集成材としては、例えば階段構成用部材、ドア床壁面用部材、家具構成用部材などがあり、集成材1の表面側、又は全表面に突き板や広葉樹堅牢木材をスライスした薄板を貼着したものである(図1の最下段図参照)。
前記階段構成用部材としては、例えば図2に示すごとく、踏み板21、蹴込み板22、側板(側桁ともいう)23などの他、踊り場部材、手摺、手摺子、力桁(図示略)などがある。なお、踏み板21と蹴込み板22と側板23とは、嵌合接合凹部212、232により接合されている。
【0037】
ランバー合板としては、例えば芯材又は各層(各エレメント)ごとに、本発明に係る集成材1において使用する挽き板をサンドイッチ構造で含み、他のエレメントはラワン材などで各エレメントが直交するよう配置された特殊合板をいう。なお、本発明において、正方形小木片11、長方形小木片12は、前述のごとく、木造建築廃材、木工製作端材、製材未利用廃材のほか、原木の一部として自然木材、特に広葉樹堅牢木材を使用することも出来る。
【0038】
接着剤塗布としては、前述のごとく、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂又はこれらの共縮合又は変性樹脂などがある。
そして、正方形小木片11、長方形小木片12を多数積層接合するプレス加圧成形としては、例えばコールドプレスにより、5〜15kg/平方センチ程度であることが好ましい。また、接着剤塗布量としては、例えば200〜250g/平方メートル程度が好ましい。曲げ強度やブロック剪断強度が日本農林規格の基準値以上の集成材1が得られるからである。
【0039】
広葉樹堅牢木材としては、例えばブナ、ケヤキ、カシ、カバ、アピトン、ミズナラ、イタヤカエデ、シオジ、タモ、ニレなどであることが好ましい。スギ、ヒノキ、マツなどの針葉樹木材よりも寸法安定性や諸物理的特性に優れているからである。
また、欠陥部分除去木材としては、例えば曲げ強度やブロック剪断強度が劣り、穴、節、その他の不良木材部分のことを意味する。
そして、これら欠陥部分除去木材は、丸鋸やルーター加工により不良部分が除去される。
【0040】
集成材1の製造方法としては、例えば図7に示すごとく、(1)原木調整51、(2)挽材作成52、(3)挽材片異方向配列53、(4)接着剤圧締硬化54、(5)養生55、製材56、その他の行程591〜594などがある。
また、ランバー合板の製造方法としては、例えば図8に示すごとく、(1)原木調整61、(2)挽材作成62、(3)ラワン材との配列(多数積層接合)63、(4)接着剤塗布(サンドイッチ積層)64、(5)接着剤圧締硬化65、(6)養生66、(7)仕上げ加工67などの各工程がある。
【0041】
そして、ここで最も注目すべきことは、図3〜図5に示すごとく、また実施例3で例示するごとく、集成材の異方向性繊維配列は、例えば各種寄木形状配列(イ)〜(ヘ)(図3)、図4、図5で示すごとく、三角形複合寄木形状配列(図4、図5)がある。
なお、各図において、矢印は、主に木材繊維を示すものである。
【0042】
以下、本発明の好ましい実施例について、図面を用いて、具体的に説明する。
【0043】
(実施例1)
本例の集成材1は、図1の最上段図に示すごとく、正方形小木片11と長方形小木片12と水平方向配列及び垂直方向配列として、互い違い配列を採用したものである。
正方形小木片11は、板厚さが全15又は20ミリメートルで、40〜50ミリメートル四方形のものを採用した。
また、長方形小木片12は、板厚さが全て15又は20ミリメートルで、幅(ヨコ寸法)は40〜50ミリメートル、長さ(タテ寸法)は30〜100ミリメートルのものを採用した。
【0044】
本例においては、まず正方形小木片11と長方形小木片12とを水平方向配列として互い違い配列に構成し、垂直方向配列として3層構造とした。なお、図1の最上段図に示すごとく、中心芯材としては、正方形小木片11を用い、上下両層の板厚さ15ミリメートルよりも5ミリ大きい20ミリメートルとした。
その理由は、上下両層で2層を構成するのに対し、中心芯材は正方形小木片11が1層となり、全体として木材繊維方向がバランス配列となり、寸法変化率や体積・重量増加率に及ぼす要因を少なくするためである。
【0045】
正方形小木片11及び長方形小木片12は、主として木造建築廃材約40%と、木工製作端材約30%と、製材未利用廃材約30%となるよう水平方向配列及び垂直方向配列を設計配置したものである。
また、樹脂としては、主としてアピトン約50%、ナラ約30%、ミズナラ及びケヤキ約30%の割合で使用した。これは、木造建築廃材及び木工製作端材として入手し易く、かつ比較的安価なためである。アピトンは、主として輸入材であるため、ミズナラやケヤキのごとく、国内では最近入手が困難なためである。
【0046】
以上のごとく構成された集成材1の主な諸物理的特性としての「寸法変化率」及び「体積・重量増加率」、更には曲げ強度及びブロック剪断強度について概要を説明する。
「体積・重量増加率」としては、試験片として30×30ミリメートルで、板厚さが50ミリメートルの大きさのものを使用した。この試験片の「かたさ効果」(バルキング)及び「重量増加率」(ポリマー含有量)を測定した。
測定条件としては、約70度(摂氏)の温水中に上記試験片を2〜4時間浸して乾燥した後、アゼライン酸処理前後の試験片の全乾状態(105度で48時間乾燥)したものを使用した。
【0047】
体積膨張の変化率としての体積・重量増加率は、下記の式で求めた。
体積・重量増加率=アゼラン酸処理前の試験片の重量から処理後の全乾状態の試験片を差し引き、この値を処理前の試験片の重量で割った値(%)である。
【0048】
この体積・重量増加率は、小さい程、寸法変化率が小さく、寸法安定性に優れた集成材1と判断することが出来る。これは抗吸水能が低く、集成材1の試験片は寸法変化率が小さいものと考えられるからである。
本例の集成材1の体積・重量増加率は、乾燥温度105度のものにおいて約40%であるのに対し、ランバー合板は約55%、従来の集成材9(特許文献2の相当品)は約65%、特許文献3の相当品は約80%であった。
【0049】
以上の結果からも明らかなごとく、本例によれば、体積・重量増加率及び寸法変化率が小さく、寸法安定性に優れた集成材1を得ることが出来る。
また、日本農林規格(多方向に配列請求項木工製作端材)で定める水又は煮沸水に24時間浸漬処理を2サイクルした後、70度で乾燥処理した試験片の浸漬剥離試験は、接着力の目安になるものとされている。
試験片は、長さ75ミリメートル、幅25ミリメートルのものを使用した。
また、ブロック剪断強度及び曲げ強度は、25ミリメートルの正方形小木片で板厚さが5ミリメートルのものを使用した。
【0050】
その結果、本例の広葉樹堅牢木材からなる異方向性繊維配列の集成材1は、ブロック剪断強度が84〜96kg/平方センチメートルであるのに対し、針葉樹木材からなる従来の集成材9(特許文献2及び特許文献3相当品)は60〜66(単位上記と同じため以下省略)であった。
また、剪断応力は、本例の集成材1が14〜16であるのに対し、従来の集成材9の針葉樹木(ヒノキ)が10〜11、スギで8〜9であった。
【0051】
以上のごとく、本例によれば、従来の集成材9に比較して、寸法変化率及び体積・重量増加率が小さく、かつ曲げ強度及びブロック剪断強度が大きく、諸物理的特性や寸法安定性に優れた集成材1を得ることが出来た。これは、本例に係る集成材1は、主として広葉樹堅牢木材から構成され、木材繊維が異方向性繊維配列を有するからであると推察される。
【0052】
(実施例2)
本例の集成材1は、図1の中段図及び最下段図に示すごとく、化粧張り集成材としての集成材1を提供するものである。
図1に示すごとく、本例の集成材1は、6層又は4層のエレメントにより構成されている。
化粧張り集成材10としては、ケヤキの広葉樹堅牢木材からなる突板を四方側面に貼着したものである。突板の厚さは、約0.3ミリメートルで、自然丸太材をスライス加工したものである。
その他の構成は、実施例1と同様とした。
【0053】
その結果、曲げ強度及びブロック剪断強度の諸物理的特性が実施例1に係る集成材1よりも2〜3割程度向上した。
これは、前述のごとく、全側面に化粧材113を有するからであると考えられる。
なお、本例に係る化粧張り集成材は、全表面側に化粧材としての突板化粧材を有するため、見栄えが良く、造作用集成材としての階段構成用部材、ドア床壁面用部材、家具構成用部材として適しており、また鴨居やカウンターなどの外観性を重視する集成材1として使用することが出来る。
【0054】
(実施例3)
本例に係る集成材1は、図3(イ)〜(へ)及び図4又は図5に示すごとく、表面側の水平方向配列が寄木形状配列又は三角形状複合寄木形状配列からなるものである。
寄木形状配列としては、図3(イ)〜(ヘ)に示すごとく、正方形小木片11及び長方形小木片12を中心点に正方形小木片11が4枚づつ規則正しく配列されている。
【0055】
また、図4及び図5に示すごとく、正方形小木片11と長方形小木片12との混合配列により三角形状複合寄木形状配列を構成したものである。
そのため、木材繊維方向は特に多方向となり、多軸構成部材として、例えば階段の踊り場部材(特許文献4参照)又は図2に示すごとく、階段2の踏み板21、蹴込み板22、側板23などに使用することが出来る。なお、上記階段の接合部は、凹凸嵌合部211、231を有する。
