WO2017141627A1 - Automatic analyzing device and method for cleaning dispensing probe - Google Patents

Automatic analyzing device and method for cleaning dispensing probe Download PDF

Info

Publication number
WO2017141627A1
WO2017141627A1 PCT/JP2017/002073 JP2017002073W WO2017141627A1 WO 2017141627 A1 WO2017141627 A1 WO 2017141627A1 JP 2017002073 W JP2017002073 W JP 2017002073W WO 2017141627 A1 WO2017141627 A1 WO 2017141627A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning liquid
cleaning
sample
storage tank
dispensing probe
Prior art date
Application number
PCT/JP2017/002073
Other languages
French (fr)
Japanese (ja)
Inventor
友一 岩瀬
昂平 野中
高通 森
雅人 石沢
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Publication of WO2017141627A1 publication Critical patent/WO2017141627A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automatic analyzer that performs qualitative / quantitative analysis of biological samples such as blood and urine contained in a sample container, and a method for cleaning a dispensing probe that dispenses these samples and reagents.
  • Patent Document 1 discloses a dispensing probe that performs dispensing for sucking a sample contained in a sample container and discharging it to a reaction container, and a dispensing probe.
  • the cleaning section to be cleaned using the second cleaning liquid and the dispensing probe are stopped at the normal suction position where the sample can be sucked or a special suction position below the normal suction position, and the dispensing stopped at the normal suction position.
  • An automatic analyzer with the above is disclosed.
  • samples In automatic analyzers that perform qualitative and quantitative analysis of biological samples such as blood and urine (hereinafter referred to as samples), cross-contamination can be generated by appropriately cleaning the probe used for dispensing the sample to be analyzed. It suppresses to maintain the analysis accuracy.
  • the cleaning liquid remaining in the cleaning liquid storage tank after the probe cleaning is likely to be contaminated by the immersion of the sample attached to the sample probe. . Therefore, in order to maintain the cleaning effect of the probe, it is necessary to appropriately replace the cleaning liquid in the cleaning liquid storage tank with an uncontaminated cleaning liquid.
  • the cleaning solution may concentrate and crystallize if left in contact with the atmosphere for a long time.
  • the present invention has been made in view of the above, and an object thereof is to provide an automatic analyzer and a dispensing probe cleaning method capable of reducing the amount of cleaning liquid used for probe cleaning.
  • the present invention includes a plurality of means for solving the above problems.
  • the present invention is an automatic analyzer, a dispensing probe for dispensing a reagent or a sample to be analyzed into a reaction container,
  • the cleaning liquid for cleaning the dispensing probe is stored, the cleaning liquid storage tank for cleaning by inserting the dispensing probe into the cleaning liquid, and the cleaning liquid storage tank via the flow path connected to the cleaning liquid storage tank.
  • a cleaning liquid supply unit that supplies a cleaning liquid to perform a cleaning process on the dispensing probe, and the dispensing probe discharges internal washing water from the dispensing probe when the dispensing probe is cleaned in the cleaning liquid storage tank.
  • a control unit for controlling the probe for controlling the probe.
  • the amount of cleaning liquid used for cleaning the probe can be reduced.
  • FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to an embodiment of the present invention. It is a figure which shows typically the washing
  • FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to the present embodiment.
  • an automatic analyzer 100 is a device that dispenses and reacts a sample and a reagent in a reaction vessel 2 and measures the reacted liquid.
  • the reaction vessel 2 is arranged on the reaction disc 1 in a circumferential shape.
  • the reaction container 2 is a container for storing a mixed liquid in which a sample and a reagent are mixed, and a plurality of reaction containers 2 are arranged on the reaction disk 1.
  • a sample transport mechanism 17 is disposed that transports a sample rack 16 on which one or more sample containers 15 containing samples to be analyzed are mounted.
  • a first sample dispensing mechanism 11 and a second sample dispensing mechanism 12 that can be rotated and moved up and down are arranged.
  • the first sample dispensing mechanism 11 has a sample probe 11a arranged with its tip facing downward, and a sample pump 19 is connected to the sample probe 11a.
  • the first sample dispensing mechanism 11 is configured to be able to discharge wash water (hereinafter referred to as internal wash water) sent from the wash water tank (not shown) by the sample pump 19 from the sample probe 11a. Yes. Further, the first sample dispensing mechanism 11 is configured to be capable of rotating in the horizontal direction and moving up and down.
  • the sample probe 11a is inserted into the sample container 15 and the sample pump 19 is operated to operate the sample.
  • the sample is dispensed from the sample container 15 to the reaction container 2 by inserting the sample probe 11a into the reaction container 2 and discharging the sample.
  • a cleaning tank 13 for cleaning the sample probe 11a with a cleaning liquid and a cleaning container 23 for cleaning with a special cleaning liquid are arranged.
  • the position where the sample probe 11a is inserted into the sample container 15 and the sample is sucked is defined as the first sample suction position
  • the position where the sample probe 11a is inserted into the reaction container 2 and the sample is discharged is defined as the first sample discharge position.
  • the tank 13 and the cleaning container 23 are disposed between the first sample suction position and the first sample discharge position.
  • the second sample dispensing mechanism 12 has a sample probe 12a arranged with its tip facing downward, and a sample pump 19 is connected to the sample probe 12a.
  • the second sample dispensing mechanism 12 is configured such that the wash water (internal wash water) sent from the wash water tank (not shown) by the sample pump 19 can be discharged from the sample probe 12a.
  • the second sample dispensing mechanism 12 is configured so as to be able to rotate in the horizontal direction and move up and down.
  • the sample probe 12a is inserted into the sample container 15 and the sample pump 19 is operated to suck the sample. Then, the sample probe 12a is inserted into the reaction vessel 2 and the sample is discharged, thereby dispensing the sample from the sample vessel 15 to the reaction vessel 2.
  • a cleaning tank 14 for cleaning the sample probe 12a with a cleaning liquid and a cleaning container 24 for cleaning with a special cleaning liquid are arranged. If the position where the sample probe 12a is inserted into the sample container 15 and the sample is sucked is the second sample suction position, and the position where the sample probe 12a is inserted into the reaction container 2 and the sample is discharged is the second sample discharge position, the cleaning is performed.
  • the tank 14 and the cleaning container 24 are disposed between the second sample suction position and the second sample discharge position.
  • the washing tanks 13 and 14 are washing tanks for performing washing of the outside and inside of the sample probes 11a and 12a after the reagent dispensing every time the sample is dispensed.
  • the cleaning containers 23 and 24 have the sample probes 11a and 12a before analyzing the sample when the sample of the sample type registered in advance is requested to measure the analysis item registered in advance. It is a part for the additional washing process performed with respect to. Details thereof will be described later.
  • the reagent disk 9 is a storage in which a plurality of reagent bottles 10 containing the reagents therein can be placed on the circumference.
  • the reagent disk 9 is kept cold.
  • reagent dispensing mechanisms 7 and 8 for dispensing the reagent from the reagent bottle 10 to the reaction container 2 are configured.
  • reagent probes 7a and 8a arranged with their tips facing downward.
  • a reagent pump 18 is connected to the reagent probes 7a and 8a. The reagent pump 18 dispenses the reagent, detergent, diluent, pretreatment reagent, and the like sucked from the reagent bottle 10 and the like through the reagent probes 7a and 8a into the reaction container 2.
  • a cleaning tank 32 for cleaning the reagent probe 7a with a cleaning liquid is disposed, and in the operating range of the reagent dispensing mechanism 8, a cleaning tank 33 for cleaning the reagent probe 8a with a cleaning liquid is disposed.
  • a spectrophotometer 4 for measuring the absorbance of the reaction solution by measuring the transmitted light obtained from the light source 4a through the reaction solution of the reaction vessel 2 around the stirring mechanism 5, 6, A cleaning mechanism 3 for cleaning the used reaction vessel 2 is disposed.
  • the stirring mechanisms 5 and 6 are configured so as to be able to rotate in the horizontal direction and move up and down, and agitate the mixed solution (reaction solution) of the sample and the reagent by being inserted into the reaction vessel 2.
  • mixing tanks 30 and 31 for cleaning the stirring mechanisms 5 and 6 with the cleaning liquid are arranged.
  • a cleaning pump 20 is connected to the cleaning mechanism 3.
  • the control unit 21 is configured by a computer or the like, and controls the operation of each mechanism described above in the automatic analyzer and performs calculation processing for obtaining the concentration of a predetermined component in a liquid sample such as blood or urine.
  • a part of the connection between each mechanism constituting the automatic analyzer and the control unit 21 is omitted.
  • the above is the general configuration of the automatic analyzer 100.
  • the inspection sample analysis processing by the automatic analyzer 100 as described above is generally performed in the following order.
  • the sample in the sample container 15 placed on the sample rack 16 transported near the reaction disk 1 by the sample transport mechanism 17 is sampled by the sample probe 11a of the first sample dispensing mechanism 11 or the second sample dispensing.
  • the sample is dispensed into the reaction vessel 2 on the reaction disk 1 by the sample probe 12 a of the mechanism 12.
  • the reagent used for the analysis is dispensed from the reagent bottle 10 on the reagent disk 9 to the reaction container 2 into which the sample has been dispensed by the reagent probes 7a, 8a of the reagent dispensing mechanisms 7, 8.
  • the mixed solution of the sample and the reagent in the reaction vessel 2 is stirred by the stirring mechanisms 5 and 6.
  • the light generated from the light source 4 a is transmitted through the reaction vessel 2 containing the mixed solution, and the luminous intensity of the transmitted light is measured by the spectrophotometer 4.
  • the light intensity measured by the spectrophotometer 4 is transmitted to the control unit 21 via the A / D converter and the interface. Then, calculation is performed by the control unit 21, the concentration of a predetermined component of the analysis item corresponding to the reagent is obtained, and the result is displayed on a display unit (not shown) or stored in a storage unit (not shown).
  • FIG. 2 is a diagram schematically showing a cleaning liquid supply mechanism 110 having a single cleaning container.
  • a mode in which a cleaning solution is supplied to the cleaning containers 23 and 24 for cleaning the sample probes 11a and 12a will be described.
  • the dispensing probes to be cleaned in the cleaning container are the sample probes 11a and 12a.
  • the reagent probes 7a and 8a for dispensing the reagent from the reagent bottle 10 to the reaction container 2 are also objects to be cleaned.
  • a cleaning liquid supply mechanism 110 supplies a cleaning liquid to a cleaning liquid storage tank 23A of a cleaning container 23 that performs additional cleaning processing (described later) on the sample probe 11a of the first sample dispensing mechanism 11.
  • the cleaning liquid supply pump 52, the cleaning liquid supply syringe (cleaning liquid discharge unit) 51, the electromagnetic valve 63, the cleaning liquid remaining amount sensor 54, the branch pipe 55, the electromagnetic valve 62, and the electromagnetic valve 61 are schematically configured.
  • the cleaning container 23 includes a cleaning liquid storage tank 23A that holds the supplied first cleaning liquid and the second cleaning liquid, and a lower opening 23B that discharges the first cleaning liquid and the second cleaning liquid that have overflowed from the cleaning liquid storage tank 23A.
  • the cleaning liquid supply pump 52 sends out the second cleaning liquid from the cleaning liquid storage tank 52A containing the second cleaning liquid.
  • the cleaning liquid supply syringe 51 sends the second cleaning liquid from the cleaning liquid supply pump 52 further downstream.
  • the electromagnetic valve 63 controls the flow of the second cleaning liquid from the cleaning liquid supply pump 52 to the cleaning liquid supply syringe 51.
  • the cleaning liquid remaining amount sensor 54 detects the remaining amount of the first cleaning liquid in the cleaning liquid storage tank 53 containing the first cleaning liquid.
  • the branch pipe 55 is a pipe that joins the supply lines of the second cleaning liquid from the cleaning liquid supply syringe 51 and the first cleaning liquid from the cleaning liquid storage tank 53, and sends the supplied first cleaning liquid or second cleaning liquid to the cleaning container 23. .
  • the electromagnetic valve 62 controls the flow of the first cleaning liquid from the cleaning liquid storage tank 53 to the branch pipe 55.
  • the electromagnetic valve 61 controls the flow of the first cleaning liquid and the second cleaning liquid from the branch pipe 55 to the cleaning liquid storage tank 23A.
  • the first cleaning liquid stored in the cleaning liquid storage tank 53 can be automatically supplied to the cleaning liquid storage tank 23A, and the first cleaning liquid stored in the cleaning liquid storage tank 52A can be used. It is also possible to supply two cleaning liquids to the cleaning liquid storage tank 23A. Further, the cleaning liquid stored in the cleaning liquid storage tank 23A is replaced with an old first cleaning liquid from a new clean first cleaning liquid, a replacement from the first cleaning liquid to the second cleaning liquid, or from the second cleaning liquid to the first cleaning liquid. Replacement is also possible.
  • FIG. 3 is a diagram schematically showing a cleaning liquid supply mechanism having a plurality of cleaning containers.
  • members similar to those in FIG. 1 are similar to those in FIG.
  • the cleaning liquid supply mechanism 111 includes a cleaning liquid storage tank 23 ⁇ / b> A of the cleaning container 23 for performing additional cleaning processing on the sample probe 11 a of the first sample dispensing mechanism 11, and the second sample dispensing mechanism 12.
  • This is a mechanism for supplying the cleaning liquid to the cleaning liquid storage tank 24A of the cleaning container 24 for performing an additional cleaning process on the sample probe 12a.
  • the cleaning liquid supply pump 52, the cleaning liquid supply syringe 51, the electromagnetic valve 63, The cleaning liquid remaining amount sensor 54, the branch pipe 55A, the electromagnetic valve 62, and the electromagnetic valves 61 and 64 are schematically configured.
  • the cleaning container 24 includes a cleaning liquid storage tank 24A that holds the supplied first cleaning liquid and second cleaning liquid, and a lower opening 24B that discharges the first cleaning liquid and the second cleaning liquid that have overflowed from the cleaning liquid storage tank 24A.
  • the branch pipe 55A is a pipe that joins the supply line of the second cleaning liquid from the cleaning liquid supply syringe 51 and the first cleaning liquid from the cleaning liquid storage tank 53, and supplies the supplied first cleaning liquid or second cleaning liquid to the cleaning containers 23, 24. Send to.
  • the electromagnetic valve 64 controls the flow of the first cleaning liquid and the second cleaning liquid from the branch pipe 55A to the cleaning liquid storage tank 24A.
  • the cleaning liquid supply pump 52, the cleaning liquid supply syringe 51, the electromagnetic valve 63, the cleaning liquid remaining amount sensor 54, the electromagnetic valve 62, and the electromagnetic valve 61 have the same configuration as the cleaning liquid supply mechanism 110 described above.
  • the first cleaning liquid stored in the cleaning liquid storage tank 53 can be automatically supplied to the cleaning liquid storage tanks 23A and 24A, and is stored in the cleaning liquid storage tank 52A. It is also possible to supply the second cleaning liquid to the cleaning liquid storage tanks 23A and 24A, in addition to replacing the cleaning liquid stored in the cleaning liquid storage tanks 23A and 24A with the new first cleaning liquid from the old first cleaning liquid. It is also possible to replace the first cleaning liquid with the second cleaning liquid or the second cleaning liquid with the first cleaning liquid.
  • the first cleaning liquid is an alkaline or acidic special cleaning liquid
  • the second cleaning liquid is a neutral cleaning liquid
  • a new cleaning container can be added by connecting a new cleaning container to the branch pipe 55A and attaching a new electromagnetic valve to the flow path connecting the branch pipe 55A and the new cleaning liquid storage tank. Even in this case, the first cleaning liquid or the second cleaning liquid is supplied to each cleaning container, and the first cleaning liquid or the second cleaning liquid stored in each cleaning container is replaced with a clean first cleaning liquid or second cleaning liquid. It is possible.
  • the solenoid valve 62 is opened and the solenoid valves 61, 63, 64 are shut off. Subsequently, the first cleaning liquid is sucked from the cleaning liquid storage tank 53 using the cleaning liquid supply syringe 51. As a result, the first cleaning liquid is filled in part of the piping on the branch pipe 55 and the cleaning liquid supply syringe 51 side. Subsequently, the solenoid valve 61 is opened, the solenoid valve 62 is shut off, and the cleaning liquid storage syringe 51 pushes out the first cleaning liquid filled in the branch pipe 55 and a part of the piping on the cleaning liquid supply syringe 51 side to store the cleaning liquid. Supply to tank 23A.
  • the first cleaning liquid stored in the cleaning liquid storage tank 23A is discharged while being pushed out by the supplied first cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 23A is a clean first. Replaced with cleaning solution.
  • the solenoid valve 62 is opened and the solenoid valves 61, 63, 64 are shut off.
  • the first cleaning liquid is sucked from the cleaning liquid storage tank 53 using the cleaning liquid supply syringe 51.
  • the electromagnetic valve 64 is opened and the electromagnetic valve 62 is shut off, and the cleaning liquid storage syringe 51 pushes out the first cleaning liquid filled in a part of the branch pipe 55 and the pipe on the cleaning liquid supply syringe 51 side to store the cleaning liquid.
  • Supply to tank 24A is provided.
  • the first cleaning liquid stored in the cleaning liquid storage tank 24A is discharged while being pushed out by the supplied first cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 24A is clean first. Replaced with cleaning solution.
  • the electromagnetic valves 61 and 63 are opened, the electromagnetic valves 62 and 64 are shut off, and the second cleaning liquid is sent out by the cleaning liquid supply pump 52.
  • the first cleaning liquid stored in the cleaning liquid storage tank 23A is discharged while being pushed out by the supplied second cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 23A becomes the second cleaning liquid. Replaced.
  • the electromagnetic valves 63 and 64 are opened, the electromagnetic valves 61 and 62 are shut off, and the second cleaning liquid is sent out by the cleaning liquid supply pump 52.
  • the first cleaning liquid stored in the cleaning liquid storage tank 24A is discharged in a form pushed out by the supplied second cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 24A becomes the second cleaning liquid. Replaced.
  • FIG. 4 is a diagram showing a state of sample dispensing processing by the first sample dispensing mechanism 11.
  • FIG. 5 is a diagram showing a state of sample dispensing processing by the second sample dispensing mechanism 12.
  • the sample probe 11a is immersed in the sample 115a to be dispensed to a depth H1, and the sample is sucked and dispensed. After the sample is dispensed, the sample probe 11a is in a state in which the probe outer wall from the tip to the distance H1 and the probe inner wall in contact with the sample are contaminated by the sample.
  • the sample probe 12a is immersed in the sample 115b to be dispensed to a depth H2, and the sample is sucked and dispensed.
  • the probe outer wall from the tip to the distance of H2 and the probe inner wall in contact with the sample are contaminated by the sample.
  • sample probe cleaning process and the additional cleaning process will be described.
  • sample probes 11a and 12a will be described as an example, but the same processing is applied to the reagent probes 7a and 8a.
  • the outer side and the inner side of the sample probe 11a are cleaned by the cleaning tank 13 for each sample.
  • the sample remaining at the time of dispensing the target sample to be analyzed next contaminates the target sample to be analyzed, and the dispensing target So-called cross-contamination that contaminates the sample in the sample container containing the sample occurs. Therefore, for the purpose of avoiding or reducing such cross-contamination, if there is a measurement request for a pre-registered analysis item for a sample of a pre-registered sample type, before analyzing the sample An additional cleaning process (cleaning to avoid carryover) of the sample probe 11a is performed.
  • FIG. 6 is a view showing a state of the additional cleaning process in the first sample dispensing mechanism 11, and is a view showing a longitudinal sectional view in a state where the sample probe 11a is inserted into the cleaning liquid storage tank 23A.
  • the cleaning liquid storage tank 23A is disposed on the downstream side of the flow path part 123a and the flow path part 123a formed so that the inner diameter B is smaller than the outer diameter A of the sample probe 11a. It is comprised from the storage part 123b formed so that a diameter might become larger than 123a.
  • the cleaning liquid storage tank 23A since the first cleaning liquid or the second cleaning liquid supplied from the cleaning liquid supply mechanisms 110 and 111 flows upward from the lower side in the figure, the lower side in the figure is defined as upstream and the upper side in the figure is defined as downstream.
  • the cleaning liquid reservoir 23A is formed of a resin or metal having resistance to the first cleaning liquid and the second cleaning liquid to be used.
  • the sample probe 11a is immersed in the first cleaning liquid or the second cleaning liquid in the storage unit 123b to a position deeper than the depth H1 by a predetermined value ⁇ 1 (that is, depth H1 + ⁇ 1).
  • a predetermined value ⁇ 1 that is, depth H1 + ⁇ 1.
  • the cleaning liquid remaining on the upper part of the storage unit 123b may be contaminated by immersion of the sample attached to the sample probe 11a. Is expensive. Therefore, in order to prepare for the next additional cleaning process, it is necessary to push out the first cleaning liquid or the second cleaning liquid from below and replace the first cleaning liquid or the second cleaning liquid in the cleaning liquid storage tank 23A with a new cleaning liquid.
  • the alkaline washing liquid is left for a long time in the state of being exposed to the atmosphere, the alkaline detergent is concentrated and crystallized at the opening of the reservoir 123b of the washing liquid reservoir 23A. There are things to do. If the sample probe 11a sucks this crystal, the sample probe 11a is clogged. In order to avoid this crystallization, it is desirable to replace the neutral second cleaning solution after the first cleaning solution is used.
  • the first cleaning liquid is stored in the flow path connecting the branch pipe 55, the electromagnetic valve 61, and the cleaning liquid storage tank 23A.
  • the control unit 21 moves the sample probe 11a to the position of the storage unit 123b again. Then, the first sample dispensing mechanism 11 and the sample pump 19 are controlled so that the inner washing water is discharged in a state where the sample probe 11a is infiltrated into the first washing liquid or the second washing liquid.
  • the first cleaning liquid or the second cleaning liquid in the storage unit 123b is discharged in a form that is pushed out by the discharged internal cleaning water. Therefore, only a part of the cleaning liquid storage tank 23A is replaced with the internal cleaning water.
  • the contaminated cleaning liquid present in the storage part 123b is replaced with clean inner washing water, and the uncontaminated cleaning liquid present in the flow path part 123a can be left in the flow path as it is.
  • the control part 21 supplies the first cleaning liquid or the second cleaning liquid to the cleaning liquid storage tank 23A in the preparation operation for the next additional cleaning process.
  • the cleaning liquid supply mechanisms 110 and 111 are controlled so that the cleaning liquid storage tank 23A is filled with the first cleaning liquid or the second cleaning liquid.
  • the risk of crystallization of the cleaning liquid can be reduced by replacing the first cleaning liquid or the second cleaning liquid in the reservoir 123b with the internal cleaning water once, and it is necessary to replace all the cleaning liquid in the flow path with a clean cleaning liquid. Therefore, the waste of cleaning liquid can be greatly reduced.
  • the control unit 21 supplies the first cleaning liquid or the second cleaning liquid in the storage unit 123b of the cleaning liquid storage tank 23A. After the sample probe 11a is sucked, the sample probe 11a is not moved to the cleaning mechanism 3, but the inner cleaning water is discharged together with the cleaning liquid sucked on the spot, and the first cleaning liquid or the second cleaning liquid in the reservoir 123b is discharged.
  • the first sample dispensing mechanism 11 and the sample pump 19 are controlled so that the storage portion 123b of the cleaning liquid storage tank 23A is replaced with the internal cleaning water by discharging in the form of being pushed out by the cleaning water.
  • the cleaning liquid in the storage portion 123b in the cleaning liquid storage tank 23A is replaced with the internal cleaning water
  • the first cleaning liquid or the second cleaning liquid is used in the preparation operation for the next additional cleaning process.
  • the cleaning liquid supply mechanisms 110 and 111 are controlled by the controller 21 so that the cleaning liquid storage tank 23A is supplied from below and the cleaning liquid storage tank 23A is filled with the first cleaning liquid or the second cleaning liquid.
  • the cleaning liquid may be crystallized.
  • the first cleaning liquid in the cleaning liquid storage tank may be replaced with the second cleaning liquid.
  • the cleaning liquid is wasted.
  • control unit 21 discharges the internal cleaning water with the sample probe 11a inserted into the cleaning liquid storage tank 23A. Then, the first sample dispensing mechanism 11 and the sample pump 19 are controlled so that the storage portion 123b of the cleaning liquid storage tank 23A is replaced with clean internal cleaning water.
  • the inner washing water can be continuously present on the air exposure side of the storage portion 123b of the washing liquid storage tank 23A, thereby preventing crystallization. This is possible, and the use amount of the cleaning liquid can be significantly reduced as compared with the case where all of the first cleaning liquid in the flow path is replaced.
  • the internal washing water in the storage part 123b diffuses at the interface with the flow path part 123a with time, and the concentration of the first cleaning liquid decreases in the vicinity of the interface between the flow path part 123a and the storage part 123b. Since the diffusion phenomenon depends on time, the region in which the concentration of the cleaning liquid decreases decreases as time elapses.
  • control unit 21 supplies the cleaning liquid so as to change the supply amount when supplying the first cleaning liquid to the cleaning liquid storage tank 23A according to the elapsed time since the previous inner cleaning water was discharged.
  • the mechanisms 110 and 111 are controlled.
  • the region where the concentration of the cleaning liquid is reduced can be discharged from the cleaning liquid storage tank 23A, and the concentration of the first cleaning liquid during the additional cleaning process can be made constant.
  • the additional cleaning process is performed after N hours have elapsed after the storage portion 123b of the cleaning liquid storage tank 23A is replaced with the internal cleaning water from the first cleaning liquid at an arbitrary time, the first cleaning liquid is supplied.
  • the supply amount is V
  • the supply amount is set to 2V. Note that the method of changing the supply amount over time is not stepwise as described above, but may be changed continuously with respect to time.
  • the tip of the sample probe 11a only needs to be inserted into the first cleaning liquid or the second cleaning liquid in the reservoir 123b, and the replacement rate increases depending on the insertion depth. It doesn't change. However, it is desirable to control the insertion depth at the time of discharge of the sample probe 11a by the relationship of the length of the range that can be washed in the washing tank 13> the depth to be inserted into the storage portion 123b.
  • the sample probe 11a may be contaminated by the first washing liquid or the second washing liquid. It is. However, because of such control, the inner washing water is discharged in a state where it is inserted shallower than the insertion depth that can be washed in the washing tank 13, so that even if a slight rise occurs, it is contaminated by the subsequent washing operation. The portion can also be cleaned, and the sample probe 11a can be cleaned effectively while suppressing the consumption of the cleaning solution.
  • the cleaning liquid is supplied into the flow path portions 123 a and 124 a and the cleaning liquid supply mechanisms 110 and 111 by the cleaning liquid supply syringe 51.
  • the supply amount of the cleaning liquid depends on the stroke amount of the cleaning liquid supply syringe 51.
  • the cleaning liquid is discharged from below the cleaning liquid storage tank 23A at the same time as the internal cleaning water is discharged from the sample probe 11a. May be supplied.
  • the discharged inner washing water and the washing liquid in the storage portion 123b of the washing liquid storage tank 23A collide with each other, and the washing water is discharged from above the washing liquid storage tank 23A while forming a turbulent flow. Can be effectively cleaned.
  • the discharge speed of the inner washing water can be controlled by the liquid feeding pressure of the sample pump 19, but the liquid feeding pressure of the sample pump 19 is not particularly limited, and the inner washing water is discharged by either low pressure or high pressure. May be.
  • the pressure of the sample pump 19 is discharged at a high pressure, the cleaning liquid replacement operation can be completed in a short time by performing the discharging operation while adjusting the pressure so that the internal washing water does not bounce from the reservoir 123b. It becomes possible.
  • the shape of the storage portion 123b of the cleaning liquid storage tank 23A may be a shape other than that shown in FIG.
  • the storage part in the cleaning liquid storage tank 23A1 is formed of a cylindrical part 123c
  • the storage part in the cleaning liquid storage tank 23A2 as shown in FIG. 9 is the cylindrical part 123c. Even if the shape is composed of the tapered portion 123d that smoothly connects the flow passage portion 123a and the flow passage portion 123a, the same effect as described above can be obtained.
  • FIG. 10 is a diagram schematically showing a configuration in which a heater 23c is provided in the cleaning liquid storage tank.
  • the heater 23c is disposed around the flow path portion 123a.
  • the heater 23c is ON / OFF controlled by the control unit 21 and is heated to a specified temperature, and heats the cleaning liquid stored in the flow path part 123a of the cleaning liquid storage tank 23A. It is possible to improve the cleaning effect by heating the cleaning liquid. Further, when all the cleaning liquids in the flow path connecting the branch pipe 55, the electromagnetic valve 61, and the cleaning liquid storage tank 23A in FIG. 2 are replaced, it takes a long time to heat the replaced cleaning liquid to the temperature of the heater 23c. To do. However, when only the storage portion 123b is replaced as in the present embodiment, since the cleaning liquid that has already reached the temperature of the heater 23c exists in the flow path, heating of the cleaning liquid after the cleaning liquid replacement can be completed in a short time. Is possible.
  • FIG. 11 is a view showing the state of the additional cleaning process in the second sample dispensing mechanism 12, and is a view showing a longitudinal sectional view of the state where the sample probe 12a is inserted into the cleaning liquid storage tank 24A.
  • the cleaning liquid storage tank 24A is disposed on the downstream side of the flow path part 124a and the flow path part 124a formed so that the inner diameter D is smaller than the outer diameter C of the sample probe 12a. It is comprised from the storage part 124b formed so that a diameter might become larger than 124a. Also in the cleaning liquid storage tank 24A, the first cleaning liquid or the second cleaning liquid supplied by the cleaning liquid supply mechanisms 110 and 111 flows upward from the lower side in the figure, so the lower side in the figure is the upstream and the upper side in the figure is the downstream.
  • the cleaning liquid storage tank 24A is also formed of a resin or metal having resistance to the first cleaning liquid and the second cleaning liquid to be used.
  • the sample probe 12a is immersed to a position deeper than the depth H2 by a predetermined value ⁇ 2 (that is, depth H2 + ⁇ 2). Also in this case, it is possible to leave the cleaning liquid in the flow path connecting the branch pipe 55, the electromagnetic valve 64, and the cleaning liquid storage tank 24A in FIG. 2 by replacing only the storage portion 124b with the internal cleaning water in the additional cleaning process. Therefore, it is possible to improve the waste of the cleaning liquid.
  • FIG. 12 is a flowchart showing a cleaning process when the apparatus is started up. It goes without saying that the same processing is applied to the reagent probes 7a and 8a.
  • step S120 when it is determined that an instruction for starting the apparatus has been input (step S120), the control unit 21 controls the cleaning liquid supply mechanisms 110 and 111 so that the cleaning liquid in the cleaning liquid storage tanks 23A and 24A is changed to the first.
  • the second cleaning liquid is replaced with the first cleaning liquid (step S121).
  • step S122 the sample probes 11a and 12a are rotated and lowered into the cleaning liquid storage tanks 23A and 24A (step S122), and are immersed to a depth H1 + ⁇ 1 and a depth H2 + ⁇ 2.
  • step S123 the first cleaning liquid in the storage portions 123b and 124b of the cleaning liquid storage tanks 23A and 24A is sucked by the sample pump 19 (step S123), and the inner and outer walls of the sample probes 11a and 12a are cleaned.
  • the control unit 21 slightly raises and rotates the sample probes 11a and 12a, and causes the sample pump 19 to discharge the inner washing water from the sample probes 11a and 12a in the washing liquid storage tanks 23A and 24A (step).
  • the first wash water in the reservoirs 123b and 124b in the wash liquid reservoirs 23A and 24A is replaced with the wash water.
  • sample probes 11a and 12a are further raised and rotated, moved to the cleaning tanks 13 and 14 (step S125), and the inside and outside of the sample probes 11a and 12a are cleaned by the cleaning tanks 13 and 14 (step S126).
  • the standby state is set (step S127), and the process ends.
  • FIG. 13 is a flowchart showing the sample dispensing method and the first additional cleaning method.
  • step S130 when the control unit 21 determines that a pre-registered analysis item measurement request has been made for a pre-registered sample type sample, first, the sample is dispensed (aspirated / discharged) (step) S130). Next, the inside and outside of the sample probes 11a and 12a are cleaned in the cleaning tanks 13 and 14 (step S131), and the sample dispensing process ends.
  • control unit 21 controls the cleaning liquid supply mechanisms 110 and 111 to supply the first cleaning liquid from the upstream side of the cleaning liquid storage tanks 23A and 24A, and the cleaning liquid storage tanks 23A and 24A are filled with the first cleaning liquid (step). S132), and the pretreatment for the additional cleaning ends.
  • control unit 21 rotates and lowers the sample probes 11a and 12a in the cleaning liquid storage tanks 23A and 24A (step S133) and immerses them to the depths H1 + ⁇ 1 and H2 + ⁇ 2.
  • the first cleaning liquid in the storage portions 123b and 124b of the cleaning liquid storage tanks 23A and 24A is sucked by the sample pump 19 (step S134), and the inner and outer walls of the sample probes 11a and 12a are cleaned.
  • control unit 21 raises and rotates the sample probes 11a and 12a to move them to the cleaning tanks 13 and 14 (step S135), and discharges the internal washing water of the sample probes 11a and 12a together with the sucked cleaning liquid. (Step S136).
  • control unit 21 rotates and lowers the sample probes 11a and 12a to the cleaning liquid storage tanks 23A and 24A again (step S137), and discharges internal cleaning water from the sample probes 11a and 12a (step S138), thereby cleaning liquid storage tanks.
  • the cleaning liquid in the reservoir in 23A and 24A is replaced with internal cleaning water.
  • control unit 21 again moves the sample probes 11a and 12a to the cleaning tanks 13 and 14 (step S139), and performs the internal and external cleaning of the sample probes 11a and 12a in the cleaning tanks 13 and 14 (step S1310).
  • the cleaning process ends.
  • FIG. 14 is a flowchart showing a sample dispensing process and a second additional cleaning process method.
  • step S140 when the control unit 21 determines that a pre-registered analysis item measurement request has been made for a pre-registered sample type sample, first, the sample is dispensed (aspirated / discharged) (step) S140). Next, the inside and outside of the sample probes 11a and 12a are cleaned in the cleaning tanks 13 and 14 (step S141), and the sample dispensing process ends.
  • control unit 21 controls the cleaning liquid supply mechanisms 110 and 111 to supply the first cleaning liquid from the upstream side of the cleaning liquid storage tanks 23A and 24A, and the cleaning liquid storage tanks 23A and 24A are filled with the first cleaning liquid (step). S142) and the pretreatment for the additional cleaning are completed.
  • control unit 21 rotates and lowers the sample probes 11a and 12a in the cleaning liquid storage tanks 23A and 24A (step S143), and immerses them to the depths H1 + ⁇ 1 and H2 + ⁇ 2.
  • the first cleaning liquid in the cleaning liquid storage tanks 23A and 24A is sucked by the sample pump 19 (step S144), and the inner and outer walls of the sample probes 11a and 12a are cleaned.
  • the control unit 21 slightly raises and rotates the sample probes 11a and 12a, and causes the sample pump 19 to discharge the inner washing water from the sample probes 11a and 12a in the washing liquid storage tanks 23A and 24A (step).
  • the first wash water in the reservoirs 123b and 124b in the wash liquid reservoirs 23A and 24A is replaced with the wash water.
  • the sample probes 11a and 12a are raised and rotated to move to the cleaning tanks 13 and 14 (step S146), and the inside and outside of the sample probes 11a and 12a are cleaned by the cleaning tanks 13 and 14 (step S147). finish.
  • the additional cleaning pretreatment in step S132 of FIG. 13 and the additional cleaning preprocessing in step S142 of FIG. 14 may be performed and completed before the additional cleaning processing, and may be performed before the sample dispensing processing. Further, it may be performed in parallel with the sample dispensing process.
  • FIG. 15 is a flowchart showing the cleaning process of the cleaning liquid storage tank when a predetermined N hours have elapsed in the standby state.
  • step S150 when the control unit 21 determines that a predetermined N hours have elapsed in the standby state (step S150), first, among the plurality of cleaning liquid storage tanks 23A and 24A, one of the cleaning liquid storage tanks 23A and 24A. The cleaning liquid is replaced with the second cleaning liquid from the first cleaning liquid (step S151).
  • step S152 the sample probes 11a and 12a are rotated and lowered to the cleaning liquid storage tanks 23A and 24A (step S152), and the cleaning liquid supply mechanisms 110 and 111 change the cleaning liquid in the cleaning liquid storage tanks 23A and 24A from the second cleaning liquid to the first cleaning liquid.
  • step S153 the first cleaning liquid is sucked with the sample probes 11a and 12a by the sample pump 19 (step S154), and the sucked cleaning liquid and the inner cleaning water of the sample probes 11a and 12a are discharged (step S155), and the cleaning liquid storage tank 23A. , 24A, the first cleaning liquid in the reservoir is replaced with internal cleaning water.
  • step S156 the sample probes 11a and 12a are moved up and rotated to move to the cleaning tanks 13 and 14
  • step S157 the inside and outside of the sample probes 11a and 12a are cleaned by the cleaning tanks 13 and 14.
  • step S158 The standby state is set (step S158), and the process ends.
  • FIG. 16 is a flowchart showing a cleaning process when the apparatus is down.
  • step S160 when the control unit 21 first determines that an instruction for starting the apparatus has been input, the control unit 21 exits the standby state (step S160) and changes the cleaning liquid in the cleaning liquid storage tanks 23A and 24A from the first cleaning liquid to the second cleaning liquid. Replacement is performed (step S161). Thereafter, the apparatus is lowered (step S162), and the process is terminated.
  • the controller 21 cleans the sample probes 11a and 12a and the reagent probes 7a and 8a in the cleaning liquid reservoirs 23A and 24A
  • the sample probes 11a and 12a and the reagent probes 7a and 8a are controlled so that the internal washing water is discharged from the sample probes 11a and 12a and the reagent probes 7a and 8a.
  • the first cleaning liquid or the second cleaning liquid in the storage unit 123b is discharged in a form pushed out by the discharged inner washing water, and the contaminated cleaning liquid is replaced with clean inner washing water.
  • the uncontaminated cleaning liquid existing in the flow path portion 123a can be left in the flow path as it is, the risk of crystallization of the cleaning liquid can be reduced, and the cleaning liquid for cleaning the probe The amount of use can be greatly reduced.
  • the cleaning liquid storage tanks 23A and 24A are made of resin or metal having resistance to the cleaning liquid, and the inner diameters of the flow path parts 123a are smaller than the outer diameters of the sample probes 11a and 12a and the reagent probes 7a and 8a. , 124a and reservoirs 123b, 124b having a diameter larger than the inner diameter of the flow passages 123a, 124a on the downstream side of the flow passages 123a, 124a, the discharged inner wash water has a larger diameter.
  • the cleaning liquid storage tanks 23A and 24A have the first and second contaminated cleaning liquids held in the storage parts 123b and 124b, because the volume in the storage parts 123b and 124b is smaller than the volume of the flow path parts 123a and 124a.
  • the cleaning liquid can be replaced at a time, and the cleaning liquid can be replaced efficiently.
  • the cleaning liquid supply mechanisms 110 and 111 are configured such that the discharge amount of the cleaning liquid supply syringe 51 that supplies the cleaning liquid to the cleaning liquid storage tanks 23A and 24A is larger than the volume of the flow path portions 123a and 124a. In one stroke, all the contaminated cleaning liquid remaining in the reservoirs 123b and 124b can be replaced with a new cleaning liquid, and the cleaning liquid can be replaced efficiently.
  • control unit 21 determines the insertion depth of the sample probes 11a and 12a and the reagent probes 7a and 8a into the cleaning liquid when the inner washing water is discharged from the sample probes 11a and 12a and the reagent probes 7a and 8a.
  • 12a, and the reagent probes 7a and 8a are controlled to be shorter than the length of the cleaning tanks 13 and 14 in the cleaning tanks 13 and 14, so that the cleaning liquid can be discharged when the inner washing water is discharged by controlling the sample probes 11a and 12a and reagent probes 7a and 8a. Even if it rises, the raised portion is also washed by subsequent washing, so that the dispensing probe can be reliably washed while suppressing consumption of the washing solution.
  • the control unit 21 also inserts the sample probes 11a, 12a, and the reagent probes 7a, 8a so that the horizontal positions of the sample probes 11a, 12a and the reagent probes 7a, 8a are shifted from the central axes of the flow path units 123a, 124a.
  • a turbulent flow is formed by the discharged cleaning liquid, and more effective cleaning can be performed.
  • the discharged inner washing water permeates into the flow path portion 123a, and the replacement efficiency of the cleaning liquid into the inner washing water can be further improved.
  • the cleaning liquid is an alkaline or acidic special cleaning liquid for cleaning the sample probes 11a and 12a and the reagent probes 7a and 8a, so that the effect of additional cleaning of the sample probes 11a and 12a and the reagent probes 7a and 8a is sufficiently obtained. Can be secured.
  • the controller 21 supplies the cleaning liquid to the cleaning liquid storage tanks 23A and 24A and a predetermined time has elapsed, the controller 21 supplies the internal cleaning water from the sample probes 11a and 12a and the reagent probes 7a and 8a in the cleaning liquid storage tanks 23A and 24A.
  • the controller 21 supplies the internal cleaning water from the sample probes 11a and 12a and the reagent probes 7a and 8a in the cleaning liquid storage tanks 23A and 24A.
  • the controller 21 supplies the cleaning liquid supply mechanisms 110 and 111 so as to change the supply amount of the cleaning liquid according to the elapsed time since the inner cleaning water was previously discharged.
  • the controller 21 supplies the cleaning liquid supply mechanisms 110 and 111 so as to change the supply amount of the cleaning liquid according to the elapsed time since the inner cleaning water was previously discharged.

