JP6585365B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6585365B2
JP6585365B2 JP2015072244A JP2015072244A JP6585365B2 JP 6585365 B2 JP6585365 B2 JP 6585365B2 JP 2015072244 A JP2015072244 A JP 2015072244A JP 2015072244 A JP2015072244 A JP 2015072244A JP 6585365 B2 JP6585365 B2 JP 6585365B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
negative electrode
mixture layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015072244A
Other languages
Japanese (ja)
Other versions
JP2016192338A (en
Inventor
金子 健
健 金子
圭亮 南
圭亮 南
大輔 池田
大輔 池田
藤原 豊樹
豊樹 藤原
高田 登志広
登志広 高田
博史 犬飼
博史 犬飼
靖 土田
靖 土田
敬士 徳永
敬士 徳永
明 木山
明 木山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Toyota Motor Corp
Original Assignee
Sanyo Electric Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Toyota Motor Corp filed Critical Sanyo Electric Co Ltd
Priority to JP2015072244A priority Critical patent/JP6585365B2/en
Publication of JP2016192338A publication Critical patent/JP2016192338A/en
Application granted granted Critical
Publication of JP6585365B2 publication Critical patent/JP6585365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電流遮断機構を備えた非水電解質二次電池に関する。   The present invention relates to a nonaqueous electrolyte secondary battery provided with a current interruption mechanism.

近年、携帯電話機、携帯型パーソナルコンピュータ、携帯型音楽プレイヤ等の携帯型電子機器の駆動電源として、リチウムイオン二次電池に代表される非水電解質二次電池が多く使用されている。更に、環境保護運動の高まりを背景として二酸化炭素ガス等の排出規制が強化されているため、自動車業界では、ガソリン、ディーゼル油、天然ガス等の化石燃料を使用する自動車だけでなく、リチウムイオン二次電池を用いた電気自動車(EV)やハイブリッド電気自動車(HEV)、及びプラグインハイブリッド自動車(PHEV)の開発が活発に行われている。   In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are often used as a driving power source for portable electronic devices such as mobile phones, portable personal computers, and portable music players. Furthermore, due to the increasing environmental protection movement, regulations on carbon dioxide gas emissions have been strengthened, so in the automobile industry, not only automobiles that use fossil fuels such as gasoline, diesel oil, and natural gas, but also lithium ion Development of an electric vehicle (EV), a hybrid electric vehicle (HEV), and a plug-in hybrid vehicle (PHEV) using secondary batteries has been actively conducted.

この種のリチウムイオン二次電池は、負極活物質としてリチウムイオンの挿入・脱離が可能なカーボン系材料などを用い、正極活物質としてLiCoO2、LiNiO2 、LiMn24 等のリチウム遷移金属複合酸化物などを用い、有機溶媒に溶質としてリチウム塩を溶解した電解液を用いる電池である。 This type of lithium ion secondary battery uses a carbon-based material capable of inserting and removing lithium ions as a negative electrode active material, and a lithium transition metal such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 as a positive electrode active material. The battery uses a composite oxide or the like and uses an electrolytic solution in which a lithium salt is dissolved as a solute in an organic solvent.

このようなリチウムイオン二次電池が過充電状態になると、正極からリチウムが過剰に脱離され、負極ではリチウムの過剰な挿入が生じて、正・負極の両極が熱的に不安定化する。正・負極の両極が熱的に不安定になると、やがては電解液の有機溶媒を分解するように作用し、急激な発熱反応が生じて電池が異常に発熱し、電池の安全性が損なわれるという問題が生じる恐れがある。   When such a lithium ion secondary battery is overcharged, lithium is excessively desorbed from the positive electrode, and excessive insertion of lithium occurs in the negative electrode, causing both the positive and negative electrodes to become thermally unstable. When both the positive and negative electrodes become thermally unstable, it eventually acts to decompose the organic solvent in the electrolyte, causing a sudden exothermic reaction, causing the battery to generate abnormal heat, and the safety of the battery is impaired. There is a risk of problems.

このような問題を解決するため、例えば電解液中に過充電抑制剤として、ビフェニル、シクロヘキシルベンゼン、及びジフェニルエーテルのうち少なくとも一種を添加することにより、過充電時の温度上昇の防止を図ったリチウムイオン二次電池が提案されている(特許文献1参照)。   In order to solve such a problem, for example, at least one of biphenyl, cyclohexylbenzene, and diphenyl ether is added as an overcharge inhibitor in the electrolytic solution, thereby preventing a rise in temperature during overcharge. Secondary batteries have been proposed (see Patent Document 1).

また、電解液の有機溶媒にフェニル基に隣接する第3級炭素を有するアルキルベンゼン誘導体またはシクロアルキルベンゼン誘導体を含有させることにより、低温特性や保存特性などの電池特性に悪影響を及ぼすことがなく、且つ過充電に対して安全性を確保したリチウムイオン二次電池が提案されている。(特許文献2参照)   In addition, the inclusion of an alkylbenzene derivative or cycloalkylbenzene derivative having a tertiary carbon adjacent to the phenyl group in the organic solvent of the electrolytic solution does not adversely affect battery characteristics such as low-temperature characteristics and storage characteristics, and is not excessive. Lithium ion secondary batteries that ensure safety against charging have been proposed. (See Patent Document 2)

このリチウムイオン二次電池では、リチウムイオン二次電池が過充電状態になると、クメン、1,3−ジイソプロピルベンゼン、1,4−ジイソプロピルベンゼン、1−メチルプロピルベンゼン、1,3−ビス(1−メチルプロピル)ベンゼン、1,4−ビス(1−メチルプロピル)ベンゼン、シクロヘキシルベンゼン、シクロペンチルベンゼンなどの添加剤は分解反応を開始してガスを発生するようになる。これと同時に重合反応を開始して重合熱を発生する。この状態で過充電をさらに続けると、ガスの発生量が増大し、過充電を開始してから15〜19分後に電流遮断機構が作動して過充電電流を遮断する。これにより、電池温度も徐々に低下することとなる。   In this lithium ion secondary battery, when the lithium ion secondary battery is overcharged, cumene, 1,3-diisopropylbenzene, 1,4-diisopropylbenzene, 1-methylpropylbenzene, 1,3-bis (1- Additives such as methylpropyl) benzene, 1,4-bis (1-methylpropyl) benzene, cyclohexylbenzene, and cyclopentylbenzene start a decomposition reaction and generate gas. At the same time, a polymerization reaction is started to generate polymerization heat. If the overcharge is further continued in this state, the amount of gas generated increases, and the current interruption mechanism is activated 15 to 19 minutes after the overcharge is started to interrupt the overcharge current. Thereby, battery temperature will also fall gradually.

特開2004−134261号公報JP 2004-134261 A 特開2001−015155号公報JP 2001-015155 A

上述の過充電抑制剤は、一般的に比較的低い電位で分解するため、電池を高い電圧で使用する場合、通常の電池使用時においても分解し、充放電サイクル後に電池特性の低下や安全性の低下が懸念される。   Since the above-mentioned overcharge inhibitor generally decomposes at a relatively low potential, when the battery is used at a high voltage, it is decomposed even during normal battery use, and the battery characteristics are degraded and safety is reduced after the charge / discharge cycle. There is concern about the decline.

対して、炭酸リチウムは分解開始電圧が常温で4.9V付近であり、作動電圧をより高電位にすることが可能なため、高電位で使用する電池の過充電抑制として適していると考えられる。炭酸リチウムは正極活物質合材層に添加する必要があり、過充電抑制剤として効果を得るためには分解時のガス抜け性が十分となる正極活物質合材層の空隙率を確保する必要がある。加えて、過充電時に電圧上昇を促進させるためには、高い極板表面抵抗の確保が必要である。しかし、車載用電池のような高出力が求められる電池では、正極充填密度を高くする必要があり、結果的に空隙率及び極板表面抵抗の低下が起こる。このためガス抜け性が低下し、電流遮断機構が作動しにくくなる課題がある。 On the other hand, lithium carbonate has a decomposition start voltage of around 4.9 V at room temperature and can be operated at a higher potential, so it is considered suitable as an overcharge inhibitor for batteries used at high potential. It is done. Lithium carbonate needs to be added to the positive electrode active material mixture layer, and in order to obtain an effect as an overcharge inhibitor, it is necessary to ensure the porosity of the positive electrode active material mixture layer that allows sufficient gas release during decomposition. There is. In addition, it is necessary to ensure a high electrode plate surface resistance in order to promote a voltage increase during overcharge. However, in a battery such as an in-vehicle battery that requires high output, it is necessary to increase the positive electrode packing density, resulting in a decrease in porosity and electrode plate surface resistance. For this reason, there is a problem that the gas releasing property is lowered and the current interrupting mechanism is difficult to operate.