【0056】
なお、本例に係る集成材1は、図6に示すごとく、ドリル3を用いて穴120を明けても、従来の木材繊維9のごとく、破損部分(図16の960参照)を生じることがなかった。なお、寸法変化率及び浸漬剥離試験が小さく、曲げ強度及びブロック剪断強度が大きく諸物理的特性及び寸法安定性が実施例1に係る集成材1と同様に優れていた。
(実施例4)
本例は、本発明の集成材1の製造方法を説明するものである。
図7に示すごとく、(1)厚木調整51と、(2)挽板作成52と、(3)挽板片異方向配列53と、(4)接着剤圧締硬化54と、(5)養生55と、(6)製材56と、その他の工程591〜594との諸工程とよりなる集成材1の製造方法である。
【0057】
接着剤としては、レゾルシノール樹脂を用い、塗布量としては225g/平方メートルとした。
また、接着剤圧締硬化は、コールドプレスを用い、成形圧力としては14kg/平方センチメートルとした。
【0058】
また、正方形小木片11及び長方形小木片12の板厚さは、全て25ミリメートルとした。正方形小木片11は30ミリメートル平方とし、長方形小木片12は幅(ヨコ寸法)が30ミリメートルで長さ(タテ寸法)は50〜80ミリメートルのものを使用した。
その他は、実施例1と同様に構成した。その結果、実施例1に係る集成材1と同様に、寸法変化率及び体積・重量増加率が小さく、曲げ強度及びブロック剪断強度が大きく、寸法安定性と諸物理的特性に優れた集成材1を得ることが出来た。
【0059】
(実施例5)
本例は、図8に示すごとく、挽材を含むランバー合板の製造方法を示すものである。
製造方法は、(1)原木調整61と、(2)挽材作成62と、(3)ラワン材との垂直方向配列としての配列64と、(4)接着剤塗布サンドイッチ積層64と、(5)接着圧締硬化65と、(6)養生66と、(7)仕上げ加工67との各工程とよりなる。
【0060】
実施例4における接着剤をレゾルシノール樹脂に代えて、本例はメラミン・ユリア共縮合樹脂を用いた。
また、成形圧力14kg/平方センチメートルに代えて11kg/平方センチメートルとした。
そして、上記接着剤の塗布量を225gに代えて240g/平方センチメートルとした。
その他の構成は、実施例4と同様とした。
なお、本例に係るランバー合板は、集成材1の一実施態様と考えられる。挽材を使用する点で共通し、この挽材は異方向性繊維配列からなるためである。そして、特に階段構成用部材、ドア床壁面用部材、家具構成用部材の用途に適している。
【0061】
【発明の効果】
本発明は,請求項1〜請求項12により構成されている。そのため、次に示すような諸効果を発揮するものである。
請求項1に記載の発明によれば、寸法変化率及び体積・重量増加率が小さく、かつ反面曲げ強度やブロック剪断強度が大きく、諸物理的特性及び寸法安定性に優れた集成材1を得ることが出来る。
また、請求項2に記載の発明によれば、広葉樹木材と針葉樹木材や経時年数を木材中の化学成分、例えばリグニン樹脂含有量やセルロースの含有量から組織形態変化の態様を判別することが出来る。そして、自動選別機を用いて素材となる挽き板の樹種と用途との関係も判別することが出来る。
【0062】
また、現時点では余り積極的にリサイクル利用されていない資源の循環利用を図り、環境の改善に貢献することが出来る。
そして、従来は、木造建築廃材、木工製作端材、製材未利用廃材は殆んど焼却処理されるか、紙やボードル類としてのパルプや繊維利用されていなかった資源を有効利用し、二酸化炭素の発生による地球の温暖化防止やダイオキシンなどの有害ガスの発生による大気汚染を防止することが出来る。
【0063】
請求項3に記載の発明によれば、集成材1の外観より見える表面側部分と裏面側や外部より見えない他の側面部分との水分含有量や空気中の湿分吸収による木材内での水分移動の調整が可能となる。
そのため、水分移動や熱の移動により生じる集成材1の反りや歪み及びねじれなどの不良木材の発生を減少させることが出来る。そのため、加工精度が高い多軸構成部材としての階段構成用部材、ドア床壁面用部材、家具構成用部材などの多軸構成部材を有利に得ることが出来る。これらの部材は、特に加工精度が要求され、従来の集成材9ではその用途において問題を生じていた「破損部分」(図13〜図16参照)の材料破壊を防止することが出来る。
【0064】
請求項4に記載の発明によれば、階段構成用部材、ドア床壁面用部材、家具構成用部材などの用途の拡大と、その高精度加工が可能となる。
また、請求項5に記載の発明によれば、木材繊維の異方向性繊維配列が多様化してランダムで均整がとれ、バランスの良い高品質の集成材1を得ることが出来る。
【0065】
一方、請求項6に記載の発明によれば、集成材1は木材繊維の異方向性繊維配列のバランスが良好であるため、反りや歪み及びねじれなどの不良木材の発生を防止して、寸法安定性や諸物理的特性に優れた集成材1を得ることが出来る。
他方、請求項7に記載の発明によれば、寸法変化率及び体積・重量増加率が小さく、反面曲げ強度やブロック剪断強度が大きく、諸物理的特性及び寸法安定性等の品質安定性に優れた集成材1を効率良く、かつ有利に得ることが出来る。
【0066】
そして、請求項8に記載の発明によれば、広葉樹木材と針葉樹木材や経時年数を木材中の化学成分、例えばリグニン樹脂成分及びセルロースなどの組織形態の態様を判別し、自動選別機を用いて効率良く、かつ有利に判別することが出来る。
また、素材である所定板厚さ(例えば10〜30ミリメートル)の正方形小木片11、長方形小木片12の樹種と用途との関係を判別しながら、水平方向配列としての多方向に配列及び垂直方向配列としての互い違い配列をコンピュータによりレイアウトして、異方向性繊維配列の設計を効率良く、かつ有利に行うことが出来る。
【0067】
また、現時点では余り積極的にリサイクル利用されていない資源の循環利用を図り、環境改善に適した集成材1の製造方法を提供することが出来る。
そして、請求項9及び請求項10に記載の発明によれば、原木の欠陥部分除去木材は、木材の諸物理特性(例えば曲げ強度や圧縮強度)とX線照射分折や電磁波透視分折、光透過装置のいずれかを用いて木材欠陥部分を検出し、該部分を切断除去手段により、効率良く、かつ有利に除去することが出来る。
【0068】
一方、請求項11に記載の発明によれば、樹種は広葉樹堅牢木材から選ばれた1種又は1種以上の広葉樹堅牢木材により構成された集成材1を効率良く、かつ有利に提供することが出来る。
他方、請求項12に記載の発明によれば、木造建築廃材、木工製作端材、製材未利用廃材より効率良く、かつ有利に正方形小木片11や長方形小木片12を得ることが出来るとと共に、集成材1の製造方法において、正方形小木片11や長方形小木片12の取扱いや保管が便利となる。
以上説明したごとく、本発明によれば、異方向性繊維配列の集成材1を効率良く、かつ有利に得ることが出来る。
【図面の簡単な説明】
【図1】本発明の、実施例1及び実施例2に係る集成材及び化粧張り集成材の斜視図である。
【図2】本発明の実施例3に係る集成材1を用いて階段を構成した状態を示す一部斜視図である。
【図3】実施例3に係る集成材の水平方向配列としての寄木形状配列の各種態様の平面図である。
【図4】実施例3に係る集成材の水平方向配列としての三角形複合寄木形状配列の一例を示す平面図である。
【図5】実施例3に係る集成材の水平方向配列としての三角形複合寄木形状配列の他の態様を示す平面図である。
【図6】本発明の集成材に穴を開ける状態を示す一部斜視図である。
【図7】本発明の異方向性繊維配列の集成材の製造フローシートを示す工程説明図である。
【図8】本発明の集成材の一態様であるランバー合板の製造フローシートを示す説明図である。
【図9】従来の集成材の木材繊維の一方向配列を示す状態の平面図である。
【図10】従来例(特許文献2)に記載相当品の斜視図である。
【図11】従来の集成材の木材繊維方向を示す集成材の斜視図である。
【図12】従来例3(特許文献3に記載相当品)の別態様を示す水平方向配列としての木材繊維方向を示す平面図である。
【図13】従来の集成材上に重い荷重が加わった状態を示す破損部分を生じた不良木材の説明斜視図である。
【図14】従来の集成材9を階段に用いた場合における不良部分を発する問題説明図である。
【図15】従来の集成材9を階段に用いた場合における不良部分を発生する問題点の説明図である。
【図16】本発明に係る集成材にドリルを用いて穴を開ける状態を示す問題点の説明図である。
【符号の説明】
1 集成材
10 化粧張り集成材
11 正方形小木片
12 長方形小木片
2 階段
21 踏み板
22 蹴込み板
23 側板
211、231 階段の凹凸嵌合部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated wood having a small dimensional change rate, a small volume / weight increase rate, a large bending strength, a large block shear strength, etc., and excellent dimensional stability and various physical properties, and a method for producing the same.