Abstract

In the present invention, when sample probes 11a and 12a and reagent probes 7a and 8a are cleaned in cleaning liquid reservoir tanks 23A and 24A, a control unit 21 controls the sample probes 11a and 12a and the reagent probes 7a and 8a such that internal cleaning water is discharged from the sample probes 11a and 12a and the reagent probes 7a and 8a to the cleaning liquid reservoir tanks 23A and 24A. Accordingly, provided are an automatic analyzing device and a dispensing-probe cleaning method which are capable of reducing the amount of cleaning liquid used for cleaning probes, compared to the conventionally used amount.

Description

自動分析装置および分注プローブの洗浄方法Automatic analyzer and dispensing probe cleaning method
 本発明は、試料容器に収容された血液や尿などの生体試料の定性・定量分析を行う自動分析装置およびそれら試料や試薬を分注する分注プローブの洗浄方法に関する。 The present invention relates to an automatic analyzer that performs qualitative / quantitative analysis of biological samples such as blood and urine contained in a sample container, and a method for cleaning a dispensing probe that dispenses these samples and reagents.
 試料の分注プローブの洗浄に関する技術として、例えば、特許文献1には、試料容器に収容された試料を吸引して反応容器に吐出する分注を行う分注プローブと、分注プローブを第1または第2洗浄液を用いて洗浄する洗浄部と、分注プローブを試料の吸引が可能な通常吸引位置またはこの通常吸引位置よりも下方の特殊吸引位置で停止させ、通常吸引位置で停止した分注プローブを洗浄部により第1洗浄液を用いて洗浄が可能な通常洗浄位置またはこの通常洗浄位置よりも下方の第1または第2洗浄液を用いて洗浄可能な特殊洗浄位置で停止させるプローブ移動機構とを備えた自動分析装置が開示されている。 As a technique related to cleaning of a sample dispensing probe, for example, Patent Document 1 discloses a dispensing probe that performs dispensing for sucking a sample contained in a sample container and discharging it to a reaction container, and a dispensing probe. Alternatively, the cleaning section to be cleaned using the second cleaning liquid and the dispensing probe are stopped at the normal suction position where the sample can be sucked or a special suction position below the normal suction position, and the dispensing stopped at the normal suction position. A probe moving mechanism for stopping the probe at a normal cleaning position where the cleaning unit can be cleaned using the first cleaning liquid or a special cleaning position where the probe can be cleaned using the first or second cleaning liquid below the normal cleaning position; An automatic analyzer with the above is disclosed.
特開2014-55807号公報JP 2014-55807 A
 血液や尿などの生体試料(以下、試料と称する)の定性・定量分析を行う自動分析装置においては、分析対象である試料の分注に用いるプローブを適宜洗浄することによりクロスコンタミネーションの発生を抑制して分析精度の維持を図っている。 In automatic analyzers that perform qualitative and quantitative analysis of biological samples such as blood and urine (hereinafter referred to as samples), cross-contamination can be generated by appropriately cleaning the probe used for dispensing the sample to be analyzed. It suppresses to maintain the analysis accuracy.
 洗浄液貯留槽に貯留された洗浄液にプローブを挿入して洗浄する場合、プローブ洗浄後の洗浄液貯留槽に残存した洗浄液は、試料プローブに付着した試料が浸漬したことにより汚染されている可能性が高い。そのため、プローブの洗浄効果を維持するためには洗浄液貯留槽の洗浄液を汚染されていない洗浄液に適宜置換する必要がある。 When a probe is inserted into the cleaning liquid stored in the cleaning liquid storage tank for cleaning, the cleaning liquid remaining in the cleaning liquid storage tank after the probe cleaning is likely to be contaminated by the immersion of the sample attached to the sample probe. . Therefore, in order to maintain the cleaning effect of the probe, it is necessary to appropriately replace the cleaning liquid in the cleaning liquid storage tank with an uncontaminated cleaning liquid.
 ここで、洗浄液にアルカリ性の洗浄液を用いた場合、長時間大気に触れる状態で放置すると洗浄液が濃縮して結晶化することがある。この結晶化を回避するために、アルカリ性の洗浄液を使用した後に中性の洗浄液で洗浄することが望ましい。すなわち、結晶化を予防しつつ、プローブ洗浄効果を維持するためには、試料プローブを洗浄した後の洗浄液貯留槽内の汚染されたアルカリ性の洗浄液を一度中性の洗浄液で置換し、その後、綺麗なアルカリ性の洗浄液に置換することが必要となる。 Here, when an alkaline cleaning solution is used as the cleaning solution, the cleaning solution may concentrate and crystallize if left in contact with the atmosphere for a long time. In order to avoid this crystallization, it is desirable to wash with a neutral cleaning solution after using an alkaline cleaning solution. That is, in order to maintain the probe cleaning effect while preventing crystallization, the contaminated alkaline cleaning solution in the cleaning solution storage tank after cleaning the sample probe is once replaced with a neutral cleaning solution, and then cleaned. It is necessary to replace with an alkaline washing liquid.
 しかし、洗浄液を置換する際に洗浄液貯留槽内および洗浄液貯留槽に洗浄液を供給する流路内の洗浄液をすべて置換すると、汚染されていない置換する必要のない洗浄液も置換することになり、洗浄液を無駄に消費することになる。 However, if all the cleaning liquid in the cleaning liquid storage tank and the flow path for supplying the cleaning liquid to the cleaning liquid storage tank are replaced when the cleaning liquid is replaced, the cleaning liquid that is not contaminated and does not need to be replaced is also replaced. It will be wasted.
 本発明は上記に鑑みてなされたものであり、プローブの洗浄のための洗浄液の使用量を低減することができる自動分析装置および分注プローブの洗浄方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an automatic analyzer and a dispensing probe cleaning method capable of reducing the amount of cleaning liquid used for probe cleaning.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、自動分析装置であって、試薬や分析対象の試料を反応容器に分注する分注プローブと、前記分注プローブを洗浄するための洗浄液を貯留し、前記分注プローブを前記洗浄液に挿入して洗浄する洗浄液貯留槽と、前記洗浄液貯留槽へと繋がる流路を介して前記洗浄液貯留槽へと前記洗浄液を供給して前記分注プローブの洗浄処理を行う洗浄液供給部と、前記洗浄液貯留槽にて前記分注プローブを洗浄する際に、前記分注プローブより内洗水を吐出するよう前記分注プローブを制御する制御部と、を備えたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above problems. To give an example, the present invention is an automatic analyzer, a dispensing probe for dispensing a reagent or a sample to be analyzed into a reaction container, The cleaning liquid for cleaning the dispensing probe is stored, the cleaning liquid storage tank for cleaning by inserting the dispensing probe into the cleaning liquid, and the cleaning liquid storage tank via the flow path connected to the cleaning liquid storage tank. A cleaning liquid supply unit that supplies a cleaning liquid to perform a cleaning process on the dispensing probe, and the dispensing probe discharges internal washing water from the dispensing probe when the dispensing probe is cleaned in the cleaning liquid storage tank. And a control unit for controlling the probe.
 本発明によれば、プローブの洗浄に用いる洗浄液の使用量を低減することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the amount of cleaning liquid used for cleaning the probe can be reduced. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
本発明の実施形態に係る自動分析装置の全体構成を概略的に示す図である。1 is a diagram schematically showing an overall configuration of an automatic analyzer according to an embodiment of the present invention. 単一の洗浄容器を有する洗浄液供給機構を模式的に示す図である。It is a figure which shows typically the washing | cleaning-liquid supply mechanism which has a single washing | cleaning container. 複数の洗浄容器を有する洗浄液供給機構を模式的に示す図である。It is a figure which shows typically the washing | cleaning liquid supply mechanism which has a some washing | cleaning container. 第1試料分注機構による試料分注処理の様子を示す図である。It is a figure which shows the mode of the sample dispensing process by a 1st sample dispensing mechanism. 第2試料分注機構による試料分注処理の様子を示す図である。It is a figure which shows the mode of the sample dispensing process by a 2nd sample dispensing mechanism. 第1試料分注機構の追加洗浄処理の様子を示す図であり、洗浄液貯留槽に試料プローブを挿入した状態の縦断面図である。It is a figure which shows the mode of the additional washing process of a 1st sample dispensing mechanism, and is a longitudinal cross-sectional view of the state which inserted the sample probe into the washing | cleaning liquid storage tank. 追加洗浄処理における試料プローブの洗浄液貯留槽への挿入位置を示す図である。It is a figure which shows the insertion position to the washing | cleaning liquid storage tank of the sample probe in an additional washing process. 洗浄液貯留槽の他の形状例における縦断面図を示す図である。It is a figure which shows the longitudinal cross-sectional view in the other example of a shape of a washing | cleaning liquid storage tank. 洗浄液貯留槽の他の形状例における縦断面図を示す図である。It is a figure which shows the longitudinal cross-sectional view in the other example of a shape of a washing | cleaning liquid storage tank. 洗浄液貯留槽にヒーターを備え付けた構成を示す図である。It is a figure which shows the structure which equipped the washing | cleaning liquid storage tank with the heater. 第2試料分注機構の追加洗浄処理の様子を示す図であり、洗浄液貯留槽に試料プローブを挿入した状態の縦断面図である。It is a figure which shows the mode of the additional washing process of a 2nd sample dispensing mechanism, and is a longitudinal cross-sectional view of the state which inserted the sample probe into the washing | cleaning liquid storage tank. 装置立上の際の洗浄液貯留槽での洗浄処理を示すフローチャートである。It is a flowchart which shows the washing | cleaning process in the washing | cleaning liquid storage tank at the time of apparatus startup. 試料分注処理および第1追加洗浄処理方法を示すフローチャートである。It is a flowchart which shows a sample dispensing process and the 1st additional washing process method. 試料分注処理および第2追加洗浄処理方法を示すフローチャートである。It is a flowchart which shows a sample dispensing process and the 2nd additional washing process method. スタンバイ状態で予め定めたN時間経過した場合の洗浄液貯留槽での洗浄処理を示すフローチャートである。It is a flowchart which shows the washing | cleaning process in the washing | cleaning liquid storage tank when predetermined N time passes in a standby state. 装置立下の際の洗浄液貯留槽での洗浄処理を示すフローチャートである。It is a flowchart which shows the washing | cleaning process in the washing | cleaning liquid storage tank at the time of apparatus fall.
 本発明の自動分析装置および分注プローブの洗浄方法の実施形態を、図1乃至図16を用いて詳細に説明する。まず、自動分析装置全体の構成について図1を用いて説明する。図1は、本実施形態に係る自動分析装置の全体構成を概略的に示す図である。 Embodiments of the automatic analyzer and the dispensing probe cleaning method of the present invention will be described in detail with reference to FIGS. First, the configuration of the entire automatic analyzer will be described with reference to FIG. FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to the present embodiment.
 図1において、自動分析装置100は、反応容器2に試料と試薬とを各々分注して反応させ、この反応させた液体を測定する装置であり、試料搬送機構17と、試薬ディスク9と、反応ディスク1と、第1試料分注機構11および第2試料分注機構12と、試薬分注機構7,8と、攪拌機構5,6と、光源4aと、分光光度計4と、洗浄機構3と、制御部21とから概略構成されている。 In FIG. 1, an automatic analyzer 100 is a device that dispenses and reacts a sample and a reagent in a reaction vessel 2 and measures the reacted liquid. A sample transport mechanism 17, a reagent disk 9, Reaction disk 1, first sample dispensing mechanism 11 and second sample dispensing mechanism 12, reagent dispensing mechanisms 7 and 8, stirring mechanisms 5 and 6, light source 4 a, spectrophotometer 4, and cleaning mechanism 3 and a control unit 21.
 反応ディスク1には、反応容器2が円周状に並んでいる。反応容器2は試料と試薬とを混合させた混合液を収容するための容器であり、反応ディスク1上に複数並べられている。反応ディスク1の近くには、分析対象の試料を収容した試料容器15を一つ以上搭載した試料ラック16を搬送する試料搬送機構17が配置されている。 The reaction vessel 2 is arranged on the reaction disc 1 in a circumferential shape. The reaction container 2 is a container for storing a mixed liquid in which a sample and a reagent are mixed, and a plurality of reaction containers 2 are arranged on the reaction disk 1. Near the reaction disk 1, a sample transport mechanism 17 is disposed that transports a sample rack 16 on which one or more sample containers 15 containing samples to be analyzed are mounted.
 反応ディスク1と試料搬送機構17との間には、回転および上下動可能な第1試料分注機構11および第2試料分注機構12が配置されている。 Between the reaction disk 1 and the sample transport mechanism 17, a first sample dispensing mechanism 11 and a second sample dispensing mechanism 12 that can be rotated and moved up and down are arranged.
 第1試料分注機構11は、その先端を下方に向けて配置された試料プローブ11aを有しており、試料プローブ11aには、試料用ポンプ19が接続されている。第1試料分注機構11は、洗浄水タンク(図示省略)から試料用ポンプ19により送出される洗浄水(以下、内洗水と記載)を試料プローブ11aから吐出可能であるように構成されている。また、第1試料分注機構11は、水平方向への回転動作および上下動作が可能なように構成されており、試料プローブ11aを試料容器15に挿入して試料用ポンプ19を作動させて試料を吸引し、試料プローブ11aを反応容器2に挿入して試料を吐出することにより、試料容器15からから反応容器2への試料の分注を行う。第1試料分注機構11の稼動範囲には、試料プローブ11aを洗浄液により洗浄する洗浄槽13および特別な洗浄液により洗浄する洗浄容器23が配置されている。試料プローブ11aを試料容器15に挿入して試料を吸引する位置を第1試料吸引位置とし、試料プローブ11aを反応容器2に挿入して試料を吐出する位置を第1試料吐出位置とすると、洗浄槽13および洗浄容器23は第1試料吸引位置と第1試料吐出位置との間に配置されている。 The first sample dispensing mechanism 11 has a sample probe 11a arranged with its tip facing downward, and a sample pump 19 is connected to the sample probe 11a. The first sample dispensing mechanism 11 is configured to be able to discharge wash water (hereinafter referred to as internal wash water) sent from the wash water tank (not shown) by the sample pump 19 from the sample probe 11a. Yes. Further, the first sample dispensing mechanism 11 is configured to be capable of rotating in the horizontal direction and moving up and down. The sample probe 11a is inserted into the sample container 15 and the sample pump 19 is operated to operate the sample. The sample is dispensed from the sample container 15 to the reaction container 2 by inserting the sample probe 11a into the reaction container 2 and discharging the sample. In the operating range of the first sample dispensing mechanism 11, a cleaning tank 13 for cleaning the sample probe 11a with a cleaning liquid and a cleaning container 23 for cleaning with a special cleaning liquid are arranged. The position where the sample probe 11a is inserted into the sample container 15 and the sample is sucked is defined as the first sample suction position, and the position where the sample probe 11a is inserted into the reaction container 2 and the sample is discharged is defined as the first sample discharge position. The tank 13 and the cleaning container 23 are disposed between the first sample suction position and the first sample discharge position.
 第2試料分注機構12は、その先端を下方に向けて配置された試料プローブ12aを有しており、試料プローブ12aには、試料用ポンプ19が接続されている。第2試料分注機構12は、洗浄水タンク(図示省略)から試料用ポンプ19により送出される洗浄水(内洗水)を試料プローブ12aから吐出可能であるように構成されている。第2試料分注機構12は、水平方向への回転動作および上下動作が可能なように構成されており、試料プローブ12aを試料容器15に挿入して試料用ポンプ19を作動させて試料を吸引し、試料プローブ12aを反応容器2に挿入して試料を吐出することにより、試料容器15からから反応容器2への試料の分注を行う。第2試料分注機構12の稼動範囲には、試料プローブ12aを洗浄液により洗浄する洗浄槽14および特別な洗浄液により洗浄する洗浄容器24が配置されている。試料プローブ12aを試料容器15に挿入して試料を吸引する位置を第2試料吸引位置とし、試料プローブ12aを反応容器2に挿入して試料を吐出する位置を第2試料吐出位置とすると、洗浄槽14および洗浄容器24は第2試料吸引位置と第2試料吐出位置との間に配置されている。 The second sample dispensing mechanism 12 has a sample probe 12a arranged with its tip facing downward, and a sample pump 19 is connected to the sample probe 12a. The second sample dispensing mechanism 12 is configured such that the wash water (internal wash water) sent from the wash water tank (not shown) by the sample pump 19 can be discharged from the sample probe 12a. The second sample dispensing mechanism 12 is configured so as to be able to rotate in the horizontal direction and move up and down. The sample probe 12a is inserted into the sample container 15 and the sample pump 19 is operated to suck the sample. Then, the sample probe 12a is inserted into the reaction vessel 2 and the sample is discharged, thereby dispensing the sample from the sample vessel 15 to the reaction vessel 2. In the operating range of the second sample dispensing mechanism 12, a cleaning tank 14 for cleaning the sample probe 12a with a cleaning liquid and a cleaning container 24 for cleaning with a special cleaning liquid are arranged. If the position where the sample probe 12a is inserted into the sample container 15 and the sample is sucked is the second sample suction position, and the position where the sample probe 12a is inserted into the reaction container 2 and the sample is discharged is the second sample discharge position, the cleaning is performed. The tank 14 and the cleaning container 24 are disposed between the second sample suction position and the second sample discharge position.
 洗浄槽13,14は、試薬分注後の試料プローブ11a,12aの外側および内側の洗浄を試料分注のたびに行うための洗浄槽である。これに対し、洗浄容器23,24は、予め登録された検体種別の試料に対して、予め登録された分析項目の測定依頼があった場合に、その試料を分析する前に試料プローブ11a,12aに対して行う追加洗浄処理のための部分である。その詳細については後述する。 The washing tanks 13 and 14 are washing tanks for performing washing of the outside and inside of the sample probes 11a and 12a after the reagent dispensing every time the sample is dispensed. On the other hand, the cleaning containers 23 and 24 have the sample probes 11a and 12a before analyzing the sample when the sample of the sample type registered in advance is requested to measure the analysis item registered in advance. It is a part for the additional washing process performed with respect to. Details thereof will be described later.
 試薬ディスク9は、その中に試薬を収容した試薬ボトル10を複数個円周上に載置可能となっている保管庫である。試薬ディスク9は保冷されている。 The reagent disk 9 is a storage in which a plurality of reagent bottles 10 containing the reagents therein can be placed on the circumference. The reagent disk 9 is kept cold.
 反応ディスク1と試薬ディスク9との間には、水平方向への回転移動および上下動作が可能に構成され、試薬ボトル10から反応容器2に試薬を分注するための試薬分注機構7,8が設置されており、それぞれその先端を下方に向けて配置された試薬プローブ7a,8aを備えている。試薬プローブ7a,8aには、試薬用ポンプ18が接続されている。この試薬用ポンプ18により、試薬プローブ7a,8aを介して試薬ボトル10等から吸引した試薬、洗剤、希釈液、前処理用試薬等を反応容器2に分注する。 Between the reaction disk 1 and the reagent disk 9, a rotational movement in the horizontal direction and a vertical movement are possible, and reagent dispensing mechanisms 7 and 8 for dispensing the reagent from the reagent bottle 10 to the reaction container 2 are configured. And reagent probes 7a and 8a arranged with their tips facing downward. A reagent pump 18 is connected to the reagent probes 7a and 8a. The reagent pump 18 dispenses the reagent, detergent, diluent, pretreatment reagent, and the like sucked from the reagent bottle 10 and the like through the reagent probes 7a and 8a into the reaction container 2.