そのため、炭酸リチウムを用いた電池で過充電抑制としての効果を得るためには、車載用途の非水電解質二次電池に必要な極板表面抵抗(ある程度低い極板表面抵抗)を確保した上で過充電時の電圧を急激に上昇させることができる高い極板表面抵抗とすること、すなわち極板表面抵抗のバランスが重要であり、さらに正極活物質合材層の空隙率が重要となる。 Therefore, in order to a battery using a lithium carbonate to obtain the effect as the overcharge inhibitor, after securing the plate surface resistance required for the non-aqueous electrolyte secondary battery of the vehicle use (somewhat lower plate surface resistance) Therefore, it is important to have a high electrode plate surface resistance that can rapidly increase the voltage during overcharge, that is, the balance of the electrode plate surface resistance, and the porosity of the positive electrode active material mixture layer is also important.

本発明は、過充電時の電圧上昇を急激にして過充電抑制剤の反応を加速させ、電流遮断機構が短時間内に作動する非水電解質二次電池を提供することを目的とする。   An object of the present invention is to provide a non-aqueous electrolyte secondary battery in which a voltage increase during overcharge is suddenly accelerated to accelerate the reaction of an overcharge inhibitor and a current interruption mechanism operates within a short time.

本発明に係る非水電解質二次電池は、リチウムイオンの挿入・脱離が可能なリチウム遷移金属化合物及び炭酸リチウムを含む正極活物質合材層を有する正極板と、リチウムイオンの挿入・脱離が可能な負極活物質を含む負極活物質合材層を有する負極板と、正極板、負極板、及び非水電解質を収納する電池ケースと、を備えた非水電解質二次電池であって、正極板から電池外部に電流を取り出す導電経路、及び負極板から電池外部に電流を取り出す導電経路の少なくとも一方に電池ケース内の圧力の上昇に対応して電流を遮断する電流遮断機構を備え、電池ケース内体積あたりの炭酸リチウム量が7mg/cm以上11mg/cm以下であり、正極活物質合材層の充填密度が2.2〜2.9g/cmであり、正極活物質合材層の空隙率が30〜40%であり、非水電解質は、非水溶媒として、カーボネート類、ラクトン類、エーテル類、エステル類、又はこれら溶媒の2種類以上を混合した溶媒、及び溶質としてリチウム塩からなる。
本発明に係る非水電解質二次電池は、リチウムイオンの挿入・脱離が可能なリチウム遷移金属化合物及び炭酸リチウムを含む正極活物質合材層を有する正極板と、リチウムイオンの挿入・脱離が可能な負極活物質を含む負極活物質合材層を有する負極板と、正極板、負極板、及び非水電解質を収納する電池ケースと、を備えた非水電解質二次電池であって、正極板から電池外部に電流を取り出す導電経路、及び負極板から電池外部に電流を取り出す導電経路の少なくとも一方に電池ケース内の圧力の上昇に対応して電流を遮断する電流遮断機構を備え、電池ケース内体積あたりの炭酸リチウム量が7mg/cm 以上11mg/cm 以下であり、正極活物質合材層の充填密度が2.2〜2.9g/cm であり、正極活物質合材層の空隙率が30〜40%であり、非水電解質は、過充電抑制剤を含まない。
A nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode plate having a positive electrode active material mixture layer containing a lithium transition metal compound capable of inserting and removing lithium ions and lithium carbonate, and insertion and removal of lithium ions. A non-aqueous electrolyte secondary battery comprising: a negative electrode plate having a negative electrode active material mixture layer containing a negative electrode active material capable of; and a battery case containing a positive electrode plate, a negative electrode plate, and a non-aqueous electrolyte, A battery having a current interrupting mechanism for interrupting current in response to an increase in pressure in the battery case, at least one of a conductive path for extracting current from the positive electrode plate to the outside of the battery and a conductive path for extracting current from the negative electrode plate to the outside of the battery; The amount of lithium carbonate per volume in the case is 7 mg / cm 3 or more and 11 mg / cm 3 or less, the packing density of the positive electrode active material mixture layer is 2.2 to 2.9 g / cm 3 , and the positive electrode active material mixture Layer voids There Ri 30-40% der, non-aqueous electrolyte, a non-aqueous solvent, carbonates, lactones, I from ethers, esters, or lithium salt of two or more of these solvents mixed solvent, and a solute The
A nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode plate having a positive electrode active material mixture layer containing a lithium transition metal compound capable of inserting and removing lithium ions and lithium carbonate, and insertion and removal of lithium ions. A non-aqueous electrolyte secondary battery comprising: a negative electrode plate having a negative electrode active material mixture layer containing a negative electrode active material capable of; and a battery case containing a positive electrode plate, a negative electrode plate, and a non-aqueous electrolyte, A battery having a current interrupting mechanism for interrupting current in response to an increase in pressure in the battery case, at least one of a conductive path for extracting current from the positive electrode plate to the outside of the battery and a conductive path for extracting current from the negative electrode plate to the outside of the battery; The amount of lithium carbonate per volume in the case is 7 mg / cm 3 or more and 11 mg / cm 3 or less, the packing density of the positive electrode active material mixture layer is 2.2 to 2.9 g / cm 3 , and the positive electrode active material mixture Layer voids There was 30-40%, the non-aqueous electrolyte is free of overcharge inhibitor.

本発明者らは種々検討を行ったところ、非水電解質二次電池の正極活物質合材層の過充電抑制剤量、及びその正極活物質合材層の空隙率、及び極板表面抵抗を最適化することで、出力特性を大幅に低下させることなく十分な極板表面抵抗が得られ、かつ高温及び低温での過充電時の安全性が向上できることを見出した。   As a result of various studies, the inventors have determined the amount of overcharge inhibitor in the positive electrode active material mixture layer of the nonaqueous electrolyte secondary battery, the porosity of the positive electrode active material mixture layer, and the electrode plate surface resistance. It has been found that by optimizing, sufficient electrode plate surface resistance can be obtained without significantly degrading the output characteristics, and safety during overcharge at high and low temperatures can be improved.

本発明に係る実施の形態において、正極活物質合材層の空隙率は30%以上40%以下であることが好ましい。正極活物質合材層の空隙率が30%を下回ると、過充電時のガス抜け性が十分でなく、過充電時に電流遮断機構が作動し難くなる可能性がある。一方、正極活物質合材層の空隙率が40%を超えると、極板表面抵抗が増大することで出力特性が低下し、ハイブリッド電気自動車(HEV)やプラグインハイブリッド自動車用途のような高出力が求められるリチウムイオン二次電池としては好ましくない。また、電池ケース内体積あたりの炭酸リチウム量が7mg/cm3以上であることが好ましく、これ未満であると過充電時の電流遮断機構が作動するまでの時間が遅くなる可能性がある。加えて、上限は、11mg/cm3以下とすることが電気特性(容量・出力)確保の面から好ましい。 In the embodiment according to the present invention, the porosity of the positive electrode active material mixture layer is preferably 30% or more and 40% or less. If the porosity of the positive electrode active material mixture layer is less than 30%, the gas releasing property during overcharging may not be sufficient, and the current interrupt mechanism may become difficult to operate during overcharging. On the other hand, when the porosity of the positive electrode active material mixture layer exceeds 40%, the output characteristics deteriorate due to an increase in electrode plate surface resistance, resulting in high output such as in hybrid electric vehicles (HEV) and plug-in hybrid vehicles. Is not preferable as a lithium ion secondary battery. In addition, the amount of lithium carbonate per volume in the battery case is preferably 7 mg / cm 3 or more, and if it is less than this, there is a possibility that the time until the current interruption mechanism at the time of overcharging is activated may be delayed. In addition, the upper limit is preferably 11 mg / cm 3 or less from the viewpoint of securing electrical characteristics (capacity / output).

本発明に係る実施の形態の非水電解質二次電池の斜視図である。1 is a perspective view of a nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 本発明に係る実施の形態の非水電解質二次電池について、電極体の構造と、電流遮断機構の各要素を示す図である。It is a figure which shows each element of the structure of an electrode body, and an electric current interruption mechanism about the nonaqueous electrolyte secondary battery of embodiment which concerns on this invention.

