JPH1167213A - Composition for battery electrode and battery electrode - Google Patents

Composition for battery electrode and battery electrode

Info

Publication number
JPH1167213A
JPH1167213A JP9240334A JP24033497A JPH1167213A JP H1167213 A JPH1167213 A JP H1167213A JP 9240334 A JP9240334 A JP 9240334A JP 24033497 A JP24033497 A JP 24033497A JP H1167213 A JPH1167213 A JP H1167213A
Authority
JP
Japan
Prior art keywords
battery
cmc
weight
degree
etherification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9240334A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
信幸 伊藤
Yoshika Noritake
芳佳 則武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP9240334A priority Critical patent/JPH1167213A/en
Publication of JPH1167213A publication Critical patent/JPH1167213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure current collecting capability of an electrode active material, enhance the utilization efficiency of the active material, lengthen the life and increase the capacity of a battery by using a binder containing carboxymethylcellulose having a specified degree of etherification and mean degree of polymerization and polymer latex. SOLUTION: A binder containing carboxymethylcellulose (CMC) having a degree of etherification of 0.5-1 and a mean degree of polymerization of 300-1,800 and polymer latex is used in an electrode for a battery. The carboxymethylcellulose is one kind of cellulose ether, that is, cellulose grycolate, and has structure represented by the formula. In the formula, R represents a group selected from -H and -CH2 COOX, and X represents a group selected from Na, NH4 , Ca, K, Al, Mg, and H. In the case that R and X are plural, they may be the same or different, and (n) is an integer of 300-1,800.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放電特性、高容量
化、充放電サイクル性、安全性に優れた二次電池電極、
さらに詳しくは電極活物質が集電材に保持された電池電
極に好適な電池電極用組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery electrode having excellent discharge characteristics, high capacity, charge / discharge cyclability, and safety.
More specifically, the present invention relates to a battery electrode composition suitable for a battery electrode in which an electrode active material is held by a current collector.

【0002】[0002]

【従来の技術】近年、エレクトロニクスの発展がめざま
しく、これに伴って電子機器産業における技術進歩は著
しく、電池技術においても高エネルギー密度、安全性等
の要求が増大している。かかる要求を満足するには従来
のニッケル−カドミウム電池では不可能なことから、負
極にカドミウムの代わりに水素吸蔵合金を使用するニッ
ケル水素電池や、非水系電池であるリチウムイオン電池
が注目されている。リチウムイオン電池は、エネルギー
密度が高い、保存性が良い、小型軽量という特長を有す
る。また、ニッケル水素電池は急速充放電可能で、過充
電・過放電に強く、かつニッケル−カドミウム電池と互
換性、類似性があり、現在ニッケル−カドミウム電池が
利用されている機器の代替も可能である。これらの電池
の電極は、一般に、電極活物質とバインダーとからなる
スラリー状の電池電極用組成物を集電材に塗布してな
る。電池電極用組成物に要求される性能としては、電
極活物質と集電材の結着性が良好であること、電解液
中のイオンをできるだけ抵抗なく自由に移動させるこ
と、電解液や充放電によって体積変化しないこと、な
どがあげられる。電池電極用組成物には、必要に応じて
分散剤、結着剤などの添加剤が含有される場合がある。
これらは、電極活物質のバインダーへの分散性を向上さ
せ、集電材に強固に固定させる目的で使用される。しか
し、従来の電池電極用組成物では、バインダーおよび上
記添加剤が電極活物質に及ぼす影響が著しく、上記の条
件をすべて満たすことは困難であった。
2. Description of the Related Art In recent years, the development of electronics has been remarkable, and accordingly, technological progress in the electronic equipment industry has been remarkable, and demands for battery technology such as high energy density and safety have been increasing. Since conventional nickel-cadmium batteries cannot be used to satisfy such demands, nickel-metal hydride batteries that use a hydrogen storage alloy instead of cadmium for the negative electrode, and lithium-ion batteries that are non-aqueous batteries have attracted attention. . Lithium ion batteries have features of high energy density, good storage stability, and small size and light weight. Nickel-metal hydride batteries are capable of rapid charging and discharging, are resistant to overcharging and overdischarging, are compatible and similar to nickel-cadmium batteries, and can be used to replace equipment that currently uses nickel-cadmium batteries. is there. In general, the electrodes of these batteries are obtained by applying a slurry-like composition for a battery electrode comprising an electrode active material and a binder to a current collector. The performance required for the composition for a battery electrode is that the binding property between the electrode active material and the current collector is good, ions in the electrolytic solution can be freely moved as much as possible without any resistance, That the volume does not change. The composition for battery electrodes may contain additives such as a dispersant and a binder as necessary.
These are used for the purpose of improving the dispersibility of the electrode active material in the binder and firmly fixing the electrode active material to the current collector. However, in the conventional composition for a battery electrode, the binder and the additive significantly affect the electrode active material, and it is difficult to satisfy all of the above conditions.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、主に
二次電池において、電極活物質の集電性を確保し、その
利用効率を向上させ、電池の長寿命化、高容量化を達成
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a secondary battery mainly with which to secure the current collecting property of an electrode active material, improve its use efficiency, extend the life of the battery and increase the capacity. To achieve.

【0004】[0004]

【課題を解決するための手段】本発明は、(A)エーテ
ル化度が0.5〜1であり、平均重合度が300〜18
00であるカルボキシメチルセルロース(以下、「CM
C」ともいう)と(B)高分子ラテックスとを含有する
結着剤を用いることを特徴とする電池用電極を提供する
ものである。
According to the present invention, (A) the degree of etherification is 0.5-1 and the average degree of polymerization is 300-18.
Carboxymethylcellulose (hereinafter referred to as “CM
C)) and (B) a polymer latex.

【0005】[0005]

【発明の実施の形態】以下に本発明を詳細に説明する。 <カルボキシメチルセルロース>本発明に用いられるカ
ルボキシメチルセルロースは、セルロースエーテルの一
種でセルロースグリコール酸塩のことであり、下記式
(1)の構造を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. <Carboxymethylcellulose> Carboxymethylcellulose used in the present invention is a kind of cellulose ether and is a cellulose glycolate, and has a structure of the following formula (1).

【0006】[0006]

【化1】 Embedded image

【0007】(式中、Rは−Hおよび−CH2 COOX
から選ばれる基を示し、XはNa、NH4 、Ca、K、
Al、MgおよびHから選ばれる基を示し、RおよびX
が複数存在する場合にはそれぞれ同一でも異なっていて
もよく、nは300〜1800の整数を示す。)
Wherein R is —H and —CH 2 COOX
X represents Na, NH 4 , Ca, K,
A group selected from Al, Mg and H;
May be the same or different when n exists, and n represents an integer of 300 to 1800. )

【0008】上記式(1)で表される化学構造は、セル
ロースの水酸基にカルボキシメチル基がエーテル結合し
たものである。一般に、CMCはナトリウム塩のものを
指すが、アンモニウム塩やカルシウム塩、さらに、アル
カリ性水溶液には可溶だが水には不溶のグリコール酸の
様な特殊なものもある。本発明に用いられるCMCとし
てはいずれのものでも良いが、中でもアンモニウム
、ナトリウム塩、カリウム塩、グルコール酸のもの
が好ましい。特に、リチウムイオン電池電極に用いられ
る場合には、リチウムイオン以外の雑イオンが存在する
と、イオンの充放電特性に悪影響を及ぼし、サイクル特
性の悪化、容量低下の原因となる場合があると考えられ
る。
In the chemical structure represented by the above formula (1), a carboxymethyl group is ether-bonded to a hydroxyl group of cellulose. Generally, CMC refers to a sodium salt, but there are also special salts such as ammonium salts and calcium salts, and glycolic acid which is soluble in an alkaline aqueous solution but insoluble in water. As the CMC used in the present invention, any one may be used. , Sodium salts, potassium salts and glycolic acid are preferred. In particular, when used for a lithium ion battery electrode, it is considered that the presence of miscellaneous ions other than lithium ions adversely affects the charge / discharge characteristics of the ions, which may cause deterioration in cycle characteristics and decrease in capacity. .

【0009】本発明のCMCは、例えば、パルプにモノ
クロル酢酸ソーダと苛性ソーダを作用させて製造され
る。パルプ中のセルロースは、無水グルコース単量体単
位が連なって構成されている多糖類であり、1単量体単
位中に3個の水酸基を有する。これらの水酸基とモノク
ロル酢酸ソーダとの置換反応によりCMCが合成され
る。モノクロル酢酸ソーダの量を加減する事により、種
々、置換度の異なったCMCを作ることができる。製造
法は大別するとアルセル法、モノクロ法、溶媒法の3つ
があり、その合成反応は通常、いずれも下記式(2)で
表される。
The CMC of the present invention is produced, for example, by reacting pulp with sodium monochloroacetate and sodium hydroxide. Cellulose in pulp is a polysaccharide composed of a series of anhydrous glucose monomer units, and has three hydroxyl groups in one monomer unit. CMC is synthesized by a substitution reaction between these hydroxyl groups and sodium monochloroacetate. By varying the amount of sodium monochloroacetate, various CMCs having different degrees of substitution can be produced. The production methods are roughly classified into three methods: an Arcelle method, a monochrome method, and a solvent method. The synthesis reaction is usually represented by the following formula (2).

