JP2013053935A - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP2013053935A
JP2013053935A JP2011192530A JP2011192530A JP2013053935A JP 2013053935 A JP2013053935 A JP 2013053935A JP 2011192530 A JP2011192530 A JP 2011192530A JP 2011192530 A JP2011192530 A JP 2011192530A JP 2013053935 A JP2013053935 A JP 2013053935A
Authority
JP
Japan
Prior art keywords
dispensing
automatic analyzer
nozzle
flow path
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011192530A
Other languages
Japanese (ja)
Inventor
Tetsushi Kawahara
鉄士 川原
Hitoshi Tokieda
仁 時枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011192530A priority Critical patent/JP2013053935A/en
Publication of JP2013053935A publication Critical patent/JP2013053935A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic analyzer including a dispensation mechanism capable of suppressing reduction of dispensation accuracy due to a temperature change caused by nozzle inside cleaning operation without being influenced by arrangement of a passage of a syringe part in dispensation of a sample or a reagent and having highly accurate dispensation accuracy.SOLUTION: The automatic analyzer has dispensation means including a dispensation nozzle for dispensing a predetermined amount of measurement liquid, a negative pressure generation source for absorbing/discharging the measurement liquid into/from the dispensation nozzle, a dispensation passage for connecting the negative pressure generation source to the dispensation nozzle, and a transmission liquid supply mechanism for supplying a liquid serving as pressure transmission medium into the dispensation passage. The automatic analyzer further includes a bypass passage for supplying the liquid to the way of the dispensation passage as rinse water and isothermal control means for controlling temperature so that the temperature of rinse water supplied to the way of the dispensation passage becomes equal to the fluid temperature of the dispensation nozzle.

Description

本発明は血液,尿等の生体サンプルの定性・定量分析を行う自動分析装置に係り、特に試料、試薬などを所定量分注するための分注機構を備えたことを特徴とする自動分析装置。   The present invention relates to an automatic analyzer for performing qualitative / quantitative analysis of biological samples such as blood and urine, and more particularly to an automatic analyzer having a dispensing mechanism for dispensing a predetermined amount of a sample, a reagent or the like. .

一般に自動分析装置では、血液あるいは尿等の検体成分の定性・定量分析を行うものであり、分析精度の確保のためには、検体および試薬の分注量の混合比が重要になるため、検体および試薬の分注量の正確性が求められる。   In general, automatic analyzers perform qualitative and quantitative analysis of sample components such as blood or urine, and in order to ensure analysis accuracy, the mixing ratio of sample and reagent dispensing amounts is important. In addition, the accuracy of the dispensing amount of the reagent is required.

従来の自動分析装置では、分注機構は、シリンジ管に可動式のプランジャを駆動させ内部を圧力伝達媒体としてイオン交換水を満たした配管と分注ノズルより構成され、プランジャの駆動量制御により分注量の制御を行なっている。分注される試料が変わるたびに分析結果に与えるキャリ−オ−バ−影響を抑制するために分注プロ−ブの内外部を洗浄するが、内部洗浄には圧力伝達媒体であるイオン交換水を用いる方式が一般的である。   In a conventional automatic analyzer, the dispensing mechanism is composed of a pipe filled with ion exchange water using a movable plunger driven by a syringe tube and a pressure transmission medium inside, and a dispensing nozzle. Dosing amount is controlled. Every time the sample to be dispensed changes, the inside and outside of the dispensing probe is washed to suppress the influence of the carry over on the analysis results. A method using is generally used.

分注量の正確性を確保するためには、圧力伝達媒体となるイオン交換水の分注動作時における体積変化が分注量に対して極めて小さいことが求められ、圧力変動による気泡発生を抑えるために脱気水が用いられる。   In order to ensure the accuracy of the dispensed volume, it is required that the volume change during the dispensing operation of the ion exchange water, which is the pressure transmission medium, is extremely small relative to the dispensed volume, and the generation of bubbles due to pressure fluctuations is suppressed. For this purpose, deaerated water is used.

また、配管内の温度変化により、分注精度に影響を与えることが懸念され、特許文献1記載の発明では、気体を圧力伝達媒体とする方式ではあるが、温度センサを備え、温度センサの検出値に基づいて分注量を公正することが記載されている。   In addition, there is a concern that the dispensing accuracy may be affected by the temperature change in the pipe. In the invention described in Patent Document 1, although it is a method using gas as a pressure transmission medium, it is equipped with a temperature sensor and is detected by the temperature sensor. It is stated that the dispensing volume is fair based on the value.

特表平11−509623号公報Japanese National Patent Publication No. 11-509623

近年、小児などの微量検体の対応や、患者への負担軽減、環境配慮からの廃液量抑制、試薬コスト削減を目的として分析項目あたりの反応液量を低減することが重視され、分析においては検体/試薬の比率の確保が必要となるため、検体における分注量の微量化が進められている。   In recent years, emphasis has been placed on reducing the amount of reaction solution per analysis item for the purpose of dealing with trace samples such as children, reducing the burden on patients, reducing the amount of waste from environmental considerations, and reducing reagent costs. / Because it is necessary to ensure the ratio of reagents, the amount of dispensing in specimens is being reduced.

