JP2010238365A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010238365A
JP2010238365A JP2009081658A JP2009081658A JP2010238365A JP 2010238365 A JP2010238365 A JP 2010238365A JP 2009081658 A JP2009081658 A JP 2009081658A JP 2009081658 A JP2009081658 A JP 2009081658A JP 2010238365 A JP2010238365 A JP 2010238365A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive electrode
secondary battery
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081658A
Other languages
Japanese (ja)
Other versions
JP2010238365A5 (en
Inventor
Yuzuru Shimazaki
譲 島▲崎▼
Masahisa Okuda
昌久 奥田
Kenji Hara
賢二 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2009081658A priority Critical patent/JP2010238365A/en
Publication of JP2010238365A publication Critical patent/JP2010238365A/en
Publication of JP2010238365A5 publication Critical patent/JP2010238365A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery excellent in security by suppressing generation of faults in an electrode caused by coating of paint for the electrode. <P>SOLUTION: A lithium ion secondary battery 10 comprises a cathode 5 capable of discharging/occluding lithium ion, non-graphite carbon in an active material mixture, rubber binder, a negative electrode 15 including carboxymethyl cellulose (CMC) with number of polymerization 100 or more and 1,000 or less and capable of occluding/discharging lithium ion, and nonaqueous electrolytic solution. As the anode, a slurry made by dispersing a mixture of hardly-graphitized carbon, acetylene black, styrene-butadiene copolymer rubber particles and CMC (an etherification degree of 0.6 to 1.0) in water (a weight ratio: 91:4:4:1) is coated on a copper foil of 10 μm in thickness. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は非水電解液二次電池に係り、特に、リチウムイオンを放出/吸蔵可能な正極と、リチウムイオンを吸蔵/放出可能な負極と、非水電解液とを備えた非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and in particular, a non-aqueous electrolyte solution comprising a positive electrode capable of releasing / occluding lithium ions, a negative electrode capable of inserting / extracting lithium ions, and a non-aqueous electrolyte solution. Next battery.

近時、地球温暖化などの環境問題の顕在化により、自動車からの二酸化炭素排出量削減が求められており、電気エネルギを動力とする純正電気自動車(PEV)や、自動車の減速時に生じる回生エネルギを動力の一部として利用可能なハイブリッド電気自動車(HEV)の開発が急ピッチで進められている。   Recently, due to the emergence of environmental problems such as global warming, reduction of carbon dioxide emissions from automobiles has been demanded, and genuine electric vehicles powered by electric energy (PEV) and regenerative energy generated when automobiles are decelerating. Development of a hybrid electric vehicle (HEV) that can be used as a part of motive power is proceeding at a rapid pace.

電極におけるリチウムイオンの吸蔵/放出反応を利用した非水電解液二次電池は、電気自動車用電源として注目されている。この種の電池は、一般に、リチウムイオンを放出/吸蔵可能な正極と、リチウムイオンを吸蔵/放出可能な負極と、非水電解液とを備えている。車両用電池では、出力特性とともに、入力特性、サイクル特性が非常に重要であり、これらの特性は、電池の充放電時にリチウムイオンを吸蔵/放出する負極活物質に大きく依存する。   Non-aqueous electrolyte secondary batteries that utilize lithium ion storage / release reactions at electrodes are attracting attention as power sources for electric vehicles. This type of battery generally includes a positive electrode capable of releasing / occluding lithium ions, a negative electrode capable of inserting / extracting lithium ions, and a non-aqueous electrolyte. In a vehicle battery, input characteristics and cycle characteristics are very important as well as output characteristics, and these characteristics greatly depend on a negative electrode active material that occludes / releases lithium ions during charge / discharge of the battery.

車両用電池では、負極活物質に、低結晶性、低真密度で、充放電時のリチウムイオンの拡散や吸蔵/放出反応が起こりやすい非黒鉛炭素材料が用いられることが多い。しかし、非黒鉛炭素材料は内部に多量の空孔を有し負極塗料(スラリ)中の残存気体量が多いため、非黒鉛炭素材料を用いて負極を作製する際には、塗料塗布時の小泡の形成および小泡の破裂に起因する電極欠点が生じやすい。電極欠点は、電池の安全性に大きな影響を及ぼす。すなわち、欠点部分において集電体が極板に露出すると、極板上にリチウム折出が起こり、充放電の繰り返しで巨大化したリチウム折出物が電極ショート/電池発火の原因となる。従って、欠点は極力電極上から排除する必要がある。この問題の一般的な解決方法として、塗工前に塗料を減圧脱泡して、塗料中の残存気体量を減少させる技術が知られている。   In a vehicle battery, a non-graphite carbon material having a low crystallinity, a low true density, and a lithium ion diffusion or occlusion / release reaction that easily occurs during charge / discharge is often used as a negative electrode active material. However, since non-graphitic carbon material has a large amount of pores inside and a large amount of residual gas in the negative electrode paint (slurry), when producing a negative electrode using non-graphitic carbon material, it is Electrode defects due to foam formation and rupture of small bubbles are likely to occur. Electrode defects have a major impact on battery safety. That is, when the current collector is exposed to the electrode plate in the defective portion, lithium folding occurs on the electrode plate, and the lithium folding material that has become enormous by repeated charge / discharge causes electrode short circuit / battery ignition. Therefore, it is necessary to eliminate the defects from the electrodes as much as possible. As a general solution to this problem, a technique is known in which the paint is degassed under reduced pressure before coating to reduce the amount of residual gas in the paint.

非水電解液二次電池の電極には、電極合材中の成分(活物質や導電材など)を結着するために、ポリフッ化ビニリデンやゴムバインダなどのバインダ(結着剤)が用いられている。塗料溶媒として水を使用する際には、ゴムバインダが使用される場合が多い。ゴムバインダを用いる際には、塗料の粘度調整のために増粘材が添加される。通常、このような増粘材にはカルボキシメチルセルロースが用いられる(例えば、特許文献1参照)。   A binder (binder) such as polyvinylidene fluoride or rubber binder is used for the electrode of the nonaqueous electrolyte secondary battery in order to bind the components (active material, conductive material, etc.) in the electrode mixture. Yes. When using water as a paint solvent, a rubber binder is often used. When using a rubber binder, a thickener is added to adjust the viscosity of the paint. Usually, carboxymethylcellulose is used for such a thickening material (for example, refer patent document 1).

特開2008−135334号公報JP 2008-135334 A

とろこで、塗料に非黒鉛炭素が含有されている場合に、上述した減圧脱泡により残存気体量を減少させる技術では、脱泡前の塗料中残存気体量が多いため、脱泡に長時間を要する。脱泡時間が長くなると、溶媒蒸発により塗料特性が変化する。特に、塗料溶媒として水を使用する場合には、沸点が比較的低く単位時間当たりの蒸発量が多いため、溶媒蒸発による塗料の特性変化が顕著となり、好ましくない。   When the non-graphite carbon is contained in the paint, the technique for reducing the amount of residual gas by degassing defoaming described above has a large amount of residual gas in the paint before defoaming. Cost. When the defoaming time becomes longer, the coating properties change due to solvent evaporation. In particular, when water is used as a paint solvent, the boiling point is relatively low and the amount of evaporation per unit time is large, so that the change in the properties of the paint due to solvent evaporation becomes remarkable, which is not preferable.