【0010】 Rcell(OH)3 +xClCH2COONa+xNaOH →Rcell(OH)3-x (OCH2COONa)x+xNaCl+xH2O (2) (式中、Rcell(OH)3 はセルロース中の無水グルコ
ース単量体単位を示し、xは0.1〜3の数を示す。)
Rcell (OH) 3 + xClCH 2 COONa + xNaOH → Rcell (OH) 3-x (OCH 2 COONa) x + xNaCl + xH 2 O (2) (where Rcell (OH) 3 is an anhydrous glucose monomer unit in cellulose) And x represents a number of 0.1 to 3.)

【0011】また、上記方法によって得られたCMCに
は、不純物として多量の塩化ナトリウム、グルコース酸
ナトリウム、少量の炭酸ナトリウムなどが含まれてい
る。このようなCMCの精製方法としては、水媒法、硫
酸精製法、メタノール精製法などがあるが、純度の高い
ものを得る場合は、硫酸精製法またはメタノール精製法
を用いるのが好ましい。
The CMC obtained by the above method contains a large amount of sodium chloride, sodium glucose, a small amount of sodium carbonate and the like as impurities. Examples of such a method for purifying CMC include an aqueous medium method, a sulfuric acid purification method, and a methanol purification method. In the case of obtaining a high purity, it is preferable to use a sulfuric acid purification method or a methanol purification method.

【0012】上記CMCにおいて、無水グルコース1単
量体単位に対してカルボキシメチル基がエーテル結合し
ている数、すなわち、上記式(2)におけるxの値を、
エーテル化度という。エーテル化度は、CMC全体の平
均値として求められ、CMCの水溶性の指標となる。エ
ーテル化度が0.1〜0.3のCMCは水に不溶であ
り、0.5以上になると水に可溶となるが、完全に透明
になるにはエーテル化度が0.6以上である必要があ
る。CMCのエーテル化度は、理論的には最大3までの
値が可能であるが、本発明で用いられるCMCのエーテ
ル化度は、0.5〜1、好ましくは0.55〜0.9、
特に好ましくは0.6〜0.85である。エーテル化度
が0.5未満では、CMCが水に不溶または溶解しにく
いため作業性が悪く、またカルボキシメチル基が少ない
ために分散性、塗膜強度および接着強度に劣る。エーテ
ル化度が1を超えると、得られる塗膜が硬く、柔軟性が
劣るものとなり、得られる電極において電極活物質と集
電体との結着性が悪くなり、さらに電解液との親和性が
悪く充放電サイクルが悪くなる。
In the above CMC, the number of carboxymethyl groups ether-bonded to one monomer unit of anhydrous glucose, that is, the value of x in the above formula (2) is
It is called the degree of etherification. The degree of etherification is determined as an average value of the entire CMC and serves as an index of the water solubility of the CMC. CMC having a degree of etherification of 0.1 to 0.3 is insoluble in water, and becomes soluble in water when the degree of etherification is 0.5 or more. However, the degree of etherification needs to be 0.6 or more for complete transparency. There is. The degree of etherification of CMC can theoretically be a value of up to 3, but the degree of etherification of CMC used in the present invention is 0.5 to 1, preferably 0.55 to 0.9,
Particularly preferably, it is 0.6 to 0.85. When the degree of etherification is less than 0.5, the workability is poor because CMC is insoluble or difficult to dissolve in water, and the dispersibility, coating strength and adhesive strength are poor due to the small amount of carboxymethyl groups. If the degree of etherification exceeds 1, the resulting coating film is hard and inferior in flexibility, the resulting electrode has poor binding properties between the electrode active material and the current collector, and further has an affinity for the electrolytic solution. And the charge / discharge cycle becomes worse.

【0013】さらにCMCの特徴を表す値として、上記
式(1)におけるnの値、すなわち重合度が挙げられ
る。CMC全体における平均重合度は、CMC水溶液の
粘度と相関関係があり、CMCの増粘効果、分散効果、
接着性などに影響がある。本発明に用いられるCMCの
平均重合度の範囲は、300〜1800、好ましくは5
00〜1500、更に好ましくは600〜1400であ
る。平均重合度が300未満では、本発明に用いられる
CMC水溶液の粘度が低くなりすぎる場合があり、増粘
効果、塗膜強度、密着性に劣る。また平均重合度が18
00を超えると、CMC水溶液の粘度が高くなりすぎる
場合があり、作業性が悪く、塗工性、密着性なども低下
して好ましくない。さらに、平均重合度が上記の範囲に
おいて、本発明に用いられるCMCの1重量%水溶液の
粘度(25℃、60回転)は、200〜4000mPa
・sであることが好ましい。
Further, as a value representing the characteristic of the CMC, the value of n in the above formula (1), that is, the degree of polymerization can be mentioned. The average degree of polymerization in the entire CMC has a correlation with the viscosity of the CMC aqueous solution, and the CMC has a thickening effect, a dispersing effect,
It has an effect on adhesiveness. The average degree of polymerization of CMC used in the present invention is in the range of 300 to 1800, preferably 5 to 1800.
It is from 00 to 1500, more preferably from 600 to 1400. When the average degree of polymerization is less than 300, the viscosity of the CMC aqueous solution used in the present invention may be too low, and the viscosity increasing effect, the coating film strength, and the adhesion are poor. The average degree of polymerization is 18
If it exceeds 00, the viscosity of the CMC aqueous solution may be too high, and the workability is poor, and the coating properties and adhesion are undesirably reduced. Further, when the average degree of polymerization is in the above range, the viscosity (25 ° C., 60 rotations) of a 1% by weight aqueous solution of CMC used in the present invention is 200 to 4000 mPa.
S is preferred.

【0014】本発明において、CMCは、電極活物質1
00重量部に対して固形分で0.1〜20重量部、好ま
しくは0.5〜10重量部使用する。CMCの配合量が
0.1重量部未満では、電極活物質の分散性が悪く集電
材への塗工性が悪化、さらには均一な電極塗膜が得られ
ず、塗膜の集電材への接着性が劣る場合があり、20重
量部を超えると過電圧が著しく上昇し、電池特性に悪影
響を及ぼす場合がある。
In the present invention, CMC is the electrode active material 1
It is used in an amount of 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, as a solid content based on 00 parts by weight. When the amount of the CMC is less than 0.1 part by weight, the dispersibility of the electrode active material is poor, and the coating property on the current collector is deteriorated. Adhesion may be inferior, and if it exceeds 20 parts by weight, overvoltage may increase significantly and adversely affect battery characteristics.

【0015】<高分子ラテックス>本発明に用いられる
高分子ラテックスとしては、SB系ラテックス、NBR
系ラテックス、アクリル系ラテックス、シリコーン系ラ
テックス、フッ素系ラテックスなどが挙げられる。好ま
しくはSB系ラテックスおよびNBR系ラテックス、さ
らに好ましくはSB系ラテックスである。上記SB系ラ
テックスとしては、共役ジエン単量体単位、(メタ)ア
クリル酸エステル単量体単位、芳香族ビニル単量体単
位、エチレン性不飽和カルボン酸単量体単位およびその
他共重合可能な官能基含有単量体からなるものが好まし
い。また、上記NBR系ラテックスとしては、シアン化
ビニル系単量体単位、共役ジエン単量体単位、エチレン
性不飽和カルボン酸単量体単位およびその他共重合可能
な単量体単位からなるものが好ましい。また、上記アク
リル系ラテックスとしては、アクリル酸アルキルエステ
ル単量体単位、エチレン性不飽和カルボン酸単量体単位
およびその他共重合可能な単量体単位からなるものが好
ましい。また、上記シリコーン系ラテックスとしては、
オルガノシロキサンに必要に応じてグラフト交叉剤を共
縮合して得られるポリオルガノシロキサン系重合体の水
性分散体の存在下に、アクリル酸アルキルエステル単量
体単位、エチレン性不飽和カルボン酸単量体単位および
その他共重合可能な単量体単位からなるものが好まし
い。さらに、上記フッ素系ラテックスとしては、官能基
含有フッ化ビニリデン系重合体が好ましく、特開平7−
258499に記載されているものが特に好ましい。
<Polymer Latex> The polymer latex used in the present invention includes SB latex and NBR.
Latex, acrylic latex, silicone latex, fluorine latex and the like. Preferred are SB-based latex and NBR-based latex, and more preferred are SB-based latex. Examples of the SB latex include conjugated diene monomer units, (meth) acrylate monomer units, aromatic vinyl monomer units, ethylenically unsaturated carboxylic acid monomer units, and other copolymerizable functional units. Those comprising a group-containing monomer are preferred. The NBR latex is preferably composed of a vinyl cyanide monomer unit, a conjugated diene monomer unit, an ethylenically unsaturated carboxylic acid monomer unit and other copolymerizable monomer units. . The acrylic latex is preferably composed of an alkyl acrylate monomer unit, an ethylenically unsaturated carboxylic acid monomer unit, and other copolymerizable monomer units. Further, as the silicone latex,
In the presence of an aqueous dispersion of a polyorganosiloxane-based polymer obtained by cocondensing a graft crosslinking agent with an organosiloxane as necessary, an alkyl acrylate monomer unit, an ethylenically unsaturated carboxylic acid monomer What consists of a unit and other copolymerizable monomer units is preferable. Further, as the fluorine-based latex, a functional group-containing vinylidene fluoride-based polymer is preferable.
Those described in 258499 are particularly preferred.