また、分注配管の圧力伝達媒体であるシステム水の体積変化は、シリンジをはじめとする各部位の装置内部温度のばらつきと、システム水の供給温度を発端とする流体温度と周囲温度に起因する配管温度差によって生じる。よって配管内の体積変化は、分注動作時のシステム水の配管内移動量に伴い変化する。分注動作時のシステム水の移動量において、検体の吸引吐出動作に対し、洗浄動作は数十倍以上の移動量となり、分注動作時に洗浄が含まれた場合と含まれない場合で体積変化量は大きく異なる。   Moreover, the volume change of the system water, which is the pressure transmission medium of the dispensing pipe, is caused by the variation in the internal temperature of each part including the syringe, the fluid temperature starting from the supply temperature of the system water, and the ambient temperature. Caused by piping temperature difference. Therefore, the volume change in the piping changes with the amount of movement of the system water in the piping during the dispensing operation. With regard to the amount of movement of system water during the dispensing operation, the cleaning operation is more than tens of times the amount of specimen aspiration and discharge, and the volume changes depending on whether or not washing is included during the dispensing operation. The amount varies greatly.

また、洗浄動作の有無での体積変化は、洗浄時間を分注量に関わらず一定として考えた場合体積変化量も一定となるため、分注量が影響を受ける割合は、分注量の微量化に伴い大きくなる。   In addition, the volume change with and without the cleaning operation is constant when the cleaning time is considered to be constant regardless of the dispensing volume. It grows with the development.

現実的に、プロ−ブの汚れ範囲は、実分注量に対しダミ−量を吸引して吐出する場合を考えると洗浄時間は体積比率にて減らすことは困難であり、洗浄動作の分注正確性影響は、分注量の微量化に伴う課題となる。   Actually, the cleaning range of the probe contamination range is difficult to reduce by volume ratio considering that the amount of dust is sucked and discharged with respect to the actual dispensing amount. The effect of accuracy is a problem associated with the small amount of dispensed water.

また、こうした流路中のシステム水の体積変化を抑えるために流路中全体の温度制御を実施する手段があるが、自動分析装置内には熱的変動要因が多く全体流路の制御は難しい。また、シリンジ機構とノズル駆動機構をできるだけ近づける構成にすることで影響配管長を短くすることも効果がある。   In addition, there is a means to control the temperature in the entire flow path in order to suppress the volume change of the system water in the flow path, but there are many thermal fluctuation factors in the automatic analyzer, and it is difficult to control the entire flow path. . It is also effective to shorten the length of the affected pipe by making the syringe mechanism and the nozzle drive mechanism as close as possible.

しかしながら、シリンジ機構は、駆動シ−ル部の交換メンテナンスや動作の状態を視認する必要があるため装置上では、アクセス性のよい場所に配置が制限され、ノズル駆動機構も他の装置レイアウトの制約を含めると2つの機構を近接した配置構成を実現しにくいケ−スが多くなる。また、系全体の温度制御を考えた場合には、シリンジ機構自体が駆動部を持つため熱影響を及ぼすポテンシャルもある。   However, since the syringe mechanism needs to visually check the replacement maintenance and operation state of the drive seal portion, the arrangement of the syringe mechanism is limited to a place with good accessibility on the device, and the nozzle drive mechanism is also limited by other device layouts. If this is included, there are many cases where it is difficult to realize an arrangement configuration in which the two mechanisms are close to each other. In addition, when temperature control of the entire system is considered, the syringe mechanism itself has a drive unit, so there is also a potential to affect heat.

本発明は、上記の課題に対処し、温度変化に伴う分注精度の低下を抑えた分注手段を備えた自動分析装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an automatic analyzer provided with a dispensing means that copes with the above-described problems and suppresses a drop in dispensing accuracy due to a temperature change.

本発明は、測定液体を所定量分注するための分注ノズルと、分注ノズルに測定液体の吸引・吐出をさせるための負圧発生源と、負圧発生源と分注ノズルを連通する分注流路と、分注流路内に圧力伝達媒体としての液体を供給する伝達液体供給機構と、を備えた分注手段を有する自動分析装置において、液体を分注流路の途中に洗浄水として供給するバイパス流路と、分注流路の途中に供給される洗浄水の温度が分注ノズルの流体温度と等温になるように制御する等温制御手段を備えたことを特徴とする。   The present invention communicates a dispensing nozzle for dispensing a predetermined amount of a measuring liquid, a negative pressure generating source for causing the dispensing nozzle to suck and discharge the measuring liquid, and a negative pressure generating source and the dispensing nozzle. In an automatic analyzer having a dispensing means having a dispensing channel and a transmission liquid supply mechanism for supplying a liquid as a pressure transmission medium in the dispensing channel, the liquid is washed in the middle of the dispensing channel. A bypass channel supplied as water and an isothermal control means for controlling the temperature of the wash water supplied in the middle of the dispensing channel to be equal to the fluid temperature of the dispensing nozzle are provided.

また、また、本発明は、測定液体を所定量分注するための分注ノズルと、分注ノズルに測定液体の吸引・吐出をさせるための負圧発生源と、負圧発生源と前記分注ノズルを連通する分注流路と、分注流路内に圧力伝達媒体としての液体を供給する伝達液体供給機構と、
を備えた分注手段を有する自動分析装置において、分注流路の途中に洗浄水を供給するバイパス流路と、洗浄水を供給する洗浄水供給機構と、分注流路の途中に供給される洗浄水の温度が分注ノズルの流体温度と等温になるように制御する等温制御手段を備えたことを特徴とする。
The present invention also provides a dispensing nozzle for dispensing a predetermined amount of the measuring liquid, a negative pressure generating source for causing the dispensing nozzle to suck and discharge the measuring liquid, the negative pressure generating source, A dispensing flow path that communicates with the dispensing nozzle, a transmission liquid supply mechanism that supplies liquid as a pressure transmission medium in the dispensing flow path,
In an automatic analyzer having a dispensing means comprising a bypass channel for supplying cleaning water in the middle of a dispensing channel, a cleaning water supply mechanism for supplying cleaning water, and a middle of the dispensing channel. And isothermal control means for controlling the temperature of the washing water to be equal to the fluid temperature of the dispensing nozzle.