一方、増粘材にカルボキシメチルセルロースを用いる場合、塗料の粘度は、塗料中の固形分比率、CMCの分子量に依存する。塗料中の固形分比率を下げて、塗料脱泡の効率化を図ることも可能であるが、塗料の保管スペースが嵩むため、電極の量産に適しない。なお、発明者らの知る限り、これまで、低分子量のCMCを用いることで塗料の脱泡効率を向上させる技術は報告されていない。   On the other hand, when carboxymethyl cellulose is used as the thickener, the viscosity of the coating depends on the solid content ratio in the coating and the molecular weight of CMC. Although it is possible to reduce the solid content ratio in the paint to improve the efficiency of paint defoaming, it is not suitable for mass production of electrodes because the storage space for the paint increases. As far as the inventors know, no technology has been reported so far that improves the defoaming efficiency of the paint by using low molecular weight CMC.

本発明は上記事案に鑑み、電極塗料塗工による電極欠点の発生を抑え、安全性に優れた非水電解液二次電池を提供することを課題とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery that is superior in safety by suppressing the occurrence of electrode defects due to electrode paint coating.

上記課題を解決するために、本発明は、非水電解液二次電池であって、リチウムイオンを放出/吸蔵可能な正極と、活物質合材中に非黒鉛炭素と、ゴムバインダと、数平均重合度が100以上1000以下のカルボキシメチルセルロースとを含有しリチウムイオンを吸蔵/放出可能な負極と、非水電解液と、を備える。   In order to solve the above problems, the present invention provides a nonaqueous electrolyte secondary battery, a positive electrode capable of releasing / occluding lithium ions, non-graphitic carbon in an active material mixture, a rubber binder, and a number average A negative electrode containing a carboxymethyl cellulose having a degree of polymerization of 100 or more and 1000 or less and capable of occluding / releasing lithium ions, and a non-aqueous electrolyte.

本発明において、非黒鉛炭素に難黒鉛化性炭素を用いることができる。また、カルボキシメチルセルロースのエーテル化度が0.6以上1.0以下であることが好ましい。   In the present invention, non-graphitizable carbon can be used for non-graphitic carbon. Moreover, it is preferable that the etherification degree of carboxymethylcellulose is 0.6 or more and 1.0 or less.

本発明によれば、非黒鉛炭素とゴムバインダとを含有する負極活物合材に、数平均重合度が100以上1000以下のカルボキシメチルセルロースを加えることで、塗料の脱泡効率が向上し電極の欠点数が減少して、非水電解液二次電池の安全性が向上する、という効果を得ることができる。   According to the present invention, by adding carboxymethyl cellulose having a number average degree of polymerization of 100 or more and 1000 or less to a negative electrode active material mixture containing non-graphitic carbon and a rubber binder, the defoaming efficiency of the paint is improved and the disadvantage of the electrode The effect that the number is reduced and the safety of the non-aqueous electrolyte secondary battery is improved can be obtained.

本発明が適用可能な実施例のリチウムイオン二次電池を模式的に示す一部破断正面図である。1 is a partially broken front view schematically showing a lithium ion secondary battery of an example to which the present invention is applicable.

以下、本発明に係る非水電解液二次電池を、ハイブリッド電気自動車用電源として使用され電池モジュール(組電池)を構成可能なリチウムイオン二次電池に適用した実施の形態について説明する。なお、本実施形態は一例であり、本発明の適用範囲を制限するものではない。   Hereinafter, an embodiment in which a nonaqueous electrolyte secondary battery according to the present invention is applied to a lithium ion secondary battery that can be used as a power source for a hybrid electric vehicle and can constitute a battery module (assembled battery) will be described. In addition, this embodiment is an example and does not restrict | limit the application range of this invention.

1.正極
正極は、正極集電体と、正極集電体の両面ないし片面に形成された正極合材層とを有し、入出力特性を向上させるために、必要に応じて、正極集電体の長手方向の一側を例えば矩形状に切り欠き、切り欠き残部を正極リードとして利用するようにしてもよい。
1. The positive electrode has a positive electrode current collector and a positive electrode mixture layer formed on both sides or one side of the positive electrode current collector. In order to improve input / output characteristics, the positive electrode current collector One side in the longitudinal direction may be cut out, for example, in a rectangular shape, and the remaining part of the cutout may be used as a positive electrode lead.

正極集電体は、正極合材層中におけるリチウムイオンの放出/吸蔵反応で生じた電子を後述する導電部材まで低抵抗で伝達可能であり、非水電解液との接触およびリチウムイオンの放出/吸蔵反応により、大幅に劣化しなければ特に制限はない。正極集電体の例として、アルミニウム箔が挙げられる。   The positive electrode current collector is capable of transmitting electrons generated by the release / occlusion reaction of lithium ions in the positive electrode mixture layer to a conductive member to be described later with low resistance, contact with a non-aqueous electrolyte, and release of lithium ions / There is no particular limitation as long as it does not deteriorate significantly due to the occlusion reaction. An example of the positive electrode current collector is aluminum foil.

正極合材層は、正極活物質と、正極導電材と、正極バインダとを有する。   The positive electrode mixture layer includes a positive electrode active material, a positive electrode conductive material, and a positive electrode binder.

正極活物質にはリチウム酸化物を用いることが好ましい。リチウム酸化物としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウム、リチウム複合酸化物(コバルト、ニッケル、マンガンから選ばれる2種類以上を含むリチウム酸化物)などが挙げられる。   It is preferable to use lithium oxide for the positive electrode active material. Examples of the lithium oxide include lithium cobaltate, lithium manganate, lithium nickelate, lithium iron phosphate, lithium composite oxide (lithium oxide containing two or more selected from cobalt, nickel, and manganese).

正極導電材は、正極合材層中におけるリチウムイオンの放出/吸蔵反応で生じた電子の正極集電体へ伝達を補助できる物質であれば制限はない。正極導電材の例として、黒鉛やアセチレンブラックなどが挙げられる。正極バインダは、正極活物質と正極導電材、正極合材層と正極集電体、を結着させることが可能であり、非水電解液との接触により、大幅に劣化しなければ特に制限はない。正極バインダの例としてポリフッ化ビニリデン(PVDF)やフッ素ゴムなどが挙げられる。   The positive electrode conductive material is not limited as long as it is a substance capable of assisting transmission of electrons generated by the lithium ion release / occlusion reaction in the positive electrode mixture layer to the positive electrode current collector. Examples of the positive electrode conductive material include graphite and acetylene black. The positive electrode binder can bind the positive electrode active material and the positive electrode conductive material, the positive electrode mixture layer and the positive electrode current collector, and is not particularly limited as long as it does not deteriorate significantly due to contact with the non-aqueous electrolyte. Absent. Examples of the positive electrode binder include polyvinylidene fluoride (PVDF) and fluororubber.