【0016】これらの高分子ラテックスは、上記の単量
体単位を乳化重合することにより製造できる。また、本
発明で用いられる高分子ラテックスは、水系分散体から
なることが好ましい。水系分散体中に分散する重合体粒
子の平均粒子径は、70〜400nmが好ましく、さら
に好ましくは80〜350nmであり、水系分散体の固
形分濃度は、通常20〜65重量%、好ましくは35〜
60重量%である。これらの重合体粒子は、コア・シェ
ル構造を有するものであっても良い。本発明において上
記高分子ラテックスは、電極活物質100重量部に対し
て固形分で0.1〜20重量部、好ましくは0.5〜1
0重量部の割合で使用される。高分子ラテックスの使用
量が0.1重量部未満では、集電材などに対する良好な
接着力が得られない場合があり、20重量部を超えると
過電圧が著しく上昇し電池特性に悪影響を及ぼす場合が
ある。
These polymer latexes can be produced by emulsion polymerization of the above monomer units. Further, the polymer latex used in the present invention preferably comprises an aqueous dispersion. The average particle size of the polymer particles dispersed in the aqueous dispersion is preferably from 70 to 400 nm, more preferably from 80 to 350 nm, and the solid content of the aqueous dispersion is usually from 20 to 65% by weight, preferably from 35 to 35% by weight. ~
60% by weight. These polymer particles may have a core-shell structure. In the present invention, the polymer latex is 0.1 to 20 parts by weight, preferably 0.5 to 1 part by weight, based on 100 parts by weight of the electrode active material.
Used in a proportion of 0 parts by weight. If the amount of the polymer latex is less than 0.1 part by weight, good adhesion to a current collector may not be obtained. If the amount exceeds 20 parts by weight, overvoltage may increase significantly and adversely affect battery characteristics. is there.

【0017】<電池電極用組成物>本発明の電池電極用
組成物は、CMC水溶液および高分子ラテックスを含有
する結着剤に、電極活物質を混合、分散させて得られ
る。この電池電極用組成物は、水系電池、非水系電池の
いずれにも使用できる。水系電池としてはニッケル水素
電池正負極、非水系電池としてはリチウムイオン電池負
極などで優れた性能を得ることができる。上記電極活物
質としては、水系電池、特にニッケル水素電池では水素
吸蔵合金粉末が用いられ、MmNi5 をベースにNiの
一部をMn、Al、Coなどで置き換えたものが好適に
用いられる。ここで、Mmは希土類の混合物であるミッ
シュメタルを表している。粉体の形状は、100メッシ
ュを通過した粉末であり、粒子径は3〜400μm程度
である。また、非水系電池においては、例えば、MnO
2 、MoO3 、V2 5 、V613、Fe2 3 、Fe
3 4 、Li(1-x) CoO2 、Li(1-x) ・NiO2
Lix Coy Snz 2 、Li(1-X) Co(1-y) Niy
2 、TiS2 、TiS3 、MoS3 、FeS2 、Cu
2 、NiF2 などの無機化合物;フッ化カーボン、グ
ラファイト、気相成長炭素繊維および/またはその粉砕
物、PAN系炭素繊維および/またはその粉砕物、ピッ
チ系炭素繊維および/またはその粉砕物などの炭素材
料;ポリアセチレン、ポリ−p−フェニレンなどの導電
性高分子などが挙げられる。特にLi(1-x) CoO2
Li(1-x) NiO2 、Lix Coy Snz 2 、Li
(1-X) Co(1-y) Niy 2 などのリチウムイオン含有
複合酸化物を用いた場合、正負極共に放電状態で組み立
てることが可能となり好ましい組み合わせとなる。
<Composition for Battery Electrodes> The composition for battery electrodes of the present invention is obtained by mixing and dispersing an electrode active material in a binder containing a CMC aqueous solution and a polymer latex. This composition for battery electrodes can be used for both aqueous batteries and non-aqueous batteries. Excellent performance can be obtained with a nickel-metal hydride battery negative electrode as an aqueous battery and a lithium ion battery negative electrode as a non-aqueous battery. As the above-mentioned electrode active material, a hydrogen storage alloy powder is used in an aqueous battery, particularly a nickel-metal hydride battery, and a material in which a part of Ni is replaced with Mn, Al, Co or the like based on MmNi 5 is preferably used. Here, Mm represents a misch metal which is a mixture of rare earth elements. The shape of the powder is a powder that has passed through 100 mesh, and the particle size is about 3 to 400 μm. In a non-aqueous battery, for example, MnO
2 , MoO 3 , V 2 O 5 , V 6 O 13 , Fe 2 O 3 , Fe
3 O 4 , Li (1-x) CoO 2 , Li (1-x) NiO 2 ,
Li x Coy Sn z O 2 , Li (1-X) Co (1-y) Ni y
O 2 , TiS 2 , TiS 3 , MoS 3 , FeS 2 , Cu
Inorganic compounds such as F 2 and NiF 2 ; carbon fluoride, graphite, vapor-grown carbon fiber and / or its crushed product, PAN-based carbon fiber and / or its crushed product, pitch-based carbon fiber and / or its crushed product, etc. Conductive materials such as polyacetylene and poly-p-phenylene. In particular, Li (1-x) CoO 2 ,
Li (1-x) NiO 2 , Li x Co y Sn z O 2, Li
(1-X) Co (1 -y) in the case of using the Ni y O 2 lithium ion-containing composite oxide such as, a preferred combination it is possible to assemble in the positive and negative electrodes both discharged.

【0018】<電池電極>本発明の電池電極は、本発明
の電池電極用組成物を、好ましくはスラリー状にして集
電材に塗布し、必要に応じて加熱し、乾燥することによ
って得られる。集電材としては、水系電池では、Niメ
ッシュ、パンチングNi、Niメッキされたパンチング
メタルなどが挙げられ、非水系電池では例えばアルミ
箔、銅箔などが挙げられる。電池電極用組成物の塗布方
法としては、リバースロール法、コンマバー法、グラビ
ヤ法、エアーナイフ法など任意の方法を用いることがで
き、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥
機、赤外線加熱機、遠赤外線加熱機などが使用できる。
乾燥温度は、通常150℃前後で行う。
<Battery electrode> The battery electrode of the present invention is obtained by applying the composition for a battery electrode of the present invention, preferably in the form of a slurry, to a current collector, heating and drying as necessary. Examples of current collectors include Ni mesh, punched Ni, and Ni-plated punched metal for water-based batteries, and aluminum foil, copper foil, and the like for non-aqueous batteries. As a method of applying the composition for a battery electrode, a reverse roll method, a comma bar method, a gravure method, any method such as an air knife method can be used, and as a drying method, standing drying, blast drying, hot air drying, An infrared heater, a far infrared heater and the like can be used.
The drying temperature is usually around 150 ° C.