本発明によれば、試料や試薬の分注において、シリンジ部の流路の配置影響を受けずにノズル内部洗浄動作に起因した温度変化に伴う分注精度の低下を抑えた、高精度の分注正確性を持つ分注機構を備えた自動分析装置を提供することができる。   According to the present invention, in dispensing a sample or a reagent, a high-precision dispensing that suppresses a drop in dispensing accuracy due to a temperature change caused by a nozzle internal cleaning operation without being affected by the arrangement of the flow path of the syringe unit. It is possible to provide an automatic analyzer equipped with a dispensing mechanism having a dispensing accuracy.

以下本発明を実施例ついて図を引用して説明する。   Hereinafter, the present invention will be described with reference to the drawings.

まず、図1に示す実施例について述べる。本実施例に係る自動分析装置の分注手段は、シリンジ1(負圧発生源)、分注用の配管3(分注流路)、圧力伝達媒体の液体が入った給水タンク9(伝達液体供給機構)、ポンプ8(圧力伝達媒体の液体を送る)、検体容器10内の検体を分注する分注ノズル2、3方向ジョイント4(連通部)、バイパス配管12(バイパス流路)、バイパス用の電磁弁5(バイパス用の供給弁)、シリンジ用の電磁弁7(シリンジ用の供給弁)、温度制御ユニット6(等温度制御手段)、プランジャ駆動機構11、プランジャ13、給水タンク9とポンプ8の吸込側をつなぐ主供給配管20(主供給流路)、ポンプ8の吐出側の一方と電磁弁7をつなぐシリンジ供給配管21(シリンジ供給流路)を有する。バイパス配管12はポンプ8の吐出側の他方につながる。   First, the embodiment shown in FIG. 1 will be described. Dispensing means of the automatic analyzer according to the present embodiment includes a syringe 1 (negative pressure generation source), a pipe 3 for dispensing (dispensing flow path), and a water supply tank 9 (transfer liquid) containing a liquid of a pressure transmission medium. Supply mechanism), pump 8 (sends the liquid of the pressure transmission medium), dispensing nozzle 2 for dispensing the sample in the sample container 10, three-way joint 4 (communication portion), bypass pipe 12 (bypass channel), bypass Solenoid valve 5 for use (supply valve for bypass), solenoid valve 7 for syringe (supply valve for syringe), temperature control unit 6 (isothermal control means), plunger drive mechanism 11, plunger 13, and water supply tank 9 A main supply pipe 20 (main supply flow path) connecting the suction side of the pump 8 and a syringe supply pipe 21 (syringe supply flow path) connecting one of the discharge side of the pump 8 and the electromagnetic valve 7 are provided. The bypass pipe 12 is connected to the other side of the discharge side of the pump 8.

給水タンク9、ポンプ8、主供給配管20、シリンジ供給配管21、電磁弁7を含めて
伝達液体供給機構とする。ポンプ8の吐出側はニ手に分かれる。シリンジ供給配管21につながる伝達液体供給の流路と、バイパス配管12につながる洗浄水供給の流路に分かれる。給水タンク9の液体は伝達液体供給の流路から分注用の配管3(分注流路)に供給される液体を伝達液体とし、バイパス配管12から分注ノズル2に供給される液体を洗浄水とする。
The transmission liquid supply mechanism includes the water supply tank 9, the pump 8, the main supply pipe 20, the syringe supply pipe 21, and the electromagnetic valve 7. The discharge side of the pump 8 is divided into two hands. The flow path is divided into a transmission liquid supply flow path connected to the syringe supply pipe 21 and a wash water supply flow path connected to the bypass pipe 12. As the liquid in the water supply tank 9, the liquid supplied from the transmission liquid supply channel to the pipe 3 for dispensing (dispensing channel) is used as the transmission liquid, and the liquid supplied from the bypass pipe 12 to the dispensing nozzle 2 is washed. Use water.

シリンジ1からの分注動作における圧力伝達媒体をイオン交換水として、給水タンク9よりポンプ8を介して補給し、電磁弁7により流路を遮断する。給水タンク9には、顧客側の給水設備を介して水が補給されるため、環境によって、装置環境と異なる温度となる場合があり分注時の体積変化原因の一つとなる。またポンプ8よりシリンジ1、分注ノズル2間のバイパス配管12にもイオン交換水が補給される。本構成では、圧力伝達媒体の液体・洗浄水としてイオン交換水を用いる。また、バイパス配管12の補給および流路の遮断は電磁弁5により制御される。   The pressure transmission medium in the dispensing operation from the syringe 1 is replenished as ion exchange water from the water supply tank 9 via the pump 8, and the flow path is blocked by the electromagnetic valve 7. Since the water supply tank 9 is replenished with water via a customer-side water supply facility, the temperature may differ from the device environment depending on the environment, which is one of the causes of volume change during dispensing. Further, the ion exchange water is also supplied from the pump 8 to the bypass pipe 12 between the syringe 1 and the dispensing nozzle 2. In this configuration, ion-exchanged water is used as the liquid / washing water for the pressure transmission medium. Further, replenishment of the bypass pipe 12 and blockage of the flow path are controlled by the electromagnetic valve 5.