 試薬分注機構7の稼動範囲には試薬プローブ7aを洗浄液により洗浄する洗浄槽32が、試薬分注機構8の稼動範囲には試薬プローブ8aを洗浄液により洗浄する洗浄槽33が配置されている。 In the operating range of the reagent dispensing mechanism 7, a cleaning tank 32 for cleaning the reagent probe 7a with a cleaning liquid is disposed, and in the operating range of the reagent dispensing mechanism 8, a cleaning tank 33 for cleaning the reagent probe 8a with a cleaning liquid is disposed.
 反応ディスク101の周囲には、攪拌機構5,6や、光源4aから反応容器2の反応液を介して得られる透過光を測定することにより、反応液の吸光度を測定する分光光度計4や、使用済みの反応容器2を洗浄する洗浄機構3等が配置されている。 Around the reaction disk 101, a spectrophotometer 4 for measuring the absorbance of the reaction solution by measuring the transmitted light obtained from the light source 4a through the reaction solution of the reaction vessel 2 around the stirring mechanism 5, 6, A cleaning mechanism 3 for cleaning the used reaction vessel 2 is disposed.
 攪拌機構5,6は、水平方向への回転動作および上下動作が可能なように構成されており、反応容器2に挿入することにより試料と試薬との混合液(反応液)の攪拌を行う。攪拌機構5,6の稼動範囲には、攪拌機構5,6を洗浄液により洗浄する洗浄槽30,31が配置されている。また、洗浄機構3には、洗浄用ポンプ20が接続されている。 The stirring mechanisms 5 and 6 are configured so as to be able to rotate in the horizontal direction and move up and down, and agitate the mixed solution (reaction solution) of the sample and the reagent by being inserted into the reaction vessel 2. In the operating range of the stirring mechanisms 5 and 6, cleaning tanks 30 and 31 for cleaning the stirring mechanisms 5 and 6 with the cleaning liquid are arranged. A cleaning pump 20 is connected to the cleaning mechanism 3.
 制御部21は、コンピュータ等から構成され、自動分析装置内の上述した各機構の動作を制御するとともに、血液や尿等の液体試料中の所定の成分の濃度を求める演算処理を行う。なお、図1においては、図示の簡単のため、自動分析装置を構成する各機構と制御部21との接続を一部省略して示している。 The control unit 21 is configured by a computer or the like, and controls the operation of each mechanism described above in the automatic analyzer and performs calculation processing for obtaining the concentration of a predetermined component in a liquid sample such as blood or urine. In FIG. 1, for the sake of simplicity, a part of the connection between each mechanism constituting the automatic analyzer and the control unit 21 is omitted.
 以上が自動分析装置100の一般的な構成である。 The above is the general configuration of the automatic analyzer 100.
 上述のような自動分析装置100による検査試料の分析処理は、一般的に以下の順に従い実行される。 The inspection sample analysis processing by the automatic analyzer 100 as described above is generally performed in the following order.
 まず、試料搬送機構17によって反応ディスク1近くに搬送された試料ラック16の上に載置された試料容器15内の試料を、第1試料分注機構11の試料プローブ11aまたは第2試料分注機構12の試料プローブ12aにより反応ディスク1上の反応容器2へと分注する。次に、分析に使用する試薬を、試薬ディスク9上の試薬ボトル10から試薬分注機構7,8の試薬プローブ7a,8aにより先に試料を分注した反応容器2に対して分注する。続いて、攪拌機構5,6で反応容器2内の試料と試薬との混合液の撹拌を行う。 First, the sample in the sample container 15 placed on the sample rack 16 transported near the reaction disk 1 by the sample transport mechanism 17 is sampled by the sample probe 11a of the first sample dispensing mechanism 11 or the second sample dispensing. The sample is dispensed into the reaction vessel 2 on the reaction disk 1 by the sample probe 12 a of the mechanism 12. Next, the reagent used for the analysis is dispensed from the reagent bottle 10 on the reagent disk 9 to the reaction container 2 into which the sample has been dispensed by the reagent probes 7a, 8a of the reagent dispensing mechanisms 7, 8. Subsequently, the mixed solution of the sample and the reagent in the reaction vessel 2 is stirred by the stirring mechanisms 5 and 6.
 その後、光源4aから発生させた光を混合液の入った反応容器2を透過させ、透過光の光度を分光光度計4により測定する。分光光度計4により測定された光度を、A/Dコンバータおよびインターフェイスを介して制御部21に送信する。そして制御部21によって演算を行い、試薬に応じた分析項目の所定の成分の濃度を求め、結果を表示部(図示省略)等にて表示させたり、記憶部(図示省略)に記憶させる。 Thereafter, the light generated from the light source 4 a is transmitted through the reaction vessel 2 containing the mixed solution, and the luminous intensity of the transmitted light is measured by the spectrophotometer 4. The light intensity measured by the spectrophotometer 4 is transmitted to the control unit 21 via the A / D converter and the interface. Then, calculation is performed by the control unit 21, the concentration of a predetermined component of the analysis item corresponding to the reagent is obtained, and the result is displayed on a display unit (not shown) or stored in a storage unit (not shown).
 次に洗浄液供給機構の構成について、図2および図3を用いて説明する。図2は、単一の洗浄容器を有する洗浄液供給機構110を模式的に示す図である。なお、本実施形態では、試料プローブ11a,12aを洗浄するための洗浄容器23,24に対して洗浄液を供給する形態について説明するが、洗浄容器で洗浄される分注プローブは試料プローブ11a,12aに限定されず、試薬を試薬ボトル10から反応容器2に分注する試薬プローブ7a,8a等も洗浄対象である。 Next, the configuration of the cleaning liquid supply mechanism will be described with reference to FIGS. FIG. 2 is a diagram schematically showing a cleaning liquid supply mechanism 110 having a single cleaning container. In the present embodiment, a mode in which a cleaning solution is supplied to the cleaning containers 23 and 24 for cleaning the sample probes 11a and 12a will be described. However, the dispensing probes to be cleaned in the cleaning container are the sample probes 11a and 12a. The reagent probes 7a and 8a for dispensing the reagent from the reagent bottle 10 to the reaction container 2 are also objects to be cleaned.
 図2において、洗浄液供給機構110は、第1試料分注機構11の試料プローブ11aに対して追加洗浄処理(後述)を実施する洗浄容器23の洗浄液貯留槽23Aに洗浄液を供給するものであり、洗浄液供給ポンプ52と、洗浄液供給シリンジ(洗浄液吐出部)51と、電磁弁63と、洗浄液残量センサ54と、分岐管55と、電磁弁62と、電磁弁61とから概略構成されている。 In FIG. 2, a cleaning liquid supply mechanism 110 supplies a cleaning liquid to a cleaning liquid storage tank 23A of a cleaning container 23 that performs additional cleaning processing (described later) on the sample probe 11a of the first sample dispensing mechanism 11. The cleaning liquid supply pump 52, the cleaning liquid supply syringe (cleaning liquid discharge unit) 51, the electromagnetic valve 63, the cleaning liquid remaining amount sensor 54, the branch pipe 55, the electromagnetic valve 62, and the electromagnetic valve 61 are schematically configured.
 洗浄容器23は、供給される第1洗浄液や第2洗浄液を保持する洗浄液貯留槽23Aと、洗浄液貯留槽23Aからオーバーフローした第1洗浄液、第2洗浄液を排出する下部開口部23Bからなる。 The cleaning container 23 includes a cleaning liquid storage tank 23A that holds the supplied first cleaning liquid and the second cleaning liquid, and a lower opening 23B that discharges the first cleaning liquid and the second cleaning liquid that have overflowed from the cleaning liquid storage tank 23A.
 洗浄液供給ポンプ52は、第2洗浄液を収容した洗浄液保管タンク52Aから第2洗浄液を送出する。洗浄液供給シリンジ51は、洗浄液供給ポンプ52からの第2洗浄液をさらに下流側に送出する。電磁弁63は、洗浄液供給ポンプ52から洗浄液供給シリンジ51への第2洗浄液の流れを制御する。洗浄液残量センサ54は、第1洗浄液を収容した洗浄液保管タンク53の第1洗浄液の残量を検出する。分岐管55は、洗浄液供給シリンジ51からの第2洗浄液および洗浄液保管タンク53からの第1洗浄液の供給ラインの合流する管であり、供給された第1洗浄液または第2洗浄液を洗浄容器23に送る。電磁弁62は、洗浄液保管タンク53から分岐管55への第1洗浄液の流れを制御する。電磁弁61は、分岐管55から洗浄液貯留槽23Aへの第1洗浄液および第2洗浄液の流れを制御する。 The cleaning liquid supply pump 52 sends out the second cleaning liquid from the cleaning liquid storage tank 52A containing the second cleaning liquid. The cleaning liquid supply syringe 51 sends the second cleaning liquid from the cleaning liquid supply pump 52 further downstream. The electromagnetic valve 63 controls the flow of the second cleaning liquid from the cleaning liquid supply pump 52 to the cleaning liquid supply syringe 51. The cleaning liquid remaining amount sensor 54 detects the remaining amount of the first cleaning liquid in the cleaning liquid storage tank 53 containing the first cleaning liquid. The branch pipe 55 is a pipe that joins the supply lines of the second cleaning liquid from the cleaning liquid supply syringe 51 and the first cleaning liquid from the cleaning liquid storage tank 53, and sends the supplied first cleaning liquid or second cleaning liquid to the cleaning container 23. . The electromagnetic valve 62 controls the flow of the first cleaning liquid from the cleaning liquid storage tank 53 to the branch pipe 55. The electromagnetic valve 61 controls the flow of the first cleaning liquid and the second cleaning liquid from the branch pipe 55 to the cleaning liquid storage tank 23A.
 このように構成した洗浄液供給機構110においては、洗浄液貯留槽23Aに対して洗浄液保管タンク53に収容された第1洗浄液を自動供給することが可能であるとともに、洗浄液保管タンク52Aに収容された第2洗浄液を洗浄液貯留槽23Aへ供給することも可能である。更に、洗浄液貯留槽23A内に貯留される洗浄液を古い第1洗浄液から新しい綺麗な第1洗浄液に置換することや、第1洗浄液から第2洗浄液への置換、第2洗浄液から第1洗浄液への置換も可能である。 In the cleaning liquid supply mechanism 110 configured as described above, the first cleaning liquid stored in the cleaning liquid storage tank 53 can be automatically supplied to the cleaning liquid storage tank 23A, and the first cleaning liquid stored in the cleaning liquid storage tank 52A can be used. It is also possible to supply two cleaning liquids to the cleaning liquid storage tank 23A. Further, the cleaning liquid stored in the cleaning liquid storage tank 23A is replaced with an old first cleaning liquid from a new clean first cleaning liquid, a replacement from the first cleaning liquid to the second cleaning liquid, or from the second cleaning liquid to the first cleaning liquid. Replacement is also possible.
 図3は複数の洗浄容器を有する洗浄液供給機構を模式的に示す図である。図中、図2と同様の部材には同じ符号を付す。 FIG. 3 is a diagram schematically showing a cleaning liquid supply mechanism having a plurality of cleaning containers. In the figure, members similar to those in FIG.
 図3において、洗浄液供給機構111は、第1試料分注機構11の試料プローブ11aに対して追加洗浄処理を実施するための洗浄容器23の洗浄液貯留槽23Aや、第2試料分注機構12の試料プローブ12aに対して追加洗浄処理を実施するための洗浄容器24の洗浄液貯留槽24Aに対して洗浄液を供給する機構であり、洗浄液供給ポンプ52と、洗浄液供給シリンジ51と、電磁弁63と、洗浄液残量センサ54と、分岐管55Aと、電磁弁62と、電磁弁61,64とから概略構成されている。 In FIG. 3, the cleaning liquid supply mechanism 111 includes a cleaning liquid storage tank 23 </ b> A of the cleaning container 23 for performing additional cleaning processing on the sample probe 11 a of the first sample dispensing mechanism 11, and the second sample dispensing mechanism 12. This is a mechanism for supplying the cleaning liquid to the cleaning liquid storage tank 24A of the cleaning container 24 for performing an additional cleaning process on the sample probe 12a. The cleaning liquid supply pump 52, the cleaning liquid supply syringe 51, the electromagnetic valve 63, The cleaning liquid remaining amount sensor 54, the branch pipe 55A, the electromagnetic valve 62, and the electromagnetic valves 61 and 64 are schematically configured.
 洗浄容器24は、供給される第1洗浄液や第2洗浄液を保持する洗浄液貯留槽24Aと、洗浄液貯留槽24Aからオーバーフローした第1洗浄液、第2洗浄液を排出する下部開口部24Bからなる。 The cleaning container 24 includes a cleaning liquid storage tank 24A that holds the supplied first cleaning liquid and second cleaning liquid, and a lower opening 24B that discharges the first cleaning liquid and the second cleaning liquid that have overflowed from the cleaning liquid storage tank 24A.
 分岐管55Aは、洗浄液供給シリンジ51からの第2洗浄液および洗浄液保管タンク53からの第1洗浄液の供給ラインの合流する管であり、供給された第1洗浄液または第2洗浄液を洗浄容器23,24に送る。電磁弁64は、分岐管55Aから洗浄液貯留槽24Aへの第1洗浄液および第2洗浄液の流れを制御する。洗浄液供給ポンプ52、洗浄液供給シリンジ51、電磁弁63、洗浄液残量センサ54、電磁弁62、電磁弁61については、上述した洗浄液供給機構110と同じ構成である。 The branch pipe 55A is a pipe that joins the supply line of the second cleaning liquid from the cleaning liquid supply syringe 51 and the first cleaning liquid from the cleaning liquid storage tank 53, and supplies the supplied first cleaning liquid or second cleaning liquid to the cleaning containers 23, 24. Send to. The electromagnetic valve 64 controls the flow of the first cleaning liquid and the second cleaning liquid from the branch pipe 55A to the cleaning liquid storage tank 24A. The cleaning liquid supply pump 52, the cleaning liquid supply syringe 51, the electromagnetic valve 63, the cleaning liquid remaining amount sensor 54, the electromagnetic valve 62, and the electromagnetic valve 61 have the same configuration as the cleaning liquid supply mechanism 110 described above.
 このように構成した洗浄液供給機構111においては、洗浄液貯留槽23A,24Aに対して洗浄液保管タンク53に収容された第1洗浄液を自動供給することが可能であるとともに、洗浄液保管タンク52Aに収容された第2洗浄液を洗浄液貯留槽23A,24Aへ供給することも可能であり、洗浄液貯留槽23A,24A内に貯留される洗浄液を古い第1洗浄液から新しい第1洗浄液に置換する以外にも、第1洗浄液から第2洗浄液への置換や、第2洗浄液から第1洗浄液へ置換も可能である。 In the cleaning liquid supply mechanism 111 configured as described above, the first cleaning liquid stored in the cleaning liquid storage tank 53 can be automatically supplied to the cleaning liquid storage tanks 23A and 24A, and is stored in the cleaning liquid storage tank 52A. It is also possible to supply the second cleaning liquid to the cleaning liquid storage tanks 23A and 24A, in addition to replacing the cleaning liquid stored in the cleaning liquid storage tanks 23A and 24A with the new first cleaning liquid from the old first cleaning liquid. It is also possible to replace the first cleaning liquid with the second cleaning liquid or the second cleaning liquid with the first cleaning liquid.
 洗浄液供給機構110,111においては、第1洗浄液はアルカリ性または酸性の特別な洗浄液であり、第2洗浄液は中性の洗浄液である。 In the cleaning liquid supply mechanisms 110 and 111, the first cleaning liquid is an alkaline or acidic special cleaning liquid, and the second cleaning liquid is a neutral cleaning liquid.
 図3のように、新たな洗浄容器を追加することが可能である。すなわち新たな洗浄容器を分岐管55Aに接続し、分岐管55Aと新たな洗浄液貯留槽とを結ぶ流路に新たな電磁弁を取り付けることで、更に洗浄容器を追加することができる。この場合でも、各洗浄容器に第1洗浄液または第2洗浄液の供給すること、および各洗浄容器に貯留された第1洗浄液または第2洗浄液各洗浄液を綺麗な第1洗浄液または第2洗浄液に置換することが可能である。 As shown in Fig. 3, it is possible to add a new cleaning container. That is, a new cleaning container can be added by connecting a new cleaning container to the branch pipe 55A and attaching a new electromagnetic valve to the flow path connecting the branch pipe 55A and the new cleaning liquid storage tank. Even in this case, the first cleaning liquid or the second cleaning liquid is supplied to each cleaning container, and the first cleaning liquid or the second cleaning liquid stored in each cleaning container is replaced with a clean first cleaning liquid or second cleaning liquid. It is possible.
 次に、図3に示される洗浄液供給機構111の基本動作について説明する。なお、図2に示す洗浄液供給機構110の動作についても、洗浄液供給機構111と基本的に同じであるため、説明は省略する。 Next, the basic operation of the cleaning liquid supply mechanism 111 shown in FIG. 3 will be described. Note that the operation of the cleaning liquid supply mechanism 110 shown in FIG. 2 is basically the same as that of the cleaning liquid supply mechanism 111, and thus description thereof is omitted.
 洗浄液貯留槽23A内に貯留された洗浄液(例えば、洗浄処理に使用されて汚染された第1洗浄液)を洗浄液保管タンク53からの綺麗な第1洗浄液に置換する動作について説明する。 The operation of replacing the cleaning liquid stored in the cleaning liquid storage tank 23A (for example, the first cleaning liquid contaminated by being used in the cleaning process) with the clean first cleaning liquid from the cleaning liquid storage tank 53 will be described.
 まず、電磁弁62を開放すると共に、電磁弁61,63,64を遮断する。続いて、洗浄液供給シリンジ51を用いて、洗浄液保管タンク53から第1洗浄液を吸引する。これにより、分岐管55および洗浄液供給シリンジ51側の配管内の一部に第1洗浄液が満たされる。続いて、電磁弁61を開放すると共に、電磁弁62を遮断し、洗浄液供給シリンジ51によって分岐管55および洗浄液供給シリンジ51側の配管内の一部に満たされた第1洗浄液を押し出して洗浄液貯留槽23Aへ供給する。 First, the solenoid valve 62 is opened and the solenoid valves 61, 63, 64 are shut off. Subsequently, the first cleaning liquid is sucked from the cleaning liquid storage tank 53 using the cleaning liquid supply syringe 51. As a result, the first cleaning liquid is filled in part of the piping on the branch pipe 55 and the cleaning liquid supply syringe 51 side. Subsequently, the solenoid valve 61 is opened, the solenoid valve 62 is shut off, and the cleaning liquid storage syringe 51 pushes out the first cleaning liquid filled in the branch pipe 55 and a part of the piping on the cleaning liquid supply syringe 51 side to store the cleaning liquid. Supply to tank 23A.
 以上の動作により、洗浄液貯留槽23A内に貯留されていた第1洗浄液は、供給された第1洗浄液に押し出される形で排出され、洗浄液貯留槽23A内に貯留されていた洗浄液は綺麗な第1洗浄液に置換される。 By the above operation, the first cleaning liquid stored in the cleaning liquid storage tank 23A is discharged while being pushed out by the supplied first cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 23A is a clean first. Replaced with cleaning solution.
 洗浄液貯留槽24A内に貯留された洗浄液(例えば、洗浄処理に使用されて汚染された第1洗浄液)を洗浄液保管タンク53からの綺麗な第1洗浄液に置換する動作について説明する。 The operation of replacing the cleaning liquid stored in the cleaning liquid storage tank 24 </ b> A (for example, the contaminated first cleaning liquid used in the cleaning process) with the clean first cleaning liquid from the cleaning liquid storage tank 53 will be described.
 まず、電磁弁62を開放すると共に、電磁弁61,63,64を遮断する。続いて、洗浄液供給シリンジ51を用いて、洗浄液保管タンク53から第1洗浄液を吸引する。これにより、分岐管55および洗浄液供給シリンジ51側の配管内の一部に第1洗浄液が満たされる。続いて、電磁弁64を開放すると共に、電磁弁62を遮断し、洗浄液供給シリンジ51によって分岐管55および洗浄液供給シリンジ51側の配管内の一部に満たされた第1洗浄液を押し出して洗浄液貯留槽24Aへ供給する。 First, the solenoid valve 62 is opened and the solenoid valves 61, 63, 64 are shut off. Subsequently, the first cleaning liquid is sucked from the cleaning liquid storage tank 53 using the cleaning liquid supply syringe 51. As a result, the first cleaning liquid is filled in part of the piping on the branch pipe 55 and the cleaning liquid supply syringe 51 side. Subsequently, the electromagnetic valve 64 is opened and the electromagnetic valve 62 is shut off, and the cleaning liquid storage syringe 51 pushes out the first cleaning liquid filled in a part of the branch pipe 55 and the pipe on the cleaning liquid supply syringe 51 side to store the cleaning liquid. Supply to tank 24A.
 以上の動作により、洗浄液貯留槽24A内に貯留されていた第1洗浄液は、供給された第1洗浄液に押し出される形で排出され、洗浄液貯留槽24A内に貯留されていた洗浄液は綺麗な第1洗浄液に置換される。 With the above operation, the first cleaning liquid stored in the cleaning liquid storage tank 24A is discharged while being pushed out by the supplied first cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 24A is clean first. Replaced with cleaning solution.