以下、本発明に係る実施の形態について、実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池の例を示すものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, embodiments according to the present invention will be described in detail using examples and comparative examples. However, the following examples show examples of non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

まず、実施例及び比較例に係る非水電解質二次電池としての角形のリチウムイオン二次電池10の構成について、図1,2を用いて説明する。図1に示すように、角形のリチウムイオン二次電池10は、角形の有底筒状の外装缶12内に、正極板と負極板とがセパレータを介して積層し巻回されて偏平形に成形された電極体14が外装缶12の缶軸方向に対し横向きに収納されており、封口板20により外装缶12の開口が封口されている。   First, the configuration of a prismatic lithium ion secondary battery 10 as a nonaqueous electrolyte secondary battery according to Examples and Comparative Examples will be described with reference to FIGS. As shown in FIG. 1, a rectangular lithium ion secondary battery 10 is formed into a flat shape by laminating and winding a positive electrode plate and a negative electrode plate through a separator in a rectangular bottomed cylindrical outer can 12. The molded electrode body 14 is accommodated laterally with respect to the can axis direction of the outer can 12, and the opening of the outer can 12 is sealed by the sealing plate 20.

図1には、直交するXYZの3方向を示した。Z方向は外装缶12の軸方向で+Z方向が外装缶12の開口側である。Y軸方向は外装缶12の横方向で、正極外部端子40側が+Y方向、負極外部端子30側が−Y方向である。X方向は外装缶12の厚さ方向である。   FIG. 1 shows three XYZ directions orthogonal to each other. The Z direction is the axial direction of the outer can 12, and the + Z direction is the opening side of the outer can 12. The Y-axis direction is the lateral direction of the outer can 12, the positive external terminal 40 side is the + Y direction, and the negative external terminal 30 side is the −Y direction. The X direction is the thickness direction of the outer can 12.

また、封口板20には、ガス排出弁22、電解液注液孔及び電解液注液孔を封止する封止栓24が設けられている。ガス排出弁22は、後述する電流遮断機構の作動圧よりも高いガス圧が加わったとき破断し、ガスが電池外部へ排出される。   The sealing plate 20 is provided with a gas discharge valve 22, an electrolyte solution injection hole, and a sealing plug 24 that seals the electrolyte solution injection hole. The gas discharge valve 22 is broken when a gas pressure higher than an operating pressure of a current interrupt mechanism described later is applied, and the gas is discharged to the outside of the battery.

また、封口板20の外面には、絶縁部材32,42を介して負極外部端子30と正極外部端子40とが形成されている。負極外部端子30は、負極集電体16を介して電極体14の負極板と接続され、正極外部端子40は、正極集電体18を介して電極体14の正極板と接続される。この負極外部端子30及び正極外部端子40は、リチウムイオン二次電池10を単独で使用するか、直列接続ないし並列接続で使用するか等に応じて、その形状を適宜変更できる。また、負極外部端子30及び正極外部端子40に端子板34,44やボルト形状の外部接続端子36,46等を取り付けて使用することもできる。   A negative electrode external terminal 30 and a positive electrode external terminal 40 are formed on the outer surface of the sealing plate 20 via insulating members 32 and 42. The negative electrode external terminal 30 is connected to the negative electrode plate of the electrode body 14 via the negative electrode current collector 16, and the positive electrode external terminal 40 is connected to the positive electrode plate of the electrode body 14 via the positive electrode current collector 18. The shapes of the negative electrode external terminal 30 and the positive electrode external terminal 40 can be appropriately changed depending on whether the lithium ion secondary battery 10 is used alone, or in series connection or parallel connection. Moreover, the terminal plates 34 and 44, the bolt-shaped external connection terminals 36 and 46, etc. can also be attached to the negative electrode external terminal 30 and the positive electrode external terminal 40, and can be used.

次に、角形のリチウムイオン二次電池10の電極体14と電流遮断機構100の構成について図2を用いて説明する。電流遮断機構100は、負極側の導電経路または正極側の導電経路の少なくとも一方に設けられるが、以下では、正極側の導電経路70に設けられるものとする。図2は、紙面の下方側から上方側に向かって、電極体14において巻回前の積層状態を示す図2(a)、電極体14の正極側を示す斜視図である図2(b)、電流遮断機構100を含む正極側の導電経路70の各要素を分解した分解図である図2(c)が示される。   Next, the structure of the electrode body 14 and the current interruption mechanism 100 of the square lithium ion secondary battery 10 will be described with reference to FIG. The current interrupting mechanism 100 is provided in at least one of the negative electrode side conductive path and the positive electrode side conductive path, but in the following, it is provided in the positive electrode side conductive path 70. FIG. 2 is a perspective view showing a stacked state of the electrode body 14 before winding in the electrode body 14 from the lower side to the upper side of the drawing, and a perspective view showing the positive electrode side of the electrode body 14. FIG. 2C is an exploded view in which each element of the positive-side conductive path 70 including the current interruption mechanism 100 is exploded.

図2(a)に示すように、電極体14は、負極板50と正極板60とセパレータ58,59を積層し、これをY軸周りに巻回したものである。負極板50は、負極芯体52と、負極芯体52の上に形成される負極活物質合材層54で構成され、−Y軸方向の端部には負極活物質合材層54が形成されない負極芯体露出部56が設けられる。負極芯体露出部は負極集電体16と接続される部分である。正極板60は、正極芯体62と、正極芯体62の上に形成される正極活物質合材層64で構成され、+Y軸方向の端部には正極活物質合材層64が形成されない正極芯体露出部66が設けられる。正極芯体露出部は正極集電体18と接続される部分である。セパレータ58,59は、負極板50と正極板60の積層の間にそれぞれ配置される。   As shown in FIG. 2A, the electrode body 14 is formed by laminating a negative electrode plate 50, a positive electrode plate 60, and separators 58 and 59, which are wound around the Y axis. The negative electrode plate 50 includes a negative electrode core body 52 and a negative electrode active material mixture layer 54 formed on the negative electrode core body 52, and the negative electrode active material mixture layer 54 is formed at the end in the −Y-axis direction. An unexposed negative electrode core exposed portion 56 is provided. The negative electrode core exposed portion is a portion connected to the negative electrode current collector 16. The positive electrode plate 60 includes a positive electrode core body 62 and a positive electrode active material mixture layer 64 formed on the positive electrode core body 62, and the positive electrode active material mixture layer 64 is not formed at the end in the + Y-axis direction. A positive electrode core exposed portion 66 is provided. The positive electrode core exposed portion is a portion connected to the positive electrode current collector 18. The separators 58 and 59 are disposed between the negative electrode plate 50 and the positive electrode plate 60, respectively.

図2(b)に示すように、電極体14の+Y方向端面には、正極芯体露出部66が積層巻回され、圧縮された形態で突き出す。図示を省略したが、電極体14の−Y方向端面には、負極芯体露出部56が積層巻回され、圧縮された形態で突き出す。以下では、正極側について説明する。   As shown in FIG. 2B, a positive electrode core exposed portion 66 is laminated and wound on the end face of the electrode body 14 in the + Y direction, and protrudes in a compressed form. Although not shown, the negative electrode core body exposed portion 56 is laminated and wound on the end surface of the electrode body 14 in the −Y direction, and protrudes in a compressed form. Hereinafter, the positive electrode side will be described.

図2(c)に示すように、電極体14の+Y方向端部の正極芯体露出部66の両外面に、正極集電体18と集電体受部品75とが接続されている。正極集電体18は、タブ部72と、タブ部72から−Z方向に延伸し、集電体受部品75と対となって正極芯体露出部66を挟む集電体本体部74を含む。   As shown in FIG. 2C, the positive electrode current collector 18 and the current collector receiving part 75 are connected to both outer surfaces of the positive electrode core exposed part 66 at the + Y direction end of the electrode body 14. The positive electrode current collector 18 includes a tab portion 72 and a current collector main body portion 74 that extends in the −Z direction from the tab portion 72 and sandwiches the positive electrode core exposed portion 66 as a pair with the current collector receiving component 75. .

正極外部端子40は、筒部76を備え、内部に貫通孔78が形成されている。そして、正極外部端子40の筒部76は、ガスケット80、封口板20、絶縁部材42及びカップ状の導電部材82にそれぞれ設けられた貫通孔に挿入され、正極外部端子40における筒部76の先端部77が加締められて一体に固定されている。   The positive electrode external terminal 40 includes a cylindrical portion 76 and a through hole 78 is formed therein. The cylindrical portion 76 of the positive electrode external terminal 40 is inserted into a through hole provided in each of the gasket 80, the sealing plate 20, the insulating member 42, and the cup-shaped conductive member 82. The portion 77 is crimped and fixed integrally.