[0002]
[Prior art]
As shown in FIGS. 9 (g) to 9 (h), the conventional glued lumber 9 is configured such that wood fibers of a structural unit (hereinafter, also referred to as an element) such as a ground plate or a small square lumber are substantially parallel to each other (see FIGS. (See (i)), and are joined together by bonding in the direction of length, width, and thickness (see Non-Patent Document 1).
[0003]
For this reason, since many wood fibers are laminated and joined in parallel, the bending strength and the like are large in the same direction as in the case of the sawn timber products, and it is a so-called uniaxial material. It is used for
On the other hand, it is used as a secondary laminated product such as a handrail material for stairs, a counter, or a frame material for a fitting, for example, as a building laminate.
[0004]
On the other hand, according to Patent Literature 2, "a rectangular parallelepiped piece of wood is attached in the length and width directions to form a plate, and a wood veneer having a predetermined thickness on the front and back surfaces of the plate is made of wood fiber. A plurality of the plate-like members are attached so as to be orthogonal to each other to form a columnar member.
[0005]
On the other hand, according to Patent Literature 3, as shown in FIG. 10, "small pieces having a predetermined plate thickness are joined in a horizontal direction to form a plate-like body, and the plate-like body is made to have its wood fibers orthogonal to each other. In this case, a "laminate laminated with a large number of odd-numbered plates laminated and joined in the thickness direction" has been proposed.
[0006]
According to Patent Document 4, as shown in FIG. 11 and FIG. 12, "materials of small plate pieces and small angle pieces are obtained in parallel with wood fibers, and a large number of these materials are laminated and joined in parallel with the wood fibers. In order to obtain a square lumber, a base plate is used as a raw material, and a wide area laminated material is formed so as to be inclined by 30 to 60 degrees with respect to an axis in a joining direction of the base plate. Architectural laminated timber that obtains a product by superimposing and joining components so that the base plates cross each other "has been proposed.
[0007]
In addition, the applicant of the present invention proposed “Patent application for“ landing member for stairs ”and“ dimensional stabilization staircase ”using laminated wood in which wood fibers are arranged in multiple directions” according to Patent Documents 5 and 6. ing.
These are intended to provide a staircase having a small dimensional change rate and excellent dimensional stability.
[0008]
[Problems to be solved by the invention]
However, in the laminated wood 9 described in Patent Literature 1, the wood fibers of the sawn lumber are in the same direction, and the wood fibers of the entire laminated wood 9 are also in the same direction and are deflected. Therefore, in the expansion and contraction of the size of the laminated wood 9, the dimensional change rate is controlled according to the expansion and contraction of the wood fiber.
Therefore, as shown in FIG. 9, the conventional laminated wood 9 expands and contracts in the direction of the wood fiber, which is the direction of the arrow.
Further, as shown in FIG. 13, when a large impact load is applied to the laminated wood 96, there is a problem that cracks and broken portions 960 are easily generated because the wood fibers are the same.
[0009]
This is because, when the conventional laminated wood 9 is used for the stairs 95, as shown in FIG.
Similarly, as shown in FIG. 15, even when used as the tread plate 92 of the staircase 95, there is a problem that if the protrusion size (L) is large, a damaged portion 960 is likely to be generated in the vicinity of the joint with the side plate 91.
In addition, as shown in FIG. 16, even when a hole is made in the conventional glued laminated lumber 9 using a drill 93, there is a problem that a damaged portion 960 is easily generated in the same direction as the wood fiber or near the joint.
[0010]
On the other hand, in the laminated wood 9 described in Patent Literature 2, the thickness of the wood veneer (decorative material) attached to the front and back surfaces is generally thinner than that of the central layer portion. Therefore, the columnar body is governed by the wood fiber direction of the central layer portion that is the plate-like body, and depending on the wood fiber direction of the wooden veneer, the dimensional change rate and warpage of the columnar body are not reduced, and the dimensional stability is reduced. There's a problem.
[0011]
On the other hand, in the laminated wood 9 described in Patent Document 3, even when the plate thicknesses of the short wooden pieces 91 and 92 are all the same, an odd number of the multilayer laminated wood 9 is laminated and bonded as a whole. . Therefore, as shown in FIG. 10, in the case of being composed of, for example, three elements, there is a problem that the wood fiber is controlled in the wood fiber direction of the two elements in the arrow direction, and the dimensional change rate becomes large. .
According to the description of Patent Literature 3, "the type of wood-based veneer may be hardwood such as oak or zelkova, or conifer such as hinoki or pine." See paragraphs [0017] and [0022] of the publication.
[0012]
Therefore, in general, hardwood wood has higher flexural strength and hardness than softwood wood, and furthermore, as will be described later in Examples of the present invention, the rate of increase in the volume and weight of the laminated wood by the immersion peel test is smaller.
It is said that this is because coniferous wood generally grows faster than hardwood and has more porous parts (texture).
[0013]
Therefore, it is presumed that softwood wood absorbs water from the porous portion and increases in volume and weight as compared with hardwood wood.
However, it is generally considered that the dimensional change rate of wood increases in proportion to (in proportion to) the above-mentioned volume / weight increase rate.
For this reason, the softwood wood has a relatively large dimensional change rate and is inferior in dimensional stability to the hardwood wood, and is more likely to be warped, distorted, or twisted.
As a result, the wood fiber 9 described in Patent Literature 3 is dominated by the wood fiber direction of the element as a “short wood piece” having many wood fiber directions, and the dimensional change rate and the volume / weight increase rate are determined. Conceivable.
[0014]
This has the same problem also in the laminated wood 9 described in Patent Document 4.
That is, as shown in FIGS. 11 and 12, the direction of the wood fiber of the “field board” 97 as the material is governed and determined by the board thickness and tree type.
According to Patent Literature 4, the thicknesses of the joined base boards (two pieces) are not considered to be the same, and the wood fiber directions of the “field board” are the same as in the laminated wood described in Patent Document 1. There is a problem that assumes that
[0015]
On the other hand, Patent Literature 5 and Patent Literature 6 propose “stairs” or “stair landing members” composed of “laminates in which wood fibers are arranged in multiple directions” as in the present invention. The production method is not specifically described.
For this reason, there is no description on a specific method for producing a laminated material having an anisotropic fiber arrangement.
[0016]
[Non-patent document 1]
"Common sense of wooden house 123" (published by Japan Business Publishing Co., Ltd.)
58-67 "Especially for laminated wood"
[Patent Document 2]
JP-A-10-217211
[Patent Document 3]
JP 2001-232609 A
[Patent Document 4]
JP-A-09-123127
[Patent Document 5]
Japanese Patent Application No. 2002-258033
`` Staircase landing material ''
[Patent Document 6]
Japanese Patent Application No. 2002-343581
"Dimensional stability staircase"
[0017]
[Means for Solving the Problems]
Means taken by the present invention to solve the above problems are as follows. In order to more specifically describe the present invention, reference numerals used in the embodiments will be used to describe the present invention.
First, a means adopted by the invention according to claim 1 is a laminated wood in which a large number of square small pieces or rectangular small pieces having a predetermined plate thickness are laminated and joined,
The square small wood pieces and the rectangular small wood pieces are arranged in a horizontal direction in which wood fibers are arranged in multiple directions, and the vertical arrangement is alternately arranged, and a large number of these square small wood pieces and rectangular small wood pieces are laminated and bonded via adhesive application. Have been
It is an object of the present invention to provide a laminated wood 1 characterized in that the wood fibers are made of dimensionally stable wood having an omnidirectional fiber array formed by multidirectional arrangement or alternate arrangement. (See Fig. 1)
Thereby, it is possible to obtain the laminated wood 1 having a small dimensional change rate and a small volume / weight increase rate, a large bending strength and a large block shear strength, and excellent in various physical properties and dimensional stability (Examples 1 to 1). See Example 5).