本構成を基に検体を分注する場合の手順を以下に示す。   The procedure for dispensing a specimen based on this configuration is shown below.

分注動作時に気泡が滞留した場合にダンパ−となり分注精度に影響を及ぼす可能性があるため、初期動作としてポンプ8の駆動状態で電磁弁7、電磁弁5を開き流路内の全域から気泡を排出し、圧力伝達媒体のイオン交換水で充填する。   If air bubbles stay during the dispensing operation, it becomes a damper and may affect the dispensing accuracy. Therefore, as an initial operation, the solenoid valve 7 and the solenoid valve 5 are opened in the drive state of the pump 8, and the entire area in the flow path is opened. The air bubbles are discharged and filled with ion exchange water as a pressure transmission medium.

検体の分注動作は、電磁弁7、電磁弁5を閉じた状態にて分注ノズル2を検体容器10に浸漬させた状態で、プランジャ13をボ−ルネジおよびパルスモ−タなどから構成されるプランジャ駆動機構11により下降させ、この下降量の制御により吸引量が制御される。検体の吸引動作を行なう前に、配管(分注流路)内のシステム水(圧力伝達媒体のイオン交換水)と検体の混入を防ぐために空気層を間に吸引しておくことが望ましい。   The sample dispensing operation includes the plunger 13 including a ball screw and a pulse motor in a state where the dispensing nozzle 2 is immersed in the sample container 10 with the solenoid valve 7 and the solenoid valve 5 closed. The plunger is driven downward by the plunger drive mechanism 11, and the amount of suction is controlled by controlling the amount of lowering. Before performing the sample aspirating operation, it is desirable to aspirate the air layer between the system water (ion exchange water of the pressure transmission medium) in the pipe (dispensing flow path) and the sample in order to prevent mixing.

また、検体の吸引は検体の薄まりを防止するため実分注検体に加えてダミ−検体も合わせて吸引する方式が一般的である。検体吸引後、分注ノズル2を上昇および位置移動させ、反応容器内に下降させた後、プランジャ駆動機構11を制御し、プランジャ13を目的分注量相当の上昇動作を行なうことでシステム水を介して検体が吐出される。   In addition, in order to prevent the specimen from thinning, the specimen is generally aspirated together with a dummy specimen in addition to the actual dispensing specimen. After the sample is aspirated, the dispensing nozzle 2 is raised and moved, and lowered into the reaction container. Then, the plunger drive mechanism 11 is controlled, and the plunger 13 is moved up by the amount corresponding to the target dispensing amount, thereby supplying the system water. The specimen is ejected through.

また、同一検体内の多回数測定においては、吐出動作後のノズルの内部洗浄は必須ではないが、検体が切り替わった際にはキャリ−オ−バにより分析結果に影響が懸念されるためノズル内部の洗浄が必要となる。洗浄動作を含まない際には配管3内のシステム水の移動量は吸引量/配管径に依存するが数CM程度であり温度変化をうけるリスクは低い。   In addition, internal cleaning of the nozzle after the discharge operation is not indispensable for multiple measurements within the same sample, but when the sample is switched, there is a concern that the analysis result may be affected by the carry-over, so that the inside of the nozzle Cleaning is required. When the cleaning operation is not included, the movement amount of the system water in the pipe 3 depends on the suction amount / pipe diameter, but is about several CMs, and the risk of undergoing a temperature change is low.

しかしながら、キャリ−オ−バ防止に必要な洗浄水量を流した場合には配管3内のシステム水の移動量は前記移動量(数CM程度)の数十倍以上となり、仮に洗浄液をシリンジに通して影響を防ぐことは、配置距離制約や装置内温度の温度制御を考慮した場合は難しい。また、洗浄動作時に温度影響を受ける配管長も電磁弁7から分注ノズル2までとなる。   However, when the cleaning water amount necessary for carrying over prevention is passed, the movement amount of the system water in the pipe 3 is more than tens of times the movement amount (several CM), and the cleaning liquid is temporarily passed through the syringe. It is difficult to prevent the influence when the arrangement distance restriction and the temperature control of the temperature inside the apparatus are taken into consideration. Further, the pipe length that is affected by temperature during the cleaning operation is also from the solenoid valve 7 to the dispensing nozzle 2.

そこで、本発明の実施例では分注用の配管3(分注流路)の途中にバイバス流路12を接続(連通)し、分注ノズル2に極力近づけて洗浄水を供給するようにした。バイバス流路12は電磁弁5、ニップル4を介して分注用の配管3(分注流路)につないだ。ニップル4は可能な限り、分注ノズル2に近接させたので、温度影響範囲は電磁弁5から分注ノズル2までに絞られる。電磁弁5とニップル4のみの構成であるので洗浄水を供給する流路を短く構成することができた。給水タンク9、シリンジ1、分注用の配管3よりなる従来の洗浄水の供給流路に比べ格段に短かくなったので温度変化の影響を小さい抑えることを実現できる。   Therefore, in the embodiment of the present invention, the bypass channel 12 is connected (communication) in the middle of the pipe 3 for dispensing (dispensing channel), and the washing water is supplied as close as possible to the dispensing nozzle 2. . The bypass channel 12 was connected to the pipe 3 for dispensing (dispensing channel) via the solenoid valve 5 and the nipple 4. Since the nipple 4 is as close as possible to the dispensing nozzle 2, the temperature influence range is narrowed from the electromagnetic valve 5 to the dispensing nozzle 2. Since only the electromagnetic valve 5 and the nipple 4 are configured, the flow path for supplying the cleaning water can be configured to be short. Compared with the conventional cleaning water supply flow path comprising the water supply tank 9, the syringe 1, and the pipe 3 for dispensing, the influence of the temperature change can be minimized.