また、導電部材82の矩形筒状部の下端の周縁部には反転板84の周囲が溶接されており、この反転板84の中央部には、正極集電体18のタブ部72に形成された薄肉部86がレーザ溶接により溶接され溶接部が形成されている。また、正極集電体18のタブ部72に形成された薄肉部86には、溶接部の周囲に環状の溝88が形成されている。正極集電体18のタブ部72と反転板84の間には、貫通孔を有する樹脂製の集電体タブホルダ90が配置されており、集電体タブホルダ90の貫通孔を介して正極集電体18のタブ部72と反転板84が接続されている。   The periphery of the reversing plate 84 is welded to the peripheral edge of the lower end of the rectangular cylindrical portion of the conductive member 82, and is formed in the tab portion 72 of the positive electrode current collector 18 at the center of the reversing plate 84. The thin portion 86 is welded by laser welding to form a welded portion. In addition, an annular groove 88 is formed around the welded portion in the thin portion 86 formed in the tab portion 72 of the positive electrode current collector 18. A resin current collector tab holder 90 having a through hole is disposed between the tab portion 72 of the positive electrode current collector 18 and the reverse plate 84, and the positive electrode current collector is interposed through the through hole of the current collector tab holder 90. The tab portion 72 of the body 18 and the reverse plate 84 are connected.

以上の構成により、正極芯体露出部66は、正極集電体18、正極集電体18のタブ部72、反転板84及び導電部材82を介して正極外部端子40と電気的に接続されている。   With the above configuration, the positive electrode core exposed portion 66 is electrically connected to the positive electrode external terminal 40 via the positive electrode current collector 18, the tab portion 72 of the positive electrode current collector 18, the reverse plate 84, and the conductive member 82. Yes.

ここで、反転板84、正極集電体18のタブ部72、及び集電体タブホルダ90が電流遮断機構100を形成する。すなわち、反転板84は、外装缶12内の圧力が増加すると正極外部端子40の貫通孔78側に変形するようになっており、反転板84の中央部には正極集電体18のタブ部72の薄肉部86が溶接されているため、外装缶12内の圧力が所定値を超えると正極集電体18のタブ部72の薄肉部86が環状の溝88の部分で破断するため、反転板84と正極集電体18との間の電気的接続が遮断されるようになっている。なお、電流遮断機構100としては、上述の構成のもの以外に、反転板84に溶接され、この溶接部の周囲を正極集電体18に溶接した金属箔からなるものを使用し、外装缶12内部の圧力が高まって反転板84が変形したときに金属箔が破断する構成のものも採用することができる。また、正極集電体18のタブ部72と反転板84との接続強度を調整し、外装缶12内の圧力が所定値を超えると、正極集電体18のタブ部72と反転板84との接続部が破断するようにしてもよい。   Here, the reverse plate 84, the tab portion 72 of the positive electrode current collector 18, and the current collector tab holder 90 form the current interrupt mechanism 100. That is, the reversing plate 84 is deformed toward the through hole 78 side of the positive electrode external terminal 40 when the pressure in the outer can 12 increases, and the tab portion of the positive electrode current collector 18 is formed at the center of the reversing plate 84. Since the thin portion 86 of 72 is welded, if the pressure in the outer can 12 exceeds a predetermined value, the thin portion 86 of the tab portion 72 of the positive electrode current collector 18 is broken at the annular groove 88 portion. The electrical connection between the plate 84 and the positive electrode current collector 18 is cut off. In addition, as the electric current interruption mechanism 100, what is comprised from the metal foil which welded to the inversion board 84 and welded the circumference | surroundings of this welding part to the positive electrode collector 18 besides the thing of the above-mentioned structure is used, and the exterior can 12 A configuration in which the metal foil breaks when the internal pressure increases and the reversal plate 84 is deformed can also be employed. Further, when the connection strength between the tab portion 72 of the positive electrode current collector 18 and the reverse plate 84 is adjusted and the pressure in the outer can 12 exceeds a predetermined value, the tab portion 72 of the positive electrode current collector 18 and the reverse plate 84 The connecting portion may be broken.

また、正極外部端子40に形成された貫通孔78は、ゴム製の端子栓(図示を省略した)により封止されている。更に、端子栓の上部には、金属製の板材がレーザ溶接によって正極外部端子40に溶接固定されている。   The through hole 78 formed in the positive external terminal 40 is sealed with a rubber terminal plug (not shown). Further, a metal plate is welded and fixed to the positive external terminal 40 by laser welding on the upper part of the terminal plug.

なお、ここでは正極側の導電経路70に電流遮断機構100を設ける形態を説明したが、負極側の導電経路に電流遮断機構を設けるようにしてもよい。   Here, the mode in which the current interrupting mechanism 100 is provided in the conductive path 70 on the positive electrode side has been described, but a current interrupting mechanism may be provided in the conductive path on the negative electrode side.

角形のリチウムイオン二次電池10を完成させるには、正極外部端子40及び負極外部端子30にそれぞれ電気的に接続された電極体14を外装缶12内に挿入し、封口板20を外装缶12の開口に嵌合させて、この嵌合部分をレーザ溶接して封口する。そして、電解液注液孔から所定量の電解液を注入した後、電解液注液孔を封止栓24によって封止すればよい。   In order to complete the rectangular lithium ion secondary battery 10, the electrode body 14 electrically connected to the positive external terminal 40 and the negative external terminal 30 is inserted into the outer can 12, and the sealing plate 20 is inserted into the outer can 12. It is made to fit in opening of this, and this fitting part is laser-welded and sealed. Then, after injecting a predetermined amount of electrolytic solution from the electrolytic solution injection hole, the electrolytic solution injection hole may be sealed with the sealing plug 24.

また、角形のリチウムイオン二次電池10では、電流遮断機構100の電池外側に対応する側の空間は完全に密閉されている。この電流遮断機構100が作動した後、更に外装缶12内の圧力が増加すると、封口板20に設けられたガス排出弁22が開放されることにより、ガスが電池外部へと排出される。   Further, in the rectangular lithium ion secondary battery 10, the space on the side corresponding to the battery outer side of the current interrupt mechanism 100 is completely sealed. When the pressure in the outer can 12 further increases after the current interrupting mechanism 100 is activated, the gas discharge valve 22 provided on the sealing plate 20 is opened, and the gas is discharged to the outside of the battery.

次に、角形のリチウムイオン二次電池10の製造方法について、更に詳細に説明する。   Next, the manufacturing method of the square lithium ion secondary battery 10 will be described in more detail.

[正極板の作製]
Li2CO3と(Ni0.35Co0.35Mn0.334とを、Liと(Ni0.35Co0.35Mn0.3)とのモル比が1:1となるように混合した。次いで、この混合物を空気雰囲気中にて900℃で20時間焼成し、LiNi0.35Co0.35Mn0.32で表されるリチウム遷移金属酸化物を得て、正極活物質とした。以上のようにして得られた正極活物質と、過充電抑制剤としての炭酸リチウムと、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVdF)のNMP溶液とを、リチウム遷移金属酸化物:炭酸リチウム:カーボンブラック:ポリフッ化ビニリデン(PVdF)の質量比が89:2:7:2となるように混練し、正極スラリーを作製した。
[Production of positive electrode plate]
Li 2 CO 3 and (Ni 0.35 Co 0.35 Mn 0.3 ) 3 O 4 were mixed so that the molar ratio of Li to (Ni 0.35 Co 0.35 Mn 0.3 ) was 1: 1. Next, this mixture was fired at 900 ° C. for 20 hours in an air atmosphere to obtain a lithium transition metal oxide represented by LiNi 0.35 Co 0.35 Mn 0.3 O 2 , and used as a positive electrode active material. The positive electrode active material obtained as described above, lithium carbonate as an overcharge inhibitor, acetylene black as a conductive agent, and an NMP solution of polyvinylidene fluoride (PVdF) as a binder were converted into a lithium transition. A positive electrode slurry was prepared by kneading so that the mass ratio of metal oxide: lithium carbonate: carbon black: polyvinylidene fluoride (PVdF) was 89: 2: 7: 2.

作製した正極スラリーを、正極芯体62としてのアルミニウム合金箔(厚さ15μm)の上に塗布した後、乾燥させてスラリー作製時に溶媒として使用したNMPを除去し正極活物質合材層64を形成した。   The prepared positive electrode slurry is applied onto an aluminum alloy foil (thickness 15 μm) as the positive electrode core body 62, and then dried to remove NMP used as a solvent when forming the slurry to form the positive electrode active material mixture layer 64 did.

その後、圧延ロールを用いて所定の充填密度(2.43g/cm3)、空隙率(38%)になるまで圧延し、所定寸法に切断して正極板60を作製した。正極板60における充填密度は、2.2〜2.9g/cm3の範囲であってもよい。 Then, it rolled until it became a predetermined filling density (2.43 g / cm < 3 >) and the porosity (38%) using the rolling roll, it cut | disconnected to the predetermined dimension, and the positive electrode plate 60 was produced. The packing density in the positive electrode plate 60 may be in the range of 2.2 to 2.9 g / cm 3 .