[0018]
Further, the means adopted by the invention according to claim 2 is that the dimensionally stable wood is automatically selected from wood construction waste, woodwork scraps, and sawmill unused waste through a tree type, a board thickness, a board weight, and a board. It is intended to provide a laminated wood 1 characterized in that the wood is selected according to the area and the age with time to remove defective portions.
This makes it possible to determine the relationship between the type of wood and the use of the material by using an automatic sorter by determining the amount of chemical components in the wood and the mode of change in the morphology of the hardwood and coniferous wood and the age over time. At the present time, it is possible to contribute to environmental improvement by recycling resources that are not actively recycled.
[0019]
The means adopted by the invention according to claim 3 is a laminated veneer laminated with a decorative material adhered to at least the surface side of the laminated material and a balancing member adhered to the other surface side. It is intended to provide a laminated wood 1 characterized by the above. (See the bottom diagram in FIG. 1).
This makes it possible to adjust the water content in the front side portion visible from the external appearance of the laminated wood 1 and the other side portion that is not visible from the back side or outside, and to adjust the water movement in the wood by absorbing moisture in the air. . Therefore, it is possible to reduce the occurrence of defective wood such as warpage, distortion, and twisting of the glued laminated wood 1 caused by moisture transfer and heat, so that it is possible to obtain stair members, furniture, and box storage members with high processing accuracy. .
[0020]
On the other hand, the means adopted by the invention according to claim 4 is a lumbar plywood as one form of a laminated material formed as a sandwich structure including a laminated material or a ground plate as a raw material of the laminated material. The laminated wood 1 is provided.
Accordingly, it is possible to expand the use to a member for stairs, a member for furniture, a member for a door floor wall, and the like, and to perform high-precision processing thereof.
[0021]
On the other hand, the heterodirectional fiber array is a parquet array, a staggered array, a multidirectional array, a staggered array, or a combination thereof (see FIGS. 3 (a) to (f), FIGS. 4 and 5). To provide a laminated wood 1 characterized by the following.
As a result, the omnidirectional fiber arrangement of the wood fibers is diversified, and various physical properties that are random and balanced, such as bending strength and block shear strength, are improved.
[0022]
The means adopted by the invention according to claim 6 is that an omnidirectional fiber array having an omnidirectional fiber array or a lamban plywood is a construction laminated wood, a structural laminated wood, a veneered laminated wood, a multiaxial construction. There is provided a laminated wood 1 which is a member and has applications as a member for stairs, a member for a door floor, and a member for furniture.
This is because, when a conventional laminated wood is used for a member for stairs, a member for a door floor, and a member for furniture, a strong impact load causes cracks or breakage, which is material destruction (see FIGS. 13 to 16). On the other hand, the laminated wood of the present invention has a good balance of the omnidirectional fiber arrangement of the wood fibers, so that warpage, distortion and twisting are reduced, and the quality is excellent in dimensional stability and various physical properties. This is because stability can be obtained.
[0023]
On the other hand, the means adopted by the invention according to claim 7 includes a humidity control drying step for adjusting the moisture content of the raw wood, and a method of converting the raw wood into a predetermined board thickness, a piece of square small wood and a piece of rectangular small wood. Board and sawing process, a square piece of wood of a predetermined board thickness, a design step of laying out rectangular pieces of wood such that wood fibers are arranged in an omnidirectional fiber array, and the square pieces of wood and rectangular pieces of wood are arranged horizontally. In addition, a temporary arrangement for vertically arranging the square small wood pieces and the rectangular small wood pieces so that they are alternately arranged, and after preliminary bonding, preliminarily dry and grind the joining surface of the square small wood pieces and the rectangular small wood pieces through the application of an adhesive. A square wood piece predetermined arrangement step of preparing a plate for press forming by moving a board to a predetermined position where a square small wood piece and a rectangular small wood piece are laid out by the designing process, Small wood, rectangular small A molding step of press-press molding for laminating and joining a large number of pieces, a curing step in which the molded product obtained by the molding step is left in a humidified state for a predetermined period, and a final step of lumbering, finishing, inspection, packing. It is intended to provide a method for manufacturing a laminated wood characterized by comprising:
As a result, the laminated wood 1 having a small dimensional change rate and a small volume / weight increase rate, a large bending strength and a high block shear strength, and excellent in quality stability such as various physical properties and dimensional stability can be efficiently and advantageously obtained. Can be obtained.
[0024]
Means adopted by the invention according to claim 8 is that any one of wood building waste, woodwork scrap, unused sawn timber, and natural wood or a combination thereof is automatically selected through tree sorting and board thickness. It is another object of the present invention to provide a method for manufacturing a laminated wood 1 characterized by being a piece of wood from which a defective portion has been removed, which is sorted by board weight, board area, and time sequence.
As a result, the hardwood wood, the softwood wood, and the age of the wood can be determined efficiently and effectively using an automatic sorter by determining the form of the chemical component and the tissue form in the wood. In addition, while judging the relationship between the tree species of the square small wood pieces 11 and the rectangular small wood pieces 12 having a predetermined plate thickness (for example, 10 to 30 mm), which are the materials, and their uses, the arrangement and the vertical arrangement in multiple directions as a horizontal arrangement are performed. By laying out a staggered array as a directional array by a computer, it is possible to efficiently and advantageously design an omnidirectional fiber array.
At the present time, it is possible to provide a method of manufacturing the laminated wood 1 suitable for environmental improvement by recycling resources that are not actively recycled.
[0025]
The means adopted by the invention according to claim 9 and claim 10 is that the automatic sorting means is a moisture measuring instrument, a temperature measuring instrument, a dimension measuring instrument, a weight measuring instrument, a chemical composition measuring instrument for wood, It is intended to provide a method of manufacturing a laminated wood 1 characterized by comprising one or a combination of a physical property measuring device, an X-ray irradiation / fractionation device, and an electromagnetic wave induction / division device.
As a result, the wood from which the defective portion of the raw wood has been removed can be obtained by using various physical properties (for example, bending strength and compressive strength) of the wood and using any of an X-ray irradiation / fractionation apparatus, an electromagnetic wave transmission analyzer, and a light transmission apparatus. A defective portion can be detected and the portion can be efficiently and advantageously removed by cutting and removing means.
[0026]
On the other hand, the means adopted by the invention according to claim 11 is that the tree species is one or more hardwood hardwoods selected from beech, zelkova, hippopotamus, apiton, mizunara, maple, oak, shioji, tamo, elm It is intended to efficiently and advantageously provide the laminated wood 1 as wood.
Thereby, the surface hardness of the square small piece 11 and the rectangular small piece 12 used for the laminated wood 1 is improved, and a material (element) having high strength, small dimensional change rate and excellent dimensional stability can be obtained. In addition, hardwood hardwood generally improves surface hardness by about 20 to 30% as compared with softwood porous wood, so that durability such as abrasion resistance is improved.
In addition, hardwood hardwoods are generally “air-dry specific gravity” and “tensile strength” or “compression strength” measured using square small wood pieces 11 and rectangular small wood pieces 12 as test pieces, as compared with softwood wood, and further bent. Excellent physical properties such as strength and shear strength.
[0027]
The means adopted by the invention according to claim 12 is that the predetermined plate thickness is 10 to 30 mm, the square piece is 20 to 80 mm square, and the width (width dimension) of the rectangular piece is 20 to 50 mm. And a laminated wood 1 having a vertical dimension of 30 to 100 millimeters.
Thereby, it is possible to obtain the square small wood pieces 11 and the rectangular small wood pieces 12 more efficiently and advantageously than the wooden building waste material, the woodwork scraps, and the unused sawmill waste material. The handling and storage of the rectangular piece 12 is convenient.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the laminated wood and the method for manufacturing the same according to the present invention will be specifically described with reference to the drawings and the embodiments, using examples and drawings.
According to the invention as set forth in the claims, it is "a laminated wood in which a large number of square small wood pieces 11 or rectangular small wood pieces 12 having a predetermined plate thickness are laminated and joined".
The predetermined plate thickness is preferably, for example, 10 to 30 mm as described in claim 12. This is because square pieces 11 and rectangular pieces 12 are easily obtained, and are convenient for transportation and storage in the method of manufacturing the laminated wood 1. In particular, in the present invention, it is preferable to actively recycle the raw wood from wooden construction waste materials, woodwork scraps, and sawn wood unused waste materials. It is difficult to obtain raw wood, and in view of the prevention of desertification of the earth due to over harvesting of raw wood, it is currently being recycled or incinerated, and the air (environmental environment) due to emissions of carbon dioxide, dioxin, etc. This is because it is urgently necessary to prevent pollution.
[0029]
On the other hand, the square piece 11 is preferably 20 to 80 mm square (including a substantially square shape). For the same reason as described above.
In addition, the rectangular small piece 12 preferably has a width (horizontal dimension) of 20 to 50 mm and a vertical length (vertical dimension) of 30 to 100 mm. The reason is as described above. In addition, the square small wood piece 11 and the rectangular small wood piece are also called sawing materials, and are also called elements in the present invention.