【0019】上記のようにして得られた電池電極を用い
て電池を組み立てる場合、非水系電解液としては、通
常、電解質が非水系溶媒に溶解されてなるものが用いら
れる。上記電解質としては特に限定されないが、アルカ
リ二次電池での例を示せば、LiClO4 、LiB
4 、LiAsF6 、CF3 SO3 Li、LiPF6
LiI、LiAlCl4 、NaClO4 、NaBF4
NaI、(n−Bu)4 NClO4 、(n−Bu)4
BF4 、KPF6 などが挙げられる。また電解液に用い
られる溶媒としては、例えばエーテル類、ケトン類、ラ
クトン類、ニトリル類、アミン類、アミド類、硫黄化合
物、塩素化炭化水素類、エステル類、カーボネート類、
ニトロ化合物、リン酸エステル系化合物、スルホラン系
化合物などを用いることができるが、中でもエーテル
類、ケトン類、ニトリル類、塩素化炭化水素類、カーボ
ネート類、スルホラン系化合物が好ましい。具体的に
は、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,4−ジオキサン、アニソール、モノグライム、
アセトニトリル、プロピオニトリル、4−メチル−2−
ペンタノン、ブチロニトリル、バレロニトリル、ベンゾ
ニトリル、1,2−ジクロロエタン、γ−ブチロラクト
ン、ジメトキシエタン、メチルフオルメイト、プロピレ
ンカーボネート、エチレンカーボネート、ジメチルホル
ムアミド、ジメチルスルホキシド、ジメチルチオホルム
アミド、スルホラン、3−メチル−スルホラン、リン酸
トリメチル、リン酸トリエチルおよびこれらの混合溶媒
などを挙げることができるが、必ずしもこれらに限定さ
れるものではない。水系電池の電解液として、通常、5
規定以上の水酸化カリウムが使用される。
When assembling a battery using the battery electrodes obtained as described above, the non-aqueous electrolyte used is usually an electrolyte dissolved in a non-aqueous solvent. The electrolyte is not particularly limited, but examples of an alkaline secondary battery include LiClO 4 , LiB
F 4 , LiAsF 6 , CF 3 SO 3 Li, LiPF 6 ,
LiI, LiAlCl 4 , NaClO 4 , NaBF 4 ,
NaI, (n-Bu) 4 NClO 4, (n-Bu) 4 N
BF 4 , KPF 6 and the like. Examples of the solvent used for the electrolyte include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates,
Nitro compounds, phosphate compounds, sulfolane compounds and the like can be used, and among them, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonates, and sulfolane compounds are preferable. Specifically, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme,
Acetonitrile, propionitrile, 4-methyl-2-
Pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2-dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl- Examples thereof include sulfolane, trimethyl phosphate, triethyl phosphate, and a mixed solvent thereof, but are not necessarily limited thereto. As an electrolyte for aqueous batteries, usually 5
More than specified potassium hydroxide is used.

【0020】さらに、要すればセパレーター、集電材、
端子、絶縁板などの部品を用いて電池が構成される。ま
た、電池の構造としては、特に限定されるものではない
が、正極、負極、さらに要すればセパレーターを単層ま
たは複層としたペーパー型電池、または正極、負極、さ
らに要すればセパレーターをロール状に巻いた円筒状電
池などの形態が一例として挙げられる。本発明の電池電
極用バインダーを用いて製造した電池電極は、具体的に
AV機器、OA機器、通信機器などに好適に使用するこ
とができる。
Further, if necessary, a separator, a current collector,
A battery is configured using components such as terminals and insulating plates. Further, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, a paper type battery having a single-layer or multiple-layer separator as needed, or a positive electrode, a negative electrode, and a roll of the separator if necessary. An example is a form of a cylindrical battery wound in a shape. The battery electrode manufactured using the battery electrode binder of the present invention can be suitably used specifically for AV equipment, OA equipment, communication equipment, and the like.

【0021】[0021]

【実施例】以下に実施例によって本発明をさらに詳しく
説明する。但し、本発明はこれらの実施例に何ら制約さ
れるものではない。実施例および比較例における各々の
評価方法を以下に示す。 I.CMCの評価エーテル化度の測定 75℃で3時間真空乾燥したCMC約1.0gを精秤
し、ルツボ中で灰化し、冷却した後、温水により灰化物
を溶出し、N/10硫酸35〜40mlを加え酸性にし
て煮沸した。冷却後、過剰の酸をN/10水酸化ナトリ
ウムで逆滴定し、灰分中のアルカリを中和するのに消費
された硫酸量により、エーテル化度を求めた。平均重合度の測定 毛細管粘度計(キャノンフェンスケ 0−5254(型
番))にて極限粘度ηを求めた。これを下記式(3)に
あてはめ、重量平均分子量Mwを求め、この値から平均
重合度を求めた。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these embodiments. Each evaluation method in Examples and Comparative Examples is shown below. I. Evaluation of CMC Measurement of Degree of Etherification About 1.0 g of CMC vacuum-dried at 75 ° C. for 3 hours was accurately weighed, incinerated in a crucible, cooled, and then eluted with warm water to elute incinerated N / 10 sulfuric acid. After adding 40 ml, the mixture was acidified and boiled. After cooling, excess acid was back titrated with N / 10 sodium hydroxide, and the degree of etherification was determined by the amount of sulfuric acid consumed to neutralize the alkali in the ash. Measurement of Average Degree of Polymerization The intrinsic viscosity η was determined using a capillary viscometer (Cannon Fenske 0-5254 (model number)). This was applied to the following equation (3) to determine the weight average molecular weight Mw, and the average degree of polymerization was determined from this value.

【0022】[0022]

【数1】η=6.46×10-16 Mw (3)Η = 6.46 × 10 −16 Mw (3)

【0023】II.リチウムイオン電池電極用組成物の評
銅箔との結着性 厚さ50μmの銅箔を基材として、ロールコーターで電
池電極用組成物を200g/m2 の厚さで塗工し、15
0℃で10分間乾燥した後、室温でプレスして厚さ60
μmの銅箔塗工塗布膜を得た。得られた銅箔塗工塗布膜
を用い、クレメンス型「引っ掻き硬度計」(テスター産
業(株)製)で塗膜強度を測定した。測定方法は、JI
S K5400 8.4.1に準じて行った。導電性の測定法 100μmのPETフィルムに電池電極用組成物を40
0g/m2 の厚さで塗工し、150℃で10分間乾燥
し、膜厚120μmの塗布膜を得た。これを用い、4端
子法で電気抵抗を測定した。耐電解液性 上記銅箔塗工塗布膜を、LIPASTE−EDEC/1
(LiCLO4/エチレンカーボネート/ジエチルカー
ボネート(重量比)=8.4/52.8/38.8 富
士薬品工業(株)製)からなる電解液に80℃で72時
間浸積し、銅箔からの剥離を5点法で評価した。評価の
基準は、全く変化のないときを5点、完全に剥離した場
合を1点とした。
II. The copper foil of the binder of thickness 50μm with evaluation copper foil of the lithium ion battery electrode composition as the substrate, the battery electrode composition by a roll coater and coated at a thickness of 200 g / m 2, 15
After drying at 0 ° C for 10 minutes, press at room temperature to a thickness of 60
A μm copper foil coating film was obtained. Using the obtained copper foil coating film, the film strength was measured with a Clemens type “scratch hardness meter” (manufactured by Tester Sangyo Co., Ltd.). The measuring method is JI
SK5400 was carried out according to 8.4.1. Conductivity measurement method A composition for a battery electrode was added to a
Coating was performed at a thickness of 0 g / m 2 and dried at 150 ° C. for 10 minutes to obtain a coating film having a thickness of 120 μm. Using this, electric resistance was measured by a four-terminal method. Electrolytic solution resistance The above copper foil coating film was coated with LIPASTE-EDEC / 1
(LiCLO4 / ethylene carbonate / diethyl carbonate (weight ratio) = 8.4 / 52.8 / 38.8, manufactured by Fuji Pharmaceutical Co., Ltd.) at 80 ° C. for 72 hours. Peeling was evaluated by a five-point method. The evaluation criteria were 5 points when there was no change at all and 1 point when completely peeled.

【0024】III.ニッケル水素電池電極用組成物の評
Niメッシュとの結着性 厚さ1mmのNiメッシュを基材として、アプリケータ
ーで電池電極用組成物を400g/m2 の厚さで塗工
し、150℃で20分間乾燥、圧着し、厚さ200μm
の塗布膜を得た。得られた塗布膜に粘着テープを貼り付
け、剥がした後に粘着面に付着した塗布膜の具合で結着
性を5点法で評価した。評価の基準は、粘着面に、ほと
んど塗布膜が付着しないときを5点、粘着面全体の塗布
膜が剥離した場合を1点とした。導電性の測定法 100μmのPETフィルムに電池電極用組成物を40
0g/m2 の厚さで塗工し、150℃で10分間乾燥
し、膜厚120μmの塗布膜を得た。これを用い、4端
子法で電気抵抗を測定した。耐電解液性 上記Niメッシュ塗布膜を、6N水酸化カリウム水溶液
からなる電解液に室温で24時間浸積し、Niメッシュ
からの剥離を5点法で評価した。評価の基準は、全く変
化のないときを5点、完全に剥離した場合を1点とし
た。
III. Evaluation of composition for nickel-hydrogen battery electrode Binding property to Ni mesh Using a 1-mm thick Ni mesh as a base material, a battery electrode composition was applied with an applicator at a thickness of 400 g / m 2 , and at 150 ° C. Dry and crimp for 20 minutes, thickness 200μm
Was obtained. An adhesive tape was attached to the obtained coating film, and after peeling, the binding property was evaluated by a five-point method based on the condition of the coating film attached to the adhesive surface. The evaluation criteria were 5 points when the coating film hardly adhered to the adhesive surface, and 1 point when the coating film on the entire adhesive surface was peeled off. Conductivity measurement method A composition for a battery electrode was added to a
Coating was performed at a thickness of 0 g / m 2 and dried at 150 ° C. for 10 minutes to obtain a coating film having a thickness of 120 μm. Using this, electric resistance was measured by a four-terminal method. Electrolytic solution resistance The Ni mesh coating film was immersed in an electrolytic solution composed of a 6N potassium hydroxide aqueous solution at room temperature for 24 hours, and peeling from the Ni mesh was evaluated by a five-point method. The evaluation criteria were 5 points when there was no change at all and 1 point when completely peeled.