[負極板の作製]
負極活物質としての天然黒鉛と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着剤としてのスチレン−ブタジエン−ラバー(SBR)とを水と共に混練して負極スラリーを作製した。ここで、負極活物質:カルボキシメチルセルロース(CMC):スチレン−ブタジエン−ラバー(SBR)の質量比は98.8:1:0.2となるように混合した。
[Production of negative electrode plate]
Natural graphite as a negative electrode active material, carboxymethyl cellulose (CMC) as a thickener, and styrene-butadiene rubber (SBR) as a binder were kneaded with water to prepare a negative electrode slurry. Here, it mixed so that the mass ratio of negative electrode active material: carboxymethylcellulose (CMC): styrene-butadiene-rubber (SBR) might be 98.8: 1: 0.2.

ついで、作製した負極スラリーを、負極芯体52としての銅箔(厚さが8μm)の上に塗布した後、乾燥させてスラリー作製時に溶媒として使用した水を除去し負極活物質合材層54を形成した。   Next, the prepared negative electrode slurry is applied onto a copper foil (thickness of 8 μm) as the negative electrode core body 52, and then dried to remove water used as a solvent at the time of slurry preparation to remove the negative electrode active material mixture layer 54. Formed.

その後、圧延ローラーを用いて所定の充填密度(1.06g/cm3)になるまで圧延した。負極板50における充填密度は、0.9〜1.5g/cm3の範囲であってもよい。 Then, it rolled until it became the predetermined filling density (1.06 g / cm < 3 >) using the rolling roller. The filling density in the negative electrode plate 50 may be in the range of 0.9 to 1.5 g / cm 3 .

次いで、非水電解質二次電池には安全性向上が求められていることから、導電性異物混入による内部短絡防止を目的に、アルミナと、結着剤と、溶剤としてNMPを質量比30:0.9:69.1となるように混合し、ビーズミルにて混合分散処理を施し、保護層スラリーを作製した。このように作製した保護層スラリーを負極活物質合材層54上に塗布した後、溶剤として使用したNMPを乾燥除去して、負極活物質合材層54の表面にアルミナと結着剤からなる保護層を形成した。その後、所定寸法に切断して、負極板50を作製した。なお、上記アルミナとバインダーからなる層の厚みは4μmとした。なお、正極活物質合材層64上に保護層を設けることもできる。   Next, since non-aqueous electrolyte secondary batteries are required to improve safety, for the purpose of preventing internal short-circuiting due to contamination of conductive foreign matters, alumina, binder, and NMP as a solvent have a mass ratio of 30: 0. 9: 69.1 and mixed and dispersed in a bead mill to prepare a protective layer slurry. After the protective layer slurry thus prepared is applied on the negative electrode active material mixture layer 54, NMP used as a solvent is dried and removed, and the surface of the negative electrode active material mixture layer 54 is made of alumina and a binder. A protective layer was formed. Then, it cut | disconnected to the predetermined dimension and produced the negative electrode plate 50. FIG. The thickness of the layer made of alumina and binder was 4 μm. Note that a protective layer may be provided on the positive electrode active material mixture layer 64.

正極板60及び負極板50の充填密度は以下のようにして求めた。充填密度を求める対象の正極板60または負極板50を電極板として、電極板を10cm2に切り出し、電極板10cm2の質量A(g)、電極板の厚みC(cm)を測定する。次いで、正極板60の場合は正極芯体62を、負極板50の場合は負極芯体52を、芯体として、芯体10cm2の質量B(g)、及び芯体厚みD(cm)を測定する。そして、次の式から充填密度を求める。
充填密度=(A―B)/〔(C−D)×10cm2
The packing density of the positive electrode plate 60 and the negative electrode plate 50 was determined as follows. As the electrode plate of the negative plate 60 or negative electrode plate 50 of a subject to obtain the packing density, it cuts out electrode plate 10 cm 2, measuring the mass A of the electrode plate 10 cm 2 (g), the thickness of the electrode plate C (cm). Then, in the case of the positive electrode plate 60, the positive electrode core body 62 is used, and in the case of the negative electrode plate 50, the negative electrode core body 52 is used as the core body, and the mass B (g) of the core body 10 cm 2 and the core body thickness D (cm) are taking measurement. Then, the packing density is obtained from the following equation.
Packing density = (A−B) / [(C−D) × 10 cm 2 ]

また正極活物質合材層64の空隙率は、正極活物質合材層64全体の体積から、活物質、導電材、結着材、及び炭酸リチウムの体積をそれぞれ引き、正極活物質合材層64内の空間体積を算出後、正極活物質合材層64全体に対する空間の割合を百分率で算出した。   Further, the porosity of the positive electrode active material mixture layer 64 is obtained by subtracting the volumes of the active material, conductive material, binder, and lithium carbonate from the total volume of the positive electrode active material mixture layer 64, respectively. After calculating the space volume in 64, the ratio of the space to the whole positive electrode active material mixture layer 64 was calculated as a percentage.

[偏平状の電極体の作製]
偏平状の電極体14は、上述のようにして作製された正極板60及び負極板50を用い、正極板60及び負極板50を、巻回軸であるY方向の一方の端部である+Y方向端部に正極芯体露出部66、他方の端部である−Y方向端部に負極芯体露出部56がそれぞれ位置するように、ポリエチレン製多孔質のセパレータ58,59を介して偏平状に巻回することにより作製した。
[Production of flat electrode body]
The flat electrode body 14 uses the positive electrode plate 60 and the negative electrode plate 50 manufactured as described above, and the positive electrode plate 60 and the negative electrode plate 50 are + Y that is one end in the Y direction that is a winding axis. Through the porous separators 58 and 59 made of polyethylene so that the positive electrode core exposed portion 66 is located at the end in the direction and the negative electrode core exposed portion 56 is located at the end in the -Y direction which is the other end. It was produced by winding it around.

[電解液の調製]
非水電解質の非水溶媒としてエチレンカーボネート30体積%、メチルエチルカーボネート30体積%、及びジメチルカーボネート40体積%よりなる混合溶媒に、電解質塩としてLiPF6を1.15mol/Lとなるように添加して混合し、電解液を調製した。
[Preparation of electrolyte]
LiPF 6 as an electrolyte salt was added to a mixed solvent consisting of 30% by volume of ethylene carbonate, 30% by volume of methyl ethyl carbonate and 40% by volume of dimethyl carbonate as a non-aqueous solvent for the non-aqueous electrolyte so as to be 1.15 mol / L. To prepare an electrolyte solution.

[導電経路の作製]
上記のように電流遮断機構100は、正極側または負極側の少なくとも一方に設けるが、ここでは正極側に電流遮断機構100を設けるものとする。
[Production of conductive path]
As described above, the current interrupting mechanism 100 is provided on at least one of the positive electrode side and the negative electrode side. Here, the current interrupting mechanism 100 is provided on the positive electrode side.

電流遮断機構100を備えた正極側の導電経路70の作製手順について説明する。まず、封口板20の上面にガスケット80を、封口板20の下面に絶縁部材42及び導電部材82をそれぞれ配置し、それぞれの部材に設けられた貫通孔に正極外部端子40の筒部76を挿通させた。その後、正極外部端子40の筒部76の先端部77を加締めることにより、正極外部端子40、ガスケット80、封口板20、絶縁部材42、及び導電部材82を一体的に固定した。   A manufacturing procedure of the conductive path 70 on the positive electrode side provided with the current interruption mechanism 100 will be described. First, the gasket 80 is disposed on the upper surface of the sealing plate 20, the insulating member 42 and the conductive member 82 are disposed on the lower surface of the sealing plate 20, and the cylindrical portion 76 of the positive electrode external terminal 40 is inserted into the through-hole provided in each member. I let you. Thereafter, the positive electrode external terminal 40, the gasket 80, the sealing plate 20, the insulating member 42, and the conductive member 82 were integrally fixed by crimping the tip 77 of the cylindrical portion 76 of the positive electrode external terminal 40.

次いで、カップ状の導電部材82の周縁部に反転板84の周囲を完全に密閉するように溶接した。なお、ここでは、反転板84としては薄いアルミニウム製の板を下部が突出するように成型処理したものを用いた。導電部材82と反転板84との間の溶接法としては、レーザ溶接法を用いた。   Subsequently, the periphery of the reversing plate 84 was welded to the peripheral edge of the cup-shaped conductive member 82 so as to be completely sealed. Here, as the reversing plate 84, a thin aluminum plate formed by molding so that the lower portion protrudes was used. As a welding method between the conductive member 82 and the reverse plate 84, a laser welding method was used.