また、洗浄水の流入に伴う体積変化を防止するためには、電磁弁5に流入するシステム水(洗浄水)の温度も電磁弁5から分注ノズル2までの分注流路の温度と同一である必要があるため、電磁弁5に流入する前に流体温度を温度制御ユニット6(等温制御手段)により等温制御を行なう。温度制御は、分注ノズル付近の温度をリファレンスとして測定し、ヒ−タや冷凍機(加熱や冷却の手段)のPID制御により実現する手段もあるが、分注ノズル付近に熱交換部を設ける構成であっても構わない。この際は、洗浄動作の消費水量以上の領域を温度制御しておく必要がある。   In addition, in order to prevent a volume change accompanying the inflow of the washing water, the temperature of the system water (washing water) flowing into the electromagnetic valve 5 is also the same as the temperature of the dispensing flow path from the electromagnetic valve 5 to the dispensing nozzle 2. Therefore, the fluid temperature is controlled isothermally by the temperature control unit 6 (isothermal control means) before flowing into the electromagnetic valve 5. Temperature control measures the temperature in the vicinity of the dispensing nozzle as a reference, and there is also a means realized by PID control of a heater or refrigerator (heating or cooling means), but a heat exchange part is provided in the vicinity of the dispensing nozzle It may be a configuration. In this case, it is necessary to control the temperature of a region that exceeds the amount of water consumed for the cleaning operation.

また、等温制御手段は、前記洗浄水を使う洗浄動作で1回あたりに供給される以上の水量を、前記測定液体の分注精度に影響を与えない温度差に収められるように、分注ノズル洗浄、検体の吸引および吐出を含む分注動作の1サイクル時間で温度制御する。異なる検体の分注毎に速やかな分注ノズルの洗浄を実施できる。   Further, the isothermal control means is a dispensing nozzle so that the amount of water supplied per time in the washing operation using the washing water can be stored in a temperature difference that does not affect the dispensing accuracy of the measurement liquid. Temperature control is performed in one cycle time of dispensing operation including cleaning, sample aspiration, and discharge. The dispensing nozzle can be quickly cleaned for each dispensing of different specimens.

洗浄水の温度影響と等温制御について更に説明する。   The temperature effect of the washing water and the isothermal control will be further described.

洗浄水の温度影響の主要因と捉えられるものは、配管(分注流路)の温度と配管内水の温度差に起因する水の体積変化です。(洗浄動作後の配管および配管水温の温度差に基づく局所的な体積変化ΔVの全体流路の総和です。)理想的には、配管の温度が全体一定かつ、流入する洗浄液の温度が同一であれば現象は起きません。   The main factor that affects the temperature of the wash water is the volume change of the water due to the temperature difference between the pipe (dispensing flow path) and the water in the pipe. (This is the sum of the entire flow path of the local volume change ΔV based on the temperature difference between the piping after the cleaning operation and the piping water temperature.) Ideally, the temperature of the piping is constant and the temperature of the inflowing cleaning solution is the same. If it does, the phenomenon will not occur.

しかしながら、シリンジ部と分注ノズル内までの経路は、配置的な距離が必要になり、周囲ユニットの影響もあり、配管の経路全体を同一温度に制御することは困難です。このため、バイパス流路であれば分注ノズル付近につなぐことが可能となり、温度影響の主因となる流路も(バイパス電磁弁から分注ノズルまで)限定することができます。この限定された流路領域の周囲温度に洗浄液を等温制御をして流入させることで温度影響を小さくできる。   However, it is difficult to control the entire piping path to the same temperature because the distance between the syringe section and the dispensing nozzle requires a dispositional distance and is affected by surrounding units. For this reason, if it is a bypass flow path, it can be connected to the vicinity of the dispensing nozzle, and the flow path that is the main cause of temperature influence (from the bypass solenoid valve to the dispensing nozzle) can also be limited. The influence of temperature can be reduced by allowing the cleaning liquid to flow into the ambient temperature of the limited flow path region under isothermal control.

図2に示す他の実施例について説明する。この実施例は、洗浄水供給機構を伝達液体供給機構と別個に設けたところが特徴である。給水タンク9内のイオン交換水をシリンジ1に供給するポンプ17とは別の送液ポンプ14を備える。洗浄水用の給水タンク15内の洗浄水を送液ポンプ14でバイバス流路12に供給するようにしている。洗浄水を供給する洗浄水供給機構は、洗浄水用の給水タンク15、洗浄水供給用のポンプ14を含む。他の構成は先に述べた図1に示す実施例と共通であるので説明は省く。   Another embodiment shown in FIG. 2 will be described. This embodiment is characterized in that the cleaning water supply mechanism is provided separately from the transmission liquid supply mechanism. A liquid feed pump 14 that is different from the pump 17 that supplies the ion exchange water in the water supply tank 9 to the syringe 1 is provided. The washing water in the washing water supply tank 15 is supplied to the bypass channel 12 by the liquid feed pump 14. The cleaning water supply mechanism for supplying cleaning water includes a water supply tank 15 for cleaning water and a pump 14 for supplying cleaning water. Other configurations are the same as those of the embodiment shown in FIG.