【0025】(1)CMCの製造 合成例1 ウェルナー型破砕機に、88%の2−プロパノール水溶
液5730mlを入れ、約2cm角に切ったパルプ片を
絶乾で191g投入して高速で攪拌しながら破砕し、未
破砕のパルプが無くなるまで十分攪拌しスラリーを作っ
た。得られたスラリーを室温まで冷却した後、破砕機に
水酸化ナトリウム23gを加えてアルカリセルロースを
作り、再度10℃以下まで氷冷した。氷冷されたアルカ
リセルロースにモノクロル酢酸54gを添加し、1分間
攪拌後5℃に冷却して1.5時間静置した。その後、攪
拌機と還流冷却器をつけた3つ口フラスコに上記スラリ
ーを入れ、湯浴で加熱、沸騰させ、沸点で2時間反応さ
せた。反応終了後、3%塩酸を過剰に添加し、数分攪拌
後、反応溶液を室温まで冷却した。その後、80%メタ
ノール水溶液で洗浄およびろ過を数回繰り返し、ナトリ
ウムイオンおよび塩素イオンを除去した。ナトリウムイ
オンの検出方法としては、ろ液中に酢酸ウラニル亜鉛を
滴下し紫外線を照射して緑黄色結晶の有無を調べ、結晶
が生じないことでナトリウムイオンの除去を確認した。
塩素イオンの検出方法としては、ろ液中に硝酸銀を滴下
し、塩化銀の沈殿の有無を調べ、沈殿が生じないのを確
認した。ナトリウムイオン、塩素イオンが検出されなく
なってから、過剰の3%アンモニア水を添加し、数分間
攪拌した後、生成物を乾燥させ、アンモニウム塩タイプ
のCMC(1)を得た。得られたCMC(1)は、エー
テル化度0.65、平均重合度850であった。 合成例2 ウェルナー型破砕機に、88%の2−プロパノール水溶
液5730mlを入れ、約2cm角に切ったパルプ片を
絶乾で191g投入して高速で攪拌しながら破砕し、未
破砕のパルプが無くなるまで十分攪拌しスラリーを作っ
た。得られたスラリーを室温まで冷却した後、破砕機に
水酸化ナトリウム28gを加えてアルカリセルロースを
作り、再度10℃以下まで氷冷した。氷冷されたアルカ
リセルロースにモノクロル酢酸67gを添加し、1分間
攪拌後5℃に冷却して1.5時間静置した。その後、攪
拌機と還流冷却器をつけた3つ口フラスコに上記スラリ
ーを入れ、湯浴で加熱、沸騰させ、沸点で3時間反応さ
せた。反応終了後、3%塩酸を過剰に添加し、数分攪拌
後、反応溶液を室温まで冷却した。その後、80%メタ
ノール水溶液で洗浄およびろ過を数回繰り返し、ナトリ
ウムイオンおよび塩素イオンを除去した後、生成物を乾
燥させ、グリコール酸タイプのCMC(2)を得た。得
られたCMC(2)は、エーテル化度0.8、平均重合
度1300であった。
(1) Production of CMC Synthesis Example 1 5730 ml of 88% aqueous 2-propanol solution was put into a Werner-type crusher, and 191 g of pulp pieces cut into about 2 cm squares were completely dried and stirred at high speed while stirring. The mixture was crushed and sufficiently stirred until the uncrushed pulp disappeared to form a slurry. After the obtained slurry was cooled to room temperature, 23 g of sodium hydroxide was added to a crusher to prepare alkali cellulose, and the mixture was ice-cooled again to 10 ° C. or lower. 54 g of monochloroacetic acid was added to the ice-cooled alkali cellulose, stirred for 1 minute, cooled to 5 ° C., and allowed to stand for 1.5 hours. Thereafter, the slurry was placed in a three-necked flask equipped with a stirrer and a reflux condenser, heated in a hot water bath, boiled, and reacted at the boiling point for 2 hours. After completion of the reaction, 3% hydrochloric acid was added in excess, and after stirring for several minutes, the reaction solution was cooled to room temperature. Thereafter, washing and filtration were repeated several times with an 80% aqueous methanol solution to remove sodium ions and chloride ions. As a method for detecting sodium ions, uranyl zinc acetate was dropped into the filtrate and irradiated with ultraviolet rays to examine the presence or absence of green-yellow crystals. The absence of crystals confirmed the removal of sodium ions.
As a method for detecting chloride ions, silver nitrate was dropped into the filtrate, and the presence or absence of precipitation of silver chloride was examined. It was confirmed that no precipitation occurred. After sodium ions and chloride ions were no longer detected, an excess of 3% aqueous ammonia was added, and the mixture was stirred for several minutes, and the product was dried to obtain an ammonium salt type CMC (1). The obtained CMC (1) had a degree of etherification of 0.65 and an average degree of polymerization of 850. Synthesis Example 2 5730 ml of 88% 2-propanol aqueous solution was put into a Werner-type crusher, and pulp pieces cut into about 2 cm squares were completely dried, and 191 g of the pulp pieces were crushed and crushed while being stirred at high speed to remove uncrushed pulp. The mixture was sufficiently stirred until a slurry was formed. After the obtained slurry was cooled to room temperature, 28 g of sodium hydroxide was added to a crusher to prepare alkali cellulose, and the mixture was ice-cooled again to 10 ° C. or lower. 67 g of monochloroacetic acid was added to the ice-cooled alkali cellulose, stirred for 1 minute, cooled to 5 ° C., and allowed to stand for 1.5 hours. Thereafter, the slurry was placed in a three-necked flask equipped with a stirrer and a reflux condenser, heated and boiled in a water bath, and reacted at the boiling point for 3 hours. After completion of the reaction, 3% hydrochloric acid was added in excess, and after stirring for several minutes, the reaction solution was cooled to room temperature. Thereafter, washing and filtration were repeated several times with an 80% aqueous methanol solution to remove sodium ions and chloride ions, and the product was dried to obtain glycolic acid type CMC (2). The obtained CMC (2) had a degree of etherification of 0.8 and an average degree of polymerization of 1300.

【0026】合成例3 ウェルナー型破砕機に88%の2−プロパノール水溶液
5730mlを入れ、約2cm角に切ったパルプ片を絶
乾で191g投入し、高速で攪拌しながら破砕し、未破
砕のパルプが無くなるまで十分攪拌しスラリーを作っ
た。得られたスラリーを室温まで冷却した後、破砕機に
水酸化カリウム39gを加えてアルカリセルロースを作
り、再度10℃以下まで氷冷した。氷冷されたアルカリ
セルロースにモノクロル酢酸67gを添加し、1分間攪
拌後5℃に冷却し、1.5時間静置した。その後、攪拌
機と還流冷却器をつけた3つ口フラスコにスラリーを入
れ、湯浴で加熱、沸騰させ、沸点で3時間反応させた。
反応終了後、反応溶液を室温まで冷却し、80%メタノ
ール水溶液で洗浄およびろ過を数回繰り返し、塩素イオ
ンを除去した後、生成物を乾燥させ、カリウム塩タイプ
のCMC(3)を得た。得られたCMC(3)は、エー
テル化度0.8、平均重合度1300であった。 合成例4 合成例3において、水酸化カリウム39gのかわりに水
酸化ナトリウム28gを用いた以外は合成例3と同様に
して、ナトリウム塩タイプのCMC(4)を得た。得ら
れたCMC(4)は、エーテル化度0.8、平均重合度
1300であった。 合成例5 合成例1において、水酸化ナトリウム28g、モノクロ
ル酢酸67gを添加し、沸点での反応時間を3時間にし
た以外は合成例1と同様にして、アンモニウム塩タイプ
のCMC(5)を得た。得られたCMC(5)は、エー
テル化度0.8、平均重合度1300であった。
Synthesis Example 3 5730 ml of an 88% 2-propanol aqueous solution was put into a Werner-type crusher, 191 g of pulp pieces cut into about 2 cm squares were completely dried, and crushed while stirring at high speed to obtain uncrushed pulp. The mixture was sufficiently stirred until disappeared to form a slurry. After the obtained slurry was cooled to room temperature, 39 g of potassium hydroxide was added to a crusher to form an alkali cellulose, which was then ice-cooled to 10 ° C. or less again. 67 g of monochloroacetic acid was added to the ice-cooled alkali cellulose, stirred for 1 minute, cooled to 5 ° C., and allowed to stand for 1.5 hours. Thereafter, the slurry was placed in a three-necked flask equipped with a stirrer and a reflux condenser, heated in a hot water bath, boiled, and reacted at the boiling point for 3 hours.
After completion of the reaction, the reaction solution was cooled to room temperature, washed and filtered several times with an 80% aqueous methanol solution to remove chloride ions, and then the product was dried to obtain potassium salt type CMC (3). The obtained CMC (3) had a degree of etherification of 0.8 and an average degree of polymerization of 1300. Synthesis Example 4 A sodium salt type CMC (4) was obtained in the same manner as in Synthesis Example 3 except that 28 g of sodium hydroxide was used instead of 39 g of potassium hydroxide. The obtained CMC (4) had a degree of etherification of 0.8 and an average degree of polymerization of 1300. Synthesis Example 5 An ammonium salt type CMC (5) was obtained in the same manner as in Synthesis Example 1 except that 28 g of sodium hydroxide and 67 g of monochloroacetic acid were added and the reaction time at the boiling point was 3 hours. Was. The obtained CMC (5) had a degree of etherification of 0.8 and an average degree of polymerization of 1300.