 洗浄液貯留槽23A内に貯留された洗浄液(例えば、第1洗浄液)を第2洗浄液に置換する動作について説明する。 The operation of replacing the cleaning liquid (for example, the first cleaning liquid) stored in the cleaning liquid storage tank 23A with the second cleaning liquid will be described.
 まず、電磁弁61,63を開放し、電磁弁62,64を遮断すると共に、洗浄液供給ポンプ52によって第2洗浄液を送出する。 First, the electromagnetic valves 61 and 63 are opened, the electromagnetic valves 62 and 64 are shut off, and the second cleaning liquid is sent out by the cleaning liquid supply pump 52.
 以上の動作により、洗浄液貯留槽23A内に貯留されていた第1洗浄液は、供給された第2洗浄液に押し出される形で排出され、洗浄液貯留槽23A内に貯留されていた洗浄液は第2洗浄液に置換される。 By the above operation, the first cleaning liquid stored in the cleaning liquid storage tank 23A is discharged while being pushed out by the supplied second cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 23A becomes the second cleaning liquid. Replaced.
 洗浄液貯留槽24A内に貯留された洗浄液(例えば、第1洗浄液)を第2洗浄液に置換する動作について説明する。 The operation of replacing the cleaning liquid (for example, the first cleaning liquid) stored in the cleaning liquid storage tank 24A with the second cleaning liquid will be described.
 まず、電磁弁63,64を開放し、電磁弁61,62を遮断すると共に、洗浄液供給ポンプ52によって第2洗浄液を送出する。 First, the electromagnetic valves 63 and 64 are opened, the electromagnetic valves 61 and 62 are shut off, and the second cleaning liquid is sent out by the cleaning liquid supply pump 52.
 以上の動作により、洗浄液貯留槽24A内に貯留されていた第1洗浄液は、供給された第2洗浄液に押し出される形で排出され、洗浄液貯留槽24A内に貯留されていた洗浄液は第2洗浄液に置換される。 By the above operation, the first cleaning liquid stored in the cleaning liquid storage tank 24A is discharged in a form pushed out by the supplied second cleaning liquid, and the cleaning liquid stored in the cleaning liquid storage tank 24A becomes the second cleaning liquid. Replaced.
 次に、本実施形態に係る分注プローブの分注動作について説明する。図4は、第1試料分注機構11による試料分注処理の様子を示す図である。図5は、図5は、第2試料分注機構12による試料分注処理の様子を示す図である。 Next, the dispensing operation of the dispensing probe according to this embodiment will be described. FIG. 4 is a diagram showing a state of sample dispensing processing by the first sample dispensing mechanism 11. FIG. 5 is a diagram showing a state of sample dispensing processing by the second sample dispensing mechanism 12.
 図4において、分注対象の試料115aに試料プローブ11aを深さH1まで浸漬させ、試料の吸引および分注を行う。試料を分注した後の試料プローブ11aは、先端からH1の距離までのプローブ外壁と、試料が接触したプローブ内壁が試料により汚染された状態となる。 In FIG. 4, the sample probe 11a is immersed in the sample 115a to be dispensed to a depth H1, and the sample is sucked and dispensed. After the sample is dispensed, the sample probe 11a is in a state in which the probe outer wall from the tip to the distance H1 and the probe inner wall in contact with the sample are contaminated by the sample.
 図5において、分注対象の試料115bに試料プローブ12aを深さH2まで浸漬させ、試料の吸引および分注を行う。試料を分注した後の試料プローブ12aは、先端からH2の距離までのプローブ外壁と、試料が接触したプローブ内壁が試料により汚染された状態となる。 In FIG. 5, the sample probe 12a is immersed in the sample 115b to be dispensed to a depth H2, and the sample is sucked and dispensed. In the sample probe 12a after dispensing the sample, the probe outer wall from the tip to the distance of H2 and the probe inner wall in contact with the sample are contaminated by the sample.
 次に、試料プローブの洗浄処理および追加洗浄処理について説明する。なお、以下では試料プローブ11a,12aを例にして説明するが、試薬プローブ7a,8aについても同様の処理である。 Next, the sample probe cleaning process and the additional cleaning process will be described. In the following, the sample probes 11a and 12a will be described as an example, but the same processing is applied to the reagent probes 7a and 8a.
 試料分析中における試料プローブ11aの洗浄処理では、試料ごとに洗浄槽13によって試料プローブ11aの外側および内側の洗浄を行う。しかし、分注した試料が試料プローブ11aに残留してしまった場合には、次に分析する対象試料の分注時に残留した試料が次に分析する対象試料を汚染してしまうとともに、分注対象試料を収容した試料容器中の試料をも汚染してしまう、いわゆるクロスコンタミネーションが発生してしまう。したがって、このようなクロスコンタミネーションの回避・低減を目的として、予め登録された検体種別の試料に対して、予め登録された分析項目の測定依頼があった場合に、その試料を分析する前に試料プローブ11aの追加洗浄処理(キャリーオーバー回避洗浄)を実施する。 In the cleaning process of the sample probe 11a during the sample analysis, the outer side and the inner side of the sample probe 11a are cleaned by the cleaning tank 13 for each sample. However, when the dispensed sample remains in the sample probe 11a, the sample remaining at the time of dispensing the target sample to be analyzed next contaminates the target sample to be analyzed, and the dispensing target So-called cross-contamination that contaminates the sample in the sample container containing the sample occurs. Therefore, for the purpose of avoiding or reducing such cross-contamination, if there is a measurement request for a pre-registered analysis item for a sample of a pre-registered sample type, before analyzing the sample An additional cleaning process (cleaning to avoid carryover) of the sample probe 11a is performed.
 次に、本実施形態における洗浄液貯留槽23Aの具体的な構造について図6乃至図10を参照して説明する。図6は、第1試料分注機構11における追加洗浄処理の様子を示す図であり、洗浄液貯留槽23Aに試料プローブ11aを挿入した状態の縦断面図を示す図である。 Next, a specific structure of the cleaning liquid storage tank 23A in the present embodiment will be described with reference to FIGS. FIG. 6 is a view showing a state of the additional cleaning process in the first sample dispensing mechanism 11, and is a view showing a longitudinal sectional view in a state where the sample probe 11a is inserted into the cleaning liquid storage tank 23A.
 図6において、洗浄液貯留槽23Aは、その内径Bが試料プローブ11aの外径Aよりも小さくなるように形成された流路部123aと、流路部123aの下流側に配置され、流路部123aよりも径が大きくなるように形成された貯留部123bとから構成される。洗浄液貯留槽23Aでは、洗浄液供給機構110,111により供給される第1洗浄液または第2洗浄液は、図中の下方から上方へ流れるため、図中下方を上流、図中上方を下流と定義する。洗浄液貯留槽23Aは、使用する第1洗浄液および第2洗浄液に対する耐性を有する樹脂あるいは金属で形成されている。 In FIG. 6, the cleaning liquid storage tank 23A is disposed on the downstream side of the flow path part 123a and the flow path part 123a formed so that the inner diameter B is smaller than the outer diameter A of the sample probe 11a. It is comprised from the storage part 123b formed so that a diameter might become larger than 123a. In the cleaning liquid storage tank 23A, since the first cleaning liquid or the second cleaning liquid supplied from the cleaning liquid supply mechanisms 110 and 111 flows upward from the lower side in the figure, the lower side in the figure is defined as upstream and the upper side in the figure is defined as downstream. The cleaning liquid reservoir 23A is formed of a resin or metal having resistance to the first cleaning liquid and the second cleaning liquid to be used.
 洗浄液貯留槽23Aでは、貯留部123bの第1洗浄液または第2洗浄液に試料プローブ11aを深さH1よりも予め定めた規定値α1だけ深い位置(すなわち、深さH1+α1)まで浸漬させた状態で、第1洗浄液または第2洗浄液を吸引し、その後、洗浄槽13に移動して洗浄液貯留槽23Aで吸引した第1洗浄液または第2洗浄液を吐出して洗浄する動作が従来から実施されている。 In the cleaning liquid storage tank 23A, the sample probe 11a is immersed in the first cleaning liquid or the second cleaning liquid in the storage unit 123b to a position deeper than the depth H1 by a predetermined value α1 (that is, depth H1 + α1). An operation of sucking the first cleaning liquid or the second cleaning liquid, and then moving to the cleaning tank 13 and discharging and cleaning the first cleaning liquid or the second cleaning liquid sucked in the cleaning liquid storage tank 23A has been conventionally performed.
 ここで、貯留部123bの第1洗浄液または第2洗浄液を試料プローブ11aで吸引した後で、貯留部123b上部に残存した洗浄液は試料プローブ11aに付着した試料が浸漬して汚染されている可能性が高い。そのため、次の追加洗浄処理の準備の為に第1洗浄液または第2洗浄液を下方より押し出し、洗浄液貯留槽23A内の第1洗浄液または第2洗浄液を新しい洗浄液に置き換える必要がある。 Here, after the first cleaning liquid or the second cleaning liquid in the storage unit 123b is sucked by the sample probe 11a, the cleaning liquid remaining on the upper part of the storage unit 123b may be contaminated by immersion of the sample attached to the sample probe 11a. Is expensive. Therefore, in order to prepare for the next additional cleaning process, it is necessary to push out the first cleaning liquid or the second cleaning liquid from below and replace the first cleaning liquid or the second cleaning liquid in the cleaning liquid storage tank 23A with a new cleaning liquid.
 洗浄液の置換の必要性について説明する。例えば、第1洗浄液にアルカリ性の洗剤を使用する場合、このアルカリ性の洗浄液を大気暴露した状態で長時間放置すると、アルカリ性洗剤が濃縮して洗浄液貯留槽23Aの貯留部123bの開口部分などで結晶化することがある。この結晶を万が一試料プローブ11aが吸引すると、試料プローブ11aが詰まってしまう。この結晶化を回避するためには、第1洗浄液の使用後に中性の第2洗浄液に置換することが望ましい。しかし、図3を例に挙げると、分岐管55、電磁弁61、洗浄液貯留槽23Aを結ぶ流路には第1洗浄液が貯留されている状態である。置換を行うと、これら流路中の全てが第2洗浄液に置き換えられる。つまり、毎回使用後に流路を第1洗浄液から第2洗浄液に置換するとなると、洗浄液貯留槽23A以外に残っている、汚染されておらず置換する必要のない洗浄液までも置換することになり、第1洗浄液を無駄に消費することになる。 Explain the necessity of cleaning liquid replacement. For example, when an alkaline detergent is used as the first washing liquid, if the alkaline washing liquid is left for a long time in the state of being exposed to the atmosphere, the alkaline detergent is concentrated and crystallized at the opening of the reservoir 123b of the washing liquid reservoir 23A. There are things to do. If the sample probe 11a sucks this crystal, the sample probe 11a is clogged. In order to avoid this crystallization, it is desirable to replace the neutral second cleaning solution after the first cleaning solution is used. However, taking FIG. 3 as an example, the first cleaning liquid is stored in the flow path connecting the branch pipe 55, the electromagnetic valve 61, and the cleaning liquid storage tank 23A. When the replacement is performed, all of these flow paths are replaced with the second cleaning liquid. That is, when the flow path is replaced from the first cleaning liquid to the second cleaning liquid after each use, the remaining cleaning liquid other than the cleaning liquid storage tank 23A, which is not contaminated and does not need to be replaced, is replaced. One cleaning liquid is wasted.
 以上の課題を解決するための制御を以下に説明する。 The control for solving the above problems will be described below.
 まず、1つ目の追加洗浄処理(第1追加洗浄処理方法)では、従来から実施している追加洗浄処理の実施直後に、制御部21は、再度試料プローブ11aを貯留部123bの位置に移動させ、試料プローブ11aを第1洗浄液または第2洗浄液に浸透させた状態で内洗水を吐出するよう、第1試料分注機構11および試料用ポンプ19を制御する。この制御により、貯留部123b内の第1洗浄液または第2洗浄液は、吐出された内洗水により押し出す形で排出される。そのため、洗浄液貯留槽23Aの一部分のみ内洗水に置換される。これにより、貯留部123b内に存在する汚染された洗浄液が綺麗な内洗水で置換され、流路部123a内に存在する汚染されていない洗浄液を流路内にそのまま残存させることができる。 First, in the first additional cleaning process (first additional cleaning process method), immediately after the conventional additional cleaning process is performed, the control unit 21 moves the sample probe 11a to the position of the storage unit 123b again. Then, the first sample dispensing mechanism 11 and the sample pump 19 are controlled so that the inner washing water is discharged in a state where the sample probe 11a is infiltrated into the first washing liquid or the second washing liquid. By this control, the first cleaning liquid or the second cleaning liquid in the storage unit 123b is discharged in a form that is pushed out by the discharged internal cleaning water. Therefore, only a part of the cleaning liquid storage tank 23A is replaced with the internal cleaning water. As a result, the contaminated cleaning liquid present in the storage part 123b is replaced with clean inner washing water, and the uncontaminated cleaning liquid present in the flow path part 123a can be left in the flow path as it is.
 上述の制御によって洗浄液貯留槽23A内の貯留部123bのみを内洗水で置換した後は、制御部21は、次の追加洗浄処理の準備動作で第1洗浄液または第2洗浄液を洗浄液貯留槽23Aの下方から供給し、洗浄液貯留槽23Aに第1洗浄液または第2洗浄液を充填するよう洗浄液供給機構110,111を制御する。貯留部123bの第1洗浄液または第2洗浄液を一度内洗水で置換することにより、洗浄液の結晶化の危険性を低減させることができ、流路内の洗浄液すべてを綺麗な洗浄液に置換する必要がなくなることから、洗浄液の無駄使いを大幅に減らすことができる。 After only the storage part 123b in the cleaning liquid storage tank 23A is replaced with the internal cleaning water by the above-described control, the control part 21 supplies the first cleaning liquid or the second cleaning liquid to the cleaning liquid storage tank 23A in the preparation operation for the next additional cleaning process. The cleaning liquid supply mechanisms 110 and 111 are controlled so that the cleaning liquid storage tank 23A is filled with the first cleaning liquid or the second cleaning liquid. The risk of crystallization of the cleaning liquid can be reduced by replacing the first cleaning liquid or the second cleaning liquid in the reservoir 123b with the internal cleaning water once, and it is necessary to replace all the cleaning liquid in the flow path with a clean cleaning liquid. Therefore, the waste of cleaning liquid can be greatly reduced.
 2つ目の追加洗浄処理(第2追加洗浄処理方法)では、従来から実施している追加洗浄処理において、制御部21は、洗浄液貯留槽23Aの貯留部123bの第1洗浄液または第2洗浄液を試料プローブ11aで吸引した後に、試料プローブ11aを洗浄機構3には移動させずに、その場で吸引した洗浄液と共に内洗水を吐出し、貯留部123b内の第1洗浄液または第2洗浄液を内洗水により押し出す形で排出することで、洗浄液貯留槽23Aの貯留部123bを内洗水で置換するよう、第1試料分注機構11および試料用ポンプ19を制御する。 In the second additional cleaning process (second additional cleaning process method), in the conventional additional cleaning process, the control unit 21 supplies the first cleaning liquid or the second cleaning liquid in the storage unit 123b of the cleaning liquid storage tank 23A. After the sample probe 11a is sucked, the sample probe 11a is not moved to the cleaning mechanism 3, but the inner cleaning water is discharged together with the cleaning liquid sucked on the spot, and the first cleaning liquid or the second cleaning liquid in the reservoir 123b is discharged. The first sample dispensing mechanism 11 and the sample pump 19 are controlled so that the storage portion 123b of the cleaning liquid storage tank 23A is replaced with the internal cleaning water by discharging in the form of being pushed out by the cleaning water.
 その後、第1追加洗浄処理方法と同様に、洗浄液貯留槽23A内の貯留部123bの洗浄液を内洗水で置換した後は、次の追加洗浄処理の準備動作で第1洗浄液または第2洗浄液を洗浄液貯留槽23Aの下方から供給し、洗浄液貯留槽23Aに第1洗浄液または第2洗浄液を充填するよう制御部21により洗浄液供給機構110,111を制御する。 Thereafter, in the same manner as the first additional cleaning processing method, after the cleaning liquid in the storage portion 123b in the cleaning liquid storage tank 23A is replaced with the internal cleaning water, the first cleaning liquid or the second cleaning liquid is used in the preparation operation for the next additional cleaning process. The cleaning liquid supply mechanisms 110 and 111 are controlled by the controller 21 so that the cleaning liquid storage tank 23A is supplied from below and the cleaning liquid storage tank 23A is filled with the first cleaning liquid or the second cleaning liquid.
 このような第2追加洗浄処理方法においても、貯留部123bの第1洗浄液または第2洗浄液を一度内洗水で置換することにより結晶化の危険性を低減させることが可能となり、流路内の洗浄液すべてを綺麗な洗浄液に置換する必要がなくなる。このため、洗浄液の無駄使いを大幅に改善可能となる。また、第2追加洗浄処理方法においては、追加洗浄処理において試料プローブ11aは従来と同様に洗浄液貯留槽23Aと洗浄槽13の間を1往復するだけでよいので、短時間で置換動作を完了することが可能となる。 Also in such a second additional cleaning treatment method, it is possible to reduce the risk of crystallization by replacing the first cleaning liquid or the second cleaning liquid in the reservoir 123b with the internal cleaning water once, It is no longer necessary to replace all cleaning liquids with clean cleaning liquids. For this reason, the wasteful use of the cleaning liquid can be greatly improved. Further, in the second additional cleaning processing method, in the additional cleaning processing, the sample probe 11a only needs to make one reciprocation between the cleaning liquid storage tank 23A and the cleaning tank 13 as in the conventional case, so that the replacement operation is completed in a short time. It becomes possible.
 上述の第1,第2追加洗浄処理方法は、試料プローブ11aの追加洗浄処理の際のみに実施されるものではない。次に、装置がスタンバイ状態で予め定めたN時間経過した場合を考える。 The above-described first and second additional cleaning methods are not performed only during the additional cleaning processing of the sample probe 11a. Next, consider a case where a predetermined N hours have elapsed in the standby state of the apparatus.
 上述のように、洗浄液貯留槽23Aの貯留部123bに第1洗浄液が貯留されたままの状態でいると、洗浄液の結晶化が懸念される。結晶化を防ぐためには洗浄液貯留槽の第1洗浄液を第2洗浄液で置換すればよいが、流路内のすべての第1洗浄液を第2洗浄液で置換すると洗浄液を無駄に使用することとなる。 As described above, if the first cleaning liquid is stored in the storage portion 123b of the cleaning liquid storage tank 23A, the cleaning liquid may be crystallized. In order to prevent crystallization, the first cleaning liquid in the cleaning liquid storage tank may be replaced with the second cleaning liquid. However, if all the first cleaning liquid in the flow path is replaced with the second cleaning liquid, the cleaning liquid is wasted.
 そのため、制御部21は、スタンバイ状態で追加洗浄動作が行われずに予め定めた所定時間経過したと判断されるたびに、洗浄液貯留槽23Aに試料プローブ11aを挿入した状態で内洗水を吐出し、洗浄液貯留槽23Aの貯留部123bを綺麗な内洗水へと置換するよう、第1試料分注機構11および試料用ポンプ19を制御する。 Therefore, every time it is determined that a predetermined time has elapsed without performing an additional cleaning operation in the standby state, the control unit 21 discharges the internal cleaning water with the sample probe 11a inserted into the cleaning liquid storage tank 23A. Then, the first sample dispensing mechanism 11 and the sample pump 19 are controlled so that the storage portion 123b of the cleaning liquid storage tank 23A is replaced with clean internal cleaning water.
 この制御により、時間の経過とともに洗浄水が内洗水側へ拡散したとしても、洗浄液貯留槽23Aの貯留部123bの大気暴露側に絶えず内洗水を存在させることができるため、結晶化が予防可能であり、流路内の第1洗浄液すべてを置換する場合と比較して、大幅な洗浄液の使用量を低減可能である。 By this control, even if the washing water diffuses to the inner washing water side as time passes, the inner washing water can be continuously present on the air exposure side of the storage portion 123b of the washing liquid storage tank 23A, thereby preventing crystallization. This is possible, and the use amount of the cleaning liquid can be significantly reduced as compared with the case where all of the first cleaning liquid in the flow path is replaced.
