JP2013045558A - Electrode and electric device - Google Patents

Electrode and electric device Download PDF

Info

Publication number
JP2013045558A
JP2013045558A JP2011181545A JP2011181545A JP2013045558A JP 2013045558 A JP2013045558 A JP 2013045558A JP 2011181545 A JP2011181545 A JP 2011181545A JP 2011181545 A JP2011181545 A JP 2011181545A JP 2013045558 A JP2013045558 A JP 2013045558A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
material layer
electrode active
etherification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011181545A
Other languages
Japanese (ja)
Other versions
JP5699858B2 (en
Inventor
Shinichiro Sakaguchi
眞一郎 坂口
Kosuke Hagiyama
康介 萩山
Tokuichi Mineo
徳一 峰尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2011181545A priority Critical patent/JP5699858B2/en
Priority to CN201210301067.XA priority patent/CN102956867B/en
Publication of JP2013045558A publication Critical patent/JP2013045558A/en
Application granted granted Critical
Publication of JP5699858B2 publication Critical patent/JP5699858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode capable of simultaneously achieving increased liquid absorption property and improved adhesion thereof.SOLUTION: In an electrode (4), an active material layer (6) containing CMC is arranged on a collector (5) and an electrolyte layer is arranged on a side opposite to a collector side of the active material layer (6). The active material layer (6) includes at least two or more active material layers containing CMC having an etherification degree different from each other, and the active material layer containing CMC having a relatively high etherification degree is arranged on an electrolyte layer side while the active material layer containing CMC having a relatively low etherification degree is arranged on the collector (5) side.

Description

この発明は、電極及び、二次電池などの電気デバイスに関する。   The present invention relates to an electrode and an electrical device such as a secondary battery.

負極における電極の密着性を担う電極合材として、水系バインダであるスチレンブタジエンラバー(SBR)及び増粘剤であるカルボキシルメチルセルロース(以下「CMC」という。)がある。これらの電極合材を負極活物質に混合し層状にして負極活物質層を形成し、この負極活物質層を負極集電体上に設置したものがある(特許文献1参照)。このものでは、CMCのエーテル化度を低くすることで、負極の密着性を高めている。   Examples of the electrode mixture responsible for the adhesion of the electrode in the negative electrode include styrene butadiene rubber (SBR) as an aqueous binder and carboxymethyl cellulose (hereinafter referred to as “CMC”) as a thickener. Some of these electrode mixtures are mixed with a negative electrode active material to form a negative electrode active material layer, and this negative electrode active material layer is placed on a negative electrode current collector (see Patent Document 1). In this product, the adhesion of the negative electrode is enhanced by lowering the degree of etherification of CMC.

特開平4−342966号公報JP-A-4-342966

ところで、負極や正極の電極に要求される特性はセパレータ側と集電体側とで異なることを本発明者が新たに見い出している。すなわち、本発明者の知見によれば、セパレータ側では電極の吸液性が高いことが、集電体側では電極の密着性が良いことが要求されるということである。このため、上記特許文献1の技術のように、CMCのエーテル化度を低くすることで電極全体の密着性を高めるだけだと、その一方で電極全体の吸液性が低下し、電池の入出力特性が低下してしまう。   By the way, the present inventors have newly found that the characteristics required for the negative electrode and the positive electrode are different between the separator side and the current collector side. That is, according to the knowledge of the present inventors, it is required that the electrode has high liquid absorbency on the separator side and that the electrode has good electrode adhesion on the current collector side. For this reason, as in the technique of Patent Document 1 described above, if the degree of etherification of the CMC is only lowered to increase the adhesion of the entire electrode, the liquid absorbency of the entire electrode is lowered, and the battery is inserted. The output characteristics will deteriorate.

そこで本発明は、電極の吸液性を高めることと電極の密着性を向上させることとの両立を図り得る電極を提供することを目的とする。   Then, this invention aims at providing the electrode which can aim at coexistence with improving the liquid absorptivity of an electrode and improving the adhesiveness of an electrode.

本発明の電極は、CMCを含有する活物質層を集電体上に設置すると共に、活物質層の集電体側とは反対側に電解質層を設置した電極である。さらに、本発明の電極は、前記活物質層に、エーテル化度の異なるCMCを含有する活物質層を少なくとも2つ以上含み、エーテル化度の相対的に高いCMCを含有する活物質層を前記電解質層側に、エーテル化度の相対的に低いCMCを含有する活物質層を前記集電体側に配置している。   The electrode of the present invention is an electrode in which an active material layer containing CMC is disposed on a current collector and an electrolyte layer is disposed on the side of the active material layer opposite to the current collector side. Furthermore, in the electrode of the present invention, the active material layer includes at least two active material layers containing CMC having different degrees of etherification, and the active material layer containing CMC having a relatively high degree of etherification is included in the active material layer. An active material layer containing CMC having a relatively low degree of etherification is arranged on the current collector side on the electrolyte layer side.

本の発明によれば、相対的に低いエーテル化度のCMCを含有する活物質層は電極の密着性を向上させ、相対的に高いエーテル化度のCMCを含有する活物質層は入出力特性を向上させることが可能となり、これらの活物質層を活物質層に含ませることで、電極の吸液性を高めることと電極の密着性を向上させることとを両立させることができる。    According to the present invention, the active material layer containing CMC having a relatively low degree of etherification improves the adhesion of the electrode, and the active material layer containing CMC having a relatively high degree of etherification has input / output characteristics. It is possible to improve the electrode, and by including these active material layers in the active material layer, it is possible to improve both the liquid absorbency of the electrode and the adhesion of the electrode.

本発明の第1実施形態のラミネート型電池の概略図である。1 is a schematic view of a laminated battery according to a first embodiment of the present invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 第1実施形態の負極4の拡大概略図である。It is an expansion schematic of negative electrode 4 of a 1st embodiment. 第2実施形態の負極4の拡大概略図である。It is the expansion schematic of the negative electrode 4 of 2nd Embodiment. 第3実施形態の負極4の拡大概略図である。It is an expansion schematic of the negative electrode 4 of 3rd Embodiment. 第4実施形態の負極4の拡大概略図である。It is an expansion schematic of the negative electrode 4 of 4th Embodiment. 第5実施形態の負極4の拡大概略図である。It is an expansion schematic of negative electrode 4 of a 5th embodiment. 第6実施形態の負極4の拡大概略図である。It is the expansion schematic of the negative electrode 4 of 6th Embodiment. 第7実施形態の負極4の拡大概略図である。It is an expansion schematic of the negative electrode 4 of 7th Embodiment. 実施例及び比較例の電極強度及び放電レートの特性図である。It is a characteristic view of the electrode intensity | strength and discharge rate of an Example and a comparative example.

以下、図面等を参照して本発明の実施形態について説明する。なお、図面の寸法比率は、説明の都合上誇張している箇所があり、その箇所においては実際の比率と異なっている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the dimension ratio of drawing has the location exaggerated on account of description, and the location differs from the actual ratio.

(第1実施形態)
まず、本実施形態のリチウムイオン二次電池1について説明する。図1はリチウムイオン二次電池1の概略斜視図、図2は図1のA−A線断面図である。
(First embodiment)
First, the lithium ion secondary battery 1 of this embodiment is demonstrated. FIG. 1 is a schematic perspective view of a lithium ion secondary battery 1, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

図1、図2に示すように、リチウムイオン二次電池1は、実際に充放電反応が進行する略四角薄板状の発電要素2が、電池外装材であるラミネートフィルム14の内部に封止された構造を有する。詳しくは、高分子−金属複合ラミネートフィルムを電池外装材として用いて、その周辺部(周縁部)を熱融着にて接合することにより、発電要素2を収納し密封した構成を有している。ここで高分子−金属複合ラミネートフィルムとしては、金属フィルムを高分子フィルム(樹脂フィルム)でサンドイッチした三層構造のものが一般的である。   As shown in FIGS. 1 and 2, in a lithium ion secondary battery 1, a power generation element 2 having a substantially rectangular thin plate in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 14 that is a battery exterior material. Has a structure. Specifically, the power generation element 2 is housed and sealed by joining a peripheral part (peripheral part) by thermal fusion using a polymer-metal composite laminate film as a battery exterior material. . Here, the polymer-metal composite laminate film generally has a three-layer structure in which a metal film is sandwiched between polymer films (resin films).

こうした積層型の電池1は、缶型電池と区分けするために「ラミネート型電池」といわれる。缶型電池は、市販されている単1電池や単3電池のように堅い円筒状の金属製外枠の中に2つの各電極が巻き込んで収納されているものである。一方、ラミネート型電池とは、略四角薄板状の発電要素2の周辺部(周縁部)を熱融着にて接合することにより、発電要素を密封したものをいう。以下では、リチウムイオン二次電池1を、「ラミネート型電池」という。あるいは単に「電池」ともいう。   Such a stacked battery 1 is referred to as a “laminated battery” in order to be distinguished from a can battery. A can-type battery is one in which two electrodes are wound and housed in a hard cylindrical metal outer frame like a commercially available AA battery or AA battery. On the other hand, the laminate type battery is a battery in which the power generation element is sealed by joining the peripheral portion (peripheral portion) of the power generation element 2 having a substantially rectangular thin plate shape by heat fusion. Hereinafter, the lithium ion secondary battery 1 is referred to as a “laminated battery”. Alternatively, it is simply called “battery”.

発電要素2は、負極4、セパレータ12、正極8をこの順に積層した構成を有している。ここで、負極4は四角薄板状の負極集電体5の両面に負極活物質層6、6を配置したものである。同様に正極8は四角薄板状の正極集電体9の両面に正極活物質層10、10を配置したものである。セパレータ12は主に多孔質の熱可塑性樹脂から形成されている。セパレータ12が電解液を保持することで、セパレータ12と一体に電解質層が形成されている。   The power generation element 2 has a configuration in which a negative electrode 4, a separator 12, and a positive electrode 8 are stacked in this order. Here, the negative electrode 4 is obtained by disposing negative electrode active material layers 6 and 6 on both sides of a rectangular thin plate-like negative electrode current collector 5. Similarly, the positive electrode 8 is obtained by disposing positive electrode active material layers 10 and 10 on both sides of a rectangular thin plate-shaped positive electrode current collector 9. The separator 12 is mainly formed from a porous thermoplastic resin. Since the separator 12 holds the electrolytic solution, an electrolyte layer is formed integrally with the separator 12.

これにより、隣接する負極4、セパレータ12及び正極8は、一つの単電池層13(単電池)を構成する。従って、本実施形態のラミネート型電池1は、単電池層13を積層することで、電気的に並列接続された構成を有するともいえる。また、単電池層13の外周には、隣接する負極集電体5と正極集電体9との間を絶縁するためのシール部(絶縁層)を設けてもよい。発電要素2の両最外層に位置する最外層負極集電体5には、いずれも片面のみに負極活物質層6を配置している。なお、図2とは負極及び正極の配置を逆にすることで、発電要素2の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片側のみに正極活物質層を配置するようにしてもよい。   Thereby, the adjacent negative electrode 4, the separator 12, and the positive electrode 8 comprise one single cell layer 13 (single cell). Therefore, it can be said that the laminate type battery 1 of the present embodiment has a configuration in which the single battery layers 13 are stacked to be electrically connected in parallel. Further, a seal portion (insulating layer) for insulating between the adjacent negative electrode current collector 5 and positive electrode current collector 9 may be provided on the outer periphery of the unit cell layer 13. In the outermost layer negative electrode current collector 5 located in both outermost layers of the power generation element 2, the negative electrode active material layer 6 is disposed only on one side. Note that the arrangement of the negative electrode and the positive electrode is reversed from that in FIG. 2 so that the outermost positive electrode current collector is positioned in both outermost layers of the power generation element 2, and the positive electrode is provided only on one side of the outermost positive electrode current collector. An active material layer may be disposed.

負極集電体5及び正極集電体9には、各電極(負極及び正極)と導通する強電タブ15、16を取り付け、ラミネートフィルム14の端部に挟まれるようにラミネートフィルム14の外部に導出させている。強電タブ15、16は、必要に応じて正極端子リード(図示せず)及び負極端子リード(図示せず)を介して、各電極の負極集電体5及び正極集電体9に超音波溶接や抵抗溶接により取り付けてもよい。ここで、図1、図2に示す電池1は上から見たとき四辺を有し、このうち平行な二辺より強電タブ15、16を外部に導出させているが、2つの強電タブ15、16を一つの辺のみより外部に導出させてもかまわない。   The negative electrode current collector 5 and the positive electrode current collector 9 are attached with high voltage tabs 15 and 16 that are electrically connected to the respective electrodes (negative electrode and positive electrode), and are led out of the laminate film 14 so as to be sandwiched between the ends of the laminate film 14. I am letting. The high voltage tabs 15 and 16 are ultrasonically welded to the negative electrode current collector 5 and the positive electrode current collector 9 of each electrode via a positive electrode terminal lead (not shown) and a negative electrode terminal lead (not shown) as necessary. Or it may be attached by resistance welding. Here, the battery 1 shown in FIGS. 1 and 2 has four sides when viewed from above, and the high-power tabs 15 and 16 are led out to the outside from two parallel sides of the two. 16 may be derived to the outside from only one side.

なお、リチウムイオン二次電池の他の形態としては、集電体の一方の面に正極活物質層を、他方の面に負極活物質層を形成している双極型電極を、セパレータを介して積層した双極型二次電池が挙げられる。上記の電池1とこの双極型二次電池とは、双方の電池内の電気的な接続状態(電極構造)が異なることを除いては、基本的には同様である。   As another form of the lithium ion secondary battery, a bipolar electrode in which a positive electrode active material layer is formed on one surface of a current collector and a negative electrode active material layer is formed on the other surface through a separator. A stacked bipolar secondary battery can be mentioned. The battery 1 and the bipolar secondary battery are basically the same except that the electrical connection state (electrode structure) in both batteries is different.

このように構成されるラミネート型電池1を金属製の電池ケースの内部に積層して収納し、積層した複数のラミネート型電池1を各強電タブを用いて直列接続することで所定電圧を有する電池パックが構成される。さらに複数の電池パックを電気的に組み合わせることで所定電圧を有する組電池が構成され、この組電池が電気自動車やハイブリッド車などの輸送機関に搭載されることとなる。   A battery having a predetermined voltage is obtained by laminating and storing the laminated battery 1 configured as described above in a metal battery case, and connecting the plurality of laminated laminated batteries 1 in series using each high voltage tab. A pack is composed. Furthermore, an assembled battery having a predetermined voltage is configured by electrically combining a plurality of battery packs, and this assembled battery is mounted on a transportation facility such as an electric vehicle or a hybrid vehicle.

さて、負極や正極の電極に要求される特性はセパレータ側と集電体側とで異なることを本発明者が新たに見い出している。すなわち、本発明者の知見によれば、セパレータ側では電極の吸液性が高いことが、集電体側では電極の密着性が良いことが要求されるということである。   The present inventors have newly found that the characteristics required for the negative electrode and the positive electrode are different between the separator side and the current collector side. That is, according to the knowledge of the present inventors, it is required that the electrode has high liquid absorbency on the separator side and that the electrode has good electrode adhesion on the current collector side.

この点に関し、負極における電極の密着性を担う電極合材として、水系バインダ(結着剤)であるスチレンブタジエンラバー(SBR)及び増粘剤であるCMCがある。これらの電極合材を負極活物質に混合し層状にして負極活物質層を形成し、この負極活物質層を負極集電体上に設置した従来装置がある。   In this regard, there are styrene butadiene rubber (SBR), which is an aqueous binder (binder), and CMC, which is a thickener, as an electrode mixture that is responsible for the adhesion of the electrode in the negative electrode. There is a conventional device in which these electrode mixtures are mixed with a negative electrode active material to form a negative electrode active material layer, and this negative electrode active material layer is placed on a negative electrode current collector.

しかしながら、従来装置には本発明者の知見は一切記載されていない。このため、従来装置のように、CMCのエーテル化度を低くすることで負極全体の密着性を高めるだけだと、その一方で負極全体の吸液性が低下し、ラミネート型電池1の入出力特性が低下してしまう。   However, the inventor's knowledge is not described at all in the conventional apparatus. For this reason, as in the conventional device, if the degree of etherification of CMC is only lowered to improve the adhesion of the whole negative electrode, the liquid absorption of the whole negative electrode is lowered, and the input / output of the laminated battery 1 is reduced. The characteristics will deteriorate.

そこで本実施形態では、CMCを含有する負極活物質層6(活物質層)を負極集電体5(集電体)上に設置すると共に、負極活物質層6の負極集電体5側とは反対側にセパレータ12(電解質層)を設置した負極4(電極)であって、負極活物質層6に、エーテル化度の異なるCMCを含有する活物質層を少なくとも2つ以上含み、エーテル化度の相対的に高いCMCを含有する負極活物質層をセパレータ12側に、エーテル化度の相対的に低いCMCを含有する負極活物質層を負極集電体5側に配置する。   Therefore, in the present embodiment, the negative electrode active material layer 6 (active material layer) containing CMC is disposed on the negative electrode current collector 5 (current collector), and the negative electrode current collector 5 side of the negative electrode active material layer 6 and Is a negative electrode 4 (electrode) provided with a separator 12 (electrolyte layer) on the opposite side, and the negative electrode active material layer 6 includes at least two active material layers containing CMC having different degrees of etherification, and is etherified. A negative electrode active material layer containing CMC having a relatively high degree of CMC is arranged on the separator 12 side, and a negative electrode active material layer containing CMC having a relatively low degree of etherification is arranged on the negative electrode current collector 5 side.

これを図3を参照して説明すると、図3は第1実施形態の負極4及びセパレータ12の拡大概略図である。
図3に示したように、負極活物質層6をエーテル化度の相対的に高いCMCを含有する負極活物質層21と、エーテル化度の相対的に低いCMCを含有する負極活物質層22との2つの負極活物質層から構成する。以下、エーテル化度の相対的に高いCMCを含有する負極活物質層を「第1負極活物質層」と、エーテル化度の相対的に低いCMCを含有する負極活物質層を「第2負極活物質」という。このうち負極活物質層6の表面には第1負極活物質層21を、負極集電体5側には第2負極活物質層22を配置する。第1負極活物質層21に含有させるCMCのエーテル化度は具体的には1.2、第2負極活物質層22に含有させるCMCのエーテル化度は具体的には0.6とする。
This will be described with reference to FIG. 3. FIG. 3 is an enlarged schematic view of the negative electrode 4 and the separator 12 of the first embodiment.
As shown in FIG. 3, the negative electrode active material layer 6 includes a negative electrode active material layer 21 containing CMC having a relatively high degree of etherification, and a negative electrode active material layer 22 containing CMC having a relatively low degree of etherification. And two negative electrode active material layers. Hereinafter, the negative electrode active material layer containing CMC having a relatively high degree of etherification is referred to as “first negative electrode active material layer”, and the negative electrode active material layer containing CMC having a relatively low degree of etherification is referred to as “second negative electrode”. It is called “active material”. Among these, the first negative electrode active material layer 21 is disposed on the surface of the negative electrode active material layer 6, and the second negative electrode active material layer 22 is disposed on the negative electrode current collector 5 side. Specifically, the degree of etherification of CMC contained in the first negative electrode active material layer 21 is specifically 1.2, and the degree of etherification of CMC contained in the second negative electrode active material layer 22 is specifically 0.6.

ここで、CMCはセルロースの水酸基の一部をカルボキシル基に置換させて作られ、そのカルボキシル基に置換した際にエーテル結合ができる。その置換の度合を「エーテル化度」と呼んでいる。   Here, CMC is produced by substituting a part of the hydroxyl group of cellulose with a carboxyl group, and an ether bond is formed when the carboxyl group is substituted. The degree of substitution is called “the degree of etherification”.

CMCのエーテル化度とCMCを含有させた負極活物質層の物性との間には次の関係がある。すなわち、CMCのエーテル化度を高くするとCMCを含有させた負極活物質層の粘度が小さくなって負極活物質層の硬さは小さく(柔らかく)なる。一方、CMCのエーテル化度を低くするとCMCを含有させた負極活物質層の粘度が大きくなって負極活物質層の硬さは大きく(硬く)なる。言い換えると、CMCのエーテル化度を高くしたとき、CMCを含有させた負極活物質層は吸液性が高く、Liイオンの移動抵抗が低く、入出力特性に優れることとなる。一方、CMCのエーテル化度を低くしたときCMCを含有させた負極活物質層は負極集電体との密着性に優れることとなる。   There is the following relationship between the degree of etherification of CMC and the physical properties of the negative electrode active material layer containing CMC. That is, when the degree of etherification of CMC is increased, the viscosity of the negative electrode active material layer containing CMC is decreased, and the hardness of the negative electrode active material layer is decreased (softened). On the other hand, when the degree of etherification of CMC is lowered, the viscosity of the negative electrode active material layer containing CMC is increased, and the hardness of the negative electrode active material layer is increased (hardened). In other words, when the degree of etherification of CMC is increased, the negative electrode active material layer containing CMC has high liquid absorption, low Li ion migration resistance, and excellent input / output characteristics. On the other hand, when the degree of etherification of CMC is lowered, the negative electrode active material layer containing CMC is excellent in adhesion to the negative electrode current collector.

ここで、負極4の「吸液性」とは、負極活物質層6の内部に電解液が入り込む性質のことをいい、「吸液性が高い」とは負極活物質層6の内部に電解液が入り込み易いことをいう。また、「入出力特性」とは、CMCを含有させた負極活物質層6を含めたラミネート型電池1全体としての特性であり、入力特性と出力特性を合わせた表現である。ここで、「入力特性」とはラミネート型電池1の充電特性、「出力特性」とはラミネート型電池1の放電特性のことである。「入力特性に優れる」とは、ラミネート型電池1を充電し易いこと、具体的には短時間で満充電まで充電できることをいう。「出力特性に優れる」とは、ラミネート型電池1から放電し易いこと、具体的には大きい電流で長い時間放電できることをいう。   Here, “liquid absorption” of the negative electrode 4 means a property that the electrolytic solution enters the inside of the negative electrode active material layer 6, and “high liquid absorption” means electrolysis inside the negative electrode active material layer 6. It means that the liquid can easily enter. The “input / output characteristics” are characteristics of the laminated battery 1 as a whole including the negative electrode active material layer 6 containing CMC, and are expressions that combine input characteristics and output characteristics. Here, “input characteristics” are charging characteristics of the laminate-type battery 1, and “output characteristics” are discharge characteristics of the laminate-type battery 1. “Excellent input characteristics” means that the laminated battery 1 can be easily charged, specifically, can be charged to full charge in a short time. “Excellent output characteristics” means that the laminate-type battery 1 is easily discharged, specifically, can be discharged for a long time with a large current.

負極4の「密着性」とは、積層状態にある負極活物質層6が負極集電体5から剥離しない性質のことをいう。「密着性に優れる」とは負極活物質層6が負極集電体5から容易に剥離しないことをいう。   The “adhesiveness” of the negative electrode 4 refers to a property that the negative electrode active material layer 6 in a laminated state does not peel from the negative electrode current collector 5. “Excellent adhesion” means that the negative electrode active material layer 6 does not easily peel from the negative electrode current collector 5.

従って、第1負極活物質層21を充放電反応が起こりやすい負極表面層(セパレータ12側)に配置することで、入出力特性の高い負極4となる。また、第2負極活物質層22を負極集電体5側に配置することで、負極集電体5との密着性に優れた負極4となる。   Therefore, the negative electrode 4 having high input / output characteristics is obtained by disposing the first negative electrode active material layer 21 on the negative electrode surface layer (separator 12 side) where charge / discharge reaction easily occurs. In addition, by disposing the second negative electrode active material layer 22 on the negative electrode current collector 5 side, the negative electrode 4 having excellent adhesion to the negative electrode current collector 5 is obtained.

ここで、第1実施形態の作用効果を説明する。   Here, the function and effect of the first embodiment will be described.

第1実施形態では、CMCを含有する負極活物質層6(活物質層)を負極集電体5(集電体)上に設置すると共に、負極活物質層6の負極集電体5側とは反対側にセパレータ12(電解質層)を設置した負極4(電極)であって、負極活物質層6に、エーテル化度の異なるCMCを含有する負極活物質層を2つ(少なくとも2つ以上)含み、第1電極活物質層21(エーテル化度の相対的に高いCMCを含有する活物質層)をセパレータ12側に、第2電極活物質層22(エーテル化度の相対的に低いCMCを含有する活物質層)を負極集電体5側に配置している。特に負極4の密着性が必要とされる箇所は、負極集電体5と負極活物質層6との界面である。第1実施形態によれば、この界面に第2負極活物質層22を設けることで、負極4の密着性を向上できる。また、第1実施形態によれば、高い入出力特性が必要とされるセパレータ12側の負極活物質層6には、第1負極活物質層21を設けることで、吸液性の高い負極4表面を得ることができる。   In the first embodiment, the negative electrode active material layer 6 (active material layer) containing CMC is placed on the negative electrode current collector 5 (current collector), and the negative electrode current collector 5 side of the negative electrode active material layer 6 Is a negative electrode 4 (electrode) provided with a separator 12 (electrolyte layer) on the opposite side, and the negative electrode active material layer 6 has two negative electrode active material layers containing CMC having different degrees of etherification (at least two or more). ) And the first electrode active material layer 21 (active material layer containing CMC having a relatively high degree of etherification) on the separator 12 side, and the second electrode active material layer 22 (CMC having a relatively low degree of etherification) Active material layer) is disposed on the negative electrode current collector 5 side. In particular, the portion where the adhesion of the negative electrode 4 is required is the interface between the negative electrode current collector 5 and the negative electrode active material layer 6. According to the first embodiment, the adhesion of the negative electrode 4 can be improved by providing the second negative electrode active material layer 22 at this interface. Further, according to the first embodiment, the negative electrode 4 having high liquid absorption is provided by providing the first negative electrode active material layer 21 in the negative electrode active material layer 6 on the separator 12 side that requires high input / output characteristics. A surface can be obtained.

なお、第1実施形態では、図3に示したように第1、第2の2つの負極活物質層21、22の厚みW1、W2を同じにしている場合を挙げたが、これに限定されるものでない。第1負極活物質層21の厚みW1と第2負極活物質層22の厚みW2との比率は任意でよい。次に述べる第2実施形態はこの比率を特定するものである。   In the first embodiment, as shown in FIG. 3, the first and second negative electrode active material layers 21 and 22 have the same thickness W1 and W2. However, the present invention is not limited to this. It is not something. The ratio between the thickness W1 of the first negative electrode active material layer 21 and the thickness W2 of the second negative electrode active material layer 22 may be arbitrary. A second embodiment described below specifies this ratio.

(第2実施形態)
図4は第2実施形態の負極4の拡大概略図である。第1実施形態の図3と同一部分には同一の番号を付している。
(Second Embodiment)
FIG. 4 is an enlarged schematic view of the negative electrode 4 of the second embodiment. The same parts as those in FIG. 3 of the first embodiment are denoted by the same reference numerals.

第2実施形態は、図3の第1実施形態を前提として、さらに第1負極活物質層21の厚みW3を第2負極活物質層22の厚みW4より厚くする。逆に言うと、第2負極活物質層22の厚みW4を第1負極活物質層21の厚みW3より薄くする。これは、第2負極活物質層22は負極集電体5から剥離しなければ(剥離強度さえ確保できれば)薄くてもかまわないためである。好ましくは、第1負極活物質層21の厚みW3を第2負極活物質層22の厚みW4より4倍厚くする。   In the second embodiment, on the premise of the first embodiment of FIG. 3, the thickness W3 of the first negative electrode active material layer 21 is further made larger than the thickness W4 of the second negative electrode active material layer 22. In other words, the thickness W4 of the second negative electrode active material layer 22 is made thinner than the thickness W3 of the first negative electrode active material layer 21. This is because the second negative electrode active material layer 22 may be thin as long as it does not peel from the negative electrode current collector 5 (so long as the peel strength can be secured). Preferably, the thickness W3 of the first negative electrode active material layer 21 is four times thicker than the thickness W4 of the second negative electrode active material layer 22.

特に負極4の密着性が必要とされるのは、負極集電体5と負極活物質層6との界面が主であるため、その界面近傍に、薄くても第2電極活物質層22が存在すればよい。反対にセパレータ12側に存在する第1電極活物質層21の厚みW3は厚いほど、高い入出力特性に優れることとなる。第2実施形態によれば、第1負極活物質層21(エーテル化度の相対的に高いCMCを含有する活物質層)の厚みW3を、第2負極活物質層22(エーテル化度の相対的に低いCMCを含有する活物質層)の厚みW4より厚くするので、最低限の負極4の密着性を確保しつつ、ラミネート型電池1の入出力特性を一段と高めることができる。   In particular, the adhesion of the negative electrode 4 is required because the interface between the negative electrode current collector 5 and the negative electrode active material layer 6 is mainly used, and therefore the second electrode active material layer 22 is formed near the interface even if it is thin. It only has to exist. On the contrary, the higher the thickness W3 of the first electrode active material layer 21 present on the separator 12 side, the better the input / output characteristics. According to the second embodiment, the thickness W3 of the first negative electrode active material layer 21 (active material layer containing CMC having a relatively high degree of etherification) is set to the second negative electrode active material layer 22 (relative etherification degree). Therefore, the input / output characteristics of the laminated battery 1 can be further enhanced while ensuring the minimum adhesion of the negative electrode 4.

(第3実施形態)
図5は第3実施形態の負極4の拡大概略図である。第2実施形態の図4と同一部分には同一の番号を付している。
(Third embodiment)
FIG. 5 is an enlarged schematic view of the negative electrode 4 of the third embodiment. The same parts as those in FIG. 4 of the second embodiment are denoted by the same reference numerals.

第3実施形態は、図4の第2実施形態を前提として、第1負極活物質層21を、さらにエーテル化度の異なるCMCを含有する第3、第4の2つの電極活物質層21a、21bから構成する。すなわち、第3負極活物質層21aはエーテル化度の相対的に高いCMCを含有する負極活物質層とする。一方、第4負極活物質層21bは第3負極活物質層21aに含有されているCMCのエーテル化度より低くかつ第2負極活物質層22に含有されているCMCのエーテル化度より高いエーテル化度のCMCを含有する負極活物質層とする。そして、第3負極活物質層21aをセパレータ12側に、第4負極活物質層21bを第2負極活物質層22側に配置する。具体的には第3負極活物質層21aに含有されているCMCのエーテル化度を1.2、第4負極活物質層21bに含有されているCMCのエーテル化度を0.8、第2負極活物質層22に含有されているCMCのエーテル化度を0.6とする。つまり、第3実施形態は、負極活物質層6に、エーテル化度の異なるCMCを含有する負極活物質層を3つ含み、エーテル化度の相対的に高いCMCを含有する負極活物質層(21a)をセパレータ12側に、エーテル化度の相対的に低いCMCを含有する負極活物質層(22)を負極集電体側5に配置するものである。   In the third embodiment, on the premise of the second embodiment of FIG. 4, the first negative electrode active material layer 21 is further replaced with third and fourth two electrode active material layers 21 a containing CMC having different degrees of etherification, 21b. That is, the third negative electrode active material layer 21a is a negative electrode active material layer containing CMC having a relatively high degree of etherification. On the other hand, the fourth negative electrode active material layer 21b has an ether lower than the degree of etherification of CMC contained in the third negative electrode active material layer 21a and higher than the degree of etherification of CMC contained in the second negative electrode active material layer 22. A negative electrode active material layer containing a degree of CMC is obtained. Then, the third negative electrode active material layer 21a is disposed on the separator 12 side, and the fourth negative electrode active material layer 21b is disposed on the second negative electrode active material layer 22 side. Specifically, the degree of etherification of CMC contained in the third negative electrode active material layer 21a is 1.2, the degree of etherification of CMC contained in the fourth negative electrode active material layer 21b is 0.8, The degree of etherification of CMC contained in the negative electrode active material layer 22 is set to 0.6. That is, in the third embodiment, the negative electrode active material layer 6 includes three negative electrode active material layers containing CMC having different degrees of etherification, and a negative electrode active material layer containing CMC having a relatively high degree of etherification ( 21a) is disposed on the separator 12 side, and a negative electrode active material layer (22) containing CMC having a relatively low degree of etherification is disposed on the negative electrode current collector side 5.

なお、図5には第3、第4の負極活物質層21a、21bの厚みの合計(W5+W6)を第2実施形態の第1負極活物質層21の厚みW3と同じにした場合を挙げているが、これに限られるものでない。3つの負極活物質層21a、21b、22の厚みの比率は任意でよい。   FIG. 5 shows a case where the total thickness (W5 + W6) of the third and fourth negative electrode active material layers 21a and 21b is the same as the thickness W3 of the first negative electrode active material layer 21 of the second embodiment. However, it is not limited to this. The ratio of the thicknesses of the three negative electrode active material layers 21a, 21b, and 22 may be arbitrary.

第3実施形態によれば、第1実施形態と同様の作用効果を奏する。すなわち、第3実施形態によれば、負極集電体5と負極活物質層6との界面にエーテル化度の相対的に低いCMCを含有する負極活物質層(22)を設けることで、負極4の密着性が向上させることができる。第3実施形態によれば、高い入出力特性が必要なセパレータ12側の負極活物質層には、エーテル化度の相対的に高いCMCを含有する負極活物質層(21a)を設けることで、吸液性の高い負極4表面を得ることができる。   According to 3rd Embodiment, there exists an effect similar to 1st Embodiment. That is, according to the third embodiment, by providing the negative electrode active material layer (22) containing CMC having a relatively low degree of etherification at the interface between the negative electrode current collector 5 and the negative electrode active material layer 6, the negative electrode 4 can be improved. According to the third embodiment, the negative electrode active material layer (21a) containing CMC having a relatively high degree of etherification is provided on the negative electrode active material layer on the separator 12 side that requires high input / output characteristics. The surface of the negative electrode 4 having high liquid absorption can be obtained.

(第4、第5の実施形態)
図6、図7は第4、第5の実施形態の負極4の拡大概略図である。第1実施形態の図3と同一部分には同一の番号を付している。
(Fourth and fifth embodiments)
6 and 7 are enlarged schematic views of the negative electrode 4 of the fourth and fifth embodiments. The same parts as those in FIG. 3 of the first embodiment are denoted by the same reference numerals.

第4実施形態は、図6に示したように第1実施形態を前提としてさらに第1負極活物質層21の面方向端部(図6で左右方向端部)に第2負極活物質層22からセパレータ12まで延設される延設部22bを設けたものである。第2負極活物質層22に延設部22bを設けたのは、次の理由による。すなわち、第1負極活物質層21の面方向端部21cが第2負極活物質層22から剥離しやすいので、剥離し易い面方向端部21cにのみ密着性の相対的に高い負極活物質層である第2負極活物質層22の延設部22bを配置することとしたものである。   In the fourth embodiment, as shown in FIG. 6, the second negative electrode active material layer 22 is further formed on the end in the surface direction of the first negative electrode active material layer 21 (the end in the left-right direction in FIG. 6) on the premise of the first embodiment. The extended portion 22b extending from the separator 12 to the separator 12 is provided. The extended portion 22b is provided in the second negative electrode active material layer 22 for the following reason. That is, since the end portion 21c in the plane direction of the first negative electrode active material layer 21 is easily peeled off from the second negative electrode active material layer 22, the negative electrode active material layer having relatively high adhesion only to the end portion 21c in the plane direction that is easy to peel off. The extended portion 22b of the second negative electrode active material layer 22 is disposed.

一方、第5実施形態は、図7に示したように第2負極活物質層22の面方向端部22aの厚みW8を、第1負極活物質層21の面方向端部21cの厚みW7より厚くしたものである。第5実施形態において、第1負極活物質層21の面方向端部21cの厚みW7をゼロとしたものが第4実施形態に相当する。   On the other hand, in the fifth embodiment, the thickness W8 of the surface end 22a of the second negative electrode active material layer 22 is set to be greater than the thickness W7 of the surface end 21c of the first negative electrode active material layer 21 as shown in FIG. It is thickened. In 5th Embodiment, what made thickness W7 of the surface direction edge part 21c of the 1st negative electrode active material layer 21 into zero is equivalent to 4th Embodiment.

第4、第5の実施形態によれば、負極活物質層6(活物質層)の面方向端部に密着性に優れる第2負極活物質層22(エーテル化度の相対的に低いCMCを含有する活物質層)が厚みW8として十分存在するか、または負極活物質層6(活物質層)の面方向端部が第2負極活物質層22(エーテル化度の相対的に低いCMCを含有する活物質層)のみである(W7=0)ので、負極4の面方向端部の密着性をさらに向上できる。   According to the fourth and fifth embodiments, the second negative electrode active material layer 22 (CMC having a relatively low degree of etherification) having excellent adhesion at the end in the surface direction of the negative electrode active material layer 6 (active material layer). The active material layer contained) is sufficiently present as the thickness W8, or the negative electrode active material layer 6 (active material layer) has an end in the surface direction of the second negative electrode active material layer 22 (CMC having a relatively low degree of etherification). (W7 = 0), it is possible to further improve the adhesion at the end in the surface direction of the negative electrode 4.

(第6、第7の実施形態)
図8、図9は第6、第7の実施形態の負極4の拡大概略図である。第1実施形態の図3と同一部分には同一の番号を付している。
(Sixth and seventh embodiments)
8 and 9 are enlarged schematic views of the negative electrode 4 of the sixth and seventh embodiments. The same parts as those in FIG. 3 of the first embodiment are denoted by the same reference numerals.

第6実施形態は、図8に示したように第1実施形態を前提としてさらに第2負極活物質層22の面方向端部(図8で左右方向端部)に第1負極活物質層21から負極集電体5まで延設される延設部21dを設けたものである。第1負極活物質層21に延設部21dを設けたのは、次の理由による。すなわち、発電要素2を電池外装材で被覆した後に電解液を注入したとき、負極活物質層21、22の面方向端部21c、22aが、注入された電解液が負極活物質層内部に浸透するための入口となる。そこで、電解液の浸透入口である面方向端部に吸液性の相対的に高い負極活物質層である第1負極活物質層21の延設部21dを配置することとしたものである。   In the sixth embodiment, as shown in FIG. 8, on the premise of the first embodiment, the first negative electrode active material layer 21 is further provided at the end in the surface direction of the second negative electrode active material layer 22 (the end in the left-right direction in FIG. 8). To the negative electrode current collector 5 is provided with an extending portion 21d. The extension part 21d is provided in the first negative electrode active material layer 21 for the following reason. That is, when the electrolytic solution is injected after the power generation element 2 is covered with the battery outer packaging material, the end portions 21c and 22a in the surface direction of the negative electrode active material layers 21 and 22 penetrate into the negative electrode active material layer. It becomes the entrance to do. Therefore, the extended portion 21d of the first negative electrode active material layer 21 that is a negative active material layer having a relatively high liquid absorption property is disposed at the end in the surface direction that is the electrolyte infiltration inlet.

一方、第7実施形態は、図9に示したように第1負極活物質層21の面方向端部21cの厚みW9を、第2負極活物質層22の面方向端部22aの厚みW10より厚くしたものである。第7実施形態において、第2負極活物質層22の面方向端部22aの厚みW9をゼロとしたものが第6実施形態に相当する。   On the other hand, in the seventh embodiment, as shown in FIG. 9, the thickness W9 of the surface end 21c of the first negative electrode active material layer 21 is greater than the thickness W10 of the surface end 22a of the second negative electrode active material layer 22. It is thickened. In the seventh embodiment, the thickness W9 of the surface direction end 22a of the second negative electrode active material layer 22 is zero, which corresponds to the sixth embodiment.

第6、第7の実施形態によれば、負極活物質層6(活物質層)の面方向端部に吸液性の優れる第1負極活物質層21(エーテル化度の相対的に高いCMCを含有する活物質層)が厚みW9として存在するか、または負極活物質層6(活物質層)の面方向端部が第1負極活物質層21(エーテル化度の相対的に高いCMCを含有する活物質層)のみである(W10=0)ので、負極4の吸液性が向上し、電解液を負極活物質層6内部へと容易に含浸させることができる。   According to the sixth and seventh embodiments, the first negative electrode active material layer 21 (CMC having a relatively high degree of etherification) having excellent liquid absorbency at the end in the surface direction of the negative electrode active material layer 6 (active material layer). Is present as the thickness W9, or the negative electrode active material layer 6 (active material layer) has a first negative electrode active material layer 21 (CMC having a relatively high degree of etherification) at the end in the surface direction. (W10 = 0) containing only the active material layer), the liquid absorbency of the negative electrode 4 is improved, and the electrolyte can be easily impregnated into the negative electrode active material layer 6.

上記第1〜第3の3つの実施形態の効果を確かめるため、3つの実施例と3つの比較例を製作した。   In order to confirm the effects of the first to third embodiments, three examples and three comparative examples were manufactured.

<正極スラリー・正極の作製>
正極活物質としてLiMn2O4(平均粒子径20μm、導電助剤としてアセチレンブラックおよび結着剤としてポリフッ化ビニリデン(PVDF)を86:6:8の質量比で混合して正極スラリーを得た。アルミニウム製の板状集電体(厚み20μm)の両面に正極スラリーを塗布して、130℃で熱風乾燥した後にロール圧延し、シート状に形成した。正極(正極板)の厚さは、262μmであった。
<Preparation of positive electrode slurry / positive electrode>
LiMn 2 O 4 (average particle diameter 20 μm, acetylene black as a conductive additive and polyvinylidene fluoride (PVDF) as a binder were mixed in a mass ratio of 86: 6: 8 as a positive electrode active material to obtain a positive electrode slurry. A positive electrode slurry was applied to both sides of a plate-like current collector (thickness 20 μm), dried with hot air at 130 ° C., and then rolled to form a sheet.The thickness of the positive electrode (positive electrode plate) was 262 μm. .

<負極スラリー・負極の作製>
負極活物質として黒鉛(平均粒子径10μm)、結着剤としてSBRおよび増粘剤としてCMCを97:2:1の質量比で混合して負極スラリーを得た。銅製の板状集電体(厚み10μm)の両面に負極スラリーを塗布して、130℃で熱風乾燥した後にロール圧延し、シート状に形成した。負極(負極板)の厚さは、122μmであった。
<Preparation of negative electrode slurry / negative electrode>
Graphite (average particle diameter: 10 μm) as the negative electrode active material, SBR as the binder and CMC as the thickener were mixed at a mass ratio of 97: 2: 1 to obtain a negative electrode slurry. A negative electrode slurry was applied to both sides of a copper plate-like current collector (thickness 10 μm), dried with hot air at 130 ° C., and then roll-rolled to form a sheet. The thickness of the negative electrode (negative electrode plate) was 122 μm.

その際、エーテル化度の異なるCMCを用いて3種(1.2、0.6、0.8の3種)の負極スラリーを作製した。以下、エーテル化度が1.2、0.6、0.8の各CMCを含有する負極スラリーを負極スラリーA、B、Cとする。また、エーテル化度が1.2、0.6、0.8の各CMCを含有する負極活物質層を、負極活物質層A、B、Cとする。   At that time, three types (1.2, 0.6, and 0.8) of negative electrode slurries were prepared using CMC having different degrees of etherification. Hereinafter, negative electrode slurries containing CMCs having etherification degrees of 1.2, 0.6, and 0.8 are referred to as negative electrode slurries A, B, and C. Moreover, let the negative electrode active material layer containing each CMC whose etherification degree is 1.2, 0.6, and 0.8 be the negative electrode active material layers A, B, and C.

<実施例の説明>
[実施例1]
負極スラリーBを負極集電体上に、負極スラリーAをその負極スラリーBの上にドクターブレードにより塗工させ負極を得た。これを、100℃の乾燥炉において、十分に水分を揮発させた後にロール圧延し、シート状に形成した。負極集電体に対しての片側厚みについては、負極活物質層Aを30μm、負極活物質層Bを30μmとした。実施例1は図3の第1実施形態に相当するものである。
<Description of Examples>
[Example 1]
The negative electrode slurry B was applied onto the negative electrode current collector, and the negative electrode slurry A was applied onto the negative electrode slurry B with a doctor blade to obtain a negative electrode. This was roll-rolled in a drying furnace at 100 ° C. after sufficiently evaporating water to form a sheet. Regarding the thickness on one side with respect to the negative electrode current collector, the negative electrode active material layer A was 30 μm and the negative electrode active material layer B was 30 μm. Example 1 corresponds to the first embodiment of FIG.

[実施例2]
負極スラリーBを負極集電体上に、負極スラリーAをその負極スラリーBの上にドクターブレードにより塗工させ負極を得た。これを、100℃の乾燥炉において、十分に水分を揮発させた後にロール圧延し、シート状に形成した。負極集電体に対しての片側厚みについては、負極活物質層Aを50μm、負極活物質層Bを10μmとした。実施例2は図4の第2実施形態に相当するものである。
[Example 2]
The negative electrode slurry B was applied onto the negative electrode current collector, and the negative electrode slurry A was applied onto the negative electrode slurry B with a doctor blade to obtain a negative electrode. This was roll-rolled in a drying furnace at 100 ° C. after sufficiently evaporating water to form a sheet. Regarding the thickness on one side with respect to the negative electrode current collector, the negative electrode active material layer A was 50 μm and the negative electrode active material layer B was 10 μm. Example 2 corresponds to the second embodiment of FIG.

[実施例3]
負極スラリーBを負極集電体上に、負極スラリーAをその負極スラリーBの上にドクターブレードにより塗工させ負極を得た。これを、100℃の乾燥炉において、十分に水分を揮発させた後にロール圧延し、シート状に形成した。負極集電体に対しての片側厚みについては、負極活物質層Aを10μm、負極活物質層Bを50μmとした。
[Example 3]
The negative electrode slurry B was applied onto the negative electrode current collector, and the negative electrode slurry A was applied onto the negative electrode slurry B with a doctor blade to obtain a negative electrode. This was roll-rolled in a drying furnace at 100 ° C. after sufficiently evaporating water to form a sheet. Regarding the thickness on one side with respect to the negative electrode current collector, the negative electrode active material layer A was 10 μm and the negative electrode active material layer B was 50 μm.

[比較例1]
負極スラリーAを負極集電体上にドクターブレードにより塗工させ負極極を得た。これを、100℃の乾燥炉において、十分に水分を揮発させた後にロール圧延し、シート状に形成した。負極集電体に対しての片側厚みについては、負極活物質層Aを60μmとした。
[Comparative Example 1]
The negative electrode slurry A was applied onto the negative electrode current collector with a doctor blade to obtain a negative electrode electrode. This was roll-rolled in a drying furnace at 100 ° C. after sufficiently evaporating water to form a sheet. About the one-side thickness with respect to a negative electrode electrical power collector, the negative electrode active material layer A was 60 micrometers.

[比較例2]
負極スラリーBを負極集電体上にドクターブレードにより塗工させ負極を得た。これを、100℃の乾燥炉において、十分に水分を揮発させた後にロール圧延し、シート状に形成した。負極集電体に対しての片側厚みについては、負極活物質層Bを60μmとした。
[Comparative Example 2]
The negative electrode slurry B was coated on the negative electrode current collector with a doctor blade to obtain a negative electrode. This was roll-rolled in a drying furnace at 100 ° C. after sufficiently evaporating water to form a sheet. About the one-side thickness with respect to a negative electrode electrical power collector, the negative electrode active material layer B was 60 micrometers.

[比較例3]
負極スラリーCを負極集電体上にドクターブレードにより塗工させ負極を得た。これを、100℃の乾燥炉において、十分に水分を揮発させた後にロール圧延し、シート状に形成した。負極の集電体に対しての片側厚みについては、負極活物質層Cを60μmとした。
[Comparative Example 3]
The negative electrode slurry C was coated on the negative electrode current collector with a doctor blade to obtain a negative electrode. This was roll-rolled in a drying furnace at 100 ° C. after sufficiently evaporating water to form a sheet. Regarding the thickness of one side of the negative electrode with respect to the current collector, the negative electrode active material layer C was set to 60 μm.

得られた正極(正極板)を電極部サイズが34mm×24mmとなりように打ち抜き、アルミニウム製の強電タブを超音波溶接により接合した。また、得られた負極(負極板)を電極部サイズが36mm×26mmとなりように打ち抜き、ニッケル製の強電タブを超音波溶接により接合した。   The obtained positive electrode (positive electrode plate) was punched out so that the electrode part size was 34 mm × 24 mm, and an aluminum high voltage tab was joined by ultrasonic welding. Further, the obtained negative electrode (negative electrode plate) was punched out so that the electrode part size was 36 mm × 26 mm, and a high-voltage nickel tab was joined by ultrasonic welding.

<電池の作製>
セパレータとして、ポリエチレン製微多孔質膜(厚さ=25μm)を準備した。また、電解液として、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)の混合電解液(EC:DEC=1:1体積比)に1.0MのLiPF6の電解質を保持させたものを用いた。
<Production of battery>
A polyethylene microporous membrane (thickness = 25 μm) was prepared as a separator. Further, as the electrolytic solution, a mixed electrolytic solution of ethylene carbonate (EC) and diethylene carbonate (DEC) (EC: DEC = 1: 1 volume ratio) holding 1.0 M LiPF6 electrolyte was used.

上記で作製、準備した負極活物質層を含む負極(負極板)を3枚、セパレータを4枚、および正極(正極板)を2枚、上下の両側に負極活物質層が配置されるように、負極、セパレータ、正極、セパレータ……の順に、図2に示したのと同様に積層して発電要素を作製した。   Three negative electrodes (negative electrode plates) including the negative electrode active material layer prepared and prepared above, four separators, two positive electrodes (positive electrode plates), and negative electrode active material layers are arranged on both upper and lower sides. Then, a negative electrode, a separator, a positive electrode, a separator,... Were stacked in the same order as shown in FIG.

得られた発電要素を電池外装材である高分子−アルミ複合ラミネートフィルム製のバッグ中に収納し、上記で準備した電解液を注入した。真空条件下において、両電極に接続された強電タブが導出するように高分子−アルミ複合ラミネートフィルム製バッグの開口部を封止し、試験用電池を完成させた。   The obtained power generation element was housed in a bag made of a polymer-aluminum composite laminate film, which is a battery exterior material, and the electrolytic solution prepared above was injected. Under vacuum conditions, the opening of the polymer-aluminum composite laminate film bag was sealed so that the high voltage tabs connected to both electrodes were led out, and the test battery was completed.

<エージング工程>
上記で作製した試験用電池に対して、45℃、6日間の条件でエージング処理を施した。
<Aging process>
The test battery produced above was subjected to aging treatment at 45 ° C. for 6 days.

<試験用セルの評価>
各試験用電池について、25℃の大気中で、定電流定電圧方式(CCCV、電流:0.1C、電圧:4.2V)で13時間充電処理を行なった。次いで10分間休止後、定電流方式(CC、電流:0.1C)で2.5Vまで放電処理を行なった。
<Evaluation of test cell>
Each test battery was charged in the air at 25 ° C. for 13 hours by the constant current constant voltage method (CCCV, current: 0.1 C, voltage: 4.2 V). Next, after a 10-minute pause, discharge treatment was performed to 2.5 V by a constant current method (CC, current: 0.1 C).

続いて、さらに10分間休止後、定電流定電圧方式(CCCV、電流:1C、電圧:4.2V)で3時間充電して、充電容量を測定した。その後、定電流(CC、電流:0.2C)で2.5Vまで放電させ、放電容量を測定し、0.2C容量とした。さらに10分間休止後、定電流定電圧方式(CCCV、電流:1C、電圧:4.2V)で3時間充電して、充電容量を測定した。その後、定電流(CC、電流:3C)で2.5Vまで放電させ、放電容量を測定し、3C容量とした。放電レート特性は、この3C容量を分子とし先の0.2C容量を分母として計算し、3C/0.2C放電率を求めた。   Subsequently, after a further 10 minutes of rest, the battery was charged for 3 hours by a constant current constant voltage method (CCCV, current: 1 C, voltage: 4.2 V), and the charge capacity was measured. Then, it discharged to 2.5V with constant current (CC, electric current: 0.2C), measured the discharge capacity, and was taken as 0.2C capacity. Further, after resting for 10 minutes, the battery was charged for 3 hours by a constant current constant voltage method (CCCV, current: 1 C, voltage: 4.2 V), and the charge capacity was measured. Then, it discharged to 2.5V with constant current (CC, electric current: 3C), measured the discharge capacity, and was set as 3C capacity. The discharge rate characteristics were calculated using the 3C capacity as the numerator and the previous 0.2C capacity as the denominator to obtain the 3C / 0.2C discharge rate.

このようにして求めた放電レート特性結果を電極強度の結果と共に次の表1に示す。   The discharge rate characteristic results thus obtained are shown in the following Table 1 together with the electrode strength results.

表1中の電極強度しては、電池組立前の電極についてテープ剥離試験を行った。また、表1をわかりやすくするため、表1の結果を二次元データとして図10に示す。図10より、3つの実施例によれば、放電レート特性と剥離強度とを比較例よりも共に高めることができている。 As the electrode strength in Table 1, a tape peeling test was performed on the electrode before battery assembly. In order to make Table 1 easier to understand, the results of Table 1 are shown as two-dimensional data in FIG. As can be seen from FIG. 10, according to the three examples, both the discharge rate characteristics and the peel strength can be improved as compared with the comparative example.

実施形態では、CMCを負極活物質に混合し層状にして負極活物質層を形成し、この負極活物質層を負極集電体上に設置した場合で説明したが、CMCを正極活物質に混合し層状にして正極活物質層を形成し、この正極活物質層を正極集電体上に設置した場合にも、本発明の適用がある。この場合には、CMCを含有する正極活物質層を正極集電体上に設置すると共に、正極活物質層の正極集電体側とは反対側に電解質層を設置した正極であって、正極活物質層に、エーテル化度の異なるCMCを含有する正極活物質層を少なくとも2つ以上含み、エーテル化度の相対的に高いCMCを含有する正極活物質層を電解質層側に、エーテル化度の相対的に低いCMCを含有する正極活物質層を正極集電体側に配置する正極とする。   In the embodiment, the case where the negative electrode active material layer is formed by mixing CMC with the negative electrode active material to form a negative electrode active material layer on the negative electrode current collector has been described. However, the CMC is mixed with the positive electrode active material. The present invention can also be applied to the case where a positive electrode active material layer is formed in a layer shape and this positive electrode active material layer is placed on a positive electrode current collector. In this case, a positive electrode active material layer containing CMC is disposed on the positive electrode current collector, and a positive electrode active material layer is disposed on the opposite side of the positive electrode current collector side from the positive electrode current collector side. The material layer includes at least two positive electrode active material layers containing CMC having different degrees of etherification, and the positive electrode active material layer containing CMC having a relatively high degree of etherification is disposed on the electrolyte layer side. A positive electrode active material layer containing a relatively low CMC is used as a positive electrode disposed on the positive electrode current collector side.

実施形態では、電気デバイスとして、ラミネートフィルムを外装材にするリチウムイオン二次電池を例示したが、これに限られない。金属板を外装材にするものや、他のタイプの二次電池、さらには一次電池にも適用できる。また、電池だけでなく電気二重層キャパシタのような電気化学キャパシタにも適用できる。   In the embodiment, a lithium ion secondary battery using a laminate film as an exterior material is illustrated as an electrical device, but the present invention is not limited thereto. The present invention can also be applied to a metal plate as an exterior material, other types of secondary batteries, and further primary batteries. Further, it can be applied not only to batteries but also to electrochemical capacitors such as electric double layer capacitors.

1 ラミネート型電池
4 負極(電極)
5 負極集電体(集電体)
6 負極活物質層(活物質層)
12 セパレータ
21 第1負極活物質層
21c 面方向端部
21d 延設部
22 第2負極活物質層
22a 面方向端部
22b 延設部
1 Laminated battery 4 Negative electrode (electrode)
5 Negative electrode current collector (current collector)
6 Negative electrode active material layer (active material layer)
12 Separator 21 First Negative Electrode Active Material Layer 21c Surface End 21d Extension 22 Second Negative Active Material Layer 22a Surface End 22b Extension

Claims (5)

CMCを含有する活物質層を集電体上に設置すると共に、活物質層の集電体側とは反対側に電解質層を設置した電極であって、
前記活物質層に、エーテル化度の異なるCMCを含有する活物質層を少なくとも2つ以上含み、
エーテル化度の相対的に高いCMCを含有する活物質層を前記電解質層側に、エーテル化度の相対的に低いCMCを含有する活物質層を前記集電体側に配置することを特徴とする電極。
An electrode in which an active material layer containing CMC is placed on a current collector and an electrolyte layer is placed on the side opposite to the current collector side of the active material layer,
The active material layer includes at least two active material layers containing CMC having different degrees of etherification,
An active material layer containing CMC having a relatively high degree of etherification is disposed on the electrolyte layer side, and an active material layer containing CMC having a relatively low degree of etherification is disposed on the current collector side. electrode.
前記エーテル化度の相対的に高いCMCを含有する活物質層の厚みを、前記エーテル化度の相対的に低いCMCを含有する活物質層の厚みより厚くすることを特徴とする請求項1に記載の電極。   The active material layer containing CMC having a relatively high degree of etherification is made thicker than the active material layer containing CMC having a relatively low degree of etherification. The electrode as described. 前記エーテル化度の相対的に低いCMCを含有する活物質層の面方向端部の厚みを、前記エーテル化度の相対的に高いCMCを含有する活物質層の面方向端部の厚みより厚くするかまたは前記エーテル化度の相対的に高いCMCを含有する活物質層の面方向端部に前記エーテル化度の相対的に低いCMCを含有する活物質層を前記電解質層まで延設することを特徴とする請求項1または2に記載の電極。   The thickness of the end portion in the surface direction of the active material layer containing CMC having a relatively low degree of etherification is larger than the thickness of the end portion in the surface direction of the active material layer containing CMC having a relatively high degree of etherification. Or extending an active material layer containing CMC having a relatively low degree of etherification to the electrolyte layer at an end in the surface direction of the active material layer containing CMC having a relatively high degree of etherification. The electrode according to claim 1 or 2. 前記エーテル化度の相対的に高いCMCを含有する活物質層の面方向端部の厚みを、前記エーテル化度の相対的に低いCMCを含有する活物質層の面方向端部の厚みより厚くするかまたは前記エーテル化度の相対的に低いCMCを含有する活物質層の面方向端部に前記エーテル化度の相対的に高いCMCを含有する活物質層を前記集電体まで延設することを特徴とする請求項1または2に記載の電極。   The thickness of the active material layer containing CMC having a relatively high degree of etherification is thicker than the thickness of the active material layer containing CMC having a relatively low degree of etherification. Or an active material layer containing CMC having a relatively high degree of etherification is extended to the current collector at an end in the surface direction of the active material layer containing CMC having a relatively low degree of etherification. The electrode according to claim 1 or 2, characterized by the above-mentioned. 請求項1から4までのいずれか一つに記載の電極を有することを特徴とする電気デバイス。   An electrical device comprising the electrode according to any one of claims 1 to 4.
JP2011181545A 2011-08-23 2011-08-23 Electrodes and electrical devices Active JP5699858B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011181545A JP5699858B2 (en) 2011-08-23 2011-08-23 Electrodes and electrical devices
CN201210301067.XA CN102956867B (en) 2011-08-23 2012-08-22 Electrode and electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181545A JP5699858B2 (en) 2011-08-23 2011-08-23 Electrodes and electrical devices

Publications (2)

Publication Number Publication Date
JP2013045558A true JP2013045558A (en) 2013-03-04
JP5699858B2 JP5699858B2 (en) 2015-04-15

Family

ID=47765363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181545A Active JP5699858B2 (en) 2011-08-23 2011-08-23 Electrodes and electrical devices

Country Status (2)

Country Link
JP (1) JP5699858B2 (en)
CN (1) CN102956867B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058444B2 (en) * 2013-03-26 2017-01-11 株式会社東芝 Negative electrode, non-aqueous electrolyte battery, battery pack and automobile
CN111900357B (en) * 2020-08-13 2021-12-03 珠海冠宇电池股份有限公司 Negative plate and lithium ion battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167213A (en) * 1997-08-21 1999-03-09 Jsr Corp Composition for battery electrode and battery electrode
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Nonaqueous electrolytic battery
JP2009043641A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and negative electrode used for the same
JP2009081067A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Non-aqueous secondary battery
WO2009087731A1 (en) * 2008-01-10 2009-07-16 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW550848B (en) * 2001-02-16 2003-09-01 Nisshin Spinning Multi-layered electrode structural body, cell using same, dual-layer capacitor and manufacturing method for same
JP2008108632A (en) * 2006-10-26 2008-05-08 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167213A (en) * 1997-08-21 1999-03-09 Jsr Corp Composition for battery electrode and battery electrode
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Nonaqueous electrolytic battery
JP2009043641A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and negative electrode used for the same
JP2009081067A (en) * 2007-09-26 2009-04-16 Sanyo Electric Co Ltd Non-aqueous secondary battery
WO2009087731A1 (en) * 2008-01-10 2009-07-16 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same

Also Published As

Publication number Publication date
JP5699858B2 (en) 2015-04-15
CN102956867A (en) 2013-03-06
CN102956867B (en) 2014-10-22

Similar Documents

Publication Publication Date Title
JP4736580B2 (en) Bipolar battery, battery pack and vehicle equipped with these batteries
JP5266618B2 (en) Bipolar battery
US7754379B2 (en) Secondary battery
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP4135469B2 (en) Polymer battery, battery pack and vehicle
JP2005276486A (en) Laminated battery, battery pack, and vehicle
WO2011002064A1 (en) Laminated battery
JP5098180B2 (en) Secondary battery manufacturing method
JP2012138408A (en) Electrochemical device and manufacturing method thereof
JP2016207576A (en) Nonaqueous electrolyte secondary battery
WO2022030279A1 (en) Power storage device
JP3711962B2 (en) Thin battery
JP2017059538A (en) Laminated battery
JP5699858B2 (en) Electrodes and electrical devices
CN115461909A (en) Electrochemical device and electronic device comprising same
EP3131149B1 (en) Flat-type secondary battery
JP2005317468A (en) Bipolar electrode, method of manufacturing bipolar electrode, bipolar battery, battery pack and vehicle with these mounted thereon
JP2013243070A (en) Battery with wound electrode body
JP2007335158A (en) Secondary battery and battery pack
KR20160039902A (en) Pouch-Type Secondary Battery
JP2019114400A (en) Power storage device
CN220492142U (en) Battery cell
JP2012199252A (en) Separator for battery, and battery comprising the same
JP2011096504A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP7249991B2 (en) secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150202

R151 Written notification of patent or utility model registration

Ref document number: 5699858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250