【0027】比較合成例1 合成例4において、水酸化ナトリウム11g、モノクロ
ル酢酸25gを添加し、沸点での反応時間を1.5時間
にした以外は合成例4と同様にして、ナトリウム塩タイ
プのCMC(6)を得た。得られたCMC(6)は、エ
ーテル化度0.3、平均重合度500であった。 比較合成例2 合成例4において、沸点での反応時間を1時間にした以
外は合成例4と同様にして、ナトリウム塩タイプのCM
C(7)を得た。得られたCMC(7)は、エーテル化
度0.8、平均重合度100であった。 比較合成例3 合成例4において、沸点での反応時間を5時間にした以
外は合成例4と同様にして、ナトリウム塩タイプのCM
C(8)を得た。得られたCMC(8)は、エーテル化
度0.8、平均重合度2500であった。
Comparative Synthesis Example 1 In the same manner as in Synthesis Example 4, except that 11 g of sodium hydroxide and 25 g of monochloroacetic acid were added and the reaction time at the boiling point was 1.5 hours, a sodium salt type was prepared. CMC (6) was obtained. The obtained CMC (6) had a degree of etherification of 0.3 and an average degree of polymerization of 500. Comparative Synthesis Example 2 A sodium salt type CM was prepared in the same manner as in Synthesis Example 4 except that the reaction time at the boiling point was changed to 1 hour.
C (7) was obtained. The obtained CMC (7) had a degree of etherification of 0.8 and an average degree of polymerization of 100. Comparative Synthesis Example 3 A sodium salt type CM was prepared in the same manner as in Synthesis Example 4 except that the reaction time at the boiling point was changed to 5 hours.
C (8) was obtained. The obtained CMC (8) had a degree of etherification of 0.8 and an average degree of polymerization of 2500.

【0028】(2)高分子ラテックスの重合 合成例6 撹拌機を備えたオートクレーブに、イオン交換水70部
および過硫酸カリウム0.3部をそれぞれ仕込み、気相
部を15分間窒素ガスで置換し、80℃に昇温した。一
方、別容器でブダジエン22重量%、スチレン61重量
%、メタクリル酸メチル12重量%、アクリル酸1重量
%、メタクリル酸2重量%、N-メチロールアクリルア
ミド2重量%の単量体成分を混合し、15時間かけて前
記オートクレーブに滴下した。滴下中は、80℃で反応
を行った。滴下終了後、さらに85℃で5時間撹拌した
後反応を終了させた。25℃に冷却後、水酸化カリウム
でpHを7に調整し、その後スチームを導入して残留単
量体を除去し、次いで濃縮して水分散体からなるSB系
ラテックス(i)を得た。 合成例7 撹拌機を備えたオートクレーブに、イオン交換水70部
および過硫酸カリウム0.3部をそれぞれ仕込み、気相
部を15分間窒素ガスで置換し、80℃に昇温した。一
方、別容器でアクリロニトリル20重量%、ブタジエン
45重量%、スチレン29重量%、メタクリル酸メチル
5重量%、イタコン酸1重量%の単量体成分を混合し、
15時間かけて前記オートクレーブに滴下した。滴下中
は、80℃で反応を行った。滴下終了後、さらに85℃
で5時間撹拌した後反応を終了させた。25℃に冷却
後、水酸化カリウムでpHを7に調整し、その後スチー
ムを導入して残留単量体を除去し、次いで濃縮して水分
散体からなるNBR系ラテックス(ii)を得た。
(2) Polymerization of Polymer Latex Synthesis Example 6 70 parts of ion-exchanged water and 0.3 part of potassium persulfate were charged into an autoclave equipped with a stirrer, and the gas phase was replaced with nitrogen gas for 15 minutes. The temperature was raised to 80 ° C. On the other hand, monomer components of 22% by weight of butadiene, 61% by weight of styrene, 12% by weight of methyl methacrylate, 1% by weight of acrylic acid, 2% by weight of methacrylic acid and 2% by weight of N-methylolacrylamide are mixed in a separate container, The solution was dropped into the autoclave over 15 hours. During the dropwise addition, the reaction was carried out at 80 ° C. After the completion of the dropwise addition, the mixture was further stirred at 85 ° C. for 5 hours to terminate the reaction. After cooling to 25 ° C., the pH was adjusted to 7 with potassium hydroxide, then steam was introduced to remove residual monomers, and then concentrated to obtain an SB-based latex (i) composed of an aqueous dispersion. Synthesis Example 7 70 parts of ion-exchanged water and 0.3 part of potassium persulfate were charged into an autoclave equipped with a stirrer, the gas phase was replaced with nitrogen gas for 15 minutes, and the temperature was raised to 80 ° C. On the other hand, monomer components of acrylonitrile 20% by weight, butadiene 45% by weight, styrene 29% by weight, methyl methacrylate 5% by weight, and itaconic acid 1% by weight were mixed in a separate container,
The solution was dropped into the autoclave over 15 hours. During the dropwise addition, the reaction was carried out at 80 ° C. After dropping, 85 ° C
After stirring for 5 hours at, the reaction was terminated. After cooling to 25 ° C., the pH was adjusted to 7 with potassium hydroxide, and then steam was introduced to remove residual monomers, and then concentrated to obtain an NBR latex (ii) composed of an aqueous dispersion.

【0029】実施例1〜5、比較例1〜4 (3)リチウムイオン電池電極用組成物の調製 ニードルコークス粉砕品(平均粒径12μm)100重
量部、上記高分子ラテックス(i)、(ii)およびポリ
フッ化ビニリデン(表中、(iii)と記載する)1重量
部、上記CMC水溶液(1)〜(8)を固形分で1重量
部および0.5Nアンモニア水0.5重量部をよく混合
してリチウムイオン電池電極用組成物を製造し、評価を
行った。評価結果を表1に示す。
Examples 1 to 5 and Comparative Examples 1 to 4 (3) Preparation of Lithium Ion Battery Electrode Composition 100 parts by weight of a pulverized needle coke (average particle size: 12 μm), the polymer latexes (i) and (ii) ) And 1 part by weight of polyvinylidene fluoride (denoted as (iii) in the table), 1 part by weight of the CMC aqueous solution (1) to (8) in solid content, and 0.5 part by weight of 0.5N ammonia water. The mixture was mixed to produce a composition for a lithium ion battery electrode, and the composition was evaluated. Table 1 shows the evaluation results.