 また、時間経過とともに貯留部123bの内洗水が流路部123aとの界面で拡散し、流路部123aと貯留部123bの界面付近において第1洗浄液の濃度が低下することが考えられる。拡散現象は時間に依存するため、時間が経過するほど洗浄液の濃度低下の領域が拡大する。 Moreover, it is conceivable that the internal washing water in the storage part 123b diffuses at the interface with the flow path part 123a with time, and the concentration of the first cleaning liquid decreases in the vicinity of the interface between the flow path part 123a and the storage part 123b. Since the diffusion phenomenon depends on time, the region in which the concentration of the cleaning liquid decreases decreases as time elapses.
 この場合、追加洗浄処理において、制御部21は、洗浄液貯留槽23Aに第1洗浄液を供給する際の供給量を、前に内洗水を吐出してからの経過時間に応じて変えるよう洗浄液供給機構110,111を制御する。 In this case, in the additional cleaning process, the control unit 21 supplies the cleaning liquid so as to change the supply amount when supplying the first cleaning liquid to the cleaning liquid storage tank 23A according to the elapsed time since the previous inner cleaning water was discharged. The mechanisms 110 and 111 are controlled.
 このような制御により、洗浄液の濃度が低下した領域を洗浄液貯留槽23Aから排出することができ、追加洗浄処理時の第1洗浄液の濃度を一定とすることが可能である。具体的には、任意の時刻に洗浄液貯留槽23Aの貯留部123bを第1洗浄液から内洗水で置換してからN時間経過した後に追加洗浄処理を実施する場合、第1洗浄液を供給する際の供給量をVとすると、2N時間経過した後に同様の処理を実施する場合は、供給量を2Vとするといった処理である。なお、時間経過による供給量の変化のさせかたは前述したような段階的ではなく、時間に対して連続的に変化させても良い。 By such control, the region where the concentration of the cleaning liquid is reduced can be discharged from the cleaning liquid storage tank 23A, and the concentration of the first cleaning liquid during the additional cleaning process can be made constant. Specifically, when the additional cleaning process is performed after N hours have elapsed after the storage portion 123b of the cleaning liquid storage tank 23A is replaced with the internal cleaning water from the first cleaning liquid at an arbitrary time, the first cleaning liquid is supplied. Assuming that the supply amount is V, when the same processing is performed after 2N hours have elapsed, the supply amount is set to 2V. Note that the method of changing the supply amount over time is not stepwise as described above, but may be changed continuously with respect to time.
 上述の第1追加洗浄動作や第2追加洗浄動作の際、試料プローブ11aの先端が貯留部123b内の第1洗浄液または第2洗浄液に挿入されていれば良く、挿入深さによって置換率が大きく変わるものではない。ただし、試料プローブ11aの吐出時における挿入深さは、洗浄槽13で洗える範囲の長さ>貯留部123bに挿入する深さ、の関係で制御することが望まれる。 In the first additional cleaning operation and the second additional cleaning operation described above, the tip of the sample probe 11a only needs to be inserted into the first cleaning liquid or the second cleaning liquid in the reservoir 123b, and the replacement rate increases depending on the insertion depth. It doesn't change. However, it is desirable to control the insertion depth at the time of discharge of the sample probe 11a by the relationship of the length of the range that can be washed in the washing tank 13> the depth to be inserted into the storage portion 123b.
 なぜならば、貯留部123bに試料プローブ11aを挿入した後に内洗水を吐出すると、試料プローブ11aの側面にせり上がり、第1洗浄液または第2洗浄液により試料プローブ11aが汚染される可能性があるためである。しかし、このような制御により、洗浄槽13で洗浄できる挿入深さより浅く挿入した状態で内洗水を吐出するため、多少のせり上がりが生じても、その後の洗浄動作でせりあがりにより汚染された部分も洗浄することができ、洗浄液の消費を従来より抑制しつつ、効果的な試料プローブ11aの洗浄を行うことができる。 This is because if the inner washing water is discharged after the sample probe 11a is inserted into the storage portion 123b, the sample probe 11a may be contaminated by the first washing liquid or the second washing liquid. It is. However, because of such control, the inner washing water is discharged in a state where it is inserted shallower than the insertion depth that can be washed in the washing tank 13, so that even if a slight rise occurs, it is contaminated by the subsequent washing operation. The portion can also be cleaned, and the sample probe 11a can be cleaned effectively while suppressing the consumption of the cleaning solution.
 また、貯留部123bの内洗水から第1洗浄液または第2洗浄液への置換動作短縮のために、(洗浄液供給シリンジ51の1ストロークでの最大吐出量)>(流路部123a,124aの体積)>(貯留部123b,124bの体積)、の関係であることが望ましい。上述のように、洗浄液供給シリンジ51により、流路部123a,124a内および洗浄液供給機構110,111内に洗浄液を供給するが、洗浄液の供給量は洗浄液供給シリンジ51のストローク量に依存する。そのため、上述のように構成することで、シリンジの1ストロークでの最大吐出量が流路部123a,124a体積および貯留部123b,124b体積を上回っているため、汚染されている洗浄液をすべて排出するためにシリンジ動作を繰り返し実施する必要がなく、動作時間を短くすることができる。 Further, in order to shorten the replacement operation from the internal washing water of the storage portion 123b to the first washing liquid or the second washing liquid, (maximum discharge amount in one stroke of the washing liquid supply syringe 51)> (volume of the flow path sections 123a and 124a) )> (Volume of reservoirs 123b and 124b). As described above, the cleaning liquid is supplied into the flow path portions 123 a and 124 a and the cleaning liquid supply mechanisms 110 and 111 by the cleaning liquid supply syringe 51. The supply amount of the cleaning liquid depends on the stroke amount of the cleaning liquid supply syringe 51. Therefore, by configuring as described above, since the maximum discharge amount in one stroke of the syringe exceeds the volume of the flow path parts 123a, 124a and the volume of the storage parts 123b, 124b, all the contaminated cleaning liquid is discharged. Therefore, it is not necessary to repeatedly perform the syringe operation, and the operation time can be shortened.
 また、第1追加洗浄動作や第2追加洗浄動作における洗浄液貯留槽23Aでの内洗水の吐出動作において、試料プローブ11aから内洗水を吐出するのと同時に、洗浄液貯留槽23Aの下方から洗浄液を供給してもよい。この場合、吐出される内洗水と洗浄液貯留槽23Aの貯留部123b内の洗浄液とが衝突し、乱流を形成しながら洗浄液貯留槽23Aの上方より洗浄水が排出されるため、試料プローブ11aを効果的に洗浄することが可能である。 Further, in the discharge operation of the internal washing water in the cleaning liquid storage tank 23A in the first additional cleaning operation and the second additional cleaning operation, the cleaning liquid is discharged from below the cleaning liquid storage tank 23A at the same time as the internal cleaning water is discharged from the sample probe 11a. May be supplied. In this case, the discharged inner washing water and the washing liquid in the storage portion 123b of the washing liquid storage tank 23A collide with each other, and the washing water is discharged from above the washing liquid storage tank 23A while forming a turbulent flow. Can be effectively cleaned.
 また、試料用ポンプ19の送液圧力で内洗水の吐出速度の制御が可能であるが、試料用ポンプ19の送液圧力は特に限定されず、低圧または高圧のどちらで内洗水を吐出してもよい。試料用ポンプ19の圧力を高圧で吐出する場合は、貯留部123bからの内洗水の跳ね返りがないように圧力を調整しつつ吐出動作させることで、短時間での洗浄液の置換動作の完了が可能となる。 Further, the discharge speed of the inner washing water can be controlled by the liquid feeding pressure of the sample pump 19, but the liquid feeding pressure of the sample pump 19 is not particularly limited, and the inner washing water is discharged by either low pressure or high pressure. May be. When the pressure of the sample pump 19 is discharged at a high pressure, the cleaning liquid replacement operation can be completed in a short time by performing the discharging operation while adjusting the pressure so that the internal washing water does not bounce from the reservoir 123b. It becomes possible.
 また、図6では流路部123aと試料プローブ11aは中心が一致しているが、図7に示すように流路部123aと試料プローブ11aの中心が一致していなくてもよい。この場合、吐出された内洗水が流路部123a内に浸入しにくくなるため、置換効率をより向上させることが可能となる。 Further, in FIG. 6, the center of the flow path portion 123a and the sample probe 11a coincide, but the center of the flow path portion 123a and the sample probe 11a do not have to coincide as shown in FIG. In this case, since the discharged inner wash water is less likely to enter the flow path portion 123a, the replacement efficiency can be further improved.
 また、洗浄液貯留槽23Aの貯留部123bの形状は、図6で示される以外の形状でもよい。たとえば、図8に示されるような、洗浄液貯留槽23A1における貯留部が円筒部123cからなる形状や、図9に示されるような、洗浄液貯留槽23A2における貯留部が円筒部123cと、この円筒部123cと流路部123aとを滑らかにつなぐテーパ部123dとからなる形状であったとしても、上記と同様の効果を得られる。 Further, the shape of the storage portion 123b of the cleaning liquid storage tank 23A may be a shape other than that shown in FIG. For example, as shown in FIG. 8, the storage part in the cleaning liquid storage tank 23A1 is formed of a cylindrical part 123c, or the storage part in the cleaning liquid storage tank 23A2 as shown in FIG. 9 is the cylindrical part 123c. Even if the shape is composed of the tapered portion 123d that smoothly connects the flow passage portion 123a and the flow passage portion 123a, the same effect as described above can be obtained.
 図10は洗浄液貯留槽にヒーター23cを備え付けた構成を概略的に示す図である。ヒーター23cは、流路部123aの周囲に配置されている。ヒーター23cは制御部21によりON/OFFが制御され、ある規定の温度に加熱されており、洗浄液貯留槽23Aの流路部123a内に貯留された洗浄液を加熱する。洗浄液を加熱することで洗浄効果を向上させることが可能である。また、図2における分岐管55、電磁弁61、洗浄液貯留槽23Aを結ぶ流路内のすべての洗浄液を置換した場合、置換された洗浄液をヒーター23cの温度まで加熱するために長時間を必要とする。しかし、本実施形態のように貯留部123bのみを置換する場合は、流路内にすでにヒーター23cの温度となっている洗浄液が存在するため、洗浄液置換後の洗浄液の加熱を短時間で済ませることが可能である。 FIG. 10 is a diagram schematically showing a configuration in which a heater 23c is provided in the cleaning liquid storage tank. The heater 23c is disposed around the flow path portion 123a. The heater 23c is ON / OFF controlled by the control unit 21 and is heated to a specified temperature, and heats the cleaning liquid stored in the flow path part 123a of the cleaning liquid storage tank 23A. It is possible to improve the cleaning effect by heating the cleaning liquid. Further, when all the cleaning liquids in the flow path connecting the branch pipe 55, the electromagnetic valve 61, and the cleaning liquid storage tank 23A in FIG. 2 are replaced, it takes a long time to heat the replaced cleaning liquid to the temperature of the heater 23c. To do. However, when only the storage portion 123b is replaced as in the present embodiment, since the cleaning liquid that has already reached the temperature of the heater 23c exists in the flow path, heating of the cleaning liquid after the cleaning liquid replacement can be completed in a short time. Is possible.
 図11は第2試料分注機構12における追加洗浄処理の様子を示す図であり、洗浄液貯留槽24Aに試料プローブ12aを挿入した状態の縦断面図を示す図である。 FIG. 11 is a view showing the state of the additional cleaning process in the second sample dispensing mechanism 12, and is a view showing a longitudinal sectional view of the state where the sample probe 12a is inserted into the cleaning liquid storage tank 24A.
 図11において、洗浄液貯留槽24Aは、その内径Dが試料プローブ12aの外径Cよりも小さくなるように形成された流路部124aと、流路部124aの下流側に配置され、流路部124aよりも径が大きくなるように形成された貯留部124bとから構成される。洗浄液貯留槽24Aでも、洗浄液供給機構110,111により供給される第1洗浄液または第2洗浄液は、図中の下方から上方へ流れるため、図中下方を上流、図中上方を下流とする。洗浄液貯留槽24Aも、使用する第1洗浄液および第2洗浄液に対する耐性を有する樹脂あるいは金属で形成されている。 In FIG. 11, the cleaning liquid storage tank 24A is disposed on the downstream side of the flow path part 124a and the flow path part 124a formed so that the inner diameter D is smaller than the outer diameter C of the sample probe 12a. It is comprised from the storage part 124b formed so that a diameter might become larger than 124a. Also in the cleaning liquid storage tank 24A, the first cleaning liquid or the second cleaning liquid supplied by the cleaning liquid supply mechanisms 110 and 111 flows upward from the lower side in the figure, so the lower side in the figure is the upstream and the upper side in the figure is the downstream. The cleaning liquid storage tank 24A is also formed of a resin or metal having resistance to the first cleaning liquid and the second cleaning liquid to be used.
 図11に示される洗浄液貯留槽24Aを用いても、図6に示す洗浄液貯留槽23Aを用いた場合の追加洗浄処理と同様の処理を実施することが可能である。 Even if the cleaning liquid storage tank 24A shown in FIG. 11 is used, it is possible to perform the same process as the additional cleaning process in the case of using the cleaning liquid storage tank 23A shown in FIG.
 ただし、試料プローブ12aは、その追加洗浄処理において、深さH2よりも予め定めた規定値α2だけ深い位置(すなわち、深さH2+α2)まで浸漬させる。この場合も、追加洗浄処理において貯留部124bのみを内洗水に置換することで、図2の分岐管55、電磁弁64、洗浄液貯留槽24Aを結ぶ流路内の洗浄液を残留させることが可能であるため、洗浄液の無駄遣いの改善が可能となる。 However, in the additional cleaning process, the sample probe 12a is immersed to a position deeper than the depth H2 by a predetermined value α2 (that is, depth H2 + α2). Also in this case, it is possible to leave the cleaning liquid in the flow path connecting the branch pipe 55, the electromagnetic valve 64, and the cleaning liquid storage tank 24A in FIG. 2 by replacing only the storage portion 124b with the internal cleaning water in the additional cleaning process. Therefore, it is possible to improve the waste of the cleaning liquid.
 続いて、これまでに説明した試料分注処理および試料プローブの洗浄処理の流れについて、試料プローブ11a,12aを例にして説明する。図12は、装置立上の際の洗浄処理を示すフローチャートである。なお、試薬プローブ7a,8aについても同様の処理であることは言うまでもない。 Subsequently, the flow of the sample dispensing process and the sample probe cleaning process described so far will be described using the sample probes 11a and 12a as an example. FIG. 12 is a flowchart showing a cleaning process when the apparatus is started up. It goes without saying that the same processing is applied to the reagent probes 7a and 8a.
 図12において、まず、制御部21は、装置立上の指示が入力されたと判断する(ステップS120)と、洗浄液供給機構110,111を制御して、洗浄液貯留槽23A,24A内の洗浄液を第2洗浄液から第1洗浄液に置換させる(ステップS121)。次いで、洗浄液貯留槽23A,24Aへ試料プローブ11a,12aを回転・下降させ(ステップS122)、深さH1+α1,深さH2+α2まで浸漬させる。 In FIG. 12, first, when it is determined that an instruction for starting the apparatus has been input (step S120), the control unit 21 controls the cleaning liquid supply mechanisms 110 and 111 so that the cleaning liquid in the cleaning liquid storage tanks 23A and 24A is changed to the first. The second cleaning liquid is replaced with the first cleaning liquid (step S121). Next, the sample probes 11a and 12a are rotated and lowered into the cleaning liquid storage tanks 23A and 24A (step S122), and are immersed to a depth H1 + α1 and a depth H2 + α2.
 次いで、試料用ポンプ19により、洗浄液貯留槽23A,24Aの貯留部123b,124bの第1洗浄液を吸引させ(ステップS123)、試料プローブ11a,12aの内壁および外壁の洗浄を行う。 Next, the first cleaning liquid in the storage portions 123b and 124b of the cleaning liquid storage tanks 23A and 24A is sucked by the sample pump 19 (step S123), and the inner and outer walls of the sample probes 11a and 12a are cleaned.
 所定時間経過したら、制御部21は、試料プローブ11a、12aを少し上昇・回転させるとともに、試料用ポンプ19により洗浄液貯留槽23A,24A内で試料プローブ11a,12aから内洗水を吐出させ(ステップS124)、洗浄液貯留槽23A,24A内の貯留部123b,124bの第1洗浄水を内洗水で置換する。 When a predetermined time has elapsed, the control unit 21 slightly raises and rotates the sample probes 11a and 12a, and causes the sample pump 19 to discharge the inner washing water from the sample probes 11a and 12a in the washing liquid storage tanks 23A and 24A (step). S124), the first wash water in the reservoirs 123b and 124b in the wash liquid reservoirs 23A and 24A is replaced with the wash water.
 その後、試料プローブ11a,12aを更に上昇・回転させ、洗浄槽13,14に移動させ(ステップS125)、洗浄槽13,14で試料プローブ11a,12aの内外を洗浄し(ステップS126)、その後、スタンバイ状態として(ステップS127)、処理を終了する。 Thereafter, the sample probes 11a and 12a are further raised and rotated, moved to the cleaning tanks 13 and 14 (step S125), and the inside and outside of the sample probes 11a and 12a are cleaned by the cleaning tanks 13 and 14 (step S126). The standby state is set (step S127), and the process ends.
 次いで、試料分注処理に続く第1追加洗浄処理について図13を用いて説明する。図13は、試料分注処理方法および第1追加洗浄処理方法を示すフローチャートである。 Next, the first additional cleaning process following the sample dispensing process will be described with reference to FIG. FIG. 13 is a flowchart showing the sample dispensing method and the first additional cleaning method.
 図13において、予め登録された検体種別の試料に対して予め登録された分析項目の測定依頼がなされたと制御部21が判断したら、まず、試料の分注(吸引・吐出)を実施する(ステップS130)。次いで、洗浄槽13,14において、試料プローブ11a,12aの内外の洗浄を実施し(ステップS131)、試料分注処理が終了する。 In FIG. 13, when the control unit 21 determines that a pre-registered analysis item measurement request has been made for a pre-registered sample type sample, first, the sample is dispensed (aspirated / discharged) (step) S130). Next, the inside and outside of the sample probes 11a and 12a are cleaned in the cleaning tanks 13 and 14 (step S131), and the sample dispensing process ends.
 その後、制御部21は、洗浄液供給機構110,111を制御して、洗浄液貯留槽23A,24Aの上流側から第1洗浄液を供給し、洗浄液貯留槽23A,24Aが第1洗浄液で満たされる(ステップS132)と、追加洗浄の前処理が終了する。 Thereafter, the control unit 21 controls the cleaning liquid supply mechanisms 110 and 111 to supply the first cleaning liquid from the upstream side of the cleaning liquid storage tanks 23A and 24A, and the cleaning liquid storage tanks 23A and 24A are filled with the first cleaning liquid (step). S132), and the pretreatment for the additional cleaning ends.
 その後、制御部21は、洗浄液貯留槽23A,24Aへ試料プローブ11a,12aを回転・下降させ(ステップS133)、深さH1+α1,H2+α2まで浸漬させる。次いで、試料用ポンプ19により、洗浄液貯留槽23A,24Aの貯留部123b,124b内の第1洗浄液を吸引させ(ステップS134)、試料プローブ11a,12aの内壁および外壁の洗浄を行う。 Thereafter, the control unit 21 rotates and lowers the sample probes 11a and 12a in the cleaning liquid storage tanks 23A and 24A (step S133) and immerses them to the depths H1 + α1 and H2 + α2. Next, the first cleaning liquid in the storage portions 123b and 124b of the cleaning liquid storage tanks 23A and 24A is sucked by the sample pump 19 (step S134), and the inner and outer walls of the sample probes 11a and 12a are cleaned.
 所定時間経過したら、制御部21は、試料プローブ11a,12aを上昇・回転させて洗浄槽13,14に移動(ステップS135)させ、吸引した洗浄液とともに試料プローブ11a,12aの内洗水を吐出させる(ステップS136)。 When a predetermined time has elapsed, the control unit 21 raises and rotates the sample probes 11a and 12a to move them to the cleaning tanks 13 and 14 (step S135), and discharges the internal washing water of the sample probes 11a and 12a together with the sucked cleaning liquid. (Step S136).