反転板84に樹脂製の集電体タブホルダ90を当接し、集電体タブホルダ90と絶縁部材42とをラッチ固定した。図2において、集電体タブホルダ90にラッチ用の溝部92と、絶縁部材42にラッチ用の突起94を示した。   The current collector tab holder 90 made of resin was brought into contact with the reversing plate 84, and the current collector tab holder 90 and the insulating member 42 were latched and fixed. In FIG. 2, the current collector tab holder 90 shows a latching groove 92, and the insulating member 42 shows a latching protrusion 94.

次いで、正極集電体18のタブ部72に設けた貫通孔96に、集電体タブホルダ90の下面に設けた突出部(図示を省略した)を挿入した後、この突出部を加熱しながら加締めることにより、集電体タブホルダ90と正極集電体18を固定した。そして、正極集電体18の溝で囲まれた領域(図示を省略した)と反転板84とをレーザ溶接法によって溶接した。その後、正極外部端子40の頂部より貫通孔78内に所定圧力のN2ガスを導入し、導電部材82と反転板84との間の溶接部の密封状態を検査した。   Next, a protrusion (not shown) provided on the lower surface of the current collector tab holder 90 is inserted into the through hole 96 provided in the tab portion 72 of the positive electrode current collector 18, and then this protrusion is heated while being heated. The current collector tab holder 90 and the positive electrode current collector 18 were fixed by tightening. And the area | region (illustration omitted) surrounded by the groove | channel of the positive electrode collector 18 and the inversion board 84 were welded by the laser welding method. Thereafter, N 2 gas having a predetermined pressure was introduced into the through hole 78 from the top of the positive electrode external terminal 40, and the sealed state of the welded portion between the conductive member 82 and the reversing plate 84 was inspected.

その後、正極外部端子40の貫通孔78内に端子栓を挿入し、金属板をレーザ溶接によって正極外部端子40に溶接固定した。   Thereafter, a terminal plug was inserted into the through hole 78 of the positive external terminal 40, and the metal plate was welded and fixed to the positive external terminal 40 by laser welding.

電流遮断機構100を設けない負極側の導電経路については、封口板20の上面にガスケット80を配置し、封口板20の下面に絶縁部材42及び負極集電体16を配置し、それぞれの部材に形成された貫通孔に負極外部端子30の筒部を挿通させた。その後、負極外部端子30の先端部を加締めることにより、負極外部端子30、ガスケット80、封口板20、絶縁部材42、及び負極集電体16を一体に固定した。   For the conductive path on the negative electrode side where the current interruption mechanism 100 is not provided, the gasket 80 is disposed on the upper surface of the sealing plate 20, the insulating member 42 and the negative electrode current collector 16 are disposed on the lower surface of the sealing plate 20, and The cylindrical part of the negative electrode external terminal 30 was inserted through the formed through hole. Then, the negative electrode external terminal 30, the gasket 80, the sealing board 20, the insulating member 42, and the negative electrode collector 16 were fixed integrally by crimping the front-end | tip part of the negative electrode external terminal 30. FIG.

[角形リチウムイオン二次電池の作製]
上記の方法で封口板に固定された正極集電体18及び正極集電体受部品75を電極体14の正極芯体露出部66の両外面に当接して抵抗溶接により固定した。また、上記の方法で封口板20に固定された負極集電体16及び負極集電体受部品を電極体14の負極芯体露出部56の両外面に当接して抵抗溶接により固定した。
[Preparation of prismatic lithium-ion secondary battery]
The positive electrode current collector 18 and the positive electrode current collector receiving part 75 fixed to the sealing plate by the above method were brought into contact with both outer surfaces of the positive electrode core exposed portion 66 of the electrode body 14 and fixed by resistance welding. Further, the negative electrode current collector 16 and the negative electrode current collector receiving part fixed to the sealing plate 20 by the above method were brought into contact with both outer surfaces of the negative electrode core body exposed portion 56 of the electrode body 14 and fixed by resistance welding.

その後、電極体14の外周を絶縁シートで被覆してから、電極体14を絶縁シートと共に角形の外装缶12内に挿入し、封口板20を外装缶12の開口部に嵌合させた。そして、封口板20と外装缶12との嵌合部をレーザ溶接した。   Thereafter, the outer periphery of the electrode body 14 was covered with an insulating sheet, and then the electrode body 14 was inserted into the rectangular outer can 12 together with the insulating sheet, and the sealing plate 20 was fitted into the opening of the outer can 12. And the fitting part of the sealing board 20 and the armored can 12 was laser-welded.

[実施例1]
次いで、上述のようにして調製された非水電解液を注入した。この後封口することにより、実施例1の非水電解質二次電池を作製した。
[Example 1]
Subsequently, the non-aqueous electrolyte prepared as described above was injected. Thereafter, the nonaqueous electrolyte secondary battery of Example 1 was produced by sealing.

[実施例2]
正極充填密度を2.61g/cm3、正極活物質合材層64の空隙率を34%になるように作製する以外は、実施例1と同様の方法で実施例2の非水電解質二次電池を作製した。
[Example 2]
The nonaqueous electrolyte secondary of Example 2 was prepared in the same manner as in Example 1 except that the positive electrode packing density was 2.61 g / cm 3 and the porosity of the positive electrode active material mixture layer 64 was 34%. A battery was produced.

[比較例1]
正極充填密度を2.06g/cm3、正極活物質合材層64の空隙率を47%になるように作製する以外は、実施例1と同様の方法で比較例1の非水電解質二次電池を作製した。
[Comparative Example 1]
The nonaqueous electrolyte secondary of Comparative Example 1 was prepared in the same manner as in Example 1 except that the positive electrode packing density was 2.06 g / cm 3 and the porosity of the positive electrode active material mixture layer 64 was 47%. A battery was produced.

[比較例2]
正極充填密度を2.15g/cm3、正極活物質合材層64の空隙率を45%になるように作製する以外は、実施例1と同様の方法で比較例2の非水電解質二次電池を作製した。
[Comparative Example 2]
The nonaqueous electrolyte secondary of Comparative Example 2 was prepared in the same manner as in Example 1 except that the positive electrode packing density was 2.15 g / cm 3 and the porosity of the positive electrode active material mixture layer 64 was 45%. A battery was produced.

[実施例3]
正極充填密度を2.55g/cm3、正極活物質合材層64の空隙率を37%になるように作製する以外は、実施例1と同様の方法で実施例3の非水電解質二次電池を作製した。
[Example 3]
The nonaqueous electrolyte secondary of Example 3 was prepared in the same manner as in Example 1 except that the positive electrode packing density was 2.55 g / cm 3 and the porosity of the positive electrode active material mixture layer 64 was 37%. A battery was produced.

[実施例4]
正極充填密度を2.63g/cm3、正極活物質合材層64の空隙率を35%になるように作製する以外は、実施例1と同様の方法で実施例4の非水電解質二次電池を作製した。
[Example 4]
The nonaqueous electrolyte secondary of Example 4 was prepared in the same manner as in Example 1 except that the positive electrode packing density was 2.63 g / cm 3 and the porosity of the positive electrode active material mixture layer 64 was 35%. A battery was produced.

[極板表面抵抗測定条件]
実施例1,2及び比較例1,2の正極板60に関し、25℃の室温化において2端子法で表面抵抗を測定した。
[Electrode surface resistance measurement conditions]
Regarding the positive electrode plates 60 of Examples 1 and 2 and Comparative Examples 1 and 2, the surface resistance was measured by a two-terminal method at room temperature of 25 ° C.

[高温及び低温での過充電試験条件]
高温過充電試験は、60℃の環境下で、125Aで充電深度が140%になるまでの条件で充電を行った。低温過充電試験は、−10℃の環境下で、55Aで充電深度が180%になるまでの条件で充電を行った。
[Overcharge test conditions at high and low temperatures]
In the high-temperature overcharge test, the battery was charged under conditions of 125A and a charge depth of 140% under an environment of 60 ° C. In the low-temperature overcharge test, charging was performed under the condition of 55A at a charging depth of 180% in an environment of -10 ° C.

[外装容器(電池ケース)内の空間体積に対する炭酸リチウム量の算出]
外装容器内の空間体積に対する炭酸リチウム量の算出方法として、まず、外装缶12の内寸と封口板20の厚みから容器内の全体積を算出し、電極体14の構成材料の質量及び比重から算出した電極体14の体積を引くことで外装容器内の空間体積を算出した。最後に、(炭酸リチウム量/外装容器内体積)の値から、外装容器内の空間体積に対する炭酸リチウム量を算出した。
[Calculation of the amount of lithium carbonate relative to the space volume in the outer container (battery case)]
As a method of calculating the amount of lithium carbonate relative to the space volume in the outer container, first, the total volume in the container is calculated from the inner dimensions of the outer can 12 and the thickness of the sealing plate 20, and from the mass and specific gravity of the constituent materials of the electrode body 14 The space volume in the outer container was calculated by subtracting the calculated volume of the electrode body 14. Finally, the amount of lithium carbonate relative to the space volume in the exterior container was calculated from the value of (amount of lithium carbonate / volume in the exterior container).