[0030]
Examples of the wooden building waste include building waste discharged and incinerated in the demolition and repair of wooden buildings.
Examples of the woodwork scrap include scrap wood that is discarded and incinerated during the construction of furniture, doors, and the like.
Examples of the unused sawn timber include, for example, shaved wood that is generated when raw wood, particularly hardwood hardwood is cut to a predetermined size and board thickness and cut.
As mentioned above, more important and effective use of wood construction waste, woodwork scraps, and unused sawmill waste will lead to the improvement of the global environment through the recycling of resources.
[0031]
A glued laminated wood 1 in which a large number of square small wood pieces 11 or rectangular small wood pieces 12 are laminated and joined, and these square small wood pieces 11 and rectangular small wood pieces 12 are arranged in a horizontal direction, and as shown in FIG. 1 and FIG. And the vertical arrangement is staggered.
The horizontal arrangement includes, for example, a parquet arrangement (see FIGS. 3 and 4) and a staggered arrangement (see FIG. 1). As the vertical arrangement, for example, in a multi-layered joint, there is a parquet-shaped arrangement which is an aspect of the staggered arrangement.
[0032]
An adhesive is applied to the square small wood pieces 11 and the rectangular small wood pieces 12, and a large number of them are laminated and joined (see FIG. 1). Examples of the adhesive include urea resin, melamine resin, urea / melamine cocondensation resin, phenol resin, melamine-modified phenol resin, resorcinol resin, phenol / resorcinol resin, and aqueous polymer isocyanate resin.
As the multi-layer joining, for example, there are a case in which the clamp is performed by tightening with a cold press, and a case in which the screw is directly tightened with a torque wrench.
The pressing pressure is, for example, 10 to 15 kg / cm 2 in the case of a resin having a high specific gravity, especially hardwood hardwood, and 8 to 10 kg / cm 2 in the case of a low specific gravity.
The adhesive is applied at a rate of about 200 to 250 g / m 2 per adhesive layer, and is applied using a glue spreader or a roller or a brush in a small scale. In addition, it can respond to mass production using a spray coating machine or a curtain flow coater.
[0033]
The glulam 1 is made of dimensionally stable wood having an omnidirectional fiber arrangement in which the wood fibers are formed in a multidirectional arrangement or a staggered arrangement.
It should be noted here that the conventional wood fiber 9 has an odd number of wood fibers according to Patent Documents 2, 3, and 4, and the plate thickness may be different for each element. On the other hand, the element of the present invention is, as described in claim 12, 10 to 30 mm, and has substantially the same plate thickness in all the elements. As a result, the whole wood fibers of the laminated wood 1 become an omnidirectional fiber arrangement (hereinafter also referred to as a random arrangement), a dimensional change rate and a volume / weight increase rate become small, and various physical properties such as bending strength and block shear strength are obtained. The purpose is to have excellent mechanical properties and dimensional stability.
[0034]
The dimensional change rate is controlled in the direction of the wood fiber, and the dimensional change rate and the volume / weight increase rate by the immersion peeling test increase depending on the occupancy rate of the laminated wood to the entire element. Since the dimensional change rate and the volume / weight increase rate are presumed to be in a proportional relationship, it is considered that the magnitude of the dimensional change rate can be determined by knowing the volume / weight increase rate by measurement. . This will be described later in Examples 1 to 5.
[0035]
In the present invention, the anisotropic fiber arrangement means that the wood fibers are arranged in multiple directions and the wood fibers are not deflected by the random arrangement. The dimensionally stable wood means that the rate of increase in volume and weight measured by, for example, an immersion peeling test is 2 to 5% or less, and the dimensional change rate is 1 to 3% or less.
Thereby, the conventional laminated wood 9 is deflected in one axis direction or orthogonal direction or 30 to 60 degrees, and is controlled by the element occupancy in the direction of the wood fiber of the element having the large occupancy, thereby reducing the dimensional change rate. Is determined, and is presumed to be closely related to the rate of increase in volume and weight by the immersion peel test.
[0036]
Dimensionally stable wood is preferably used as a wooden construction waste, woodwork production scrap, and automatic sorting means. The reasons and examples are the same as the reasons and examples for adopting the invention described in claim 2 as described above.
Examples of the laminated construction materials include, for example, a member for stairs construction, a member for door floor walls, and a member for furniture construction, and a thin plate obtained by slicing a veneer or hardwood hardwood on the surface side or the entire surface of the laminated wood 1. (See the lowermost diagram in FIG. 1).
As the stair-forming member, for example, as shown in FIG. 2, in addition to the tread plate 21, the riser plate 22, the side plate (also referred to as a side girder) 23, a landing member, a handrail, a handrail, a power girder (not shown), and the like. There is. The tread plate 21, the riser plate 22, and the side plate 23 are joined by fitting joint concave portions 212, 232.
[0037]
As the lumber plywood, for example, for each core material or each layer (each element), a ground plate used in the laminated wood 1 according to the present invention is included in a sandwich structure, and other elements are arranged such as Lauan materials so that the respective elements are orthogonal to each other. Special plywood. In the present invention, as described above, the square small wood pieces 11 and the rectangular small wood pieces 12 are made of natural wood, especially hardwood hardwood as a part of the raw wood, in addition to the wooden construction waste material, the woodwork production scrap material, and the sawmill unused waste material. Can also be used.
[0038]
Examples of the application of the adhesive include a urea resin, a melamine resin, a phenol resin, a resorcinol resin, and a co-condensation or modification resin thereof.
The press and pressure forming for laminating and joining a large number of small square pieces 11 and rectangular small pieces 12 is preferably about 5 to 15 kg / cm 2 by cold pressing, for example. The amount of the adhesive applied is preferably, for example, about 200 to 250 g / m 2. This is because a laminated wood 1 having a bending strength or a block shear strength equal to or higher than the standard value of Japanese Agricultural Standard is obtained.
[0039]
As hardwood hardwood, for example, beech, zelkova, oak, hippopotamus, apiton, mizunara, maple, shioji, ash, elm and the like are preferable. This is because it has better dimensional stability and various physical properties than coniferous wood such as cedar, hinoki and pine.
In addition, the defective portion-removed wood means, for example, holes, nodes, and other defective wood portions having poor bending strength and block shear strength.
The defective portion of the wood from which the defective portion has been removed is removed by circular sawing or router processing.
[0040]
As a manufacturing method of the laminated wood 1, for example, as shown in FIG. 7, (1) raw wood adjustment 51, (2) ground wood preparation 52, (3) ground wood piece different direction arrangement 53, (4) adhesive compression hardening 54, (5) curing 55, lumber 56, and other processes 591 to 594.
Further, as a method of manufacturing lumbar plywood, for example, as shown in FIG. 8, (1) adjustment of raw wood 61, (2) preparation of sawn timber 62, (3) arrangement with lauan wood (multi-lamination joining) 63, (4) Each step includes adhesive application (sandwich lamination) 64, (5) adhesive press hardening 65, (6) curing 66, and (7) finishing 67.
[0041]
What is most noticeable here is that as shown in FIGS. 3 to 5 and as exemplified in Example 3, the omnidirectional fiber arrangement of the laminated wood is, for example, various parquet-shaped arrangements (a) to (f). ) (FIG. 3), as shown in FIGS. 4 and 5, there is a triangular composite parquet array (FIGS. 4 and 5).
In each of the drawings, arrows mainly indicate wood fibers.
[0042]
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
[0043]
(Example 1)
As shown in the uppermost diagram in FIG. 1, the laminated wood 1 of this example employs a square small wood piece 11, a rectangular small wood piece 12, a staggered arrangement as a horizontal arrangement and a vertical arrangement.
The square small wood piece 11 has a total thickness of 15 or 20 mm and a square shape of 40 to 50 mm.
The rectangular small wood pieces 12 each had a thickness of 15 or 20 mm, a width (horizontal dimension) of 40 to 50 mm, and a length (vertical dimension) of 30 to 100 mm.
[0044]
In this example, first, the small square pieces 11 and the rectangular small pieces 12 were alternately arranged in the horizontal direction and three-layered in the vertical direction. As shown in the uppermost diagram in FIG. 1, a square small piece of wood 11 was used as the central core material, and the thickness of the upper and lower layers was set to 20 mm, which is 5 mm larger than the thickness of 15 mm.
The reason for this is that while the upper and lower layers constitute two layers, the central core material is a single layer of square small wood pieces 11, and the wood fiber direction is in a balanced arrangement as a whole, and the dimensional change rate and volume / weight increase rate are reduced. This is for reducing the influence.
[0045]
The square small piece 11 and the rectangular small piece 12 were designed and arranged in a horizontal direction and a vertical direction mainly so as to be about 40% of wooden construction waste material, about 30% of woodwork scraps and about 30% of unused sawmill waste material. Things.