 その後、制御部21は、再び洗浄液貯留槽23A,24Aへ試料プローブ11a,12aを回転・下降させ(ステップS137)、試料プローブ11a,12aから内洗水を吐出させ(ステップS138)、洗浄液貯留槽23A,24A内の貯留部の洗浄液を内洗水で置換する。 Thereafter, the control unit 21 rotates and lowers the sample probes 11a and 12a to the cleaning liquid storage tanks 23A and 24A again (step S137), and discharges internal cleaning water from the sample probes 11a and 12a (step S138), thereby cleaning liquid storage tanks. The cleaning liquid in the reservoir in 23A and 24A is replaced with internal cleaning water.
 その後、制御部21は、再び試料プローブ11a,12aを洗浄槽13,14に移動させ(ステップS139)、洗浄槽13,14で試料プローブ11a,12aの内外洗浄を実施し(ステップS1310)、追加洗浄処理が終了する。 Thereafter, the control unit 21 again moves the sample probes 11a and 12a to the cleaning tanks 13 and 14 (step S139), and performs the internal and external cleaning of the sample probes 11a and 12a in the cleaning tanks 13 and 14 (step S1310). The cleaning process ends.
 次いで、試料分注処理に続く第2追加洗浄処理について図14を用いて説明する。図14は、試料分注処理および第2追加洗浄処理方法を示すフローチャートである。 Next, the second additional cleaning process following the sample dispensing process will be described with reference to FIG. FIG. 14 is a flowchart showing a sample dispensing process and a second additional cleaning process method.
 図14において、予め登録された検体種別の試料に対して予め登録された分析項目の測定依頼がなされたと制御部21が判断したら、まず、試料の分注(吸引・吐出)を実施する(ステップS140)。次いで、洗浄槽13,14において、試料プローブ11a,12aの内外の洗浄を実施し(ステップS141)、試料分注処理が終了する。 In FIG. 14, when the control unit 21 determines that a pre-registered analysis item measurement request has been made for a pre-registered sample type sample, first, the sample is dispensed (aspirated / discharged) (step) S140). Next, the inside and outside of the sample probes 11a and 12a are cleaned in the cleaning tanks 13 and 14 (step S141), and the sample dispensing process ends.
 その後、制御部21は、洗浄液供給機構110,111を制御して、洗浄液貯留槽23A,24Aの上流側から第1洗浄液を供給し、洗浄液貯留槽23A,24Aが第1洗浄液で満たされる(ステップS142)と、追加洗浄の前処理が終了する。 Thereafter, the control unit 21 controls the cleaning liquid supply mechanisms 110 and 111 to supply the first cleaning liquid from the upstream side of the cleaning liquid storage tanks 23A and 24A, and the cleaning liquid storage tanks 23A and 24A are filled with the first cleaning liquid (step). S142) and the pretreatment for the additional cleaning are completed.
 その後、制御部21は、洗浄液貯留槽23A,24Aへ試料プローブ11a,12aを回転・下降させ(ステップS143)、深さH1+α1,H2+α2まで浸漬させる。次いで、試料用ポンプ19により、洗浄液貯留槽23A,24A内の第1洗浄液を吸引させ(ステップS144)、試料プローブ11a,12aの内壁および外壁の洗浄を行う。 Thereafter, the control unit 21 rotates and lowers the sample probes 11a and 12a in the cleaning liquid storage tanks 23A and 24A (step S143), and immerses them to the depths H1 + α1 and H2 + α2. Next, the first cleaning liquid in the cleaning liquid storage tanks 23A and 24A is sucked by the sample pump 19 (step S144), and the inner and outer walls of the sample probes 11a and 12a are cleaned.
 所定時間経過したら、制御部21は、試料プローブ11a、12aを少し上昇・回転させるとともに、試料用ポンプ19により洗浄液貯留槽23A,24A内で試料プローブ11a,12aから内洗水を吐出させ(ステップS124)、洗浄液貯留槽23A,24A内の貯留部123b,124bの第1洗浄水を内洗水で置換する。 When a predetermined time has elapsed, the control unit 21 slightly raises and rotates the sample probes 11a and 12a, and causes the sample pump 19 to discharge the inner washing water from the sample probes 11a and 12a in the washing liquid storage tanks 23A and 24A (step). S124), the first wash water in the reservoirs 123b and 124b in the wash liquid reservoirs 23A and 24A is replaced with the wash water.
 その後、試料プローブ11a,12aを上昇・回転させて、洗浄槽13,14に移動させ(ステップS146)、洗浄槽13,14で試料プローブ11a,12aの内外を洗浄し(ステップS147)、処理を終了する。 Thereafter, the sample probes 11a and 12a are raised and rotated to move to the cleaning tanks 13 and 14 (step S146), and the inside and outside of the sample probes 11a and 12a are cleaned by the cleaning tanks 13 and 14 (step S147). finish.
 図13のステップS132における追加洗浄前処理および図14のステップS142における追加洗浄前処理は、追加洗浄処理の前に実施・完了していれればよく、試料分注処理の前に実施してもよく、また試料分注処理と平行して実施してもよい。 The additional cleaning pretreatment in step S132 of FIG. 13 and the additional cleaning preprocessing in step S142 of FIG. 14 may be performed and completed before the additional cleaning processing, and may be performed before the sample dispensing processing. Further, it may be performed in parallel with the sample dispensing process.
 次いで、スタンバイ状態で予め定めたN時間経過した場合の洗浄液貯留槽の洗浄処理について図15を用いて説明する。図15は、スタンバイ状態で予め定めたN時間経過した場合の洗浄液貯留槽の洗浄処理を示すフローチャートである。 Next, the cleaning process of the cleaning liquid storage tank when a predetermined N hours have elapsed in the standby state will be described with reference to FIG. FIG. 15 is a flowchart showing the cleaning process of the cleaning liquid storage tank when a predetermined N hours have elapsed in the standby state.
 図15において、制御部21は、スタンバイ状態で予め定めたN時間経過したと判断したら(ステップS150)、まず、複数ある洗浄液貯留槽23A,24Aの内、ある一つの洗浄液貯留槽23A,24Aの洗浄液を第1洗浄液から第2洗浄液に置換させる(ステップS151)。 In FIG. 15, when the control unit 21 determines that a predetermined N hours have elapsed in the standby state (step S150), first, among the plurality of cleaning liquid storage tanks 23A and 24A, one of the cleaning liquid storage tanks 23A and 24A. The cleaning liquid is replaced with the second cleaning liquid from the first cleaning liquid (step S151).
 次いで、洗浄液貯留槽23A,24Aへ試料プローブ11a,12aを回転・下降させる(ステップS152)とともに、洗浄液供給機構110,111により洗浄液貯留槽23A,24A内の洗浄液を第2洗浄液から第1洗浄液に置換する(ステップS153)。その後、試料用ポンプ19により試料プローブ11a,12aで第1洗浄液を吸引し(ステップS154)、吸引した洗浄液および試料プローブ11a,12aの内洗水を吐出させて(ステップS155)、洗浄液貯留槽23A,24A内の貯留部の第1洗浄液を内洗水で置換する。 Next, the sample probes 11a and 12a are rotated and lowered to the cleaning liquid storage tanks 23A and 24A (step S152), and the cleaning liquid supply mechanisms 110 and 111 change the cleaning liquid in the cleaning liquid storage tanks 23A and 24A from the second cleaning liquid to the first cleaning liquid. Replace (step S153). Thereafter, the first cleaning liquid is sucked with the sample probes 11a and 12a by the sample pump 19 (step S154), and the sucked cleaning liquid and the inner cleaning water of the sample probes 11a and 12a are discharged (step S155), and the cleaning liquid storage tank 23A. , 24A, the first cleaning liquid in the reservoir is replaced with internal cleaning water.
 その後、試料プローブ11a,12aを上昇・回転させて、洗浄槽13,14に移動させ(ステップS156)、洗浄槽13,14で試料プローブ11a,12aの内外を洗浄し(ステップS157)、その後、スタンバイ状態として(ステップS158)、処理を終了する。 Thereafter, the sample probes 11a and 12a are moved up and rotated to move to the cleaning tanks 13 and 14 (step S156), and the inside and outside of the sample probes 11a and 12a are cleaned by the cleaning tanks 13 and 14 (step S157). The standby state is set (step S158), and the process ends.
 次いで、装置立下の際の洗浄処理について図16を用いて説明する。図16は、装置立下の際の洗浄処理を示すフローチャートである。 Next, the cleaning process at the time of apparatus shutdown will be described with reference to FIG. FIG. 16 is a flowchart showing a cleaning process when the apparatus is down.
 図16において、制御部21は、まず、装置立上の指示が入力されたと判断したら、スタンバイ状態(ステップS160)を脱し、洗浄液貯留槽23A,24A内の洗浄液を第1洗浄液から第2洗浄液に置換させる(ステップS161)。その後、装置を立下げて(ステップS162)、処理を終了する。 In FIG. 16, when the control unit 21 first determines that an instruction for starting the apparatus has been input, the control unit 21 exits the standby state (step S160) and changes the cleaning liquid in the cleaning liquid storage tanks 23A and 24A from the first cleaning liquid to the second cleaning liquid. Replacement is performed (step S161). Thereafter, the apparatus is lowered (step S162), and the process is terminated.
 次に、本実施形態の効果について説明する。 Next, the effect of this embodiment will be described.
 上述した本発明の自動分析装置および分注プローブの洗浄方法の実施形態では、制御部21において、洗浄液貯留槽23A,24Aにて試料プローブ11a,12a、試薬プローブ7a,8aを洗浄する際に、試料プローブ11a,12a、試薬プローブ7a,8aより内洗水を吐出するよう試料プローブ11a,12a、試薬プローブ7a,8aを制御する。 In the embodiment of the automatic analyzer and the dispensing probe cleaning method of the present invention described above, when the controller 21 cleans the sample probes 11a and 12a and the reagent probes 7a and 8a in the cleaning liquid reservoirs 23A and 24A, The sample probes 11a and 12a and the reagent probes 7a and 8a are controlled so that the internal washing water is discharged from the sample probes 11a and 12a and the reagent probes 7a and 8a.
 この制御によって、貯留部123b内の第1洗浄液または第2洗浄液は、吐出された内洗水により押し出される形で排出されて汚染された洗浄液が綺麗な内洗水で置換される。このため、流路部123a内に存在する汚染されていない洗浄液を流路内にそのまま残存させることができ、洗浄液の結晶化の危険性を低減させることができるとともに、プローブの洗浄のための洗浄液の使用量を大幅に低減することができる。 By this control, the first cleaning liquid or the second cleaning liquid in the storage unit 123b is discharged in a form pushed out by the discharged inner washing water, and the contaminated cleaning liquid is replaced with clean inner washing water. For this reason, the uncontaminated cleaning liquid existing in the flow path portion 123a can be left in the flow path as it is, the risk of crystallization of the cleaning liquid can be reduced, and the cleaning liquid for cleaning the probe The amount of use can be greatly reduced.
 また、洗浄液貯留槽23A,24Aは、洗浄液に対する耐性を有する樹脂製または金属製であり、その内径が試料プローブ11a,12a、試薬プローブ7a,8aの外径よりも小さく形成された流路部123a,124aと、この流路部123a,124aの下流側に流路部123a,124aの内径よりも径が大きく形成された貯留部123b,124bとを有するため、吐出された内洗水はより径の小さい流路部123a,124aには向かいにくく、径の広い貯留部123b、124bに滞留するため、貯留部123b,124bが内洗水に置換された状態をより確実に保つことができる。 The cleaning liquid storage tanks 23A and 24A are made of resin or metal having resistance to the cleaning liquid, and the inner diameters of the flow path parts 123a are smaller than the outer diameters of the sample probes 11a and 12a and the reagent probes 7a and 8a. , 124a and reservoirs 123b, 124b having a diameter larger than the inner diameter of the flow passages 123a, 124a on the downstream side of the flow passages 123a, 124a, the discharged inner wash water has a larger diameter. It is difficult to go to the small flow passage portions 123a and 124a and stays in the large- diameter storage portions 123b and 124b, so that the state in which the storage portions 123b and 124b are replaced with the internal washing water can be more reliably maintained.
 更に、洗浄液貯留槽23A,24Aは、貯留部123b,124b内の体積が流路部123a,124aの体積より小さいことで、貯留部123b,124bに保持される汚染された第1洗浄液,第2洗浄液を一度に置換することができ、効率的に洗浄液の置換動作を行うことができる。 Furthermore, the cleaning liquid storage tanks 23A and 24A have the first and second contaminated cleaning liquids held in the storage parts 123b and 124b, because the volume in the storage parts 123b and 124b is smaller than the volume of the flow path parts 123a and 124a. The cleaning liquid can be replaced at a time, and the cleaning liquid can be replaced efficiently.
 また、洗浄液供給機構110,111は、洗浄液貯留槽23A,24Aに洗浄液を供給する洗浄液供給シリンジ51の一回の洗浄液の吐出量が、流路部123a,124aの体積より大きいことにより、シリンジの1ストロークで、貯留部123b,124bに残存する汚染されている洗浄液をすべて新しい洗浄液に置換することができ、効率的に洗浄液を置換することができる。 In addition, the cleaning liquid supply mechanisms 110 and 111 are configured such that the discharge amount of the cleaning liquid supply syringe 51 that supplies the cleaning liquid to the cleaning liquid storage tanks 23A and 24A is larger than the volume of the flow path portions 123a and 124a. In one stroke, all the contaminated cleaning liquid remaining in the reservoirs 123b and 124b can be replaced with a new cleaning liquid, and the cleaning liquid can be replaced efficiently.
 更に、制御部21は、試料プローブ11a,12a、試薬プローブ7a,8aより内洗水を吐出する際の試料プローブ11a,12a、試薬プローブ7a,8aの洗浄液への挿入深さを、試料プローブ11a,12a、試薬プローブ7a,8aの洗浄槽13,14において洗浄される範囲での長さより短くするよう試料プローブ11a,12a、試薬プローブ7a,8aを制御することにより、内洗水吐出時に洗浄液がせりあがっても、その後の洗浄でせり上がり部分も洗浄されるため、洗浄液の消費を抑制しながら、分注プローブの洗浄を確実に行うことができる。 Further, the control unit 21 determines the insertion depth of the sample probes 11a and 12a and the reagent probes 7a and 8a into the cleaning liquid when the inner washing water is discharged from the sample probes 11a and 12a and the reagent probes 7a and 8a. , 12a, and the reagent probes 7a and 8a are controlled to be shorter than the length of the cleaning tanks 13 and 14 in the cleaning tanks 13 and 14, so that the cleaning liquid can be discharged when the inner washing water is discharged by controlling the sample probes 11a and 12a and reagent probes 7a and 8a. Even if it rises, the raised portion is also washed by subsequent washing, so that the dispensing probe can be reliably washed while suppressing consumption of the washing solution.
 また、制御部21は、試料プローブ11a,12a、試薬プローブ7a,8aの洗浄液への挿入時の水平位置を、流路部123a,124aの中心軸からずらして挿入させるよう試料プローブ11a,12a、試薬プローブ7a,8aを制御することで、吐出された洗浄液によって乱流が形成され、より効果的な洗浄を行うことができる。また、吐出された内洗水が流路部123a内に浸入することがより抑制され、洗浄液の内洗水への置換効率をより向上させることができる。 The control unit 21 also inserts the sample probes 11a, 12a, and the reagent probes 7a, 8a so that the horizontal positions of the sample probes 11a, 12a and the reagent probes 7a, 8a are shifted from the central axes of the flow path units 123a, 124a. By controlling the reagent probes 7a and 8a, a turbulent flow is formed by the discharged cleaning liquid, and more effective cleaning can be performed. Moreover, it is suppressed that the discharged inner washing water permeates into the flow path portion 123a, and the replacement efficiency of the cleaning liquid into the inner washing water can be further improved.
 更に、洗浄液は、試料プローブ11a,12a、試薬プローブ7a,8aを洗浄するためのアルカリ性または酸性の特別洗浄液であることで、試料プローブ11a,12a、試薬プローブ7a,8aの追加洗浄の効果を十分に確保することができる。 Further, the cleaning liquid is an alkaline or acidic special cleaning liquid for cleaning the sample probes 11a and 12a and the reagent probes 7a and 8a, so that the effect of additional cleaning of the sample probes 11a and 12a and the reagent probes 7a and 8a is sufficiently obtained. Can be secured.
 また、制御部21は、洗浄液貯留槽23A,24Aに洗浄液を供給して所定時間経過した際は、洗浄液貯留槽23A,24Aにて試料プローブ11a,12a、試薬プローブ7a,8aより内洗水を吐出するよう制御することによって、洗浄液貯留槽23Aの貯留部123bでは、内洗水が絶えず大気暴露されるようになり、洗浄水の結晶化をより確実に予防することができる。 In addition, when the controller 21 supplies the cleaning liquid to the cleaning liquid storage tanks 23A and 24A and a predetermined time has elapsed, the controller 21 supplies the internal cleaning water from the sample probes 11a and 12a and the reagent probes 7a and 8a in the cleaning liquid storage tanks 23A and 24A. By controlling to discharge, in the storage part 123b of the cleaning liquid storage tank 23A, the inner cleaning water is constantly exposed to the atmosphere, and crystallization of the cleaning water can be prevented more reliably.
 更に、制御部21は、洗浄液貯留槽23A,24Aに洗浄液を供給する際に、前に内洗水を吐出してからの経過時間に応じて洗浄液の供給量を変えるよう洗浄液供給機構110,111を制御することにより、時間の経過とともに内洗水が流路部123a側に拡散したとしても、拡散によって濃度が低下した第1洗浄液を貯留部123b,124bから確実に排出することができ、追加洗浄処理時の第1洗浄液の濃度を一定とすることができる。 Further, when supplying the cleaning liquid to the cleaning liquid storage tanks 23A and 24A, the controller 21 supplies the cleaning liquid supply mechanisms 110 and 111 so as to change the supply amount of the cleaning liquid according to the elapsed time since the inner cleaning water was previously discharged. By controlling this, even if the inner washing water diffuses toward the flow path portion 123a with the passage of time, the first washing liquid whose concentration has decreased due to diffusion can be reliably discharged from the storage portions 123b and 124b. The concentration of the first cleaning liquid during the cleaning process can be made constant.
 なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。上述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。 Note that the present invention is not limited to the above-described embodiment, and various modifications and applications are possible. The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
1…反応ディスク
2…反応容器
3…洗浄機構
4…分光光度計
4a…光源
5,6…攪拌機構
7,8…試薬分注機構
7a,8a…試薬プローブ
9…試薬ディスク
10…試薬ボトル
11…第1試料分注機構
11a…試料プローブ
12…第2試料分注機構
12a…試料プローブ
13,14…洗浄槽
15,15a,15b…試料容器
16…試料ラック
17…試料搬送機構
18…試薬用ポンプ
19…試料用ポンプ
20…洗浄用ポンプ
21…制御部
23,24…洗浄容器
23A,23A1,23A2,24A…洗浄液貯留槽
23B,24B…下部開口部
23c…ヒーター
30,31,32,33…洗浄槽
51…洗浄液供給シリンジ(洗浄液吐出部)
52…洗浄液供給ポンプ
52A…洗浄液保管タンク
53…洗浄液保管タンク
54…洗浄液残量センサ
55,55A…分岐管
61,62,63,64…電磁弁
100…自動分析装置
101…反応ディスク
110,111…洗浄液供給機構
115a,115b…試料
123a,124a…流路部
123b,124b…貯留部
123c…円筒部
123d…テーパ部
DESCRIPTION OF SYMBOLS 1 ... Reaction disk 2 ... Reaction container 3 ... Cleaning mechanism 4 ... Spectrophotometer 4a ... Light source 5, 6 ... Stirring mechanism 7, 8 ... Reagent dispensing mechanism 7a, 8a ... Reagent probe 9 ... Reagent disk 10 ... Reagent bottle 11 ... First sample dispensing mechanism 11a ... Sample probe 12 ... Second sample dispensing mechanism 12a ... Sample probe 13, 14 ... Cleaning tank 15, 15a, 15b ... Sample container 16 ... Sample rack 17 ... Sample transport mechanism 18 ... Reagent pump DESCRIPTION OF SYMBOLS 19 ... Sample pump 20 ... Cleaning pump 21 ... Control part 23, 24 ... Cleaning container 23A, 23A1, 23A2, 24A ... Cleaning liquid storage tank 23B, 24B ... Lower opening 23c ... Heater 30, 31, 32, 33 ... Cleaning Tank 51 ... Cleaning liquid supply syringe (cleaning liquid discharge part)
52 ... Cleaning liquid supply pump 52A ... Cleaning liquid storage tank 53 ... Cleaning liquid storage tank 54 ... Cleaning liquid remaining amount sensor 55, 55A ... Branch pipes 61, 62, 63, 64 ... Solenoid valve 100 ... Automatic analyzer 101 ... Reaction disks 110, 111 ... Cleaning liquid supply mechanisms 115a, 115b ... samples 123a, 124a ... channels 123b, 124b ... reservoir 123c ... cylindrical part 123d ... tapered part