正極合材層の形成方法は、正極集電体上に正極合材層が形成される方法であれば制限はない。正極合材層の形成方法の例として、正極合材層の構成物質の分散溶液を正極集電体上に塗工(塗布)する方法が挙げられる。塗工方法の例として、ロール塗工法、スリットダイ塗工法などが挙げられる。また、分散溶液の溶媒例として、N−メチル−2−ピロリドン(NMP)や水が挙げられる。   The method for forming the positive electrode mixture layer is not limited as long as the positive electrode mixture layer is formed on the positive electrode current collector. As an example of the method for forming the positive electrode mixture layer, a method of coating (applying) a dispersion solution of constituent materials of the positive electrode mixture layer on the positive electrode current collector can be given. Examples of the coating method include a roll coating method and a slit die coating method. Examples of the solvent for the dispersion solution include N-methyl-2-pyrrolidone (NMP) and water.

2.負極
負極は、負極集電体と、負極集電体の両面ないし片面に形成された負極合材層とを有し、入出力特性を向上させるために、必要に応じて、負極集電体の長手方向の一側を例えば矩形状に切り欠き、切り欠き残部を負極リードとして利用するようにしてもよい。
2. Negative electrode The negative electrode has a negative electrode current collector and a negative electrode mixture layer formed on both sides or one side of the negative electrode current collector. One side in the longitudinal direction may be cut out, for example, in a rectangular shape, and the remaining cutout may be used as a negative electrode lead.

負極集電体は、負極合材層中におけるリチウムイオンの吸蔵/放出反応で生じた電子を後述する導電部材まで低抵抗で伝達可能であり、非水電解液との接触およびリチウムイオンの吸蔵/放出反応により、大幅に劣化しなければ特に制限はない。負極集電体の例として、銅箔が挙げられる。   The negative electrode current collector is capable of transmitting electrons generated by the occlusion / release reaction of lithium ions in the negative electrode mixture layer to a conductive member described later with low resistance, contact with a non-aqueous electrolyte, and occlusion / There is no particular limitation as long as it does not deteriorate significantly due to the release reaction. An example of the negative electrode current collector is copper foil.

負極合材層は、負極活物質と、負極導電材と、負極バインダと、増粘材とを有する。   The negative electrode mixture layer includes a negative electrode active material, a negative electrode conductive material, a negative electrode binder, and a thickener.

負極活物質として非黒鉛炭素材料を用いる場合には大きな効果を発揮する。非黒鉛炭素材料とは、難黒鉛化性炭素、易黒鉛化性炭素の単独あるいはこれらの混合物をいう。難黒鉛化性炭素は、易黒鉛化性炭素に比べて多くの空孔を有する。従って、難黒鉛化性炭素を用いた際に特に大きな効果を発揮する。負極活物質は、非黒鉛炭素材料の他に、黒鉛を含有してもよい。負極導電材は、負極合材層中におけるリチウムイオンの吸蔵/放出反応で生じた電子の負極集電体への伝達を補助できる物質であれば制限はない。負極導電材の例として、アセチレンブラックが挙げられる。負極合材層中の負極活物質の割合は、必要に応じて90〜99.5重量%の間で調整できる。90重量%より少ない場合、リチウムイオン二次電池の容量が小さくなる。また、99.5重量%より多い場合、負極バインダの割合が小さくなるため、負極活物質と負極導電材、負極合材層と負極集電体、の結着性が得られず、リチウムイオン二次電池の信頼性が低下する。   When a non-graphite carbon material is used as the negative electrode active material, a great effect is exhibited. Non-graphitic carbon material refers to non-graphitizable carbon, graphitizable carbon alone or a mixture thereof. Non-graphitizable carbon has more pores than graphitizable carbon. Therefore, a particularly large effect is exhibited when non-graphitizable carbon is used. The negative electrode active material may contain graphite in addition to the non-graphitic carbon material. The negative electrode conductive material is not particularly limited as long as it is a substance capable of assisting transmission of electrons generated by the insertion / release reaction of lithium ions in the negative electrode mixture layer to the negative electrode current collector. An example of the negative electrode conductive material is acetylene black. The ratio of the negative electrode active material in the negative electrode mixture layer can be adjusted between 90 and 99.5% by weight as necessary. When it is less than 90% by weight, the capacity of the lithium ion secondary battery becomes small. On the other hand, when the amount is more than 99.5% by weight, since the ratio of the negative electrode binder is small, the binding properties of the negative electrode active material and the negative electrode conductive material, and the negative electrode mixture layer and the negative electrode current collector cannot be obtained. The reliability of the secondary battery is reduced.

難黒鉛化性炭素の作製方法として、フルフリルアルコール樹脂などの有機高分子化合物を、不活性ガス気流中にて300〜700℃で炭化した後、900〜1500℃まで昇温して到達温度にて0〜30時間保持する方法が例示される。また、易黒鉛化性炭素の作製方法として、石炭やピッチなどを不活性ガス気流中にて300〜700℃で炭化した後、900〜1500℃まで昇温して到達温度にて0〜30時間保持する方法が例示される。   As a method for producing non-graphitizable carbon, an organic polymer compound such as a furfuryl alcohol resin is carbonized at 300 to 700 ° C. in an inert gas stream, and then heated to 900 to 1500 ° C. to reach the ultimate temperature. The method of hold | maintaining for 0 to 30 hours is illustrated. Further, as a method for producing graphitizable carbon, after carbonizing coal or pitch at 300 to 700 ° C. in an inert gas stream, the temperature is raised to 900 to 1500 ° C. and 0 to 30 hours at the ultimate temperature. The method of holding is illustrated.

負極バインダとしては、ゴムバインダを使用することが好ましい。ここでゴムバインダとは、二重結合部位を有する1種類以上の単量体混合物を重合して得られるゴムを有するバインダをいう。ゴムバインダの例として、スチレン−ブタジエン共重合体ゴム(SBR)およびその変性体、アクリロニトリル−ブタジエン共重合体ゴムおよびその変性体、アクリルゴムおよびその変性体などが挙げられる。ゴムバインダの形状は、粒子径が0.1〜1.0μm程度の粒子状が好ましいが、これに制限されるものではない。   As the negative electrode binder, it is preferable to use a rubber binder. Here, the rubber binder refers to a binder having rubber obtained by polymerizing one or more kinds of monomer mixtures having double bond sites. Examples of the rubber binder include styrene-butadiene copolymer rubber (SBR) and modified products thereof, acrylonitrile-butadiene copolymer rubber and modified products thereof, acrylic rubber and modified products thereof. The shape of the rubber binder is preferably a particle shape having a particle size of about 0.1 to 1.0 μm, but is not limited thereto.