The resin was mainly used at a ratio of about 50% of apiton, about 30% of oak, and about 30% of oak and zelkova. This is because it is easy to obtain as a wooden construction waste material and woodwork scrap and is relatively inexpensive. Apithone is mainly imported, and it is difficult to obtain it recently in Japan, like Mizunara and Zelkova.
[0046]
The outline of the “dimensional change rate” and “volume / weight increase rate” as main physical properties of the laminated wood 1 configured as described above, and further, the bending strength and the block shear strength will be described.
As the “volume / weight increase rate”, a test piece having a size of 30 × 30 mm and a plate thickness of 50 mm was used. The "hardness effect" (bulking) and the "weight increase rate" (polymer content) of this test piece were measured.
The measurement conditions were as follows: the test piece was immersed in warm water of about 70 degrees Celsius (Celsius) for 2 to 4 hours, dried, and then the test piece before and after azelaic acid treatment was completely dried (dried at 105 degrees for 48 hours). It was used.
[0047]
The rate of change in volume and weight as the rate of change in volume expansion was determined by the following equation.
Volume / weight increase rate = Value (%) obtained by subtracting the test piece in the completely dry state after the treatment from the weight of the test piece before the azelanic acid treatment, and dividing this value by the weight of the test piece before the treatment.
[0048]
The smaller the volume / weight increase rate, the smaller the dimensional change rate, and it can be determined that the laminated wood 1 has excellent dimensional stability. This is because the water absorption capacity is low, and the test piece of the laminated wood 1 is considered to have a small dimensional change rate.
The rate of increase in volume and weight of the laminated wood 1 of this example is about 40% when the drying temperature is 105 ° C., whereas the lumbar plywood is about 55%, and the conventional laminated wood 9 (corresponding to Patent Document 2). Was about 65%, and the equivalent of Patent Document 3 was about 80%.
[0049]
As is clear from the above results, according to this example, it is possible to obtain the laminated wood 1 having a small volume / weight increase rate and a small dimensional change rate and excellent dimensional stability.
In addition, after two cycles of immersion treatment in water or boiling water specified in Japanese Agricultural Standards (multi-arranged claim woodwork production scraps) for 24 hours, and drying test treatment at 70 degrees, the immersion and peeling test was performed on the adhesive strength. It is assumed to be a measure of.
The test piece used had a length of 75 mm and a width of 25 mm.
The block shear strength and bending strength used were 25 mm square small wood pieces with a board thickness of 5 mm.
[0050]
As a result, the laminated wood 1 of an omnidirectional fiber array made of hardwood hardwood of this example has a block shear strength of 84 to 96 kg / square centimeter, while the conventional laminated wood 9 made of softwood wood (Patent Document 2). And the equivalents of Patent Document 3) were 60 to 66 (the unit is the same as described above, and is omitted below).
In addition, the shear stress was 14 to 16 for the laminated wood 1 of this example, 10 to 11 for conifers (cypress) of the conventional laminated wood 9 and 8 to 9 for cedar.
[0051]
As described above, according to the present example, the dimensional change rate and the volume / weight increase rate are small, the bending strength and the block shear strength are large, and various physical properties and dimensional stability are compared with the conventional laminated wood 9. It was possible to obtain a laminated wood 1 having excellent properties. This is presumed to be because the laminated wood 1 according to the present example is mainly composed of hardwood hardwood, and the wood fibers have an omnidirectional fiber arrangement.
[0052]
(Example 2)
As shown in the middle and bottom views of FIG. 1, the laminated wood 1 of this embodiment provides the laminated wood 1 as a veneered laminated wood.
As shown in FIG. 1, the laminated wood 1 of the present embodiment is composed of six or four layers of elements.
The veneer laminated timber 10 is a veneer made of zelkova hardwood solid wood adhered to the four sides. The veneer has a thickness of about 0.3 mm and is obtained by slicing natural log materials.
Other configurations were the same as those of the first embodiment.
[0053]
As a result, various physical characteristics such as bending strength and block shear strength were improved by about 20 to 30% as compared with the laminated wood 1 according to Example 1.
This is considered to be because the cosmetic material 113 is provided on all sides as described above.
In addition, the decorative laminated glue according to the present example has a veneer decorative material as a decorative material on the entire surface side, so that it has a good appearance, a staircase forming member, a door floor wall member, and a furniture structure as a building laminate. It can be used as a laminated material 1 that emphasizes the appearance of a Kamoi or a counter, etc.
[0054]
(Example 3)
As shown in FIGS. 3 (a) to 3 (f) and FIG. 4 or FIG. 5, the laminated wood 1 according to this example has a horizontal arrangement on the surface side in a parquet arrangement or a triangular composite parquet arrangement. .
As shown in FIGS. 3A to 3F, the parquet shape arrangement is such that four square small wood pieces 11 are regularly arranged with the square small wood piece 11 and the rectangular small wood piece 12 as center points.
[0055]
Further, as shown in FIGS. 4 and 5, a triangular composite parquet-shaped arrangement is constituted by a mixed arrangement of square small pieces 11 and rectangular small pieces 12.
Therefore, the direction of the wood fiber is particularly multidirectional, and as the multiaxial component, for example, a landing member of a staircase (see Patent Document 4) or, as shown in FIG. 2, a tread plate 21, a riser plate 22, a side plate 23, etc. of the staircase 2 Can be used. In addition, the joint part of the said stairs has the uneven | corrugated fitting part 211,231.
[0056]
In addition, as shown in FIG. 6, the glued laminated wood 1 according to the present example may have a broken portion (see 960 in FIG. 16) like the conventional wood fiber 9 even if the hole 120 is drilled using the drill 3. Did not. In addition, the dimensional change rate and the immersion peel test were small, the bending strength and the block shear strength were large, and various physical properties and dimensional stability were as excellent as the laminated wood 1 according to Example 1.
(Example 4)
This example describes a method for manufacturing the laminated wood 1 of the present invention.
As shown in FIG. 7, (1) Atsugi adjustment 51, (2) Ground plate creation 52, (3) Ground plate piece different direction arrangement 53, (4) Adhesive press hardening 54, (5) Curing This is a method for manufacturing the laminated wood 1 including various steps of 55, (6) lumber 56, and other steps 591 to 594.
[0057]
A resorcinol resin was used as the adhesive, and the coating amount was 225 g / m 2.
The adhesive pressure hardening was performed using a cold press, and the molding pressure was 14 kg / cm 2.
[0058]
In addition, the thickness of each of the small square pieces 11 and the rectangular small pieces 12 was set to 25 mm. The square piece 11 was 30 mm square, and the rectangular piece 12 was 30 mm wide (horizontal dimension) and 50-80 mm long (vertical dimension).
Otherwise, the configuration was the same as in the first embodiment. As a result, similarly to the laminated wood 1 according to Example 1, the laminated wood 1 having a small dimensional change rate and a small volume / weight increase rate, a large bending strength and a large block shear strength, and excellent in dimensional stability and various physical properties. Was obtained.
[0059]
(Example 5)
In this example, as shown in FIG. 8, a method of manufacturing a lumber plywood containing a sawn timber is shown.
The manufacturing method includes: (1) raw wood adjustment 61, (2) sawn wood preparation 62, (3) array 64 as a vertical array of lauan wood, (4) adhesive applied sandwich lamination 64, (5) And (6) curing (65), and (7) finishing 67.
[0060]
In this example, a melamine-urea co-condensation resin was used instead of the resorcinol resin in Example 4.
The molding pressure was set to 11 kg / square centimeter instead of 14 kg / square centimeter.
The amount of the adhesive applied was 240 g / cm 2 instead of 225 g.
Other configurations were the same as those of the fourth embodiment.
Note that the lumbar plywood according to this example is considered to be one embodiment of the laminated wood 1. They are common in the use of sawn timber, because this sawn timber consists of an omnidirectional fiber arrangement. It is particularly suitable for use as a member for stairs, a member for a door floor, and a member for furniture.
[0061]
【The invention's effect】
The present invention is constituted by claims 1 to 12. Therefore, the following effects are exhibited.
According to the first aspect of the present invention, a laminated wood 1 having a small dimensional change rate and a small volume / weight increase rate, a large bending strength and a large block shear strength, and excellent physical properties and dimensional stability is obtained. I can do it.
According to the second aspect of the present invention, it is possible to determine the mode of the tissue morphological change from the hardwood wood and the softwood wood and the age with time from the chemical components in the wood, for example, the lignin resin content and the cellulose content. . Then, the relationship between the tree type of the ground plate serving as the material and the application can be determined using the automatic sorter.
[0062]
In addition, resources that are not actively recycled at present can be recycled and contribute to the improvement of the environment.
And, in the past, most of the wooden construction waste, woodwork scraps, and unused sawn timber were incinerated, or pulp and paper as paper and buddles and fibers were not effectively used. It can prevent global warming due to the generation of air pollution and air pollution due to generation of harmful gases such as dioxin.