【0030】[0030]

【表1】 *導電性の単位:mΩ/cm[Table 1] * Conductivity unit: mΩ / cm

【0031】(4)リチウム二次電池の作製 平均粒径2μmのLi1.03Co0.95Sn0.042 2 10
0重量部とグラファイト粉7.5重量部、アセトンブラ
ック2.5重量部を混合し、フッ素ゴムのメチルイソブ
チルケトン溶液(濃度4重量%)50重量部を加えて混
合撹拌し、塗工液とした。これを、市販A1箔(厚さ1
5μ)を基材として290g/m2 で塗布・乾燥し、厚
さ110μmの正極を得た。次に、上記電池電極用組成
物から得られた銅箔塗工塗布膜を負極とし、0.9cm
×5.5cmに切り出してリチウム二次電池を組み立て
た。この電池を4.2Vまで充電し、100mAで2.
5Vまで放電するサイクルを繰り返し、容量保存率を測
定した。また、4.2Vに充電したセルを70℃×30
日間保存し、容量低下率を測定した。評価結果を表2に
示す。
(4) Preparation of Lithium Secondary Battery Li 1.03 Co 0.95 Sn 0.042 O 2 10 having an average particle size of 2 μm
0 parts by weight, 7.5 parts by weight of graphite powder, and 2.5 parts by weight of acetone black are mixed, and 50 parts by weight of a solution of fluoro rubber in methyl isobutyl ketone (concentration: 4% by weight) is added, and mixed and stirred. did. This is commercially available A1 foil (thickness 1
5 μ) was applied and dried at 290 g / m 2 to obtain a positive electrode having a thickness of 110 μm. Next, the copper foil coating film obtained from the composition for a battery electrode was used as a negative electrode, and 0.9 cm
The sheet was cut into a size of 5.5 cm to assemble a lithium secondary battery. This battery was charged to 4.2 V and was charged at 100 mA.
The cycle of discharging to 5 V was repeated, and the capacity retention was measured. A cell charged to 4.2 V was charged at 70 ° C. × 30.
It was stored for days and the rate of capacity decrease was measured. Table 2 shows the evaluation results.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例6〜10、比較例5〜8 (5)ニッケル水素電池電極用組成物の調製 平均粒径が170μmの水素吸蔵合金粉末(La:0.
99重量%、Ni:3.41重量%、Co:1.20重
量%、Mn:0.10重量%、Al:0.29重量%)
100重量部、上記高分子ラテックス(i)、(ii)お
よびポリフッ化ビニリデン(表中、(iii)と記載す
る)1重量部および上記CMC水溶液(1)〜(8)を
固形分で1重量部よく混合して電池電極用組成物を製造
し、上記の評価を行った。評価結果を表3に示す。
Examples 6 to 10 and Comparative Examples 5 to 8 (5) Preparation of composition for nickel-metal hydride battery electrode Hydrogen storage alloy powder having an average particle size of 170 μm (La: 0.
99% by weight, Ni: 3.41% by weight, Co: 1.20% by weight, Mn: 0.10% by weight, Al: 0.29% by weight)
100 parts by weight, 1 part by weight of the polymer latex (i), (ii) and polyvinylidene fluoride (described as (iii) in the table) and 1 part by weight of the CMC aqueous solution (1) to (8) in solid content The mixture was mixed well to produce a composition for a battery electrode, and the above evaluation was performed. Table 3 shows the evaluation results.

【0034】[0034]

【表3】 *導電性の単位:mΩ/cm[Table 3] * Conductivity unit: mΩ / cm

【0035】(5)ニッケル水素電池の作製 ニッケル酸化物を正極、上記Niメッシュ電池電極を負
極とし、0.9cm×5.5cmに切り出してそれぞれ
にNiのリード線を溶接し、6N水酸化カリウム水溶液
を電解液として、セパレーターと組み合わせてニッケル
水素電池を組み立てた。この電池を2.0Vまで充電
し、100mAで1.0Vまで放電するサイクルを繰り
返し、容量保存率を測定した。また、2.0Vに充電し
たセルを70℃×30日間保存し、容量低下率を測定し
た。結果を表4に示す。
(5) Preparation of Nickel-Hydrogen Battery Nickel oxide as a positive electrode and the above-mentioned Ni mesh battery electrode as a negative electrode were cut into 0.9 cm × 5.5 cm, and Ni lead wires were welded to each, and 6N potassium hydroxide was used. A nickel hydrogen battery was assembled by using the aqueous solution as an electrolyte and combining with a separator. This battery was repeatedly charged to 2.0 V and discharged at 100 mA to 1.0 V, and the capacity retention was measured. The cell charged to 2.0 V was stored at 70 ° C. for 30 days, and the capacity reduction rate was measured. Table 4 shows the results.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明の電池電極用組成物は、電池、主
に二次電池において電極活物質の集電性を確保し、その
利用効率を向上させ、電池の長寿命化、高容量化を達成
することができる。さらに本発明の電池電極は、高容量
化、放電性能、充放電サイクル性、安全性に優れた二次
電池電極となりうる。
Industrial Applicability The composition for a battery electrode of the present invention secures the current collecting property of the electrode active material in a battery, mainly a secondary battery, improves its use efficiency, prolongs the life of the battery and increases the capacity. Can be achieved. Further, the battery electrode of the present invention can be a secondary battery electrode excellent in high capacity, discharge performance, charge / discharge cycleability, and safety.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (A)エーテル化度が0.5〜1であ
り、平均重合度が300〜1800であるカルボキシメ
チルセルロースと(B)高分子ラテックスとを含有する
結着剤を用いることを特徴とする電池電極用組成物。
1. A binder comprising (A) carboxymethyl cellulose having a degree of etherification of 0.5 to 1 and an average degree of polymerization of 300 to 1800 and (B) a polymer latex. Composition for a battery electrode.
【請求項2】 (A)エーテル化度が0.5〜1であ
り、平均重合度が300〜1800であるカルボキシメ
チルセルロースと(B)高分子ラテックスとを含有する
結着剤に、電極活物質を混合、分散させ、集電材に塗布
して得られることを特徴とする電池電極。
2. An electrode active material comprising: (A) a binder containing carboxymethylcellulose having a degree of etherification of 0.5 to 1 and an average degree of polymerization of 300 to 1800; and (B) a polymer latex. Are mixed and dispersed, and applied to a current collector, thereby obtaining a battery electrode.
JP9240334A 1997-08-21 1997-08-21 Composition for battery electrode and battery electrode Pending JPH1167213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9240334A JPH1167213A (en) 1997-08-21 1997-08-21 Composition for battery electrode and battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9240334A JPH1167213A (en) 1997-08-21 1997-08-21 Composition for battery electrode and battery electrode

Publications (1)

Publication Number Publication Date
JPH1167213A true JPH1167213A (en) 1999-03-09

Family

ID=17057946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9240334A Pending JPH1167213A (en) 1997-08-21 1997-08-21 Composition for battery electrode and battery electrode

Country Status (1)

Country Link
JP (1) JPH1167213A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Nonaqueous electrolytic battery
JP2003157847A (en) * 2001-11-19 2003-05-30 Denso Corp Method of manufacturing electrode for lithium battery and electrode for lithium battery
JP2009043641A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and negative electrode used for the same
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2009064564A (en) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
JP2010238365A (en) * 2009-03-30 2010-10-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2010124570A1 (en) * 2009-04-29 2010-11-04 Byd Company Limited Anode and lithium battery with the same
JP2011034962A (en) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd Method for manufacturing electrode of lithium ion secondary battery,and lithium ion secondary battery
US20110091774A1 (en) * 2008-03-31 2011-04-21 Zeon Corporation Porous film and secondary battery electrode
JP2011090935A (en) * 2009-10-23 2011-05-06 Daicel Chemical Industries Ltd Adhesion improver of electrode material to current collector of nonaqueous secondary battery and electrode
JPWO2009096528A1 (en) * 2008-01-30 2011-05-26 日本ゼオン株式会社 Porous membrane and secondary battery electrode
WO2011074663A1 (en) * 2009-12-17 2011-06-23 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
WO2011121902A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Negative electrode for a lithium-ion secondary battery, and lithium-ion secondary battery containing said negative electrode
WO2012043763A1 (en) * 2010-09-30 2012-04-05 旭硝子株式会社 Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP2012144624A (en) * 2011-01-11 2012-08-02 Shinshu Univ Process for producing composite adhesive, composite adhesive, and adhesive sheet
JP2013045558A (en) * 2011-08-23 2013-03-04 Nissan Motor Co Ltd Electrode and electric device
JPWO2011096463A1 (en) * 2010-02-03 2013-06-10 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium secondary battery
WO2013105623A1 (en) 2012-01-11 2013-07-18 三菱レイヨン株式会社 Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
US8728664B2 (en) 2004-01-17 2014-05-20 Samsung Sdi Co., Ltd. Anode for lithium secondary battery and lithium secondary battery using the anode
US8877375B2 (en) 2011-03-17 2014-11-04 Samsung Sdi Co., Ltd. Aqueous active material composition, electrode, and rechargeable lithium battery using the same
JP2014212122A (en) * 2009-08-07 2014-11-13 Jsr株式会社 Electrochemical device and binder composition
JP2015005474A (en) * 2013-06-24 2015-01-08 株式会社ダイセル Binding agent, electrode material slurry, electrode, manufacturing method thereof, and secondary battery
WO2015012366A1 (en) * 2013-07-24 2015-01-29 日本エイアンドエル株式会社 Binder for electrode, composition for electrode, and electrode sheet
CN105098190A (en) * 2014-05-22 2015-11-25 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
WO2016039271A1 (en) * 2014-09-08 2016-03-17 日産化学工業株式会社 Lithium secondary battery electrode formation material and electrode manufacturing method
KR20160071740A (en) * 2014-12-12 2016-06-22 삼성에스디아이 주식회사 Positive electrode composition for rechargable lithium battery, and positive electrode for rechargable lithium battery and rechargable lithium battery including the same
CN108084897A (en) * 2017-12-26 2018-05-29 成都新柯力化工科技有限公司 A kind of power lithium-ion battery adhesive special
CN110326137A (en) * 2017-03-13 2019-10-11 日本瑞翁株式会社 Non-aqueous secondary battery functional layer paste compound, non-aqueous secondary battery functional layer and non-aqueous secondary battery