また、負極バインダの割合は、必要に応じて0.5〜10重量%の間で調整できる。10重量%より多い場合、リチウムイオン二次電池の容量が小さくなる。また、0.5重量%より少ない場合、負極バインダの割合が小さくなるため、負極活物質と負極導電材、負極合材層と負極集電体、の結着性が得られず、リチウムイオン二次電池の信頼性が低下する。また、負極合材層の構成物質の分散溶液を負極集電体上に塗工する方法により、負極合材層を形成する際には、必要に応じて、負極合材層中に、分散溶液中のゴムバインダの分散安定性を確保するための界面活性剤、および/または界面活性剤添加による塗工時の泡立ちを抑制する消泡剤が含まれていてもよい。界面活性剤の例として、n−ドデシル硫酸ナトリウム(SDS)が挙げられる。また、消泡剤の例として、n−オクタノール、ポリシロキサンなどが挙げられる。   Moreover, the ratio of a negative electrode binder can be adjusted between 0.5 to 10 weight% as needed. When it is more than 10% by weight, the capacity of the lithium ion secondary battery becomes small. On the other hand, when the content is less than 0.5% by weight, since the proportion of the negative electrode binder is small, the binding properties of the negative electrode active material and the negative electrode conductive material, and the negative electrode mixture layer and the negative electrode current collector cannot be obtained. The reliability of the secondary battery is reduced. In addition, when forming the negative electrode mixture layer by a method of coating the dispersion solution of the constituent material of the negative electrode mixture layer on the negative electrode current collector, the dispersion solution may be contained in the negative electrode mixture layer as necessary. A surfactant for ensuring the dispersion stability of the rubber binder therein and / or an antifoaming agent that suppresses foaming during coating due to the addition of the surfactant may be included. An example of a surfactant is sodium n-dodecyl sulfate (SDS). Examples of the antifoaming agent include n-octanol and polysiloxane.

本実施形態では、増粘材として数平均重合度が100以上かつ1000以下であるカルボシメチルセルロース(CMC)を使用することにより好適な効果を発現する。数平均重合度が100より小さいCMCを使用すると、塗料が十分に増粘せず、電極が塗工しにくくなるため、好ましくない。一方、数平均重合度が1000より大きいCMCを使用すると、塗料を十分に脱泡できず、塗工電極上に多数の欠点が生じて、安全な電池が作製できないため、好ましくない。CMCのエーテル化度は、この効果発現を阻止しない限り制約はないが、0.6〜1.0であることが好ましい。エーテル化度が0.6未満であると、塗料の粘度が大きくなり、脱泡が困難になる。また、エーテル化度が1.0より大きい場合、負極集電体との相互作用が弱くなり、負極合材層が負極集電体から剥がれやすくなるため、好ましくない。なお、エーテル化度とはセルロースの単位骨格に含まれるカルボキシメチル基の平均数であり、理論上は0から3までの値を取ることが可能である。また、増粘材の割合は、必要に応じて0.5〜5重量%の間で調整できる。5重量%より多い場合、塗料が過度に増粘して電極塗工が困難となるため、好ましくない。また、0.5重量%より少ない場合、塗料粘度が十分でなく電極塗工が困難となるため、好ましくない。   In the present embodiment, the use of carboxymethyl cellulose (CMC) having a number average polymerization degree of 100 or more and 1000 or less as a thickener exhibits a suitable effect. Use of CMC having a number average degree of polymerization of less than 100 is not preferable because the coating does not sufficiently thicken and the electrode is difficult to apply. On the other hand, if CMC having a number average degree of polymerization of more than 1000 is used, the paint cannot be sufficiently defoamed, and a number of defects occur on the coated electrode, so that a safe battery cannot be produced. The degree of etherification of CMC is not limited as long as this effect is not inhibited, but is preferably 0.6 to 1.0. When the degree of etherification is less than 0.6, the viscosity of the paint increases and defoaming becomes difficult. On the other hand, when the degree of etherification is larger than 1.0, the interaction with the negative electrode current collector becomes weak, and the negative electrode mixture layer tends to peel off from the negative electrode current collector, which is not preferable. The degree of etherification is the average number of carboxymethyl groups contained in the unit skeleton of cellulose, and can theoretically take a value from 0 to 3. Moreover, the ratio of a thickener can be adjusted between 0.5 to 5 weight% as needed. If the amount is more than 5% by weight, the coating is excessively thickened and electrode coating becomes difficult, which is not preferable. On the other hand, when the amount is less than 0.5% by weight, the viscosity of the paint is not sufficient and electrode coating becomes difficult, which is not preferable.

負極合材層の形成方法は、負極集電体上に負極合材層が形成される方法であれば制限はない。負極合材層の形成方法の例として、負極合材層の構成物質の分散溶液を負極集電体上に塗布する方法が挙げられる。塗工方法の例として、ロール塗工法、スリットダイ塗工法などが挙げられる。また、分散溶液の溶媒には水が用いられる。   The method for forming the negative electrode mixture layer is not limited as long as the negative electrode mixture layer is formed on the negative electrode current collector. As an example of the method for forming the negative electrode mixture layer, there is a method in which a dispersion solution of constituent materials of the negative electrode mixture layer is applied onto the negative electrode current collector. Examples of the coating method include a roll coating method and a slit die coating method. In addition, water is used as a solvent for the dispersion solution.

3.電池作製
正極と負極とはセパレータを介して配置され電極群が形成される。このような電極群は、捲回式および積層式電極群に分類することができる。捲回式電極群は円柱状、直方体状、楕円ないし扁平状のものを挙げることができる。積層式電極群は、正極と負極との間にセパレータを介在させて積層したものや、セパレータを袋状に構成し、正負極のいずれか一方をセパレータ内に収容して正負極を積層したタイプのものであってもよい。従って、電極群の態様(捲回式、積層式等の別)に特に制限されるものではない。
3. Battery production The positive electrode and the negative electrode are arranged via a separator to form an electrode group. Such an electrode group can be classified into a wound type and a laminated type electrode group. Examples of the wound electrode group include a cylindrical shape, a rectangular parallelepiped shape, an elliptical shape, and a flat shape. The stacked electrode group is a type in which a separator is interposed between a positive electrode and a negative electrode, or a type in which the separator is configured in a bag shape and either the positive or negative electrode is accommodated in the separator and the positive and negative electrodes are stacked. It may be. Therefore, it is not particularly limited to the mode of the electrode group (separate type such as a wound type and a laminated type).

正極集電体および負極集電体は導電部材を介して外部端子に接続されている。車両用電池では、一般に導電部材に集電リングを用いたものが使用されているが、これに制限されるものではない。また、外部端子には電池缶や電池蓋(キャップ)が使用される場合が多いが、これに制約されるものではない。電池缶と電池蓋との間には一般にガスケットが介在している。導電部材は正極集電体および負極集電体とは別の部材であってもよい。なお、切り欠き残部を正極リード、負極リードとして形成した場合は、切り欠き先端部が導電部材に接合(例えば、超音波溶接)される。   The positive electrode current collector and the negative electrode current collector are connected to an external terminal via a conductive member. In general, a battery for a vehicle uses a current collecting ring as a conductive member, but is not limited thereto. Moreover, although a battery can and a battery cover (cap) are often used for the external terminal, it is not limited thereto. In general, a gasket is interposed between the battery can and the battery lid. The conductive member may be a member different from the positive electrode current collector and the negative electrode current collector. In addition, when the notch remainder is formed as a positive electrode lead or a negative electrode lead, the notch tip is joined to the conductive member (for example, ultrasonic welding).