[0063]
According to the third aspect of the present invention, the water content of the front side portion visible from the external appearance of the laminated wood 1 and the other side portion not visible from the back side or outside and the moisture content in the wood due to the absorption of moisture in the air. It is possible to adjust the movement of water.
Therefore, the generation of defective wood such as warpage, distortion, and twist of the laminated wood 1 caused by the movement of moisture and the movement of heat can be reduced. Therefore, it is possible to advantageously obtain a multiaxial component such as a staircase component, a door floor wall member, and a furniture component as a multiaxial component having high processing accuracy. These members require particularly high processing accuracy, and can prevent material breakage of “damaged portions” (see FIGS. 13 to 16), which has caused a problem in the use of the conventional laminated wood 9.
[0064]
According to the invention as set forth in claim 4, it is possible to expand applications of the member for stairs, the member for the door floor wall, the member for furniture, and to perform high-precision processing thereof.
According to the fifth aspect of the present invention, the omnidirectional fiber arrangement of the wood fibers can be diversified and evenly distributed at random to obtain a well-balanced high-quality laminated wood 1.
[0065]
On the other hand, according to the invention as set forth in claim 6, since the laminated wood 1 has a good balance of the omnidirectional fiber arrangement of the wood fibers, the generation of defective wood such as warpage, distortion and twisting is prevented, and the size of the laminated wood 1 is reduced. A laminated wood 1 excellent in stability and various physical properties can be obtained.
On the other hand, according to the invention of claim 7, the dimensional change rate and the volume / weight increase rate are small, while the bending strength and the block shear strength are large, and the physical properties and the quality stability such as dimensional stability are excellent. Laminated glue 1 can be obtained efficiently and advantageously.
[0066]
According to the invention as set forth in claim 8, the hardwood wood and the softwood wood and the age are determined by determining the chemical composition of the wood, such as the lignin resin component and the form of the tissue form such as cellulose, and using an automatic sorter. The determination can be made efficiently and advantageously.
In addition, while judging the relationship between the tree species of the square small wood pieces 11 and the rectangular small wood pieces 12 having a predetermined plate thickness (for example, 10 to 30 mm), which are the materials, and the application, the arrangement is performed in multiple directions as a horizontal direction and in the vertical direction. By laying out a staggered array as an array by a computer, it is possible to efficiently and advantageously design an omnidirectional fiber array.
[0067]
In addition, it is possible to provide a method of manufacturing the laminated wood 1 suitable for environmental improvement by recycling resources that are not actively recycled at present.
According to the ninth and tenth aspects of the present invention, the wood from which the defective portion of the raw wood has been removed has various physical characteristics (eg, bending strength and compressive strength) of the wood, X-ray irradiation analysis, electromagnetic wave transmission analysis, and the like. A wood defect can be detected using any of the light transmission devices, and the portion can be efficiently and advantageously removed by cutting and removing means.
[0068]
On the other hand, according to the invention as set forth in claim 11, the wood species can efficiently and advantageously provide the laminated wood 1 composed of one or more hardwood hardwoods selected from hardwood hardwoods. I can do it.
On the other hand, according to the invention as set forth in claim 12, it is possible to obtain the square small wood pieces 11 and the rectangular small wood pieces 12 more efficiently and advantageously than the wooden construction waste materials, woodwork scraps, and sawn wood unused waste materials. In the manufacturing method of the laminated wood 1, the handling and storage of the square pieces 11 and the rectangular pieces 12 are convenient.
As described above, according to the present invention, it is possible to efficiently and advantageously obtain the laminated material 1 having the anisotropic fiber arrangement.
[Brief description of the drawings]
FIG. 1 is a perspective view of a laminated wood and a veneered laminated wood according to Examples 1 and 2 of the present invention.
FIG. 2 is a partial perspective view showing a state in which a staircase is formed by using the laminated wood 1 according to the third embodiment of the present invention.
FIG. 3 is a plan view of various aspects of a parquet array as a horizontal array of glulam according to Example 3.
FIG. 4 is a plan view showing an example of a triangular composite parquet array as a horizontal array of glulams according to Example 3.
FIG. 5 is a plan view showing another embodiment of a triangular composite parquet array as a horizontal array of glulams according to Example 3.
FIG. 6 is a partial perspective view showing a state in which a hole is made in the laminated wood of the present invention.
FIG. 7 is a process explanatory view showing a manufacturing flow sheet for a laminated material having an anisotropic fiber arrangement according to the present invention.
FIG. 8 is an explanatory view showing a manufacturing flow sheet for lumbar plywood, which is one embodiment of the laminated wood of the present invention.
FIG. 9 is a plan view showing a unidirectional arrangement of wood fibers of a conventional laminated wood.
FIG. 10 is a perspective view of an equivalent product described in a conventional example (Patent Document 2).
FIG. 11 is a perspective view of the laminated wood showing the wood fiber direction of the conventional laminated wood.
FIG. 12 is a plan view showing a wood fiber direction as a horizontal arrangement showing another embodiment of Conventional Example 3 (equivalent to that described in Patent Document 3).
FIG. 13 is an explanatory perspective view of defective wood having a damaged portion showing a state in which a heavy load is applied to a conventional laminated wood.
FIG. 14 is an explanatory diagram of a problem that causes a defective portion when the conventional laminated wood 9 is used for a staircase.
FIG. 15 is an explanatory diagram of a problem that a defective portion is generated when the conventional laminated wood 9 is used for a staircase.
FIG. 16 is an explanatory diagram of a problem showing a state in which a hole is made using a drill in the laminated wood according to the present invention.
[Explanation of symbols]
1 Glued lumber
10 Decorative laminated wood
11 Square pieces
12 Small rectangular pieces
2 stairs
21 Stepping board
22 riser
23 Side plate
211, 231 Stairs uneven fitting part

Claims (12)

所定板厚さの正方形小木片ないしは、長方形小木片を多数積層接合した集成材であって、
前記正方形小木片、長方形小木片は、水平方向配列として木材繊維が多方向に配列され、かつ垂直方向配列は互い違い配列され、これら正方形小木片、長方形小木片には接着剤塗布を介して多数積層接合されてなり、
前記木材繊維が多方向に配列ないしは互い違い配列により形成された異方向性繊維配列を有してなる寸法安定木材からなることを特徴とする集成材。
A square piece of wood or a small piece of rectangular board with a predetermined board thickness,
The square small wood pieces and the rectangular small wood pieces are arranged in a horizontal direction in which wood fibers are arranged in multiple directions, and the vertical arrangement is alternately arranged, and a large number of these square small wood pieces and rectangular small wood pieces are laminated via adhesive application. Become joined,
A laminated wood, wherein the wood fibers are made of dimensionally stable wood having an omnidirectional fiber arrangement formed in a multidirectional arrangement or a staggered arrangement.
寸法安定木材は、木造建築廃材、木工製作端材、製材未利用廃材から自動的選別手段を介して樹種、板厚さ、板重量、板面積、経時年数別により選別され、欠陥部分除去木材にしたことを特徴とする請求項1に記載の集成材。Dimensionally stable wood is automatically sorted out from wood construction waste, woodwork scraps, and unused wood from sawdust by means of tree species, board thickness, board weight, board area, age over time, and is used to remove defective parts. The laminated wood according to claim 1, wherein 集成材の少なくとも表面側には化粧材を貼着し、他面側にはバランス用部材を貼着してなる化粧張り集成材であることを特徴とする請求項1、請求項2に記載の集成材。The decorative laminate according to claim 1, wherein a decorative material is attached to at least a surface side of the laminated material and a balancing member is attached to the other surface side. Glulam. 集成材又は集成材原料である挽き板を含むサンドイッチ構成材として形成される集成材の一態様としてのランバー合板であることを特徴とする請求項1、請求項2、請求項3に記載の集成材。The laminated body according to any one of claims 1, 2 and 3, wherein the laminated body is a lumbar plywood as one mode of the laminated body formed as a sandwich component including a laminated wood or a ground plate as a laminated wood raw material. Wood. 異方向性繊維配列は、寄木形状配列、千鳥状配列、多方向に配列、互い違い配列又はこれらの組み合せ配列であることを特徴とする集成材。The laminated wood, wherein the heterodirectional fiber array is a parquet array, a staggered array, a multidirectional array, a staggered array, or a combination of these. 異方向性繊維配列を有する集成材又はランバー合板は、造作用集成材、構造用集成材、化粧張り集成材の多軸構成部材であって、
階段構成用部材、ドア床壁面用部材、家具構成用部材としての用途があることを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5に記載の集成材。
Glulam or lumbar plywood having an omnidirectional fiber array is a multi-axial component of a construction glulam, a structural glulam, a veneered glulam,
The laminated wood according to any one of claims 1, 2, 3, 4, and 5, which is used as a member for stairs, a member for a floor surface of a door, or a member for furniture.