先に述べた図1に示す実施例はシリンジからの圧力伝達媒体および洗浄水ともにイオン交換水を用いる方式であった。これに対し、本実施例では洗浄液15に専用の洗浄液15を用いる。洗浄液としては生理食塩水を用いることが、検体間の洗浄および分析への影響抑制として考えた場合適切と考えられる。また、生理食塩水はイオン交換水に比べ洗浄効率が向上する。   In the embodiment shown in FIG. 1 described above, ion exchange water is used for both the pressure transmission medium from the syringe and the washing water. In contrast, in this embodiment, a dedicated cleaning liquid 15 is used as the cleaning liquid 15. The use of physiological saline as a cleaning solution is considered appropriate when considering the effect of cleaning between samples and suppressing the influence on analysis. Moreover, the physiological saline improves the washing efficiency compared to the ion exchange water.

本構成では、洗浄水の送液ポンプ14を独立に持つ必要がある。配管の温度制御の方法は図1の実施例1と同様であり、電磁弁5から分注ノズル2までの等温制御と電磁弁5に流入する洗浄水温度を前記流路との等温化を制御する必要がある。   In this structure, it is necessary to have the liquid feed pump 14 for washing water independently. The method for controlling the temperature of the pipe is the same as that of the first embodiment shown in FIG. 1, and the isothermal control from the solenoid valve 5 to the dispensing nozzle 2 and the temperature of the washing water flowing into the solenoid valve 5 are controlled to be equalized with the flow path. There is a need to.

また、通常、分注ノズルは分注駆動機構に設けられる。分注用の配管(分注流路)にバイパス流路を連通する連通部を分注駆動機構の非可動部に設けることで、分注動作を阻害することなく洗浄水の温度影響を抑えることができる。   Usually, the dispensing nozzle is provided in the dispensing drive mechanism. By disposing the communicating part that connects the bypass flow path to the pipe for dispensing (dispensing flow path) in the non-movable part of the dispensing drive mechanism, the temperature effect of the washing water is suppressed without hindering the dispensing operation. Can do.

また、分注ノズルは、円管パイプの構成が一般的であるが、試料(検体)を吸引・吐出する目的であるので、どのような形状であってもよい。また、断熱性を向上させるために、2重管あるいは、樹脂などの断熱性の高い材質で金属を被覆した構成であってもよい。また、分注ノズルには液面検知機能を持たせた構成であっても構わない。   The dispensing nozzle generally has a configuration of a circular pipe, but may have any shape because it is for the purpose of sucking and discharging a sample (specimen). Moreover, in order to improve heat insulation, the structure which coat | covered the metal with the material with high heat insulation, such as a double pipe or resin, may be sufficient. The dispensing nozzle may have a liquid level detection function.

分注ノズルを介して、試料を吸引・吐出動作を行なうための負圧発生源は、シリンジ管にシ−ル構造で接続されたプランジャを押引の可動制御を行なう駆動機構や、ダイヤフラム構造のポンプをモ−タやピエゾ素子等で駆動するマイクロポンプであっても構わない。   The negative pressure generation source for performing the suction / discharge operation of the sample through the dispensing nozzle includes a drive mechanism that performs movable control of pushing and pulling the plunger connected to the syringe tube with a seal structure, and a diaphragm structure. It may be a micro pump that drives the pump with a motor, a piezoelectric element, or the like.

また、吸引吐出を行うための圧力伝達媒体は、微量の試料分注を想定した際に非圧縮性が求められるために気体は不適である。そのため、圧力伝達媒体としては、水が一般的であり、発泡影響を防ぐため脱気水を用いることが適切であるが、非圧縮性を持つものであればどのようなものであっても構わない。配管は、一般的に樹脂製チュ−ブあるいは金属性のパイプが一般的であるが断熱性を配慮した構成であることが望ましい。   In addition, the pressure transmission medium for performing the suction and discharge is not suitable for gas because incompressibility is required when a small amount of sample is dispensed. Therefore, water is generally used as the pressure transmission medium, and it is appropriate to use deaerated water in order to prevent foaming effects. However, any medium having incompressibility may be used. Absent. The piping is generally a resin tube or a metallic pipe, but it is desirable to have a structure that takes heat insulation into consideration.

負圧発生源に接続された圧力伝達媒体とバイパス流路に接続された洗浄液が同一溶液であっても構わない。また、同一溶液を用いる際には液体の供給機構は、同一の構造としても構わない。   The pressure transmission medium connected to the negative pressure generation source and the cleaning liquid connected to the bypass channel may be the same solution. When the same solution is used, the liquid supply mechanism may have the same structure.

洗浄液を供給するバイパス配管中の供給弁(電磁弁)は、2方弁にバイパスするT字形等のニップルを接続する方式か、3方弁(電磁弁とニップルが一つになった弁)により制御する方式であってもよい。   The supply valve (solenoid valve) in the bypass piping that supplies the cleaning liquid is either a system that connects a T-shaped nipple that bypasses the two-way valve or a three-way valve (a valve that combines the solenoid valve and the nipple). A control method may be used.

洗浄液の供給弁から分注ノズル間の温度を等温制御する方式は、洗浄動作にて影響がおよぶ範囲の洗浄液供給弁前の流路からノズル先端までを独立した温度制御系に配置し一定に制御する方法あるいは、洗浄液供給弁よりノズル先端の領域を室温になるように内部熱源影響のみをファン等にて抑制し、かつ洗浄液の流入温度のみを熱制御する方式であっても構わない。   The method of isothermally controlling the temperature between the cleaning liquid supply valve and the dispensing nozzle is controlled by placing it in a separate temperature control system from the flow path before the cleaning liquid supply valve to the tip of the nozzle in the range affected by the cleaning operation. Or a method in which only the influence of the internal heat source is suppressed by a fan or the like so that the region at the nozzle tip from the cleaning liquid supply valve becomes room temperature, and only the inflow temperature of the cleaning liquid is thermally controlled.