Claims (12)

  1.  自動分析装置であって、
     試薬や分析対象の試料を反応容器に分注する分注プローブと、
     前記分注プローブを洗浄するための洗浄液を貯留し、前記分注プローブを前記洗浄液に挿入して洗浄する洗浄液貯留槽と、
     前記洗浄液貯留槽へと繋がる流路を介して前記洗浄液貯留槽へと前記洗浄液を供給して前記分注プローブの洗浄処理を行う洗浄液供給部と、
     前記洗浄液貯留槽にて前記分注プローブを洗浄する際に、前記分注プローブより内洗水を吐出するよう前記分注プローブを制御する制御部と、を備えた
     ことを特徴とする自動分析装置。
    An automatic analyzer,
    A dispensing probe for dispensing reagents and samples to be analyzed into reaction vessels;
    A cleaning liquid for storing the dispensing probe is stored, and a cleaning liquid storage tank for cleaning by inserting the dispensing probe into the cleaning liquid;
    A cleaning liquid supply unit that supplies the cleaning liquid to the cleaning liquid storage tank via a flow path connected to the cleaning liquid storage tank and performs a cleaning process on the dispensing probe;
    An automatic analyzer comprising: a control unit that controls the dispensing probe so that the inner washing water is discharged from the dispensing probe when the dispensing probe is washed in the washing liquid storage tank. .
  2.  請求項1に記載の自動分析装置において、
     前記洗浄液貯留槽は、前記洗浄液に対する耐性を有する樹脂製または金属製であり、
     その内径が前記分注プローブの外径よりも小さく形成された流路部と、この流路部の下流側に前記流路部の内径よりも径が大きく形成された貯留部とを有する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The cleaning liquid storage tank is made of resin or metal having resistance to the cleaning liquid,
    It has a flow path part formed with an inner diameter smaller than the outer diameter of the dispensing probe, and a storage part formed with a diameter larger than the inner diameter of the flow path part on the downstream side of the flow path part. A featured automatic analyzer.
  3.  請求項2に記載の自動分析装置において、
     前記洗浄液貯留槽は、前記貯留部内の体積が前記流路部の体積より小さい
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 2,
    The automatic analyzer according to claim 1, wherein the cleaning liquid reservoir has a volume in the reservoir smaller than a volume of the flow path.
  4.  請求項3に記載の自動分析装置において、
     前記洗浄液供給部は、前記洗浄液貯留槽に前記洗浄液を供給する洗浄液吐出部の一回の洗浄液の吐出量が、前記流路部の体積より大きい
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 3,
    The automatic analyzer according to claim 1, wherein the cleaning liquid supply unit is configured such that a single discharge amount of the cleaning liquid discharging unit supplying the cleaning liquid to the cleaning liquid storage tank is larger than a volume of the flow path unit.
  5.  請求項1に記載の自動分析装置において、
     前記制御部は、前記分注プローブより内洗水を吐出する際の前記分注プローブの前記洗浄液への挿入深さを、通常洗浄槽で洗浄される範囲の長さより短くするよう前記分注プローブを制御する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The controller is configured to reduce the insertion depth of the dispensing probe into the cleaning liquid when discharging the internal washing water from the dispensing probe to be shorter than the length of the range to be washed in a normal washing tank. An automatic analyzer characterized by controlling.
  6.  請求項1に記載の自動分析装置において、
     前記制御部は、前記洗浄液貯留槽に前記洗浄液を供給する際に、前に前記内洗水を吐出してからの経過時間に応じて前記洗浄液の供給量を変えるよう前記洗浄液供給部を制御する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    When supplying the cleaning liquid to the cleaning liquid storage tank, the control unit controls the cleaning liquid supply unit to change the supply amount of the cleaning liquid according to an elapsed time since the inner cleaning water was previously discharged. An automatic analyzer characterized by that.
  7.  請求項1に記載の自動分析装置において、
     前記制御部は、前記洗浄液貯留槽に前記洗浄液を供給して所定時間経過した際は、前記洗浄液貯留槽にて前記分注プローブより内洗水を吐出するよう前記分注プローブを制御する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The control unit controls the dispensing probe to discharge internal wash water from the dispensing probe in the cleaning liquid storage tank when a predetermined time has elapsed after the cleaning liquid is supplied to the cleaning liquid storage tank. A featured automatic analyzer.
  8.  請求項2に記載の自動分析装置において、
     前記制御部は、前記分注プローブの前記洗浄液への挿入時の水平位置を、前記前記流路部の中心軸からずらして挿入させるよう前記分注プローブを制御する
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 2,
    The control unit controls the dispensing probe so that a horizontal position when the dispensing probe is inserted into the cleaning liquid is shifted from a central axis of the flow path unit. .
  9.  請求項1に記載の自動分析装置において、
     前記洗浄液は、前記分注プローブを洗浄するためのアルカリ性または酸性の特別洗浄液である
     ことを特徴とする自動分析装置。
    The automatic analyzer according to claim 1,
    The automatic analysis apparatus, wherein the cleaning liquid is an alkaline or acidic special cleaning liquid for cleaning the dispensing probe.
  10.  複数の反応容器に試料と試薬を各々分注して反応させ、この反応させた液体を測定する自動分析装置での前記試薬や前記試料を前記反応容器に分注するための分注プローブの洗浄方法であって、
     前記自動分析装置は、前記分注プローブと、前記分注プローブを洗浄するための洗浄液を貯留し、前記分注プローブを前記洗浄液に挿入して洗浄する洗浄液貯留槽と、前記洗浄液貯留槽へと繋がる流路を介して前記洗浄液貯留槽へと前記洗浄液を供給して前記分注プローブの洗浄処理を行う洗浄液供給部と、前記分注プローブおよび前記洗浄液供給部を制御する制御部と、を備え、
     前記試料または前記試薬を前記反応容器に吐出した後の前記分注プローブを前記洗浄液貯留槽に移送する移送工程と、
     前記洗浄液貯留槽へ前記洗浄液を供給する供給工程と、
     前記分注プローブを前記洗浄液貯留槽に貯留された洗浄液に漬ける洗浄工程と、を有し、
     この洗浄工程では、前記洗浄液貯留槽にて前記分注プローブを洗浄する際に、前記分注プローブより内洗水を吐出する
     ことを特徴とする分注プローブの洗浄方法。
    Dispensing a sample and a reagent into a plurality of reaction vessels, washing the dispensing probe for dispensing the reagent and the sample into the reaction vessel in an automatic analyzer that measures the reacted liquid A method,
    The automatic analyzer stores the dispensing probe, a cleaning liquid for cleaning the dispensing probe, a cleaning liquid storage tank that inserts the dispensing probe into the cleaning liquid for cleaning, and the cleaning liquid storage tank. A cleaning liquid supply unit that supplies the cleaning liquid to the cleaning liquid storage tank via a connected flow path and performs a cleaning process on the dispensing probe; and a control unit that controls the dispensing probe and the cleaning liquid supply unit. ,
    A transfer step of transferring the dispensing probe after discharging the sample or the reagent to the reaction container to the cleaning liquid storage tank;
    A supplying step of supplying the cleaning liquid to the cleaning liquid storage tank;
    A step of immersing the dispensing probe in the cleaning liquid stored in the cleaning liquid storage tank, and
    In this cleaning step, when the dispensing probe is washed in the washing liquid storage tank, internal washing water is discharged from the dispensing probe.
  11.  請求項10に記載の分注プローブの洗浄方法において、
     前記洗浄工程では、前記分注プローブより内洗水を吐出する際の前記分注プローブの前記洗浄液への挿入深さを、通常洗浄槽で洗浄される範囲の長さより短くする
     ことを特徴とする分注プローブの洗浄方法。
    In the washing method of the dispensing probe according to claim 10,
    In the cleaning step, the insertion depth of the dispensing probe into the cleaning liquid when discharging the inner washing water from the dispensing probe is made shorter than the length of the range to be cleaned in the normal cleaning tank. How to wash the dispensing probe.
  12.  請求項10に記載の分注プローブの洗浄方法において、
     前記洗浄工程では、前記洗浄液貯留槽に前記洗浄液を供給する際に、前に前記内洗水を吐出してからの経過時間に応じて前記洗浄液の供給量を変えるよう前記洗浄液供給部を制御する
     ことを特徴とする分注プローブの洗浄方法。
    In the washing method of the dispensing probe according to claim 10,
    In the cleaning step, when supplying the cleaning liquid to the cleaning liquid storage tank, the cleaning liquid supply unit is controlled so as to change the supply amount of the cleaning liquid according to the elapsed time since the inner cleaning water was discharged before. A method for cleaning a dispensing probe.
PCT/JP2017/002073 2016-02-19 2017-01-23 Automatic analyzing device and method for cleaning dispensing probe WO2017141627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-029453 2016-02-19
JP2016029453A JP2019074311A (en) 2016-02-19 2016-02-19 Automatic analyzer and cleaning method for dispensation probe