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237305A (en) * 2001-02-09 2002-08-23 Yuasa Corp Nonaqueous electrolytic battery
JP2003157847A (en) * 2001-11-19 2003-05-30 Denso Corp Method of manufacturing electrode for lithium battery and electrode for lithium battery
US8728664B2 (en) 2004-01-17 2014-05-20 Samsung Sdi Co., Ltd. Anode for lithium secondary battery and lithium secondary battery using the anode
JP2009043641A (en) * 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and negative electrode used for the same
JP2009048921A (en) * 2007-08-22 2009-03-05 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
JP2009064564A (en) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd Manufacturing method for positive electrode for nonaqueous electrolyte battery, slurry used for the method, and nonaqueous electrolyte battery
US8263260B2 (en) 2007-09-04 2012-09-11 Sanyo Electric Co., Ltd. Method of manufacturing positive electrode for non-aqueous electrolyte battery, slurry used therefor, and non-aqueous electrolyte battery
JP2014063754A (en) * 2008-01-30 2014-04-10 Nippon Zeon Co Ltd Porous film and secondary battery electrode
JP5434598B2 (en) * 2008-01-30 2014-03-05 日本ゼオン株式会社 Porous membrane and secondary battery electrode
US8940442B2 (en) 2008-01-30 2015-01-27 Zeon Corporation Porous film and secondary battery electrode
JPWO2009096528A1 (en) * 2008-01-30 2011-05-26 日本ゼオン株式会社 Porous membrane and secondary battery electrode
US20110091774A1 (en) * 2008-03-31 2011-04-21 Zeon Corporation Porous film and secondary battery electrode
US9202631B2 (en) * 2008-03-31 2015-12-01 Zeon Corporation Porous film and secondary battery electrode
JP2010238365A (en) * 2009-03-30 2010-10-21 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte secondary battery
WO2010124570A1 (en) * 2009-04-29 2010-11-04 Byd Company Limited Anode and lithium battery with the same
JP2011034962A (en) * 2009-07-07 2011-02-17 Nippon Zeon Co Ltd Method for manufacturing electrode of lithium ion secondary battery,and lithium ion secondary battery
JP2014212122A (en) * 2009-08-07 2014-11-13 Jsr株式会社 Electrochemical device and binder composition
JP2011090935A (en) * 2009-10-23 2011-05-06 Daicel Chemical Industries Ltd Adhesion improver of electrode material to current collector of nonaqueous secondary battery and electrode
WO2011074663A1 (en) * 2009-12-17 2011-06-23 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
JPWO2011096463A1 (en) * 2010-02-03 2013-06-10 日本ゼオン株式会社 Slurry composition for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium secondary battery
JPWO2011121902A1 (en) * 2010-03-31 2013-07-04 パナソニック株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US8728665B2 (en) 2010-03-31 2014-05-20 Panasonic Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
WO2011121902A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Negative electrode for a lithium-ion secondary battery, and lithium-ion secondary battery containing said negative electrode
CN102428596A (en) * 2010-03-31 2012-04-25 松下电器产业株式会社 Negative Electrode For A Lithium-Ion Secondary Battery, And Lithium-Ion Secondary Battery Containing Said Negative Electrode
WO2012043763A1 (en) * 2010-09-30 2012-04-05 旭硝子株式会社 Electrode mixture for electricity-storage device, method for manufacturing said electrode mixture, and electricity-storage-device electrode and lithium-ion secondary battery using said electrode mixture
JP2012144624A (en) * 2011-01-11 2012-08-02 Shinshu Univ Process for producing composite adhesive, composite adhesive, and adhesive sheet
US8877375B2 (en) 2011-03-17 2014-11-04 Samsung Sdi Co., Ltd. Aqueous active material composition, electrode, and rechargeable lithium battery using the same
JP2013045558A (en) * 2011-08-23 2013-03-04 Nissan Motor Co Ltd Electrode and electric device
KR20140116190A (en) 2012-01-11 2014-10-01 미쯔비시 레이온 가부시끼가이샤 Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
US10446850B2 (en) 2012-01-11 2019-10-15 Mitsubishi Chemical Corporation Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
WO2013105623A1 (en) 2012-01-11 2013-07-18 三菱レイヨン株式会社 Binder resin composition for secondary battery electrodes, slurry for secondary battery electrodes, electrode for secondary batteries, and lithium ion secondary battery
JP2015005474A (en) * 2013-06-24 2015-01-08 株式会社ダイセル Binding agent, electrode material slurry, electrode, manufacturing method thereof, and secondary battery
JPWO2015012366A1 (en) * 2013-07-24 2017-03-02 日本エイアンドエル株式会社 Electrode binder, electrode composition, and electrode sheet
WO2015012366A1 (en) * 2013-07-24 2015-01-29 日本エイアンドエル株式会社 Binder for electrode, composition for electrode, and electrode sheet
JP5870216B2 (en) * 2013-07-24 2016-02-24 日本エイアンドエル株式会社 Electrode binder, electrode composition, and electrode sheet
KR20150134735A (en) * 2014-05-22 2015-12-02 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
CN105098190A (en) * 2014-05-22 2015-11-25 三星Sdi株式会社 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
US10637060B2 (en) * 2014-05-22 2020-04-28 Samsung Sdi Co., Ltd Negative electrode for rechargeable lithium battery and rechargeable lithium battery including same
WO2016039271A1 (en) * 2014-09-08 2016-03-17 日産化学工業株式会社 Lithium secondary battery electrode formation material and electrode manufacturing method
KR20170048363A (en) * 2014-09-08 2017-05-08 닛산 가가쿠 고교 가부시키 가이샤 Lithium secondary battery electrode formation material and electrode manufacturing method
CN106716694A (en) * 2014-09-08 2017-05-24 日产化学工业株式会社 Lithium secondary battery electrode formation material and electrode manufacturing method
JPWO2016039271A1 (en) * 2014-09-08 2017-06-22 日産化学工業株式会社 Electrode forming material for lithium secondary battery and method for producing electrode
KR20160071740A (en) * 2014-12-12 2016-06-22 삼성에스디아이 주식회사 Positive electrode composition for rechargable lithium battery, and positive electrode for rechargable lithium battery and rechargable lithium battery including the same
CN110326137A (en) * 2017-03-13 2019-10-11 日本瑞翁株式会社 Non-aqueous secondary battery functional layer paste compound, non-aqueous secondary battery functional layer and non-aqueous secondary battery
US11394029B2 (en) * 2017-03-13 2022-07-19 Zeon Corporation Slurry composition for non-aqueous secondary battery functional layers, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
CN108084897A (en) * 2017-12-26 2018-05-29 成都新柯力化工科技有限公司 A kind of power lithium-ion battery adhesive special

Similar Documents

Publication Publication Date Title
JPH1167213A (en) Composition for battery electrode and battery electrode
JP3721727B2 (en) Battery electrode binder
JP3539448B2 (en) Non-aqueous secondary battery
EP2450985B1 (en) Electrode for secondary battery, slurry for secondary battery electrode, and secondary battery
US10873086B2 (en) Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
JP4687833B2 (en) Binder composition for secondary battery electrode and method for producing the same
TWI424608B (en) Binder composition for secondary battery electrode, slurry for secondary battery electrode, and secondary battery electrode
JP3101775B2 (en) Secondary battery negative electrode
EP2583338B1 (en) Binder for secondary battery providing excellent cycle property
JP6352132B2 (en) Lithium secondary battery electrode composition
CN102971895B (en) Demonstrate the adhesive for secondary cell of excellent adhesion
JP3567618B2 (en) Conductive binder composition for secondary battery electrode and method for producing the same
JPWO2006075446A1 (en) Negative electrode for lithium ion secondary battery and method for producing the same, lithium ion secondary battery and method for producing the same
CN102473923A (en) Binder having good adhesion for secondary battery
CN102334218A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR20180075436A (en) Binder for negative electrode of lithium ion secondary battery, slurry composition for negative electrode, negative electrode and lithium ion secondary battery
KR101385254B1 (en) Binder for Electrode Material and Secondary Battery Employed with the Same
JPWO2011121902A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN101809787B (en) Hyrogen occluding alloy powder and method for surface treatment of same, negative pole for an alkali storage battery, and alkali storage battery
JP6434772B2 (en) Lithium secondary battery electrode composition
CN110326140A (en) Energy device electrode compound resin, energy device composition for electrode formation, energy device anode and energy device
CN112072091A (en) Negative electrode, method for producing same, and lithium ion battery using same
CN113039242A (en) Polymer composition
CN112072110B (en) Negative electrode, method for producing same, and lithium ion battery using same
WO2018135667A1 (en) Electrode for energy devices, and energy device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608