本発明の実施例にかかわるもので、自動分析装置に搭載する分注機構の概略構成を示す図である。It is a figure which shows the schematic structure of the dispensing mechanism with which the Example of this invention is mounted in an automatic analyzer. 本発明の他の実施例にかかわるもので、自動分析装置に搭載する分注機構の概略構成を示す図である。FIG. 10 is a diagram illustrating a schematic configuration of a dispensing mechanism mounted on an automatic analyzer, according to another embodiment of the present invention.

1…シリンジ
2…分注ノズル
3…配管
4…3方向ジョイント
5…電磁弁
6…温度制御ユニット
7…電磁弁
8…ポンプ
9…給水タンク
10…検体容器
11…プランジャ駆動機構
12…バイパス配管
13…プランジャ
14…ポンプ2
15…洗浄水用の給水タンク(生理食塩水)
20…主供給配管
21…シリンジ供給配管
DESCRIPTION OF SYMBOLS 1 ... Syringe 2 ... Dispensing nozzle 3 ... Piping 4 ... 3-way joint 5 ... Solenoid valve 6 ... Temperature control unit 7 ... Solenoid valve 8 ... Pump 9 ... Water supply tank 10 ... Sample container 11 ... Plunger drive mechanism 12 ... Bypass piping 13 ... plunger 14 ... pump 2
15 ... Water supply tank for washing water (saline)
20 ... Main supply pipe 21 ... Syringe supply pipe

Claims (6)

測定液体を所定量分注するための分注ノズルと、
前記分注ノズルに前記測定液体の吸引・吐出をさせるための負圧発生源と、
前記負圧発生源と前記分注ノズルを連通する分注流路と、
前記分注流路内に圧力伝達媒体としての液体を供給する伝達液体供給機構と、
を備えた分注手段を有する自動分析装置において、
前記液体を前記分注流路の途中に洗浄水として供給するバイパス流路と、
前記分注流路の途中に供給される洗浄水の温度が前記分注ノズルの流体温度と等温になるように制御する等温制御手段を備えたことを特徴とする自動分析装置。
A dispensing nozzle for dispensing a predetermined amount of the measuring liquid;
A negative pressure generating source for causing the dispensing nozzle to suck and discharge the measurement liquid;
A dispensing flow path communicating the negative pressure generating source and the dispensing nozzle;
A transmission liquid supply mechanism for supplying a liquid as a pressure transmission medium into the dispensing flow path;
In an automatic analyzer having a dispensing means comprising
A bypass flow path for supplying the liquid as wash water in the middle of the dispensing flow path;
An automatic analyzer comprising an isothermal control means for controlling the temperature of the wash water supplied in the middle of the dispensing flow path to be equal to the fluid temperature of the dispensing nozzle.
請求項1記載の自動分析装置において、
前記バイパス流路を前記分注流路に連通する連通部を前記分注ノズルの近傍に設けたことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
An automatic analyzer characterized in that a communication portion for communicating the bypass channel with the dispensing channel is provided in the vicinity of the dispensing nozzle.
請求項1記載の自動分析装置において、
前記等温制御手段は、前記洗浄水を使う洗浄動作で1回あたりに供給される以上の水量を、前記測定液体の分注精度に影響を与えない温度差に収められるように、分注ノズル洗浄、検体の吸引および吐出を含む分注動作の1サイクル時間で温度制御することを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
The isothermal control means cleans the dispensing nozzle so that the amount of water supplied at a time in the washing operation using the washing water can be stored in a temperature difference that does not affect the dispensing accuracy of the measurement liquid. An automatic analyzer characterized in that the temperature is controlled in one cycle time of a dispensing operation including aspiration and discharge of a specimen.
請求項1記載の自動分析装置において、
前記等温制御手段は前記バイパス流路に設けた加熱や冷却の手段を含むことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
2. The automatic analyzer according to claim 1, wherein the isothermal control means includes heating and cooling means provided in the bypass flow path.
測定液体を所定量分注するための分注ノズルと、
前記分注ノズルに前記測定液体の吸引・吐出をさせるための負圧発生源と、
前記負圧発生源と前記分注ノズルを連通する分注流路と、
前記分注流路内に圧力伝達媒体としての液体を供給する伝達液体供給機構と、
を備えた分注手段を有する自動分析装置において、
前記分注流路の途中に洗浄水を供給するバイパス流路と、
前記洗浄水を供給する洗浄水供給機構と、
前記分注流路の途中に供給される洗浄水の温度が前記分注ノズルの流体温度と等温になるように制御する等温制御手段を備えたことを特徴とする自動分析装置。
A dispensing nozzle for dispensing a predetermined amount of the measuring liquid;
A negative pressure generating source for causing the dispensing nozzle to suck and discharge the measurement liquid;
A dispensing flow path communicating the negative pressure generating source and the dispensing nozzle;
A transmission liquid supply mechanism for supplying a liquid as a pressure transmission medium into the dispensing flow path;
In an automatic analyzer having a dispensing means comprising
A bypass flow path for supplying cleaning water in the middle of the dispensing flow path;
A cleaning water supply mechanism for supplying the cleaning water;
An automatic analyzer comprising an isothermal control means for controlling the temperature of the wash water supplied in the middle of the dispensing flow path to be equal to the fluid temperature of the dispensing nozzle.
請求項1または5記載の自動分析装置において、
前記分注ノズルの上げ下げ回動をするノズル駆動機構を備え、
前記分注流路と前記バイパス流路を連通するところをノズル駆動機構に設けたことを特徴とする自動分析装置。
The automatic analyzer according to claim 1 or 5,
A nozzle drive mechanism for turning the dispensing nozzle up and down;
An automatic analyzer characterized in that a nozzle drive mechanism is provided in a place where the dispensing channel and the bypass channel communicate with each other.
JP2011192530A 2011-09-05 2011-09-05 Automatic analyzer Pending JP2013053935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011192530A JP2013053935A (en) 2011-09-05 2011-09-05 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011192530A JP2013053935A (en) 2011-09-05 2011-09-05 Automatic analyzer