原木の水分調整等のための調湿乾燥工程と、該原木を所定板厚さ、正方形小木片、長方形小木片の挽き材とする調板、製材工程と、所定板厚さの正方形小木片、長方形小木片を木材繊維が異方向性繊維配列されるようレイアウトする設計工程と、該正方形小木片、長方形小木片を水平方向配列し、かつ正方形小木片と長方形小木片とが互い違い配列となるよう垂直方向配列させるための仮配列、仮接合後に、正方形小木片、長方形小木片の接合面に接着剤塗布を介し、予備乾燥して挽き板を前記設計工程により正方形小木片、長方形小木片をレイアウトした所定の位置に移動させた後に配置してプレス成形の準備をする挽材片所定配置工程と、前記挽材片所定配置された正方形小木片、長方形小木片を多数積層接合するプレス加圧成形する成形工程と、該成形工程により得られた成形物を所定期間調湿状態で放置しておく養生工程と、製材仕上げ、検査、荷造りを行う最終工程とよりなることを特徴とする集成材の製造方法。Humidity control drying process for moisture adjustment of raw wood, etc., the raw wood having a predetermined board thickness, square small wood pieces, sawn board as a sawn material of rectangular small wood pieces, sawing process, square wood pieces of predetermined wood thickness, A design process of laying out rectangular small wood pieces so that the wood fibers are arranged in different directions, and the square small wood pieces and the rectangular small wood pieces are horizontally arranged, and the square small wood pieces and the rectangular small wood pieces are alternately arranged. Temporary arrangement for vertical alignment, after temporary joining, square adhesive and rectangular small wooden pieces are pre-dried through adhesive application to the joining surface, and ground boards are laid out according to the above design process square small wooden pieces and rectangular small wooden pieces A sawing piece predetermined arrangement step of arranging after being moved to a predetermined position and preparing for press forming, and press-press forming of laminating and joining a large number of square small pieces and rectangular small pieces on which the said sawing pieces are arranged. Shirunari And a final step of performing lumber finishing, inspection, and packing, wherein the molding obtained by the molding step is left in a humidified state for a predetermined period of time, and a final step of performing lumber finishing, inspection, and packing. . 原木は、木造建築廃材、木工製作端材、製材未利用廃材、天然木材のいずれか又はその組み合せ木材を自動的選別手段を介して樹種、板厚さ、板重量、板面積、時経列別に選別された欠陥部分除去木材であることを特徴とする請求項7に記載の集成材の製造方法。Raw wood is either wood construction waste, woodwork scraps, unused wood sawn timber, or natural wood, or a combination of timber, through automatic sorting means by tree type, board thickness, board weight, board area, and time sequence. The method for producing a laminated wood according to claim 7, wherein the selected wood is a defective portion-removed wood. 自動的選別手段は、水分測定器、温度測定器、寸法測定器、重量測定器、木材の化学成分測定器、諸物理特性測定器、X線照射分折装置、電磁波誘導分折装置のいずれか一種又は、これらの組合せからなることを特徴とする請求項7、請求項8に記載の集成材の製造方法。The automatic sorting means can be any of a moisture meter, a temperature meter, a dimension measuring instrument, a weight measuring instrument, a chemical composition measuring instrument for wood, a measuring instrument for various physical properties, an X-ray irradiation / analysis apparatus, and an electromagnetic wave induction / analysis apparatus. The method for producing a laminated wood according to claim 7, wherein the method comprises one kind or a combination thereof. 欠陥部分除去木材は、木材の諸物理的特性と、X線照射分析装置、光透過装置、電磁波透視分析装置により、木材欠陥部分を検出して、該部分を除去し、所定板厚さの正方形小木片、所定板厚さを形成することを特徴とする請求項7、請求項8、請求項9に記載の集成材の製造方法。Defect-removed wood is obtained by detecting the physical properties of the wood, detecting the defective portion of the wood using an X-ray irradiation analyzer, a light transmission device, and an electromagnetic fluoroscopic analyzer, removing the portion, and then removing the square with a predetermined thickness. The method for manufacturing a laminated timber according to claim 7, 8 or 9, wherein the small pieces of wood are formed with a predetermined thickness. 樹種は、ブナ、ケヤキ、カバ、アピトン、カシ、ミズナラ、イタヤカエデ、シオジ、タモ、ニレから選ばれた1種又は1種以上の広葉樹堅牢木材であることを特徴とする請求項7、請求項8、請求項9、請求項10に記載の集成材の製造方法。The tree species is one or more hardwood hardwood selected from beech, zelkova, hippopotamus, apiton, oak, mizunara, maple, shioji, ash, elm. The method for producing a glulam according to claim 9 or claim 10. 所定板厚さが、10〜30ミリメートルで、正方形小木片は20〜80ミリメートル四方、長方形小木片は幅20〜50ミリメートル、タテ寸法30〜100ミリメートルであることを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10、請求項11に記載の集成材の製造方法。The predetermined plate thickness is 10 to 30 mm, the square piece is 20 to 80 mm square, the rectangular piece is 20 to 50 mm in width, and the vertical dimension is 30 to 100 mm. The method for producing a laminated wood according to any one of claims 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, and 11.
JP2003029242A 2003-02-06 2003-02-06 Laminated lumber and its production method Pending JP2004237575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029242A JP2004237575A (en) 2003-02-06 2003-02-06 Laminated lumber and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029242A JP2004237575A (en) 2003-02-06 2003-02-06 Laminated lumber and its production method

Publications (1)

Publication Number Publication Date
JP2004237575A true JP2004237575A (en) 2004-08-26

Family

ID=32956470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029242A Pending JP2004237575A (en) 2003-02-06 2003-02-06 Laminated lumber and its production method

Country Status (1)

Country Link
JP (1) JP2004237575A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192860A (en) * 2005-01-17 2006-07-27 Takenaka Komuten Co Ltd Composite woody structural material and its manufacturing method
JP2006218707A (en) * 2005-02-09 2006-08-24 Takenaka Komuten Co Ltd Composite woody structural material and its manufacturing method
CN110450241A (en) * 2019-08-16 2019-11-15 梁文广 Tenon splice plate device and its processing method
CN111219035A (en) * 2018-11-23 2020-06-02 镇江市阳光西尔新材料科技有限公司 Artificial wood floor
KR102119185B1 (en) * 2019-08-06 2020-06-04 이수진 Wood furniture production system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192860A (en) * 2005-01-17 2006-07-27 Takenaka Komuten Co Ltd Composite woody structural material and its manufacturing method
JP4516848B2 (en) * 2005-01-17 2010-08-04 株式会社竹中工務店 Composite wood structure material and method for producing composite wood structure material
JP2006218707A (en) * 2005-02-09 2006-08-24 Takenaka Komuten Co Ltd Composite woody structural material and its manufacturing method
JP4664698B2 (en) * 2005-02-09 2011-04-06 株式会社竹中工務店 Composite wood structure material and method for producing composite wood structure material
CN111219035A (en) * 2018-11-23 2020-06-02 镇江市阳光西尔新材料科技有限公司 Artificial wood floor
KR102119185B1 (en) * 2019-08-06 2020-06-04 이수진 Wood furniture production system
CN110450241A (en) * 2019-08-16 2019-11-15 梁文广 Tenon splice plate device and its processing method

Similar Documents

Publication Publication Date Title
US8202389B2 (en) Engineered wood floor using core material with vertical glue-line position
JP6262175B2 (en) Method for producing hybrid wood core laminated lumber
JP2733641B2 (en) Architectural board
RU2325988C1 (en) Laminated butt-end reduced log and method of its production
AU2014240948B2 (en) Hybrid wood products
WO2008010602A1 (en) Composite material for core, process for producing the same, plywood and process for producing the same
JP6841606B2 (en) Wood composite base material and flooring
JP2000263520A (en) Furniture member
Jimenez et al. Development of arc-laminated bamboo lumber
JP2004237575A (en) Laminated lumber and its production method
Vladimirova et al. Veneer-based engineered wood products in construction
Gumowska et al. Production of layered wood composites with a time-saving layer-by-layer addition
JP2726975B2 (en) Wood composite base material
Bansal et al. Manufacturing Laminates from Sympodial Bamboos--an Indian Experience
JP2008075325A (en) Floor material
KR200334715Y1 (en) Overlaping Wood board
Öztürk et al. The Effect of Wood species and strip width on bending strength and modulus of elasticity in end-grain core blockboard
Lam et al. Engineered wood products for structural purposes
JP3084604B2 (en) Architectural board
JP2013059870A (en) Method for manufacturing modified woody material
JP2001232609A (en) Glued laminated wood of multilayer structure and stair member using the same
Weight A novel wood-strand composite laminate using small-diameter timber
JP2003293542A (en) Handrail for stair
JPH08183531A (en) Wooden palette
Esen et al. The effects of press time and press pressure on the screw strength properties of oriented strand board (OSB) manufactured from Scots pine.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050215

A131 Notification of reasons for refusal

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051003