Publications (1)

Publication Number Publication Date
WO2017141627A1 true WO2017141627A1 (en) 2017-08-24

Family

ID=59625042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002073 WO2017141627A1 (en) 2016-02-19 2017-01-23 Automatic analyzing device and method for cleaning dispensing probe

Country Status (2)

Country Link
JP (1) JP2019074311A (en)
WO (1) WO2017141627A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200217865A1 (en) * 2017-09-20 2020-07-09 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Automatic analysis apparatus and operating method therefor
CN112213507A (en) * 2019-07-11 2021-01-12 日本电子株式会社 Automatic analyzer and method for controlling automatic analyzer
WO2021075324A1 (en) * 2019-10-18 2021-04-22 株式会社日立ハイテク Automated analyzer
WO2021135363A1 (en) * 2019-12-31 2021-07-08 科美诊断技术股份有限公司 Steel needle cleaning method and apparatus
JPWO2020071163A1 (en) * 2018-10-02 2021-12-02 株式会社日立ハイテク Automatic analyzer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328593A1 (en) 2021-04-20 2024-02-28 Hitachi High-Tech Corporation Automatic analysis device and method for controlling same
WO2023053691A1 (en) * 2021-09-30 2023-04-06 株式会社日立ハイテク Automatic analyzer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116437A1 (en) * 2008-03-17 2009-09-24 オリンパス株式会社 Method of cleaning nozzle and device for cleaning nozzle
JP2010210596A (en) * 2009-03-12 2010-09-24 Beckman Coulter Inc Autoanalyzer and probe cleaning method
WO2015037339A1 (en) * 2013-09-12 2015-03-19 株式会社日立ハイテクノロジーズ Nozzle cleaning method and automated analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116437A1 (en) * 2008-03-17 2009-09-24 オリンパス株式会社 Method of cleaning nozzle and device for cleaning nozzle
JP2010210596A (en) * 2009-03-12 2010-09-24 Beckman Coulter Inc Autoanalyzer and probe cleaning method
WO2015037339A1 (en) * 2013-09-12 2015-03-19 株式会社日立ハイテクノロジーズ Nozzle cleaning method and automated analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200217865A1 (en) * 2017-09-20 2020-07-09 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Automatic analysis apparatus and operating method therefor
JPWO2020071163A1 (en) * 2018-10-02 2021-12-02 株式会社日立ハイテク Automatic analyzer
JP7065996B2 (en) 2018-10-02 2022-05-12 株式会社日立ハイテク Automatic analyzer
CN112213507A (en) * 2019-07-11 2021-01-12 日本电子株式会社 Automatic analyzer and method for controlling automatic analyzer
WO2021075324A1 (en) * 2019-10-18 2021-04-22 株式会社日立ハイテク Automated analyzer
WO2021135363A1 (en) * 2019-12-31 2021-07-08 科美诊断技术股份有限公司 Steel needle cleaning method and apparatus

Also Published As

Publication number Publication date
JP2019074311A (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2017141627A1 (en) Automatic analyzing device and method for cleaning dispensing probe
CN108603895B (en) Automatic analyzer
JP6181039B2 (en) Automatic analyzer
EP2535720B1 (en) Instrument and Method for Clinical Examinations and Cleaning Method Therefor
JP6466846B2 (en) Nozzle cleaning method and automatic analyzer
JP6453219B2 (en) Automatic analyzer
WO2012105398A1 (en) Automatic analyzing device
JP2017015452A (en) Automatic analyzer
CN108700610B (en) Automatic analyzer and cleaning method
JP2010071897A (en) Automatic analysis device
JP6126387B2 (en) Electrolyte analyzer with double tube structure sample suction nozzle
WO2017110488A1 (en) Automated analysis device and automated analysis method
JP6474747B2 (en) Automatic analyzer and cleaning method thereof
JP2004251797A (en) Automatic analyzer
JP2010286420A (en) Cleaning method of dispensing nozzle, automatic analyzer, and container
JP2008304334A (en) Dispenser and autoanalyzer
US20220196695A1 (en) Automatic analyzer
JP6999527B2 (en) Test method, dispensing device
JP6935023B2 (en) Automatic analyzer and cleaning method
JPWO2019078030A1 (en) Cleaning method for automatic analyzer and probe
JPWO2019176296A1 (en) Automatic analyzer
JP7002669B2 (en) Automatic analyzer
WO2023188795A1 (en) Automatic analysis device
EP4198520A2 (en) Sample analyzer and cleaning control method therefor
US20230044702A1 (en) Electrolyte analysis apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP