JP2019114400A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2019114400A
JP2019114400A JP2017246510A JP2017246510A JP2019114400A JP 2019114400 A JP2019114400 A JP 2019114400A JP 2017246510 A JP2017246510 A JP 2017246510A JP 2017246510 A JP2017246510 A JP 2017246510A JP 2019114400 A JP2019114400 A JP 2019114400A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mixture layer
active material
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017246510A
Other languages
Japanese (ja)
Inventor
識十 小野田
Shikito Onoda
識十 小野田
之規 羽藤
Noriyuki Hado
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2017246510A priority Critical patent/JP2019114400A/en
Publication of JP2019114400A publication Critical patent/JP2019114400A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To ensure high energy density and high output density in a power storage device.SOLUTION: A power storage device includes: a positive electrode system comprising a first positive electrode 10 including a first positive electrode collector 12 and a first positive electrode mixture layer 14 and a second positive electrode 20 including a second positive electrode collector 22 and a second positive electrode mixture layer 24 of a material that is different from that of the first positive electrode mixture layer 14; and a negative electrode system 50 disposed between the first positive electrode 10 and the second positive electrode 20. The negative electrode system 50 includes: a negative electrode collector 54; a first negative electrode mixture layer 52a provided on one surface of the negative electrode collector 54 to face a fist positive electrode 10 side; and a second negative electrode mixture layer 52b provided on the other surface of the negative electrode collector 54 to face a second positive electrode 20 side. The active material of the first negative electrode mixture layer 52a is different from the active material of the second negative electrode mixture layer 52b.SELECTED DRAWING: Figure 1

Description

この発明は、蓄電デバイスに関する。   The present invention relates to a power storage device.

蓄電デバイスにおいて出力密度を向上させるための手法として、リチウムイオン電池における正極、及び電気二重層キャパシタに用いられる正極による2種類の正極と、リチウムイオン電池における負極とを組み合わせた蓄電デバイス(ハイブリッドキャパシタ)が知られている。例えば、特許文献1には、キャパシタ正極集電箔の一方の面に活性炭の微粒子を含むキャパシタ正極電極層が形成されたキャパシタ正極と、貫通孔を有する負極集電箔の一方の面に負極電極層が形成された共通負極と、キャパシタ正極電極層と負極電極層とで挟持された第一のセパレータと、電池正極集電箔の一方の面にリチウム含有金属化合物の粒子を含んだ電池正極電極層が形成された電池正極と、負極集電箔と電池正極電極層とで挟持された第二のセパレータと、を備えた電力貯蔵デバイスセルであって、共通負極がキャパシタ正極及び電池正極の共通の負極であり、第二のセパレータが負極集電箔の他方の面に接している電力貯蔵デバイスセルが記載されている。また、特許文献2には、集電体と正極合材層とを備える正極によって構成される正極系と、集電体と負極合材層とを備える負極によって構成される負極系とを有する蓄電デバイスであって、正極系は、第1正極合材層を備える第1正極と第2正極合材層を備える第2正極とを有し、負極系は、第1正極と第2正極との間に配置される負極を有し、第1正極合材層には遷移金属酸化物が含まれ、第2正極合材層には活性炭が含まれ、第1正極合材層と第2正極合材層との間に配置される負極の集電体に貫通孔が形成されることが記載されている。   Power storage device (hybrid capacitor) combining a positive electrode in a lithium ion battery and a positive electrode used in an electric double layer capacitor and a negative electrode in a lithium ion battery as a method for improving the output density in the power storage device It has been known. For example, Patent Document 1 discloses a capacitor positive electrode in which a capacitor positive electrode layer containing fine particles of activated carbon is formed on one surface of a capacitor positive electrode current collector foil, and a negative electrode on one surface of a negative electrode current collector foil having through holes. A battery positive electrode comprising particles of a lithium-containing metal compound on one side of a battery positive electrode current collector foil, a first negative electrode sandwiched between a common negative electrode formed with layers, a capacitor positive electrode layer and a negative electrode layer A power storage device cell comprising a battery positive electrode formed with a layer, and a second separator sandwiched between a negative electrode current collector foil and a battery positive electrode layer, wherein the common negative electrode is common to the capacitor positive electrode and the battery positive electrode. The power storage device cell is described in which the second separator is in contact with the other side of the negative electrode current collector foil. In addition, Patent Document 2 includes a positive electrode system configured by a positive electrode including a current collector and a positive electrode mixture layer, and a negative electrode system configured by a negative electrode including a current collector and a negative electrode mixture layer. A positive electrode system having a first positive electrode including a first positive electrode mixture layer and a second positive electrode including a second positive electrode mixture layer; and a negative electrode system including a first positive electrode and a second positive electrode The first positive electrode mixture layer includes a transition metal oxide, and the second positive electrode mixture layer includes activated carbon, and the first positive electrode mixture layer and the second positive electrode mixture have a negative electrode disposed therebetween. It is described that a through-hole is formed in the current collector of the negative electrode disposed between the material layer.

特許第5040626号Patent No. 5040626 特許第5091573号Patent No. 5091573

特許文献1、2のようなハイブリッドキャパシタにおいては、負極(共通負極)に対応する正極として、リチウムイオン電池の正極、及び電気二重層キャパシタの正極という互いに異なる種類の正極が存在するため、エネルギー密度及び出力密度の双方の要求を満たす負極の材料の選択が難しいという問題がある。例えば、負極の不可逆容量が増加したり、電極密度を上げることができずに、セルの体積が増加するおそれがある。   In the hybrid capacitors as described in Patent Documents 1 and 2, different types of positive electrodes such as a positive electrode of a lithium ion battery and a positive electrode of an electric double layer capacitor exist as a positive electrode corresponding to the negative electrode (common negative electrode). There is a problem that it is difficult to select the material of the negative electrode that meets the requirements of both the power density and the power density. For example, the irreversible capacity of the negative electrode may increase, or the electrode density may not be increased, and the volume of the cell may increase.

本発明はこのような背景に鑑みてなされたものであり、高いエネルギー密度及び出力密度を確保することが可能な蓄電デバイスを提供することを目的としている。   The present invention has been made in view of such background, and an object of the present invention is to provide a power storage device capable of securing high energy density and power density.

上記目的を達成するための本発明の一態様は、第1正極集電体及び第1正極合剤層を備える第1正極と、第2正極集電体及び前記第1正極合剤層と材料の異なる第2正極合剤層を備える第2正極とによって構成される正極系と、前記第1正極及び前記第2正極の間に配置された負極系とを含んで構成される蓄電デバイスであって、前記負極系は、負極集電体と、当該負極集電体の一方の面に前記第1正極側に対面して設けられる第1負極合剤層と、当該負極集電体の他方の面に前記第2正極側に対面して設けられる第2負極合剤層とを有し、前記第1負極合剤層の材料が前記第2負極合剤層の材料と異なることを特徴とする。   One embodiment of the present invention for achieving the above object comprises a first positive electrode including a first positive electrode current collector and a first positive electrode mixture layer, a second positive electrode current collector, and the first positive electrode mixture layer and materials. A positive electrode system including a second positive electrode including a different second positive electrode mixture layer, and a negative electrode system disposed between the first positive electrode and the second positive electrode. The negative electrode system includes a negative electrode current collector, a first negative electrode mixture layer provided on one surface of the negative electrode current collector facing the first positive electrode side, and the other of the negative electrode current collector. And a second negative electrode mixture layer provided on the surface to face the second positive electrode side, and the material of the first negative electrode mixture layer is different from the material of the second negative electrode mixture layer. .

本発明のように、負極系が、負極集電体の一方の面に第1正極側に対面して設けられる第1負極合剤層と、負極集電体の他方の面に第2正極側に対面して設けられる第2負極合剤層とを有するものであり、さらに、第1負極合剤層の材料が第2負極合剤層の材料と異なっていることで、第1正極及び第1正極側の負極からなる電極系と、第2正極及び第2正極側の負極からなる電極系とのそれぞれの特性に合致した、高いエネルギー密度及び出力密度を有する蓄電デバイスを構成することができる。   As in the present invention, the negative electrode system is provided on one side of the negative electrode current collector so as to face the first positive electrode side, and the other side of the negative electrode current collector is on the second positive electrode side. And a second negative electrode material mixture layer provided opposite to the first negative electrode material mixture layer, and the material of the first negative electrode material mixture layer is different from the material of the second negative electrode material mixture layer. (1) A storage device having high energy density and power density can be configured to match the characteristics of the electrode system consisting of the negative electrode on the positive electrode side and the electrode system consisting of the negative electrode on the second positive electrode side and the second positive electrode .

例えば、前記第1負極合剤層の活物質は電池の負極を構成する活物質を含み、前記第2負極合剤層の活物質は電気二重層キャパシタの負極を構成する活物質を含む。これにより、第1負極合剤層と第1正極合剤層による電極によって電極密度(エネルギー密度)が高い蓄電デバイスが実現でき、第2負極合剤層と第2正極合剤層による電極により、応答性が高く出力密度の大きい蓄電デバイスが実現できる。このように、本発明によれば、蓄電デバイスにおいて、高いエネルギー密度及び出力密度を確保することができる。   For example, the active material of the first negative electrode mixture layer includes an active material constituting a negative electrode of a battery, and the active material of the second negative electrode mixture layer includes an active material constituting a negative electrode of an electric double layer capacitor. As a result, an electric storage device having a high electrode density (energy density) can be realized by the electrodes of the first negative electrode mixture layer and the first positive electrode mixture layer, and by the electrodes of the second negative electrode mixture layer and the second positive electrode mixture layer, It is possible to realize an electricity storage device with high response and large output density. As described above, according to the present invention, high energy density and power density can be secured in the power storage device.

なお、前記第1負極合剤層の活物質は黒鉛を含み、前記第2負極合剤層の活物質はピッチによる被着がされた黒鉛を含む。このように、第2負極合剤層の活物質に、ピッチによる被着がされた黒鉛を用いることで、第2正極及び第2正極側の負極からなる電極系における応答性を高め、出力密度の特に高い蓄電デバイスを構成することができる。   The active material of the first negative electrode mixture layer contains graphite, and the active material of the second negative electrode mixture layer contains graphite which is adhered by pitch. As described above, by using graphite adhered by the pitch as the active material of the second negative electrode mixture layer, the response in the electrode system including the second positive electrode and the negative electrode on the second positive electrode side is improved, and the output density is increased. Particularly high power storage devices.

また、例えば、前記第1正極合剤層の活物質は遷移金属酸化物を含む、前記第2正極合剤層の活物質は活性炭を含む。このようにすることで、第1正極及び第1正極側の負極からなる電極系はリチウムイオン二次電池のように高い電極密度を有する電極系となり、第2正極及び第2正極側の負極からなる電極系はリチウムイオンキャパシタのように高い出力密度を有する電極系とすることができるので、高いエネルギー密度及び出力密度を確保することができる。また、蓄電デバイスとしての耐久性を損なうこともない。   Also, for example, the active material of the first positive electrode mixture layer includes a transition metal oxide, and the active material of the second positive electrode mixture layer includes activated carbon. By doing this, the electrode system comprising the first positive electrode and the negative electrode on the first positive electrode side becomes an electrode system having a high electrode density like a lithium ion secondary battery, and from the negative electrode on the second positive electrode and the second positive electrode side Since the electrode system can be an electrode system having a high output density like a lithium ion capacitor, high energy density and output density can be secured. In addition, the durability as an electricity storage device is not impaired.

本発明によれば、高いエネルギー密度及び出力密度を確保することができる。なお、その他の効果については以下の記載で明らかにする。   According to the present invention, high energy density and power density can be ensured. Other effects will be clarified in the following description.

図1は、本発明の一実施形態に係る蓄電デバイス100の構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a power storage device 100 according to an embodiment of the present invention. 図2は、比較例1サンプルの内部構造を概略的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an internal structure of a comparative example 1 sample.

以下、本発明の実施の形態について、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(全体構成)
図1は、本発明の一実施形態に係る蓄電デバイス100の内部構造の一例を概略的に示す断面図である。同図に示すように、蓄電デバイス100は、第1正極10及び第2正極20からなる正極系と、第1正極10及び第2正極20の間に設けられた負極系50とを含んで構成される蓄電デバイスである。
(overall structure)
FIG. 1 is a cross-sectional view schematically showing an example of the internal structure of a power storage device 100 according to an embodiment of the present invention. As shown in the figure, the electricity storage device 100 includes a positive electrode system including the first positive electrode 10 and the second positive electrode 20, and a negative electrode system 50 provided between the first positive electrode 10 and the second positive electrode 20. Storage device.

第1正極10は、箔状の第1正極集電体12、及びこの面に塗布等されて形成された第1正極合剤層14を有する。第2正極20は、箔状の第2正極集電体22、及びこの面に塗布等されて形成された第2正極合剤層24を有する。   The first positive electrode 10 has a foil-like first positive electrode current collector 12 and a first positive electrode mixture layer 14 formed by coating or the like on this surface. The second positive electrode 20 includes a foil-like second positive electrode current collector 22 and a second positive electrode mixture layer 24 formed by coating or the like on this surface.

他方、負極系50は、箔状の負極集電体54、及び負極合剤層52を備える。負極合剤層52は、第1負極合剤層52a及び第2負極合剤層52bからなり、第1負極合剤層52aは、負極集電体54の第1正極10側の面に塗布等されることで形成されている。第2負極合剤層52bは、負極集電体54の第2正極20側の面に塗布等されることで形成されている。第1負極合剤層52aは、セパレータ30を介して第1正極合剤層14に相対し、第2負極合剤層52bは、セパレータ40を介して第2正極合剤層24に相対する。   On the other hand, the negative electrode system 50 includes a foil-like negative electrode current collector 54 and a negative electrode mixture layer 52. The negative electrode mixture layer 52 includes a first negative electrode mixture layer 52a and a second negative electrode mixture layer 52b. The first negative electrode mixture layer 52a is applied to the surface of the negative electrode current collector 54 on the first positive electrode 10 side. It is formed by being done. The second negative electrode mixture layer 52 b is formed by coating or the like on the surface of the negative electrode current collector 54 on the second positive electrode 20 side. The first negative electrode mixture layer 52 a faces the first positive electrode mixture layer 14 via the separator 30, and the second negative electrode mixture layer 52 b faces the second positive electrode mixture layer 24 via the separator 40.

第1正極10、第2正極20、及び負極系50は所定の包材70(例えば、ラミネートフィルムや金属缶)に収容され、この包材70に電解液80が注入され、封止される。   The first positive electrode 10, the second positive electrode 20, and the negative electrode system 50 are accommodated in a predetermined packaging material 70 (for example, a laminate film or a metal can), and the electrolytic solution 80 is injected into the packaging material 70 and sealed.

また、導線60により互いに電気的に接続されている第1正極集電体12及び第2正極集電体22は、導線60と接続された導線62を介して所定の回路200(例えば、充電器、放電器、又はその他の電力を消費する負荷)の正極端子201と電気的に接続し、他方、回路200の負極端子202は、負極系50における負極集電体54に接続されている導線64を介して負極系50と電気的に接続される。   In addition, the first positive electrode current collector 12 and the second positive electrode current collector 22 electrically connected to each other by the lead wire 60 are connected to the lead wire 60 via the lead wire 62 to form a predetermined circuit 200 (for example, a charger Wire connected to the negative electrode current collector 54 of the negative electrode system 50, while the negative electrode terminal 202 of the circuit 200 is electrically connected to the positive electrode terminal 201 of the Are electrically connected to the negative electrode system 50.

第1正極合剤層14の正極活物質は、例えば、電池の正極を構成する活物質であり、具体的には、例えば、リチウムイオン電池に用いられる、活性炭、遷移金属酸化物等である。より具体的には、例えば、コバルト酸リチウム(LiCoO)、リチウム含有金属酸化物、コバルト、マンガン、バナジウム、チタン、ニッケル等の遷移金属酸化物又は硫化物である。 The positive electrode active material of the first positive electrode mixture layer 14 is, for example, an active material constituting a positive electrode of a battery, and specifically, for example, activated carbon, transition metal oxide or the like used for a lithium ion battery. More specifically, for example, lithium cobaltate (LiCoO 2 ), lithium-containing metal oxides, transition metal oxides or sulfides such as cobalt, manganese, vanadium, titanium, nickel and the like.

第2正極合剤層24の正極活物質は、例えば、電気二重層キャパシタの正極を構成する活物質であり、具体的には、例えば、リチウムイオンキャパシタで用いられる正極活物質(例えば、活性炭)である。   The positive electrode active material of the second positive electrode mixture layer 24 is, for example, an active material constituting a positive electrode of an electric double layer capacitor, and specifically, for example, a positive electrode active material (eg, activated carbon) used in a lithium ion capacitor It is.

第1正極集電体12、第2正極集電体22の材料は、例えば、アルミニウム、ステンレス鋼等の電極である。   The material of the first positive electrode current collector 12 and the second positive electrode current collector 22 is, for example, an electrode of aluminum, stainless steel or the like.

負極集電体54の材料は、例えば、ステンレス鋼、銅、ニッケル等の電極である。   The material of the negative electrode current collector 54 is, for example, an electrode of stainless steel, copper, nickel or the like.

ここで、本実施形態の負極合剤層52では、第1負極合剤層52aの負極活物質と第2負極合剤層52bの負極活物質とが異なっている。   Here, in the negative electrode mixture layer 52 of the present embodiment, the negative electrode active material of the first negative electrode mixture layer 52a and the negative electrode active material of the second negative electrode mixture layer 52b are different.

第1負極合剤層52aの負極活物質は、例えば、電池の負極を構成する活物質であり、具体的には、例えば、リチウムイオン電池の負極に用いられる炭素系材料(例えば、黒鉛)、錫酸化物、珪素酸化物等である。   The negative electrode active material of the first negative electrode mixture layer 52a is, for example, an active material constituting the negative electrode of the battery, and specifically, for example, a carbon-based material (for example, graphite) used for the negative electrode of a lithium ion battery Tin oxide, silicon oxide, etc.

第2負極合剤層52bの負極活物質は、例えば、電気二重層キャパシタの負極を構成する活物質であり、具体的には、例えば、リチウムイオンキャパシタの負極に用いられる炭素系材料である。第2負極合剤層52bの負極活物質は、例えば、ピッチによる被着がなされた炭素系材料(黒鉛等)、ハードカーボンであり、黒鉛の場合は例えば、ピッチコートグラファイト、非晶質コートグラファイトである。   The negative electrode active material of the second negative electrode mixture layer 52b is, for example, an active material constituting a negative electrode of an electric double layer capacitor, and specifically, is a carbon-based material used for a negative electrode of a lithium ion capacitor, for example. The negative electrode active material of the second negative electrode mixture layer 52b is, for example, a carbon-based material (graphite or the like) coated with a pitch, such as hard carbon, and in the case of graphite, for example, pitch coated graphite, amorphous coated graphite It is.

なお、第1負極合剤層52aの負極活物質及び第2負極合剤層52bの負極活物質の材料の組み合わせは、第1正極合剤層14及び第1負極合剤層52aにより構成される電極系、及び、第2正極合剤層24及び第2負極合剤層52bにより構成される電極系のそれぞれで要求される電極反応の応答性、出力密度、又はエネルギー密度等に基づき決定され、具体的には、例えば、各材料の粒子径、比表面積、結晶化度といった要素が考慮される。   The combination of the negative electrode active material of the first negative electrode mixture layer 52a and the material of the negative electrode active material of the second negative electrode mixture layer 52b is constituted by the first positive electrode mixture layer 14 and the first negative electrode mixture layer 52a. Determined based on the response of the electrode reaction required for each of the electrode system and the electrode system composed of the second positive electrode mixture layer 24 and the second negative electrode mixture layer 52b, the power density, the energy density, etc. Specifically, for example, factors such as the particle size, specific surface area, and degree of crystallinity of each material are considered.

例えば、第2負極合剤層52bの負極活物質は、第2正極合剤層24に対応するように出力密度を大きくして応答性を向上させ又は不可逆容量を小さくするために、粒子径が小さく、又は比表面積が大きい材料を選択する。第1負極合剤層52aの負極活物質は、電極密度(エネルギー密度)を向上させ又は電気容量を大きくするために、粒子径がより大きく、又は比表面積がより小さい材料を選択する。これにより、蓄電デバイス100は、全体として出力密度及び電力密度のそれぞれの要求性能を満たす蓄電デバイスとなる。   For example, the particle diameter of the negative electrode active material of the second negative electrode mixture layer 52b is increased in order to increase the output density to correspond to the second positive electrode mixture layer 24 to improve the response or reduce the irreversible capacity. Select a material that is small or has a large specific surface area. The negative electrode active material of the first negative electrode mixture layer 52a is selected to have a larger particle diameter or a smaller specific surface area in order to improve the electrode density (energy density) or to increase the electric capacity. Thus, the power storage device 100 as a whole becomes a power storage device satisfying the required performance of the output density and the power density.

続いて、セパレータ30、40は、電子伝導性を有しない不織布等であり、例えば、セルロース、ポリエチレン、又はポリプロピレンからなる繊維である。   Subsequently, the separators 30 and 40 are non-woven fabrics having no electron conductivity, and are fibers made of, for example, cellulose, polyethylene or polypropylene.

電解液80は、電気伝導性を有する溶液であり、例えば、リチウム塩を含む電解液である。この場合のリチウム塩は、例えば、LiClO、LiAsF、LiBF、LiPFである。また、電解液の溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートである。 The electrolytic solution 80 is a solution having electrical conductivity, and is, for example, an electrolytic solution containing a lithium salt. The lithium salt in this case is, for example, LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 . Further, the solvent of the electrolytic solution is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate.

<<評価実験>>
以上に説明したように、本実施形態の蓄電デバイス100は、第1負極合剤層52aの負極活物質と第2負極合剤層52bの負極活物質が異なっている。以下、このようにして構成した蓄電デバイス100のエネルギー密度を検討すべく本発明者らが行った評価実験について説明する。
<< evaluation experiment >>
As described above, in the electricity storage device 100 of the present embodiment, the negative electrode active material of the first negative electrode mixture layer 52a and the negative electrode active material of the second negative electrode mixture layer 52b are different. Hereinafter, an evaluation experiment performed by the present inventors in order to examine the energy density of the electricity storage device 100 configured as described above will be described.

1.サンプルの作製
まず、図1に示した蓄電デバイス100の構成に基づき、以下に説明する2種類のリチウムイオン電池(実施例1サンプル、比較例1サンプル)のサンプルを作製した。
1. Sample Preparation First, based on the configuration of the power storage device 100 shown in FIG. 1, samples of two types of lithium ion batteries (Example 1 sample, Comparative Example 1 sample) described below were prepared.

<実施例1サンプルの作製>
実施例1サンプルは、第1負極合剤層52aと第2負極合剤層52bで異なる活物質を用いた蓄電デバイスである。実施例1サンプルの構成材料は、以下のようにして作製した。
<Preparation of Example 1 Sample>
Example 1 The sample is an electricity storage device using different active materials in the first negative electrode mixture layer 52a and the second negative electrode mixture layer 52b. The constituent materials of the sample of Example 1 were produced as follows.

(第1正極系)
第1正極10における第1正極集電体12として、アルミニウムをプレスしたアルミニウム箔を用いた。このアルミニウム箔の片面に、リチウムイオン電池の正極活物質であるLiFePOのスラリー(第1正極合剤層14に対応)を厚み65μmにて塗布し、さらにこれから5.0cm×3.0cmの矩形部分(端子溶接部を除く)を切削することにより、容量27.6mAhの第1正極10(正極電極)を得た。
(First positive electrode system)
As the first positive electrode current collector 12 in the first positive electrode 10, an aluminum foil pressed with aluminum was used. A slurry of LiFePO 4 (corresponding to the first positive electrode mixture layer 14), which is a positive electrode active material of a lithium ion battery, is coated on one surface of this aluminum foil at a thickness of 65 μm, and a 5.0 cm × 3.0 cm rectangle By cutting a portion (excluding the terminal welding portion), a first positive electrode 10 (positive electrode) having a capacity of 27.6 mAh was obtained.

(第2正極系)
第2正極20における第2正極集電体22として、アルミニウムをプレスしたアルミニウム箔を用いた。このアルミニウム箔の片面に活性炭(第2正極合剤層24に対応)を厚み90μmにて塗布し、さらにこれから5.0cm×3.0cmの矩形部分(端子溶接部を除く)を切削することにより、容量3.5mAhの第2正極20(正極電極)を得た。
(2nd positive electrode system)
An aluminum foil pressed with aluminum was used as the second positive electrode current collector 22 in the second positive electrode 20. By applying activated carbon (corresponding to the second positive electrode mixture layer 24) to a thickness of 90 μm on one side of this aluminum foil and then cutting a 5.0 cm × 3.0 cm rectangular portion (except for the terminal welding portion) from this. The second positive electrode 20 (positive electrode) having a capacity of 3.5 mAh was obtained.

(負極系)
まず、負極系50における負極集電体54として、銅をプレスした銅箔(厚み15μm)を用いた。この銅箔の一方の面に、リチウムイオン電池の負極活物質である人造黒鉛を100重量部、増粘剤を1.5重量部、及びバインダを1.5重量部混合したスラリーを片面目付量59g/m、厚み39.3μm、及び密度1.5g/cmとなるように塗布することにより、第1負極合剤層52a(リチウムイオン電池の負極に相当)を作製した。また、銅箔の他方の面には、リチウムイオンキャパシタの負極活物質であるピッチコートグラファイトを100重量部、導電材を5.5重量部、増粘剤を2.0重量部、及びバインダを5.0重量部混合したスラリーを片面目付量21g/m、厚み27.3μm、及び密度0.77g/cmとなるように塗布して第2負極合剤層52b(リチウムイオンキャパシタの負極に相当)を作製した。そして、これらを乾燥後、5.2cm×3.2cm(端子溶接部を除く)で切り出すことにより負極系50(負極電極)を得た。
(Anode type)
First, copper foil (15 μm in thickness) pressed with copper was used as the negative electrode current collector 54 in the negative electrode system 50. 100 parts by weight of artificial graphite which is a negative electrode active material of a lithium ion battery, 1.5 parts by weight of a thickener, and 1.5 parts by weight of a binder on one side of this copper foil The first negative electrode mixture layer 52a (corresponding to the negative electrode of a lithium ion battery) was produced by applying 59 g / m 2 , a thickness of 39.3 μm, and a density of 1.5 g / cm 3 . In addition, on the other side of the copper foil, 100 parts by weight of pitch-coated graphite, which is a negative electrode active material of a lithium ion capacitor, 5.5 parts by weight of a conductive material, 2.0 parts by weight of a thickener, and a binder A mixed solution of 5.0 parts by weight of the slurry is coated to give a single-sided basis weight of 21 g / m 2 , a thickness of 27.3 μm, and a density of 0.77 g / cm 3 to form a second negative electrode mixture layer 52 b (a negative electrode of lithium ion capacitor Corresponding to the above). Then, after drying these, they were cut out at 5.2 cm × 3.2 cm (excluding the terminal welded portion) to obtain a negative electrode system 50 (negative electrode).

(セパレータ)
セパレータ30、40として、厚さ35μmのセルロース製の不織布を使用した。
(Separator)
A 35 μm-thick non-woven fabric made of cellulose was used as the separators 30 and 40.

以上の構成素材を、第1正極10、セパレータ30、負極系50、セパレータ40、第2正極20の順に積層することで積層体の実施例1サンプル(蓄電デバイス100)を作製した。   The above constituent materials were stacked in the order of the first positive electrode 10, the separator 30, the negative electrode system 50, the separator 40, and the second positive electrode 20 to fabricate a sample of Example 1 of the laminate (electric storage device 100).

<比較例1サンプルの作製>
比較例1サンプルは、従来の蓄電デバイスのように、第1負極合剤層52a及び第2負極合剤層52bで同じ活物質を用いている。
Preparation of Comparative Example 1 Sample
The comparative example 1 sample uses the same active material in the first negative electrode mixture layer 52a and the second negative electrode mixture layer 52b as in the conventional power storage device.

図2は、比較例1サンプルの内部構造を概略的に示す断面図である。まず、以下に説明するように比較例1サンプルの構成材料を作製した。   FIG. 2 is a cross-sectional view schematically showing an internal structure of a comparative example 1 sample. First, constituent materials of the sample of Comparative Example 1 were produced as described below.

(第1正極)
実施例1サンプルと同様の第1正極10を作製した。
(First positive electrode)
A first positive electrode 10 similar to the sample of Example 1 was produced.

(第2正極)
実施例1サンプルと同様の第2正極20を作製した。
(Second positive electrode)
A second positive electrode 20 similar to the sample of Example 1 was produced.

(負極系50)
まず、負極系50における負極集電体54として、銅をプレスした銅箔(厚み15μm)を用いた。この銅箔の両面に、リチウムイオンキャパシタ用負極活物質であるピッチコートグラファイトを100重量部、導電材を5.5重量部、増粘剤を2.0重量部、及びバインダを5.0重量部混合したスラリーを片面目付量39.5g/m、厚み(両面)51.3μm、及び密度0.77g/cmとなるように塗布して負極合剤層52(第1負極合剤層52a、第2負極合剤層52b)を作製した。そして、これを乾燥後、5.2cm×3.2cm(端子溶接部を除く)で切り出すことにより負極系50(負極電極)を得た。
(Negative electrode system 50)
First, copper foil (15 μm in thickness) pressed with copper was used as the negative electrode current collector 54 in the negative electrode system 50. 100 parts by weight of pitch-coated graphite as a negative electrode active material for lithium ion capacitors, 5.5 parts by weight of a conductive material, 2.0 parts by weight of a thickener, and 5.0 parts by weight of a binder on both sides of this copper foil The mixed slurry is coated so as to have a single-sided basis weight of 39.5 g / m 2 , a thickness (both sides) of 51.3 μm, and a density of 0.77 g / cm 3 to form a negative electrode mixture layer 52 (first negative electrode mixture layer 52a, 2nd negative mix layer 52b) was produced. And after drying this, the negative electrode system 50 (negative electrode) was obtained by cutting out 5.2 cm x 3.2 cm (except for a terminal welding part).

(セパレータ)
実施例1サンプルと同様のセパレータ30、40を作製した。
(Separator)
Separators 30 and 40 similar to the sample of Example 1 were produced.

以上の構成素材を、第1正極10、セパレータ30、負極系50、セパレータ40、第2正極20の順に積層することで積層体の比較例1サンプル(蓄電デバイス100)を作製した。   By stacking the above constituent materials in the order of the first positive electrode 10, the separator 30, the negative electrode system 50, the separator 40, and the second positive electrode 20, a sample of Comparative Example 1 of the laminate (power storage device 100) was produced.

2.体積エネルギー密度の計算
続いて、以上のようにして作製した実施例1サンプル及び比較例1サンプルのそれぞれの体積エネルギー密度を算出した。具体的には、各サンプルの厚みの合計と負極面積に基づき、積層体である各サンプルの体積を算出した。そして、各サンプルの正極容量とセル体積から体積エネルギー密度を算出した。
2. Calculation of Volumetric Energy Density Subsequently, the volumetric energy density of each of the sample of Example 1 and the sample of Comparative Example 1 manufactured as described above was calculated. Specifically, the volume of each sample as a laminate was calculated based on the total thickness of each sample and the negative electrode area. And volume energy density was computed from the positive electrode capacity and cell volume of each sample.

3.実験結果及び検討
以下に、体積エネルギー密度の算出結果を示す。
3. Experimental Results and Discussion The calculation results of volumetric energy density are shown below.

Figure 2019114400
Figure 2019114400

この表に示すように、実施例1サンプルの体積エネルギー密度(52.4[mAh/cm])は、比較例1サンプルの体積エネルギー密度(47.6[mAh/cm])に比べて、10%の向上がみられる。このことから、実施例1サンプルのように異なる2種類の負極を用いることで、電気二重層キャパシタ(リチウムイオンキャパシタ)を使用することによる高い出力密度を確保しつつ、高いエネルギー密度を有する蓄電デバイスを構成できることがわかった。 As shown in this table, the volume energy density (52.4 [mAh / cm 3 ]) of the sample of Example 1 is compared to the volume energy density (47.6 [mAh / cm 3 ]) of the sample of Comparative Example 1 , 10% improvement is seen. From this, by using two different types of negative electrodes as in the sample of Example 1, an electric storage device having a high energy density while securing a high output density by using an electric double layer capacitor (lithium ion capacitor) It turned out that it could be configured.

以上に説明したように、本実施形態の蓄電デバイス100は、負極系50が、負極集電体54の一方の面に第1正極10側に対面して設けられる第1負極合剤層52aと、負極集電体54の他方の面に第2正極20側に対面して設けられる第2負極合剤層52bとを有するものであり、さらに、第1負極合剤層52aの材料が第2負極合剤層52bの材料と異なっていることで、第1正極10及び第1正極10側の負極からなる電極系と、第2正極20及び第2正極20側の負極からなる電極系とのそれぞれの特性に合致した、高いエネルギー密度及び出力密度を有する蓄電デバイス100を構成することができる。   As described above, in the electricity storage device 100 of the present embodiment, the negative electrode system 50 is provided with the first negative electrode mixture layer 52 a provided on one surface of the negative electrode current collector 54 so as to face the first positive electrode 10 side. A second negative electrode mixture layer 52b provided on the other surface of the negative electrode current collector 54 so as to face the second positive electrode 20, and the material of the first negative electrode mixture layer 52a is the second Different from the material of the negative electrode mixture layer 52b, an electrode system composed of the first positive electrode 10 and the negative electrode on the first positive electrode 10 side and an electrode system composed of the second positive electrode 20 and the negative electrode on the second positive electrode 20 side The storage device 100 can be configured to have high energy density and power density that match the respective characteristics.

また、第1負極合剤層52aの活物質は電池の負極を構成する活物質であり、第2負極合剤層52bの活物質は電気二重層キャパシタの負極を構成する活物質である。これにより、第1負極合剤層52aと第1正極合剤層14による電極によって電極密度(エネルギー密度)が高い蓄電デバイスが実現でき、第2負極合剤層52bと第2正極合剤層24による電極により、応答性が高く出力密度の大きい蓄電デバイス100が実現できる。このように、本実施形態の蓄電デバイス100によれば、蓄電デバイスにおいて、高いエネルギー密度及び出力密度を確保することができる。   The active material of the first negative electrode mixture layer 52a is an active material constituting the negative electrode of the battery, and the active material of the second negative electrode mixture layer 52b is an active material constituting the negative electrode of the electric double layer capacitor. As a result, a storage device having a high electrode density (energy density) can be realized by the electrodes of the first negative electrode mixture layer 52 a and the first positive electrode mixture layer 14, and the second negative electrode mixture layer 52 b and the second positive electrode mixture layer 24. The storage device 100 having high response and large output density can be realized by the electrodes according to the above. Thus, according to the storage device 100 of the present embodiment, high energy density and output density can be secured in the storage device.

また、第1負極合剤層52aの活物質は黒鉛であり、第2負極合剤層52bの活物質はピッチによる被着がされた黒鉛であるとしてもよい。このように、第2負極合剤層52bの活物質に、ピッチによる被着がされた黒鉛を用いることで、第2正極20及び第2正極20側の負極からなる電極系における応答性を高め、出力密度の特に高い蓄電デバイス100を構成することができる。   Also, the active material of the first negative electrode mixture layer 52a may be graphite, and the active material of the second negative electrode mixture layer 52b may be graphite with adhesion by pitch. As described above, by using graphite adhered by the pitch as the active material of the second negative electrode mixture layer 52b, the responsiveness in the electrode system including the second positive electrode 20 and the negative electrode on the second positive electrode 20 side is enhanced. The power storage device 100 can be configured to have a particularly high output density.

また、第1正極合剤層14の活物質は遷移金属酸化物であり、第2正極合剤層24の活物質は活性炭であるとしてもよい。このようにすることで、第1正極10及び第1正極10側の負極からなる電極系はリチウムイオン二次電池のように高い電極密度を有する電極系となり、第2正極20及び第2正極20側の負極からなる電極系はリチウムイオンキャパシタのように高い出力密度を有する電極系とすることができるので、高いエネルギー密度及び出力密度を確保することができる。また、蓄電デバイスとしての耐久性を損なうこともない。   The active material of the first positive electrode mixture layer 14 may be a transition metal oxide, and the active material of the second positive electrode mixture layer 24 may be activated carbon. By doing this, the electrode system composed of the first positive electrode 10 and the negative electrode on the first positive electrode 10 side becomes an electrode system having a high electrode density like a lithium ion secondary battery, and the second positive electrode 20 and the second positive electrode 20 Since the electrode system comprising the negative electrode on the side can be an electrode system having a high output density like a lithium ion capacitor, a high energy density and a high output density can be secured. In addition, the durability as an electricity storage device is not impaired.

以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。   The above description of the embodiments is for the purpose of facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be modified and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.

100 蓄電デバイス、10 第1正極、12 第1正極集電体、14 第1正極合剤層、20 第2正極、22 第2正極集電体、24 第2正極合剤層、30 セパレータ、40 セパレータ、50 負極系、52 負極合剤層、52a 第1負極合剤層、52b 第2負極合剤層、54 負極集電体、60 導線、62 導線、64 導線、70 包材、80 電解液、200 回路、201 正極端子、202 負極端子 100 power storage device, 10 first positive electrode, 12 first positive electrode current collector, 14 first positive electrode mixture layer, 20 second positive electrode, 22 second positive electrode current collector, 24 second positive electrode mixture layer, 30 separator, 40 Separator, 50 negative electrode system, 52 negative electrode mixture layer, 52a first negative electrode mixture layer, 52b second negative electrode mixture layer, 54 negative electrode current collector, 60 conductors, 62 conductors, 64 conductors, 70 packaging materials, 80 electrolyte , 200 circuits, 201 positive terminal, 202 negative terminal

Claims (4)

第1正極集電体及び第1正極合剤層を備える第1正極と、第2正極集電体及び前記第1正極合剤層と材料の異なる第2正極合剤層を備える第2正極とによって構成される正極系と、前記第1正極及び前記第2正極の間に配置された負極系とを含んで構成される蓄電デバイスであって、
前記負極系は、負極集電体と、当該負極集電体の一方の面に前記第1正極側に対面して設けられる第1負極合剤層と、当該負極集電体の他方の面に前記第2正極側に対面して設けられる第2負極合剤層とを有し、
前記第1負極合剤層の活物質が前記第2負極合剤層の活物質と異なることを特徴とする、蓄電デバイス。
A first positive electrode comprising a first positive electrode current collector and a first positive electrode mixture layer; a second positive electrode comprising a second positive electrode current collector and a second positive electrode mixture layer different in material from the first positive electrode mixture layer; And a negative electrode system disposed between the first positive electrode and the second positive electrode.
The negative electrode system includes a negative electrode current collector, a first negative electrode mixture layer provided on one surface of the negative electrode current collector facing the first positive electrode side, and the other surface of the negative electrode current collector. And a second negative electrode mixture layer provided facing the second positive electrode side,
An electric storage device characterized in that an active material of the first negative electrode mixture layer is different from an active material of the second negative electrode mixture layer.
前記第1負極合剤層の活物質は電池の負極を構成する活物質を含み、前記第2負極合剤層の活物質は電気二重層キャパシタの負極を構成する活物質を含むことを特徴とする、請求項1に記載の蓄電デバイス。   The active material of the first negative electrode mixture layer includes an active material constituting a negative electrode of a battery, and the active material of the second negative electrode mixture layer includes an active material constituting a negative electrode of an electric double layer capacitor. The power storage device according to claim 1. 前記第1負極合剤層の活物質は黒鉛を含み、前記第2負極合剤層の活物質はピッチによる被着がされた黒鉛を含むことを特徴とする、請求項1又は2に記載の蓄電デバイス。   The active material of the said 1st negative mix layer contains graphite, The active material of the said 2nd negative mix layer contains the graphite by which the deposition by pitch was carried out, The said Claim 1 or 2 characterized by the above-mentioned. Power storage device. 前記第1正極合剤層の活物質は遷移金属酸化物を含み、前記第2正極合剤層の活物質は活性炭を含むことを特徴とする、請求項1乃至3のいずれか一項に記載の蓄電デバイス。
The active material of a said 1st positive mix layer contains a transition metal oxide, The active material of a said 2nd positive mix layer contains activated carbon, The active material of Claim 1 characterized by the above-mentioned. Storage device.
JP2017246510A 2017-12-22 2017-12-22 Power storage device Pending JP2019114400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246510A JP2019114400A (en) 2017-12-22 2017-12-22 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246510A JP2019114400A (en) 2017-12-22 2017-12-22 Power storage device

Publications (1)

Publication Number Publication Date
JP2019114400A true JP2019114400A (en) 2019-07-11

Family

ID=67221612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246510A Pending JP2019114400A (en) 2017-12-22 2017-12-22 Power storage device

Country Status (1)

Country Link
JP (1) JP2019114400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690479A (en) * 2020-05-19 2021-11-23 北京小米移动软件有限公司 Rechargeable battery and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690479A (en) * 2020-05-19 2021-11-23 北京小米移动软件有限公司 Rechargeable battery and electronic device
CN113690479B (en) * 2020-05-19 2024-01-30 北京小米移动软件有限公司 Rechargeable battery and electronic device

Similar Documents

Publication Publication Date Title
US10297885B2 (en) Lithium ion battery and capacitor hybrid system in a single pouch
JP7461877B2 (en) Compositions and methods for multilayer electrode films
JP6933590B2 (en) Negative electrode active material pre-doping method, negative electrode manufacturing method, and power storage device manufacturing method
JP4041044B2 (en) Method for manufacturing electrochemical device
US20120100413A1 (en) Secondary battery and assembled battery
JP6669122B2 (en) Stacked battery
JP2019021805A (en) Electrode body and electric storage device
JP2019053862A (en) Laminated electrode body and power storage element
JP2019212590A (en) Laminated battery
KR101613285B1 (en) Composite electrode comprising different electrode active material and electrode assembly
JP7197536B2 (en) lithium ion secondary battery
JP2014017089A (en) Lithium ion secondary battery
JP2023182616A (en) Non-aqueous solvent electrolyte compositions for energy storage devices
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2010062299A (en) Electricity storage device
CN111697261A (en) Lithium secondary battery
JP6926672B2 (en) Secondary battery and manufacturing method of secondary battery
CN111742428A (en) Method for predoping negative electrode active material, method for producing negative electrode, and method for producing power storage device
JP2019114400A (en) Power storage device
JP2019169346A (en) Lithium ion secondary battery
JPH11329393A (en) Nonwoven cloth for battery separator and battery using it
JP2018078029A (en) Negative electrode and nonaqueous electrolyte power storage device
CN110476288B (en) Nonaqueous electrolyte storage element and method for manufacturing same
JP2017199510A (en) Method for manufacturing lithium ion secondary battery
JP2017091942A (en) Nonaqueous secondary battery