[試験結果]   [Test results]

実施例1及び2、比較例1及び2の試験結果を表1に示す。また実施例3及び4の試験結果を表2,3に示す。なお、これらの表で、正極活物質合材層64を単に正極合材と示し、電流遮断機構100をCID(安全機構)と示した。   Table 1 shows the test results of Examples 1 and 2 and Comparative Examples 1 and 2. The test results of Examples 3 and 4 are shown in Tables 2 and 3. In these tables, the positive electrode active material mixture layer 64 is simply indicated as a positive electrode mixture, and the current interrupt mechanism 100 is indicated as CID (safety mechanism).

Figure 0006585365
Figure 0006585365

Figure 0006585365
Figure 0006585365

Figure 0006585365
Figure 0006585365

表1に示す結果から、正極活物質合材層64の空隙率が40%以上の場合、極板表面抵抗が約2.5〜5倍に増大し、出力低下が発生する懸念があるため、ハイブリッド電気自動車(HEV)やプラグインハイブリッド自動車用途としてのリチウムイオン二次電池としては好ましくない。また、表2、3に示す結果から、正極活物質合材層64の空隙率が大きいほど高温、及び低温での過充電時の電流遮断機構100の作動時間が短縮され、安全性の向上傾向がある。従って、外装容器内体積あたりの炭酸リチウム量が7mg/cm3以上であり、正極活物質合材層の充填密度が2.2〜2.9g/cm3であり、また正極活物質合材層の空隙率は30%以上40%以下であることが好ましい。加えて、外装容器内体積あたりの炭酸リチウム量の上限は、11mg/cm3以下とすることが電気的特性(容量・出力)確保の面から好ましい。 From the results shown in Table 1, when the porosity of the positive electrode active material mixture layer 64 is 40% or more, the electrode plate surface resistance increases by about 2.5 to 5 times, and there is a concern that the output may decrease. It is not preferable as a lithium ion secondary battery for use in a hybrid electric vehicle (HEV) or a plug-in hybrid vehicle. Further, from the results shown in Tables 2 and 3, the larger the porosity of the positive electrode active material mixture layer 64, the shorter the operation time of the current interrupting mechanism 100 at the time of overcharging at high and low temperatures, and the improvement tendency of safety. There is. Accordingly, the amount of lithium carbonate per volume in the outer container is 7 mg / cm 3 or more, the packing density of the positive electrode active material mixture layer is 2.2 to 2.9 g / cm 3 , and the positive electrode active material mixture layer The porosity is preferably 30% or more and 40% or less. In addition, the upper limit of the amount of lithium carbonate per volume in the outer container is preferably 11 mg / cm 3 or less from the viewpoint of securing electrical characteristics (capacity / output).

本発明に係る非水電解質二次電池では、非水電解質を構成する非水溶媒(有機溶媒)としては、非水電解質二次電池において一般的に使用されているカーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。   In the non-aqueous electrolyte secondary battery according to the present invention, as the non-aqueous solvent (organic solvent) constituting the non-aqueous electrolyte, carbonates, lactones, and ethers generally used in the non-aqueous electrolyte secondary battery are used. Esters can be used, and two or more of these solvents can be mixed and used. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、ビニレンカーボネート(VC)などの不飽和環状炭酸エステルを非水電解質に添加することもできる。   For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate can be used. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate. Moreover, unsaturated cyclic carbonates such as vinylene carbonate (VC) can also be added to the nonaqueous electrolyte.

本発明に係る非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiAsF6、LiClO4、Li210Cl10、Li212Cl12、LiB(C242、LiB(C24)F2、LiP(C243、LiP(C2422、LiP(C24)F4など及びそれらの混合物が例示される。これらの中でも、LiPF6(ヘキサフルオロリン酸リチウム)が好ましく用いられる。非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 As the solute of the non-aqueous electrolyte according to the present invention, a lithium salt generally used as a solute in a non-aqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiB (C 2 O 4) 2, LiB (C 2 O 4) F 2, LiP (C 2 O 4) 3, LiP (C 2 O 4) 2 F 2, LiP (C 2 O 4) F 4 , etc., and mixtures thereof examples Is done. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

本発明に係る非水電解質二次電池では、正極活物質としてリチウムイオンの挿入・脱離可能なリチウム遷移金属化合物が使用可能である。リチウム遷移金属化合物としては、リチウム遷移金属複合酸化物が好ましい。リチウムイオンの挿入・脱離可能なリチウム遷移金属複合酸化物としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMn24)、ニッケル酸リチウム(LiNiO2)、リチウムニッケルマンガン複合酸化物(LiNi1-xMnx2(0<x<1))、リチウムニッケルコバルト複合酸化物LiNi1-xCox2(0<x<1)、リチウムニッケルコバルトマンガン複合酸化物(LiNixMnyCoz2(0<x<1、0<y<1、0<z<1、x+y+z=1)等のリチウム遷移金属酸化物が挙げられる。また、上記のリチウム遷移金属複合酸化物にAl、Ti、Zr、Nb、B、Mg、またはMoなどを添加したものが使用できる。例えば、Li1+aNixCoyMnzMbO2(M=Al、Ti、Zr、Nb、B、Mg、Moから選択される少なくとも一種の元素、0≦a≦0.2、0.2≦x≦0.5、0.2≦y≦0.5、0.2≦z≦0.4、0≦b≦0.02、a+b+x+y+z=1)で表されるリチウム遷移金属複合酸化物が挙げられる。 In the nonaqueous electrolyte secondary battery according to the present invention, a lithium transition metal compound capable of inserting and removing lithium ions can be used as the positive electrode active material. As the lithium transition metal compound, a lithium transition metal composite oxide is preferable. Examples of the lithium transition metal composite oxide capable of inserting and removing lithium ions include lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), and lithium nickel manganese composite oxide. (LiNi 1-x Mn x O 2 (0 <x <1)), lithium nickel cobalt composite oxide LiNi 1-x Co x O 2 (0 <x <1), lithium nickel cobalt manganese composite oxide (LiNi x Mn y Co z O 2 (0 <x <1,0 <y <1,0 <z <1, x + y + z = 1) lithium transition metal oxide, and the like. Further, the lithium-transition of the those obtained by adding Al, Ti, Zr, Nb, B, Mg or Mo, etc., the metal composite oxide can be used. for example, Li 1 + a Ni x Co y Mn z MbO 2 (M = Al, Ti, Zr At least one element selected from Nb, B, Mg, Mo, 0 ≦ a ≦ 0.2, 0.2 ≦ x ≦ 0.5, 0.2 ≦ y ≦ 0.5, 0.2 ≦ z ≦ 0.4, 0 ≦ b ≦ 0.02, and a lithium transition metal composite oxide represented by a + b + x + y + z = 1).

本発明に係る非水電解質二次電池では、負極活物質としてリチウムイオンの挿入・脱離可能な炭素材料を用いることができる。リチウムイオンの挿入・脱離可能な炭素材料としては、黒鉛、難黒鉛化性炭素、易黒鉛化性炭素、繊維状炭素、コークス、及びカーボンブラックなどが挙げられる。特に黒鉛を用いることが好ましい。   In the nonaqueous electrolyte secondary battery according to the present invention, a carbon material capable of inserting and removing lithium ions can be used as the negative electrode active material. Examples of the carbon material from which lithium ions can be inserted and removed include graphite, non-graphitizable carbon, graphitizable carbon, fibrous carbon, coke, and carbon black. In particular, it is preferable to use graphite.

本発明に係る非水電解質二次電池では、セパレータ58,59としてポリプロピレン(PP)やポリエチレン(PE)などのポリオレフィン製の多孔質セパレータを用いることが好ましい。また、ポリプロピレン(PP)とポリエチレン(PE)の3層構造(PP/PE/PP、あるいはPE/PP/PE)を有するセパレータを用いることもできる。   In the nonaqueous electrolyte secondary battery according to the present invention, a porous separator made of polyolefin such as polypropylene (PP) or polyethylene (PE) is preferably used as the separators 58 and 59. A separator having a three-layer structure (PP / PE / PP or PE / PP / PE) of polypropylene (PP) and polyethylene (PE) can also be used.