セパレータは、正極と負極とを隔離しつつ、非水電解液中を移動するリチウムイオンを透過するシート状の物質であり、非水電解液との接触により大幅に劣化しない物質から構成されていれば制限はない。セパレータの例として、ポリエチレン多孔膜、ポリプロピレン多孔膜などが挙げられる。   The separator is a sheet-like substance that permeates lithium ions that move through the non-aqueous electrolyte while isolating the positive electrode and the negative electrode, and may be composed of a substance that does not deteriorate significantly due to contact with the non-aqueous electrolyte. There is no limit. Examples of the separator include a polyethylene porous film and a polypropylene porous film.

電極群は、非水電解液とともに電池缶ないしフィルム容器中に収容され、密閉構造が採られることが好ましい。電池缶の形状にも制約はなく、円柱状、直方体状、楕円ないし扁平状のいずれのものも用いることができる。   It is preferable that the electrode group is housed in a battery can or a film container together with a non-aqueous electrolyte and has a sealed structure. There is no restriction | limiting also in the shape of a battery can, A cylindrical shape, a rectangular parallelepiped shape, an ellipse thru | or a flat shape can be used.

必要に応じて、電極群と、電池缶または電池蓋ないし集電部材との接触を避ける(絶縁する)ためのインシュレータを有していてもよい。インシュレータは、非水電解液との接触により大幅に劣化しない物質から構成されていれば制限はない。インシュレータの例として、ポリエチレン板などが挙げられる。また、電池缶または電池蓋には、電池内圧の上昇を防止するために、開裂弁を設けるようにしてもよい。   As needed, you may have the insulator for avoiding (insulating) a contact with an electrode group, a battery can, a battery cover, or a current collection member. The insulator is not limited as long as it is made of a material that does not deteriorate significantly due to contact with the non-aqueous electrolyte. Examples of the insulator include a polyethylene plate. In addition, the battery can or the battery lid may be provided with a cleavage valve in order to prevent an increase in the battery internal pressure.

非水電解液は、リチウム塩がカーボネート系溶媒に溶解した溶液を用いることができる。リチウム塩の例として、フッ化リン酸リチウム(LiPF)、フッ化ホウ酸リチウム(LiBF)などが挙げられる。また、カーボネート系溶媒の例として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)、メチルエチルカーボネート(MEC)、あるいは上記溶媒の1種類以上から選ばれる溶媒を混合したものが挙げられる。 As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in a carbonate solvent can be used. Examples of the lithium salt include lithium fluorophosphate (LiPF 6 ), lithium fluoroborate (LiBF 6 ), and the like. Examples of carbonate solvents include ethylene carbonate (EC), dimethyl carbonate (DMC), propylene carbonate (PC), methyl ethyl carbonate (MEC), or a mixture of solvents selected from one or more of the above solvents. Can be mentioned.

次に、図面を参照して、上記実施形態に従い作製した実施例のリチウムイオン二次電池について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of lithium ion secondary batteries manufactured according to the above embodiment will be described with reference to the drawings. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
図1に示すように、実施例1の電池では、正極集電体1の両面に正極合材層2を形成した。正極集電体として、厚さ20μmのアルミニウム箔を用いた。正極活物質(マンガン酸リチウム)と、正極導電材(黒鉛とアセチレンブラックとの混合物)と、正極バインダ(PVDF)との混合物(重量分率80:10:10)を、NMPに分散させてスラリを作製した。このスラリをロール塗工法により正極集電体1の両面に塗布して正極合材層を形成した。
Example 1
As shown in FIG. 1, in the battery of Example 1, the positive electrode mixture layer 2 was formed on both surfaces of the positive electrode current collector 1. As the positive electrode current collector, an aluminum foil having a thickness of 20 μm was used. A mixture (weight fraction 80:10:10) of a positive electrode active material (lithium manganate), a positive electrode conductive material (a mixture of graphite and acetylene black), and a positive electrode binder (PVDF) is dispersed in NMP to form a slurry. Was made. This slurry was applied to both surfaces of the positive electrode current collector 1 by a roll coating method to form a positive electrode mixture layer.

その後、正極合材層を120℃で乾燥させ、プレスして、厚さが90μmの正極5を作製した。正極の幅、長さはそれぞれ54mm、450mmとした。また、作製した正極集電体1の端にアルミニウム製の正極タブ3を取り付けた。   Thereafter, the positive electrode mixture layer was dried at 120 ° C. and pressed to prepare a positive electrode 5 having a thickness of 90 μm. The width and length of the positive electrode were 54 mm and 450 mm, respectively. Further, a positive electrode tab 3 made of aluminum was attached to an end of the produced positive electrode current collector 1.

次に、負極集電体11の両面に負極合材層12を形成した。下表1に示すように、実施例1の電池では、負極活物質に難黒鉛化性炭素を用いた。難黒鉛化性炭素は、フルフリルアルコール樹脂を、窒素気流中、温度500℃で5時間保持した後、1200℃まで昇温し、1時間熱処理して作製した。負極集電体11として、厚さ10μmの銅箔を用いた。負極活物質と、負極導電材(アセチレンブラック)と、負極バインダ(スチレン−ブタジエン共重合体ゴム粒子:数平均粒子径0.15μm)と、増粘材(カルボキシメチルセルロース:数平均重合度600、エーテル化度0.6)との混合物(重量比率:91:4:4:1)を、水に分散させて塗料を作製した。塗料(スラリ)の固形分率は50重量パーセントとし、塗料の粘度は2400mPaであった。この塗料をロール塗工法により負極集電体11の両面に塗工して、負極集電体の両面に負極合材層を形成した。塗料塗工時の小泡形成および小泡の破裂に起因する電極欠点の数を目視で確認したところ、1平方メートル当たり2個であった。   Next, the negative electrode mixture layer 12 was formed on both surfaces of the negative electrode current collector 11. As shown in Table 1 below, in the battery of Example 1, non-graphitizable carbon was used as the negative electrode active material. The non-graphitizable carbon was prepared by holding a furfuryl alcohol resin in a nitrogen stream at a temperature of 500 ° C. for 5 hours, then raising the temperature to 1200 ° C. and performing a heat treatment for 1 hour. A copper foil having a thickness of 10 μm was used as the negative electrode current collector 11. Negative electrode active material, negative electrode conductive material (acetylene black), negative electrode binder (styrene-butadiene copolymer rubber particles: number average particle diameter 0.15 μm), thickener (carboxymethyl cellulose: number average polymerization degree 600, ether The mixture (weight ratio: 91: 4: 4: 1) with a degree of conversion of 0.6) was dispersed in water to prepare a paint. The solid content of the paint (slurry) was 50 weight percent, and the viscosity of the paint was 2400 mPa. This paint was applied to both surfaces of the negative electrode current collector 11 by a roll coating method to form a negative electrode mixture layer on both surfaces of the negative electrode current collector. The number of electrode defects due to the formation of small bubbles and the burst of small bubbles during coating was visually confirmed to be two per square meter.