Publications (1)

Publication Number Publication Date
JP2013053935A true JP2013053935A (en) 2013-03-21

Family

ID=48131054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011192530A Pending JP2013053935A (en) 2011-09-05 2011-09-05 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP2013053935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110158A1 (en) 2016-12-13 2018-06-21 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2018155740A (en) * 2017-03-15 2018-10-04 キヤノンメディカルシステムズ株式会社 Automatic analyzer
JP2019039731A (en) * 2017-08-24 2019-03-14 株式会社日立ハイテクノロジーズ Dispensation system and automatic analyzer having the same
US10859590B2 (en) 2017-03-15 2020-12-08 Canon Medical Systems Corporation Automatic analyzing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218513A (en) * 1994-02-01 1995-08-18 Aloka Co Ltd Nozzle cleaning method
JP2001074749A (en) * 1999-09-01 2001-03-23 Olympus Optical Co Ltd Automatic analyzer
JP2001141734A (en) * 1999-11-10 2001-05-25 Olympus Optical Co Ltd Analytic device
JP2001264226A (en) * 2000-03-22 2001-09-26 Nippon Koden Corp Sample dilution device and method
JP2008256492A (en) * 2007-04-04 2008-10-23 Matsushita Electric Ind Co Ltd Dna treatment device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218513A (en) * 1994-02-01 1995-08-18 Aloka Co Ltd Nozzle cleaning method
JP2001074749A (en) * 1999-09-01 2001-03-23 Olympus Optical Co Ltd Automatic analyzer
JP2001141734A (en) * 1999-11-10 2001-05-25 Olympus Optical Co Ltd Analytic device
JP2001264226A (en) * 2000-03-22 2001-09-26 Nippon Koden Corp Sample dilution device and method
JP2008256492A (en) * 2007-04-04 2008-10-23 Matsushita Electric Ind Co Ltd Dna treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110158A1 (en) 2016-12-13 2018-06-21 株式会社日立ハイテクノロジーズ Automatic analysis device
US11162965B2 (en) 2016-12-13 2021-11-02 Hitachi High-Tech Corporation Automatic analyzer
US11662358B2 (en) 2016-12-13 2023-05-30 Hitachi High-Tech Corporation Automatic analyzer
US11994529B2 (en) 2016-12-13 2024-05-28 Hitachi High-Tech Corporation Automatic analyzer
JP2018155740A (en) * 2017-03-15 2018-10-04 キヤノンメディカルシステムズ株式会社 Automatic analyzer
US10859590B2 (en) 2017-03-15 2020-12-08 Canon Medical Systems Corporation Automatic analyzing apparatus
JP7109937B2 (en) 2017-03-15 2022-08-01 キヤノンメディカルシステムズ株式会社 automatic analyzer
JP2019039731A (en) * 2017-08-24 2019-03-14 株式会社日立ハイテクノロジーズ Dispensation system and automatic analyzer having the same

Similar Documents

Publication Publication Date Title
US11237182B2 (en) Automatic analyzer
WO2017141627A1 (en) Automatic analyzing device and method for cleaning dispensing probe
JP6334112B2 (en) Automatic analyzer
CA2699278A1 (en) Aspirating and dispensing small volumes of liquids
CN105499231A (en) Biochemical instrument liquid path system and method
CN110226091B (en) Automatic analysis device
JP2013053935A (en) Automatic analyzer
US11994529B2 (en) Automatic analyzer
JP2014092427A (en) Automatic analyzer
JP2007093521A (en) Pipette cleaning member, pipette cleaning device, and sample analyzing apparatus
JP7055878B2 (en) Probe device, assembly, and method for suctioning and dispensing liquids
JP6126387B2 (en) Electrolyte analyzer with double tube structure sample suction nozzle
CN205413827U (en) Biochemical analyzer liquid way system
US20130112761A1 (en) Methods, Systems, And Apparatus Providing Temperature-Controlled Process Fluid
JP6474747B2 (en) Automatic analyzer and cleaning method thereof
JP2005003610A (en) Dispenser, and automatic analyzer equipped with the same
JP2019074412A (en) Dispensation controller, method for controlling dispensation, and dispensation control program
JPH1194843A (en) Autoanalyzer
JP6355960B2 (en) CLINICAL INSPECTION DEVICE AND CONTAINER CLEANING METHOD
JP5372646B2 (en) Automatic analyzer
WO2023105907A1 (en) Automatic analysis device control method, and automatic analysis device
JPH11201975A (en) Automatic analyzer
JP2023113026A (en) automatic analyzer
JP2016061656A (en) Automatic analyzer
JP2018185330A (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141224