10 リチウムイオン二次電池(非水電解質二次電池)、12 外装缶、14 電極体、16 負極集電体、18 正極集電体、20 封口板、22 ガス排出弁、24 封止栓、30 負極外部端子、32,42 絶縁部材、34,44 端子板、36,46 外部接続端子、40 正極外部端子、50 負極板、52 負極芯体、54 負極活物質合材層、56 負極芯体露出部、58,59 セパレータ、60 正極板、62 正極芯体、64 正極活物質合材層、66 正極芯体露出部、70 導電経路、72 タブ部、74 集電体本体部、75 集電体受部品、76 筒部、77 先端部、78 貫通孔、80 ガスケット、82 導電部材、84 反転板、86 薄肉部、88 溝、90 集電体タブホルダ、92 溝部、94 突起、96 貫通孔、100 電流遮断機構。   10 lithium ion secondary battery (non-aqueous electrolyte secondary battery), 12 outer can, 14 electrode body, 16 negative electrode current collector, 18 positive electrode current collector, 20 sealing plate, 22 gas discharge valve, 24 sealing plug, 30 Negative electrode external terminal, 32, 42 Insulating member, 34, 44 Terminal plate, 36, 46 External connection terminal, 40 Positive electrode external terminal, 50 Negative electrode plate, 52 Negative electrode core, 54 Negative electrode active material mixture layer, 56 Exposed negative electrode core Part, 58, 59 separator, 60 positive electrode plate, 62 positive electrode core, 64 positive electrode active material mixture layer, 66 positive electrode core exposed part, 70 conductive path, 72 tab part, 74 current collector body part, 75 current collector Receiving part, 76 cylindrical part, 77 tip part, 78 through hole, 80 gasket, 82 conductive member, 84 reverse plate, 86 thin part, 88 groove, 90 current collector tab holder, 92 groove part, 94 protrusion, 96 through hole, 1 00 Current interruption mechanism.

Claims (4)

リチウムイオンの挿入・脱離が可能なリチウム遷移金属化合物及び炭酸リチウムを含む正極活物質合材層を有する正極板と、
前記リチウムイオンの挿入・脱離が可能な負極活物質を含む負極活物質合材層を有する負極板と、
前記正極板、前記負極板、及び非水電解質を収納する電池ケースと、
を備えた非水電解質二次電池であって、
前記正極板から電池外部に電流を取り出す導電経路、及び前記負極板から電池外部に電流を取り出す導電経路の少なくとも一方に前記電池ケース内の圧力の上昇に対応して電流を遮断する電流遮断機構を備え、
前記電池ケース内体積あたりの前記炭酸リチウム量が7mg/cm以上11mg/cm以下であり、
前記正極活物質合材層の充填密度が2.2〜2.9g/cmであり、
前記正極活物質合材層の空隙率が30〜40%であり、
前記非水電解質は、非水溶媒として、カーボネート類、ラクトン類、エーテル類、エステル類、又はこれら溶媒の2種類以上を混合した溶媒、及び溶質としてリチウム塩からなる非水電解質二次電池。
A positive electrode plate having a positive electrode active material mixture layer containing a lithium transition metal compound capable of inserting and removing lithium ions and lithium carbonate;
A negative electrode plate having a negative electrode active material mixture layer containing a negative electrode active material capable of inserting and desorbing lithium ions;
A battery case containing the positive electrode plate, the negative electrode plate, and a non-aqueous electrolyte;
A non-aqueous electrolyte secondary battery comprising:
At least one of a conductive path for taking out current from the positive electrode plate to the outside of the battery and a conductive path for taking out current from the negative electrode plate to the outside of the battery has a current cut-off mechanism that cuts off current in response to an increase in pressure in the battery case. Prepared,
The lithium carbonate amount per volume in the battery case is 7 mg / cm 3 or more and 11 mg / cm 3 or less,
The packing density of the positive electrode active material mixture layer is 2.2 to 2.9 g / cm 3 ,
Wherein Ri porosity 30-40% der positive electrode active material mixture layer,
The non-aqueous electrolyte, a non-aqueous solvent, carbonates, lactones, ethers, esters, or 2 mixed solvent of the type described above, and Ru non-aqueous electrolyte secondary battery name a lithium salt as a solute of these solvents.
リチウムイオンの挿入・脱離が可能なリチウム遷移金属化合物及び炭酸リチウムを含む正極活物質合材層を有する正極板と、
前記リチウムイオンの挿入・脱離が可能な負極活物質を含む負極活物質合材層を有する負極板と、
前記正極板、前記負極板、及び非水電解質を収納する電池ケースと、
を備えた非水電解質二次電池であって、
前記正極板から電池外部に電流を取り出す導電経路、及び前記負極板から電池外部に電流を取り出す導電経路の少なくとも一方に前記電池ケース内の圧力の上昇に対応して電流を遮断する電流遮断機構を備え、
前記電池ケース内体積あたりの前記炭酸リチウム量が7mg/cm 以上11mg/cm 以下であり、
前記正極活物質合材層の充填密度が2.2〜2.9g/cm であり、
前記正極活物質合材層の空隙率が30〜40%であり、
前記非水電解質は、過充電抑制剤を含まない非水電解質二次電池。
A positive electrode plate having a positive electrode active material mixture layer containing a lithium transition metal compound capable of inserting and removing lithium ions and lithium carbonate;
A negative electrode plate having a negative electrode active material mixture layer containing a negative electrode active material capable of inserting and desorbing lithium ions;
A battery case containing the positive electrode plate, the negative electrode plate, and a non-aqueous electrolyte;
A non-aqueous electrolyte secondary battery comprising:
At least one of a conductive path for taking out current from the positive electrode plate to the outside of the battery and a conductive path for taking out current from the negative electrode plate to the outside of the battery has a current cut-off mechanism that cuts off current in response to an increase in pressure in the battery case. Prepared,
The lithium carbonate amount per volume in the battery case is 7 mg / cm 3 or more and 11 mg / cm 3 or less,
The packing density of the positive electrode active material mixture layer is 2.2 to 2.9 g / cm 3 ,
The porosity of the positive electrode active material mixture layer is 30 to 40%,
The non-aqueous electrolyte is a non-aqueous electrolyte secondary battery that does not contain an overcharge inhibitor .
前記負極活物質が炭素材料である請求項1又は2に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1 or 2 negative active material is a carbon material. 前記正極活物質合材層上及び前記負極活物質合材層上の少なくとも一方には無機酸化物と絶縁性結着材からなる保護層が設けられている請求項1から3のいずれか1に記載の非水電解質二次電池。 To any one of the positive electrode active material mixture layer and on the negative active material is at least one of the mixture layer on claim 1, the protective layer comprising an inorganic oxide insulating binder are provided 3 The nonaqueous electrolyte secondary battery as described.
JP2015072244A 2015-03-31 2015-03-31 Nonaqueous electrolyte secondary battery Active JP6585365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015072244A JP6585365B2 (en) 2015-03-31 2015-03-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015072244A JP6585365B2 (en) 2015-03-31 2015-03-31 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2016192338A JP2016192338A (en) 2016-11-10
JP6585365B2 true JP6585365B2 (en) 2019-10-02

Family

ID=57246932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015072244A Active JP6585365B2 (en) 2015-03-31 2015-03-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6585365B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160436B2 (en) * 2019-02-21 2022-10-25 三洋電機株式会社 Electrodes, non-aqueous electrolyte secondary batteries
WO2020213617A1 (en) * 2019-04-19 2020-10-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery
WO2024087225A1 (en) * 2022-10-28 2024-05-02 宁德时代新能源科技股份有限公司 Battery cell, battery and electric apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241314B2 (en) * 2008-05-13 2013-07-17 日立マクセル株式会社 Laminated non-aqueous secondary battery
JP6064615B2 (en) * 2013-01-21 2017-01-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP2016192338A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP5283544B2 (en) Nonaqueous electrolyte secondary battery
JP5780071B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6582605B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5916401B2 (en) Non-aqueous electrolyte secondary battery, manufacturing method thereof, and vehicle including the non-aqueous electrolyte secondary battery
JP5737481B2 (en) Sealed non-aqueous electrolyte secondary battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
JP6287187B2 (en) Nonaqueous electrolyte secondary battery
WO2013051584A1 (en) Hermetically sealed lithium secondary battery
JP2015088280A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6005363B2 (en) Method for producing lithium ion secondary battery
JP6585365B2 (en) Nonaqueous electrolyte secondary battery
JP6064615B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6287186B2 (en) Nonaqueous electrolyte secondary battery
WO2017145849A1 (en) Nonaqueous electrolyte secondary battery
WO2020137817A1 (en) Non-aqueous electrolyte secondary battery
JP2021044171A (en) Lithium ion secondary battery and method for manufacturing the same
JP7488770B2 (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
US20220115698A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
JP7513983B2 (en) Lithium-ion secondary battery and its manufacturing method
US20140045013A1 (en) Non-aqueous electrolyte secondary battery
JP2018137100A (en) Electrolyte solution for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250