Figure 2010238365
Figure 2010238365

その後、負極合材層を120℃で乾燥させ、プレスして、厚さが80μmの負極15を作製した。負極の幅、長さはそれぞれ56mm、500mmとした。また、作製した負極集電体11の端にニッケル製の負極タブ13を取り付けた。   Thereafter, the negative electrode mixture layer was dried at 120 ° C. and pressed to prepare a negative electrode 15 having a thickness of 80 μm. The width and length of the negative electrode were 56 mm and 500 mm, respectively. Further, a nickel negative electrode tab 13 was attached to the end of the produced negative electrode current collector 11.

上記作製した正極5および負極15を、ポリエチレン多孔膜からなるセパレータ21(厚さ25μm、幅58mm)を介して渦巻状に捲回した電極群40を作製した。この電極群40を、ポリエチレンからなるインシュレータ31とともに電池缶41内に挿入し、電極群40の捲回中心となる軸芯(不図示)を電池缶41に固定した。その後、負極タブ13を電池缶41の内底面に溶接し、正極タブ3を正極端子51の底面に溶接した。そして、電池缶41に非水電解液(EC、DMC、DECの体積比で1:1:1の混合溶媒に1.0モル/リットルのLiPFを溶解させたもの)を注入し、正極端子51を電池缶41にガスケットを介してかしめて密閉し、直径18mm、長さ65mmのリチウムイオン二次電池10の組立を完成させた。 An electrode group 40 was produced in which the produced positive electrode 5 and negative electrode 15 were spirally wound through a separator 21 (thickness 25 μm, width 58 mm) made of a polyethylene porous film. The electrode group 40 was inserted into the battery can 41 together with the insulator 31 made of polyethylene, and an axial core (not shown) serving as a winding center of the electrode group 40 was fixed to the battery can 41. Thereafter, the negative electrode tab 13 was welded to the inner bottom surface of the battery can 41, and the positive electrode tab 3 was welded to the bottom surface of the positive electrode terminal 51. Then, a non-aqueous electrolyte (1.0 mol / liter LiPF 6 dissolved in a 1: 1: 1 mixed solvent by volume ratio of EC, DMC, and DEC) is injected into the battery can 41, and a positive electrode terminal 51 was caulked and sealed to the battery can 41 via a gasket, and the assembly of the lithium ion secondary battery 10 having a diameter of 18 mm and a length of 65 mm was completed.

なお、正極端子51は、電池の密閉蓋を兼ねており、電池内の圧力が上昇すると、開裂して電池内部の圧力を開放する開裂弁が備え付けられている。JIS D713:2003の条件に準じて充電深度50%のリチウムイオン二次電池の入出力特性を評価することで、電池の出力密度が3500W/kg、入力密度が3300W/kgであることがわかった。   The positive electrode terminal 51 also serves as a battery sealing lid, and is provided with a cleavage valve that cleaves and releases the pressure inside the battery when the pressure inside the battery rises. By evaluating input / output characteristics of a lithium ion secondary battery having a charge depth of 50% according to the conditions of JIS D713: 2003, it was found that the output density of the battery was 3500 W / kg and the input density was 3300 W / kg. .

(実施例2)
実施例2の電池は、実施例1の電池と負極合材層を除いて同じであるため(正極、電池の寸法、出力密度が3500W/kg、入力密度が3300W/kgも同じ。)、同一部材の説明を省略し、異なる箇所のみ詳述する(後述する実施例3および比較例1、2の電池も同じ。)。
(Example 2)
The battery of Example 2 is the same as the battery of Example 1 except for the negative electrode mixture layer (the positive electrode, the dimensions of the battery, the output density is 3500 W / kg, and the input density is 3300 W / kg). Explanation of members is omitted, and only different portions are described in detail (the same applies to the batteries of Example 3 and Comparative Examples 1 and 2 described later).

表1に示すように、実施例2の電池では、負極活物質に易黒鉛化性炭素を用いた。易黒鉛化性炭素は、石炭ピッチを窒素気流中、温度500℃で5時間保持した後、1400℃まで昇温し、1時間熱処理して作製した。負極活物質と、負極導電材(アセチレンブラック)と、負極バインダ(スチレン−ブタジエン共重合体ゴム粒子:数平均粒子径0.15μm)と、増粘材(カルボキシメチルセルロース:数平均重合度600、エーテル化度1.0)との混合物(重量比率:91:4:4:1)を、水に分散させて塗料を作製した。塗料の固形分率は50重量パーセントとし、塗料の粘度は2000mPaであった。この塗料をロール塗工法により負極集電体の両面に塗工して、負極集電体の両面に負極合材層を形成した。塗料塗工時の小泡形成および小泡の破裂に起因する電極欠点の数を目視で確認したところ、1平方メートル当たり3個であった。   As shown in Table 1, in the battery of Example 2, graphitizable carbon was used for the negative electrode active material. The graphitizable carbon was prepared by holding coal pitch in a nitrogen stream at a temperature of 500 ° C. for 5 hours, and then heating to 1400 ° C. and heat-treating for 1 hour. Negative electrode active material, negative electrode conductive material (acetylene black), negative electrode binder (styrene-butadiene copolymer rubber particles: number average particle diameter 0.15 μm), thickener (carboxymethyl cellulose: number average polymerization degree 600, ether The mixture (weight ratio: 91: 4: 4: 1) with a degree of conversion of 1.0) was dispersed in water to prepare a paint. The solid content of the paint was 50 weight percent, and the viscosity of the paint was 2000 mPa. This paint was applied to both surfaces of the negative electrode current collector by a roll coating method to form a negative electrode mixture layer on both surfaces of the negative electrode current collector. The number of electrode defects resulting from the formation of small bubbles and the burst of small bubbles during coating was visually confirmed to be 3 per square meter.

(実施例3)
表1に示すように、実施例3の電池では、負極活物質に上述した実施例1と同じ方法で作成された難黒鉛化性炭素を用いた。負極活物質と、負極導電材(アセチレンブラック)と、負極バインダ(スチレン−ブタジエン共重合体ゴム粒子:数平均粒子径0.15μm)と、増粘材(カルボキシメチルセルロース:数平均重合度1000、エーテル化度0.7)との混合物(重量比率:91:4:4:1)を、水に分散させて塗料を作製した。塗料の固形分率は50重量パーセントとし、塗料の粘度は4000mPaであった。この塗料をロール塗工法により負極集電体の両面に塗工して、負極集電体の両面に負極合材層を形成した。塗料塗工時の小泡形成および小泡の破裂に起因する電極欠点の数を目視で確認したところ、1平方メートル当たり5個であった。
Example 3
As shown in Table 1, in the battery of Example 3, non-graphitizable carbon produced by the same method as in Example 1 described above was used as the negative electrode active material. Negative electrode active material, negative electrode conductive material (acetylene black), negative electrode binder (styrene-butadiene copolymer rubber particles: number average particle size 0.15 μm), thickener (carboxymethyl cellulose: number average degree of polymerization 1000, ether A mixture (weight ratio: 91: 4: 4: 1) with a degree of conversion of 0.7) was dispersed in water to prepare a paint. The solid content rate of the paint was 50 weight percent, and the viscosity of the paint was 4000 mPa. This paint was applied to both surfaces of the negative electrode current collector by a roll coating method to form a negative electrode mixture layer on both surfaces of the negative electrode current collector. The number of electrode defects due to the formation of small bubbles and the bursting of small bubbles during coating was visually confirmed to be 5 per square meter.

(比較例1)
表1に示すように、比較例1の電池では、負極活物質に上述した実施例1と同じ方法で作成された難黒鉛化性炭素を用いた。負極活物質と、負極導電材(アセチレンブラック)と、負極バインダ(スチレン−ブタジエン共重合体ゴム粒子:数平均粒子径0.15μm)と、増粘材(カルボキシメチルセルロース:数平均重合度2000、エーテル化度0.6)との混合物(重量比率:91:4:4:1)を、水に分散させて塗料を作製した。塗料の固形分率は50重量パーセントとし、塗料の粘度は12000mPaであった。この塗料をロール塗工法により負極集電体の両面に塗工して、負極集電体の両面に負極合材層を形成した。塗料塗工時の小泡形成および小泡の破裂に起因する電極欠点の数を目視で確認したところ、1平方メートル当たり50個であった。
(Comparative Example 1)
As shown in Table 1, in the battery of Comparative Example 1, non-graphitizable carbon prepared by the same method as in Example 1 described above was used as the negative electrode active material. Negative electrode active material, negative electrode conductive material (acetylene black), negative electrode binder (styrene-butadiene copolymer rubber particles: number average particle size 0.15 μm), thickener (carboxymethyl cellulose: number average degree of polymerization 2000, ether The mixture (weight ratio: 91: 4: 4: 1) with a degree of conversion of 0.6) was dispersed in water to prepare a paint. The solid content of the paint was 50 weight percent, and the viscosity of the paint was 12000 mPa. This paint was applied to both surfaces of the negative electrode current collector by a roll coating method to form a negative electrode mixture layer on both surfaces of the negative electrode current collector. The number of electrode defects caused by the formation of small bubbles and the bursting of small bubbles during coating was visually confirmed to be 50 per square meter.

(比較例2)
表1に示すように、比較例2の電池では、負極活物質に上述した実施例2と同じ方法で作成された易黒鉛化性炭素を用いた。負極活物質と、負極導電材(アセチレンブラック)と、負極バインダ(スチレン−ブタジエン共重合体ゴム粒子:数平均粒子径0.15μm)と、増粘材(カルボキシメチルセルロース:数平均重合度2000、エーテル化度1.0)との混合物(重量比率:91:4:4:1)を、水に分散させて塗料を作製した。塗料の固形分率は50重量パーセントとし、塗料の粘度は10000mPaであった。この塗料をロール塗工法により負極集電体の両面に塗工して、負極集電体の両面に負極合材層を形成した。塗料塗工時の小泡形成および小泡の破裂に起因する電極欠点の数を目視で確認したところ、1平方メートル当たり30個であった。
(Comparative Example 2)
As shown in Table 1, in the battery of Comparative Example 2, graphitizable carbon prepared by the same method as in Example 2 described above was used as the negative electrode active material. Negative electrode active material, negative electrode conductive material (acetylene black), negative electrode binder (styrene-butadiene copolymer rubber particles: number average particle diameter 0.15 μm), thickener (carboxymethyl cellulose: number average degree of polymerization 2000, ether The mixture (weight ratio: 91: 4: 4: 1) with a degree of conversion of 1.0) was dispersed in water to prepare a paint. The solid content rate of the coating material was 50 weight percent, and the viscosity of the coating material was 10,000 mPa. This paint was applied to both surfaces of the negative electrode current collector by a roll coating method to form a negative electrode mixture layer on both surfaces of the negative electrode current collector. The number of electrode defects due to the formation of small bubbles and the bursting of small bubbles during coating was visually confirmed to be 30 per square meter.

(試験)
上記実施例および比較例の電池をそれぞれ100本ずつ作製し、高温における充放電サイクル試験後の電池の電圧降下を測定することにより、安全性を評価した。負極の欠点で生じるリチウム折出物が正極−負極間のセパレータを突き破ることにより電池のショートパス(微小短絡)が形成され、電池の発煙や発火が起こることが一般的に知られている。ショートパスは、電池の電圧降下の原因でもあるため、電圧降下を測定することにより、電池の安全性を評価することが可能である。
(test)
100 batteries of each of the examples and comparative examples were produced, and safety was evaluated by measuring the voltage drop of the battery after the charge / discharge cycle test at high temperature. It is generally known that a battery short path (micro short circuit) is formed when a lithium break-out generated by a defect of the negative electrode breaks through a separator between the positive electrode and the negative electrode, thereby causing smoke and ignition of the battery. Since the short path is also a cause of the voltage drop of the battery, the safety of the battery can be evaluated by measuring the voltage drop.

具体的には、50℃の環境下において、(1)4.1Vまで10Cで充電し、(2)2.7Vまで10Cで放電するサイクルを1000回行い、その後電池を4.1Vに充電した。その後、1日放置して、各電池の電圧を測定し、4.08V以上の電圧を示すか否かにより、安全な電池か否かを評価した。下表2に評価結果を示す。   Specifically, in an environment of 50 ° C., (1) the battery was charged at 10 C up to 4.1 V, (2) the battery was discharged 1000 times at 2.7 V at 10 C, and then the battery was charged to 4.1 V. . Thereafter, the battery was allowed to stand for one day, and the voltage of each battery was measured, and whether or not it was a safe battery was evaluated depending on whether or not it showed a voltage of 4.08 V or higher. The evaluation results are shown in Table 2 below.

Figure 2010238365
Figure 2010238365

表2に示すように、実施例1〜3の電池は全て4.08V以上の電圧を示した。このことから、実施例1〜3の電池は安全な電池であることがわかった。一方、比較例1の電池では、4.08V未満まで電圧が低下した電池が8本あった。また、比較例2の電池では、4.08V未満まで電圧が低下した電池が5本あった。このことから、比較例1、2の電池が発煙や発火のおそれのある電池であることがわかった。   As shown in Table 2, all the batteries of Examples 1 to 3 exhibited a voltage of 4.08V or more. From this, it was found that the batteries of Examples 1 to 3 were safe batteries. On the other hand, in the battery of Comparative Example 1, there were 8 batteries whose voltage dropped to less than 4.08V. Moreover, in the battery of Comparative Example 2, there were five batteries whose voltage dropped to less than 4.08V. From this, it was found that the batteries of Comparative Examples 1 and 2 were likely to emit smoke or ignite.

表1、2を考慮すると、数平均重合度が1000以下のCMCを用いた実施例の電池は、極板上欠点数が少なく、1000サイクル試験後の電池の電圧降下が抑制されていることがわかる。この原因として、数平均重合度が1000以下のCMCを用いた際には、塗料塗工時の小泡形成および小泡の破裂に起因する電極欠点の発生が抑制され、充放電サイクル時の電極上リチウム折出が抑えられたことが考えられる。従って、実施例1〜3の電池は発煙や発火の原因である負極板上でのリチウム折出によるショートパスの形成が抑えられた安全な電池である。   In consideration of Tables 1 and 2, the battery of the example using CMC having a number average degree of polymerization of 1000 or less has a small number of defects on the electrode plate, and the voltage drop of the battery after 1000 cycle tests is suppressed. Recognize. As a cause of this, when a CMC having a number average degree of polymerization of 1000 or less is used, the occurrence of electrode defects due to the formation of small bubbles and the bursting of small bubbles during coating is suppressed, and the electrode during charge / discharge cycles is suppressed. It is thought that upper lithium folding was suppressed. Therefore, the batteries of Examples 1 to 3 are safe batteries in which the formation of a short path due to lithium folding on the negative electrode plate, which is a cause of smoke and fire, is suppressed.

本発明は電極塗料塗工による電極欠点の発生を抑え、安全性に優れた非水電解液二次電池を提供するものであるため、非水電解液二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a non-aqueous electrolyte secondary battery excellent in safety by suppressing the occurrence of electrode defects due to electrode paint coating, it contributes to the manufacture and sale of non-aqueous electrolyte secondary batteries. Have industrial applicability.

5 正極
10 リチウムイオン二次電池(非水電解液二次電池)
15 負極
40 電極群
41 電池缶
51 正極端子
5 Positive electrode 10 Lithium ion secondary battery (non-aqueous electrolyte secondary battery)
15 Negative electrode 40 Electrode group 41 Battery can 51 Positive electrode terminal

Claims (3)

リチウムイオンを放出/吸蔵可能な正極と、
活物質合材中に非黒鉛炭素と、ゴムバインダと、数平均重合度が100以上1000以下のカルボキシメチルセルロースとを含有しリチウムイオンを吸蔵/放出可能な負極と、
非水電解液と、
を備えた非水電解液二次電池。
A positive electrode capable of releasing / occluding lithium ions;
A negative electrode containing non-graphite carbon, a rubber binder, and carboxymethylcellulose having a number average degree of polymerization of 100 or more and 1000 or less in the active material mixture and capable of occluding / releasing lithium ions;
A non-aqueous electrolyte,
A non-aqueous electrolyte secondary battery comprising:
前記非黒鉛炭素が難黒鉛化性炭素であることを特徴とする請求項1に記載の非水電解液二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-graphitic carbon is non-graphitizable carbon. 前記カルボキシメチルセルロースのエーテル化度が0.6以上1.0以下であることを特徴とする請求項1に記載の非水電解液二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the degree of etherification of the carboxymethyl cellulose is 0.6 or more and 1.0 or less.
JP2009081658A 2009-03-30 2009-03-30 Nonaqueous electrolyte secondary battery Pending JP2010238365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081658A JP2010238365A (en) 2009-03-30 2009-03-30 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081658A JP2010238365A (en) 2009-03-30 2009-03-30 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010238365A true JP2010238365A (en) 2010-10-21
JP2010238365A5 JP2010238365A5 (en) 2011-02-03

Family

ID=43092534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081658A Pending JP2010238365A (en) 2009-03-30 2009-03-30 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010238365A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2444556A1 (en) 2010-10-25 2012-04-25 Kanzaki Kokyukoki Mfg. Co., Ltd. Pump Unit
WO2013076996A1 (en) * 2011-11-25 2013-05-30 パナソニック株式会社 Negative electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
US20160172679A1 (en) * 2014-12-12 2016-06-16 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342966A (en) * 1991-05-21 1992-11-30 Toshiba Battery Co Ltd Secondary battery with non-aqueous solvent
WO1999008335A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Nonaqueous electrolyte secondary battery
JPH1167213A (en) * 1997-08-21 1999-03-09 Jsr Corp Composition for battery electrode and battery electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342966A (en) * 1991-05-21 1992-11-30 Toshiba Battery Co Ltd Secondary battery with non-aqueous solvent
WO1999008335A1 (en) * 1997-08-11 1999-02-18 Sony Corporation Nonaqueous electrolyte secondary battery
JPH1167213A (en) * 1997-08-21 1999-03-09 Jsr Corp Composition for battery electrode and battery electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2444556A1 (en) 2010-10-25 2012-04-25 Kanzaki Kokyukoki Mfg. Co., Ltd. Pump Unit
WO2013076996A1 (en) * 2011-11-25 2013-05-30 パナソニック株式会社 Negative electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
CN104025342A (en) * 2011-11-25 2014-09-03 松下电器产业株式会社 Negative electrode for lithium ion secondary batteries, method for producing same, and lithium ion secondary battery
JPWO2013076996A1 (en) * 2011-11-25 2015-04-27 パナソニックIpマネジメント株式会社 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US9362550B2 (en) 2011-11-25 2016-06-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode for lithium ion secondary batteries and method for producing the negative electrode, and lithium ion secondary battery
US20160172679A1 (en) * 2014-12-12 2016-06-16 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR20160071740A (en) * 2014-12-12 2016-06-22 삼성에스디아이 주식회사 Positive electrode composition for rechargable lithium battery, and positive electrode for rechargable lithium battery and rechargable lithium battery including the same
US10439222B2 (en) * 2014-12-12 2019-10-08 Samsung Sdi Co., Ltd. Positive electrode composition for rechargeable lithium battery, and positive electrode for rechargeable lithium battery and rechargeable lithium battery including same
KR102311509B1 (en) 2014-12-12 2021-10-08 삼성에스디아이 주식회사 Positive electrode composition for rechargable lithium battery, and positive electrode for rechargable lithium battery and rechargable lithium battery including the same

Similar Documents

Publication Publication Date Title
JP5252386B2 (en) Negative electrode for lithium ion battery
TWI447988B (en) Degassing method of secondary battery using centrifugal force
KR101580731B1 (en) Non-aqueous electrolyte secondary battery
JP5822089B2 (en) Sealed lithium secondary battery
US10026941B2 (en) Separator for nonaqueous electrolyte secondary battery, and battery including same
JP6210336B2 (en) Secondary battery
KR20150126870A (en) Non-aqueous electrolyte secondary battery
KR20150070971A (en) Lithium ion secondary battery
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2015207419A (en) Nonaqueous electrolyte secondary battery
JP2013016265A (en) Nonaqueous secondary battery
JP5420852B2 (en) Lithium ion battery electrode
JP5741936B2 (en) Lithium ion secondary battery
JP2015195191A (en) Laminate battery and sheath material for laminate battery
JP5704409B2 (en) Sealed lithium secondary battery
JP2013004241A (en) Lithium-ion secondary battery
JP2010238365A (en) Nonaqueous electrolyte secondary battery
JP5618156B2 (en) Manufacturing method of sealed lithium secondary battery
JP6274532B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2018152236A (en) Packaged positive electrode plate, laminated electrode body, and electric storage element
KR20150123305A (en) Non-aqueous electrolyte secondary battery
JP6585365B2 (en) Nonaqueous electrolyte secondary battery
CN109428083B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2011074663A1 (en) Nonaqueous electrolyte secondary battery
JP2018077931A (en) Secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521