JP3711962B2 - Thin battery - Google Patents

Thin battery Download PDF

Info

Publication number
JP3711962B2
JP3711962B2 JP2002189908A JP2002189908A JP3711962B2 JP 3711962 B2 JP3711962 B2 JP 3711962B2 JP 2002189908 A JP2002189908 A JP 2002189908A JP 2002189908 A JP2002189908 A JP 2002189908A JP 3711962 B2 JP3711962 B2 JP 3711962B2
Authority
JP
Japan
Prior art keywords
thin battery
battery
thin
terminal
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002189908A
Other languages
Japanese (ja)
Other versions
JP2004031289A (en
Inventor
恭一 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002189908A priority Critical patent/JP3711962B2/en
Publication of JP2004031289A publication Critical patent/JP2004031289A/en
Application granted granted Critical
Publication of JP3711962B2 publication Critical patent/JP3711962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【技術分野】
本発明は、封止手段の外周部の端縁から導出する端子を有する薄型電池に関し、特に印加される外力に対して強い構造を有する薄型電池に関する。
【0002】
【背景技術】
封止手段の外周部の端縁から導出する端子を有する薄型電池の使用態様や使用条件の多様化に伴って、当該薄型電池に対して外部から印加される振動等の外力が増加する。この外力により、薄型電池の端子の電池外装部材から導出(以下、端子導出部ともいう。)や電池外装部材の封止部が、引張られ或いは押されて、端子導出部又は電池外装部材の封止部の剥離等により薄型電池内部に注入された電解液が漏洩し、当該薄型電池の性能低下を招く場合がある。
【0003】
【発明の開示】
本発明は、印加される外力に対して強い構造を有する薄型電池を提供することを目的とする。
【0004】
上記目的を達成するために、本発明によれば、隣接して積層される2以上の合成樹脂層を少なくとも外周縁部の一部に有する2枚のシート状封止手段の前記外周縁部を、熱融着する事によって、内部に発電要素を封止し、前記発電要素に接続された正極端子及び負極端子を前記外周縁部から導出した薄型電池であって、前記封止手段の熱融着された封止部の少なくとも一部は、前記隣接して積層される合成樹脂層間に波形構造を有する薄型電池が提供される(請求項1参照)。
【0005】
本発明では、薄型電池の封止手段が有する隣接して積層される少なくとも2以上の合成樹脂層間に波形構造を付与することにより、外部から印加される外力による端子導出部又は電池外装部材の封止部の剥離を著しく減少することが可能となり、印加される外力に対して強い構造を有する薄型電池とすることが可能となる。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0007】
実施形態
図1(A)は本発明の実施形態に係る薄型電池の全体を示す平面図、図1(B)は(A)のB−B線に沿う断面図である。図2は図1(A)のC−C線に沿う断面図である。図3は、本発明の実施形態に係る端子導出部応力-伸び変位グラフである。図1は一つの薄型電池(単位電池)を示し、この薄型電池10を複数積層することにより所望の電圧、容量の組電池が構成される。
【0008】
まず図1を参照しながら、本発明の実施形態に係る薄型電池10の全体構成について説明すると、本例の薄型電池10はリチウム系の薄型二次電池であり、2枚の正極板101と、5枚のセパレータ102と、2枚の負極板103と、正極端子104と、負極端子105と、上部電池外装部材106(封止手段)と、下部電池外装部材107(封止手段)と、シールフィルム108(封止手段)と、特に図示しない電解質とから構成されている。このうちの正極板101,セパレータ102,負極板103および電解質を特に発電要素109と称する。
【0009】
なお、正極板101,セパレータ102,負極板103の枚数には何ら限定されず、1枚の正極板101,3枚のセパレータ102,1枚の負極板104でも発電要素109を構成することができる。必要に応じて正極板、負極板およびセパレータの枚数を選択して構成することができる。
【0010】
発電要素109を構成する正極板101は、金属酸化物などの正極活物質に、カーボンブラックなどの導電材と、ポリ四フッ化エンチレンの水性ディスパージョンなどの接着剤とを、重量比でたとえば100:3:10の割合で混合したものを、正極側集電体としてのアルミニウム箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。なお、上記のポリ四フッ化エチレンの水性ディスパージョンの混合比率は、その固形分である。
【0011】
正極活物質としては、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)などのリチウム複合酸化物や、カルコゲン(S、Se、Te)化物を挙げることができる。これらの材質は薄型電池内部の発熱を比較的拡散し易く、端子への伝熱による端子の膨張による伸びを少なく出来、端子と後述するシールフィルムとの間の界面での引張り応力の発生を極力抑制することが可能となる。
【0012】
発電要素109を構成する負極板103は、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、または黒鉛などのように、正極活物質のリチウムイオンを吸蔵および放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンをたとえば固形分比100:5で混合し、乾燥させたのち粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これに、アクリル樹脂エマルジョンなどの結着剤をたとえば重量比100:5で混合し、この混合物を、負極側集電体としてのニッケル箔或いは銅箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。
【0013】
特に負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量にともなって出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車等の電源として用いると急激な出力低下がないので有利である。
【0014】
また、発電要素109のセパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えてもよい。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。
【0015】
なお、本発明のセパレータ102は、ポリオレフィンなどの単層膜にのみ限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布などを積層したものも用いることができる。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能およびセパレータの形状維持(剛性向上)機能などの諸機能を付与することができる。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることもできる。
【0016】
以上の発電要素109は、上から正極板101と負極板103とが交互に、且つ当該正極板101と負極板103との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層されている。そして、2枚の正極板101のそれぞれは、正極側集電部104aを介して、金属箔製の正極端子104に接続される一方で、2枚の負極板103は、負極側集電部105aを介して、同じく金属箔製の負極端子105に接続されている。なお、正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としてはアルミニウムやアルミニウム合金、銅又はニッケルなどを挙げることができ、負極端子105としてはニッケル、銅、ステンレス又は鉄などを挙げることができる。これらの金属は、金属の抵抗値、線膨張係数、抵抗率において薄型電池の構成要素として特に適当であり、使用温度を変えた場合にも後述するシールフィルムの応力の発生を比較的小さく抑えることが出来る。また、本例の正極側集電部104aも負極側集電部105aの何れも、正極板104および負極板105の集電体を構成するアルミニウム箔やニッケル箔、銅箔、鉄箔を延長して構成されているが、別途の材料や部品により当該集電部104a,105aを構成することもできる。
【0017】
発電要素109は、上部電池外装部材106及び下部電池外装部材107(封止手段)により封止されている。本発明の実施形態における上部電池外装部材106は、図2に示すように、正極端子104の側から薄型電池の外側に向かって、第1の樹脂層106a、金属層106b、第2の樹脂層106cの順で3つの層106a〜106cが積層される。この3つの層106a〜106cは、上部電池外装部材106の全面に渡って積層されており、第1の樹脂層106aは、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。第2の樹脂層106cは、例えば、ポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。金属層106bは、例えば、アルミニウムなどの金属箔である。従って、上部電池外装部材106及び下部電池外装部材107は、例えば、アルミニウムなどの金属箔の一方の面(薄型電池の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの樹脂でラミネートし、他方の面(薄型電池の外側面)をポリアミド系樹脂、ポリエステル系樹脂等でラミネートした、樹脂−金属薄膜ラミネート材などの可撓性を有する材料で形成される。
【0018】
下部電池外装部材107は、上部電池外装部材106と同様の構造のものが用いられ、図2に示すように、正極端子104の側から薄型電池の外側に向かって、第1の樹脂層107a、金属層107b、第2の樹脂層107cの順で、3つの層107a〜107cが積層される。下部電池外装部材107の第1の樹脂層107aは、上部電池外装部材106の第1の樹脂層106aと同様に、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。下部電池外装部材107の金属層107bは、上部電池外装部材106の金属層106bと同様に、例えば、アルミニウムなどの金属箔である。下部電池外装部材107の第2の樹脂層107cは、上部電池外装部材106の第2の樹脂層106cと同様に、例えばポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。また、図2には正極端子104の断面図を示したが、負極端子側の断面も同様の構造である。このように、電池外装部材が樹脂層に加えて金属層を具備することにより、電池外装部材自体の強度を向上させることが可能となる。
【0019】
さらに、本発明の実施形態においては、薄型電池10内の封止性を維持するために、当該正極端子104と電池外装部材106、107とが接触する部分に耐電解液性及び熱融着性に優れたシールフィルム108(封止手段)が介在されている。同様に、電池外装部材106、107の他方の端部からは、負極端子105が導出するが、ここにも正極端子104側と同様に、当該負極端子105と電池外装部材106、107とが接触する部分にシールフィルム108が介在している。
【0020】
以上のように、電池外装部材及びシールフィルムを、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、アイオノマーなどの樹脂で構成することにより、金属からなる端子との良好な融着性を確保することが可能となる。
【0021】
これらシールフィルム108は、熱に対する伸縮率、例えば線膨張係数[1/℃]、熱収縮率[mm/mm]などが異なる、内側樹脂層108aと外側樹脂層108bとの2層の樹脂層から構成されている。内側樹脂層108aは、正極端子104及び負極端子105に接触するように配置され、外側樹脂層108bは、上部電池外装部材106の第1の樹脂層106a及び下部電池外装部材107の第1の樹脂層107aと接触するように配置される。
【0022】
内側樹脂層108aは、上述の電池外装部材106、107の第1の樹脂層106a、107aと同様に、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性プロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。
【0023】
これに対して、外側樹脂層108bは、内側樹脂層108aより熱に対する伸縮率が小さい樹脂層、例えば架橋されたポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどである。良好な融着性を得るには、外側樹脂層108aと内側樹脂層108aとが同種類の樹脂を用い、外側樹脂層108bのみに架橋を行った樹脂を用いる事が好ましく、例えば内側樹脂層108aにポリプロピレンを用いた場合、外側樹脂層108bには架橋したポリプロピレンを用いることが好ましい。
【0024】
そして、電池外装部材106、107の後述する熱融着による封止の際に、その伝熱により、熱に対する伸縮率が異なるこの内側樹脂層108aと外側樹脂層108bとの間に波形形状の界面が形成され、当該界面における投錨効果(アンカー効果)を得ることが出来る。このように、シールフィルムの界面を波形構造としてアンカー効果を得ることにより、端子導出部或いは電池外装部材の熱融着領域を強固に融着することが可能となり、図3に示すように、例えば、界面が直線状に形成されアンカー効果を得ることが出来ない場合と比較して、外力に対する強い構造を薄型電池に付与することが出来、当該薄型電池の寿命をより長く確保することが可能となる。
【0025】
また、内側樹脂層108aの線膨張係数に対して、線膨張係数が小さな外側樹脂層108bを用いることにより、シールフィルム108の熱に対する巻き縮みにおいて、端子104、105の近傍に位置する内側樹脂層108aが、外側樹脂層108bの巻き縮みに追従して伸び、界面に波形構造を容易に形成することが可能となる。
【0026】
なお、シールフィルム108の内側樹脂層108aと外側樹脂層108bとの熱に対する伸縮率、即ち線膨張係数や熱収縮率を変化させるためには、上述の各樹脂の架橋率を変化させるだけに限定されず、各樹脂の変性率を変化させたり、各樹脂の種類を変化させる方法によっても可能である。
【0027】
また、上記のシールフィルム108は、正極端子及び負極端子の近傍だけでなく、電池外装部材106、107の熱融着領域110の全周に具備させても良く、これにより、外力に対してさらに強固な構造を薄型電池に付与することが可能となる。
【0028】
なお、電池外装部材及びシールフィルムを構成する層数は上記に限定されず、必要とされる層数を適宜設定することが可能である。また、シールフィルムを介在させずに電池外装部材の第1の樹脂層を熱融着して直接的に端子を封止しても良く、或いはシールフィルム108が電池外装部材に予め含まれても良い。
【0029】
これらの電池外装部材106、107によって、上述した発電要素109、正極側集電部104a、正極端子104の一部、負極側集電部105aおよび負極端子105の一部を包み込み、当該電池外装部材106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入したのち、上部電池外装部材106及び下部電池外装部材107の外周縁の熱融着領域110を熱融着などの方法により封止する。
【0030】
このように封止された薄型電池10は、総厚1〜10[mm]を有することが好ましい。薄型電池の厚さを10[mm]以下とすることにより、当該薄型電池内部に熱がこもりにくくなり、端子とシールフィルムとの界面に応力を伝達する可能性が低くなるとともに、電池の熱劣化の影響も減少する。また、薄型電池の厚さを1[mm]以上とすることにより、十分な容量を確保することが出来、経済的な効率を高くすることが可能となる。
【0031】
有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのエステル系溶媒を挙げることができるが、本発明の有機液体溶媒はこれにのみ限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒も用いることができる。
【0032】
以下に、上述の薄型電池を複数組み合わせることにより構成される組電池、及び当該組電池を複数組み合わせることにより構成される複合組電池について説明する。
【0033】
図4は本発明の実施形態に係る複数の薄型電池の接続方法を示す図であり、図4(A)は並列接続を示し、図4(B)は比較のための直列接続を示す。図5は本発明の実施形態に係る複数の薄型電池の他の接続方法を示す図であり、図5(A)は並列接続を示し、図5(B)は比較のための直列接続を示す。図6は本発明の実施形態に係る複数の薄型電池により構成される組電池の斜視図、図7(A)は図6の組電池の平面図、図7(B)は図6の組電池の正面図、図7(C)は図6の組電池の側面図、図8は図6の組電池より構成される複合組電池の斜視図、図9(A)は図8の複合組電池の平面図、図9(B)は図8の複合組電池の正面図、図9(C)は図8の複合組電池の側面図、図10は本発明の実施形態に係る複合組電池を車両に搭載した模式図を示す。
【0034】
上述の薄型電池10を電気的に接続して複数の薄型電池10を有する組電池20を構成する場合、特に図4(A)及び図5(A)に示す配置による2つの接続構造が、印可される外力に対してさらに強い構造を付加する。
【0035】
一つ目の接続構造は、図4(A)に示すように、第1の薄型電池10aの正極端子104と、第2の薄型電池10bの正極端子104とが同一方向に導出するような方向で、第1の薄型電池10aと第2の薄型電池10bを実質的に同一平面上に並置させる。そして、第1の薄型電池10aの正極端子104と、第2の薄型電池10bの正極端子104とを、第1のバスバー21aにより電気的に接続する。また、第1の薄型電池10aの負極端子105と第2の薄型電池10bの負極端子105とを、第2のバスバー21bにより電気的に接続する。
【0036】
二つ目の接続構造は、図5(A)に示すように、第1の薄型電池10aの正極端子104と、第2の薄型電池10bの正極端子104とが同一方向に導出するような方向で、第1の薄型電池10aの鉛直上向きの面と第2の薄型電池10bの鉛直下向きの面とを接触させて、第1の薄型電池10aと第2の薄型電池10bとを積層する。そして、第1の薄型電池10aの正極端子104と第2の薄型電池10bの正極端子104とを溶着して電気的に接続し、同様に、第1の薄型電池10aの負極端子105と第2の薄型電池10bの負極端子105とを溶着して電気的に接続する。
【0037】
図4(B)及び図5(B)に示すような直列に接続された場合、印加される外力によって、各薄型電池10a、10bの正極端子104には逆位相の捻れ(図4(B)及び図5(B)において捻れの方向を矢印により示す。)が生じるが、これに対し上記に説明した接続構造は、薄型電池10a、10bの正極端子104同士及び負極端子105同士が接続されているため、各薄型電池10a、10bに生じる応力が同位相となり、当該端子104、105に生じる捻れを極力抑えることが出来、端子とシールフィルムとの間の界面に剥離が生じる可能性が低くなる。また、正極端子の金属と負極端子の金属とが異なる場合には、それに伴って、端子導出部に生ずる引張り応力も異なり界面剥離の原因になりうるが、上述の並列接続により薄型電池の端子導出部に生じる引張り応力を実質的に同等のものとすることが可能となる。
【0038】
図6及び図7(A)〜(C)は、例えば上述の2通りの接続構造を用いて並列接続された24個の薄型電池10から構成させる組電池20を示す。組電池20は、24個の薄型電池10と、組電池用端子22、23と、組電池用カバー25とから構成されている。特に図示しないが、各薄型電池10の各同極端子間は上述の接続構造でバスバー21a、21bにより並列接続されており、各正極端子104を接続する第1のバスバー21aは、組電池用カバー25から導出する略円柱形状の組電池用正極端子22に接続されている。同様に、各負極端子105を接続する第2のバスバー21bは、組電池用カバー25から導出する略円柱形状の組電池用負極端子23に接続されている。これらの接続が完了し、24個の薄型電池10が組電池用カバー25に挿入されると、当該組電池用カバー25と当該組電池20の他の構成要素との間に形成される空間に充填剤24が充填され、封止される。さらに、後述する複合組電池として薄型電池が積層された際に、薄型電池同士の振動を極力低減するために、組電池用カバー25の下面四隅に外部弾性体26が取り付けられる。
【0039】
図8及び図9(A)〜(C)は、図6に示す組電池20を電気的に接続した6個の組電池20から構成される複合組電池30を示す。図8及び図9(A)〜(C)に示すように、複合組電池30は、組電池20の端子22、23がそれぞれ同一方向に向くように積層されている。すなわち、m段目に位置する組電池20の端子22、23と、m+1段目に位置する組電池20の端子22、23とが同一方向に向くように、m段目の組電池20の上にm+1段目の組電池20が積層される(m:自然数)。そして、同一方向を向いた全ての組電池20の組電池用正極端子22を、当該複合組電池30と外部とを接続する外部接続用正極端子31で電気的に接続する。同様に、同一方向を向いた全ての組電池20の組電池用負極端子23を、外部接続用負極端子32で電気的に接続する。同図に示すように、外部接続用正極端子31は、略矩形の平板形状であり、組電池用正極端子22を挿入或いは圧入可能な直径を有する複数の端子接続用孔が加工されている。当該端子接続用孔は、積層された組電池20の組電池用正極端子22間のピッチに等しいピッチで加工されており、外部接続用負極端子32にも同様に端子接続用孔が加工されている。
【0040】
さらに、組電池用端子22、23が複合組電池30の外部に露出しないように、接続された全ての組電池用端子22、23を覆うように、絶縁性の材料の絶縁カバー33が具備されている。なお、図8において当該絶縁カバー33は、説明の便宜上、透視図により描かれており、図9には図示しない。そして、上述のように積層された6個の組電池20は、その両側面部に平板状の連結部材34で連結され、さらに固定ネジ35により締結、固定される。
【0041】
以上のように、薄型電池により所定の数を単位とした組電池を構成し、さらに当該組電池を単位として、所定の数の組電池を組み合わせて複合組電池を構成することにより、要求される容量、電圧等に適当な複合組電池を容易に得ることが可能となる。また、複雑な接続を伴うことなく複合組電池を構成するので、接続不良による、複合組電池の故障率を低減することが可能となる。さらに、複合組電池を構成する一つの薄型電池が故障或いは劣化し、当該薄型電池の交換を必要とする場合、当該薄型電池を有する組電池を容易に交換することも可能となる。
【0042】
図10は、車両1のフロア下に上述の複合組電池30を車載した例を示す模式図である。車両1の移動に伴って、車内には多くの振動が発生する。同図に示すように、上述の複合組電池30を車載することにより、当該振動により薄型電池の端子とシールフィルムとの間に界面剥離が発生する可能性が著しく減少し、車両で電池を有効に活用することが可能となる。
【0043】
なお、組電池を構成する薄型電池の数、複合組電池を構成する組電池の数、組電池を構成する薄型電池の接続方式、及び複合組電池を構成する組電池の接続方式は、上述の数及び接続方式に限定されるものではなく、要求される電気容量、電圧等から適宜その数及び接続方式(直列接続、並列接続、直列並列複合接続)を設定することが出来る。
【0044】
また、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【0045】
【実施例】
以下、本発明をさらに具体化した実施例及び比較例により本発明の効果を確認した。以下の実施例は、上述した実施形態で用いた薄型電池の効果を確認するためのものである。
【0046】
実施例1
実施例1の薄型電池には、正極活性物質にマンガン酸リチウム(LiMnO)、負極活性物質に非結晶性炭素、電解液にプロピレンカーボネート(PC)及びエチルメチルカーボネート(EMC)の混合液を用い、正極端子にアルミニウム(Al)、負極端子にニッケル(Ni)を用いた。また、第2の樹脂層にナイロン樹脂フィルム25μm、金属層にアルミニウム40μm、第1の樹脂層に変性ポリプロピレン樹脂フィルム50μmを積層した高分子金属複合フィルムを用い、第1の樹脂層の変性ポリプロピレン樹脂フィルムを融着面とした。さらに、架橋していないポリプロピレン(PP)樹脂フィルムと、架橋したポリプロピレン樹脂フィルムとを積層した2層のシールフィルムを用い、架橋していないポリプロピレン樹脂フィルムを正極端子及び負極端子に接触させ、架橋したポリプロピレン樹脂フィルムを電池外装部材の第1の樹脂層に接触させて融着し、縦140[mm]×横80[mm]×厚み4[mm]の薄型電池を作製した。なお、この薄型電池に用いたポリプロピレンの線膨張係数は、8.0×10−5[1/℃]、熱収縮率は0.025[mm/mm]であり、シールフィルムの架橋したポリプロピレンの線膨張係数は4.0×10−5[1/℃]、熱収縮率0.01[mm/mm]である。
【0047】
この薄型電池について、引張り試験を行った。引張り試験は、薄型電池の端子と上部電池外装部材及び下部電池外装部材とをJIS・K6830の自動車用シーリング材試験方法に記載される引張り強さ試験方法に準拠する試験を行った。ここで、引張り試験中の伸び量を算出し、同一条件の試験での基準サンプルの伸び量との伸び比率を%で算出した。なお、引張り試験における基準サンプルは、後述する比較例1の単層のシールフィルムを用いた薄型電池である。
【0048】
この結果、実施例1では基準サンプルに対して190%の伸びの許容が確認された。図11に実施例1の薄型電池の端子導出部の断面写真を示す。図11に示すように、シールフィルムを構成するポリプロピレン樹脂フィルム及び架橋したポリプロピレン樹脂フィルムの2層間の界面には波形構造が形成されていることが確認された。
【0049】
比較例1
比較例1として、実施例1と同様の正極端子、負極端子、正極活性物質、負極活性物質、電解液、及び電池外装部材を用い、さらに架橋していないポリプロピレン樹脂フィルムの単層のシールフィルムを用いて、縦140[mm]×横80[mm]×厚み4[mm]の薄型電池を作製した。この薄型電池について、第1実施例と同様の条件で、引張り試験験を行った。
【0050】
この結果、なお、引張り試験における当該比較例1が基準となるため、その伸びの許容は100%である。図12に比較例1の薄型電池の端子導出部の断面写真を示す。図12に示すように、シールフィルムの界面には、波形構造が形成されていないことが確認された。
【0051】
考察
比較例1の薄型電池と比較して、実施例1の薄型電池はシールフィルムに波形構造が形成されてアンカー効果により強度が著しく向上し、印加される外力に対して強い構造を有することが明らかとなった。
【図面の簡単な説明】
【図1】図1(A)は本発明の実施形態に係る薄型電池の全体を示す平面図、図1(B)は(A)のB−B線に沿う断面図である。
【図2】図1(A)のC−C線に沿う断面図である。
【図3】本発明の実施形態に係る端子導出部応力変位グラフである。
【図4】本発明の実施形態に係る複数の薄型電池の接続構造を示す図であり、図4(A)は並列接続を示し、図4(B)は比較のための直列接続を示す。
【図5】本発明の実施形態に係る複数の薄型電池の他の接続構造を示す図であり、図5(A)は並列接続を示し、図5(B)は比較のための直列接続を示す。
【図6】本発明の実施形態に係る複数の薄型電池により構成される組電池の斜視図である。
【図7】図7(A)は図6の組電池の平面図、図7(B)は図6の組電池の正面図、図7(C)は図6の組電池の側面図である。
【図8】図6の組電池により構成される複合組電池の斜視図である。
【図9】図9(A)は図8の複合組電池の平面図、図9(B)は図8の複合電池の正面図、図9(C)は図8の複合組電池の側面図である。
【図10】本発明の実施形態に係る複合組電池を車両に搭載した模式図である。
【図11】実施例1の薄型電池の端子導出部の断面写真を示す。
【図12】比較例1の薄型電池の端子導出部の断面写真を示す。
【符号の説明】
1…車両
10…薄型電池
10a…第1の薄型電池
10b…第2の薄型電池
101…正極板
102…セパレータ
103…負極板
104…正極端子
105…負極端子
106…上部電池外装部材
106a…第1の樹脂層
106b…金属層
106c…第2の樹脂層
107…下部電池外装部材
107a…第1の樹脂層
107b…金属層
107c…第2の樹脂層
108…シールフィルム
109…発電要素
110…熱融着領域
20…組電池
21a…第1のバスバー
22b…第2のバスバー
22…組電池用正極端子
23…組電池用負極端子
24…充填剤
25…組電池用カバー
26…外部弾性体
30…複合組電池
31…外部接続用正極端子
32…外部接続用負極端子
33…絶縁カバー
34…連結部材
35…固定ネジ
[0001]
【Technical field】
The present invention relates to a thin battery having a terminal led out from an edge of an outer peripheral portion of a sealing means, and more particularly to a thin battery having a structure strong against an applied external force.
[0002]
[Background]
With the diversification of usage modes and usage conditions of thin batteries having terminals led out from the edge of the outer peripheral portion of the sealing means, external forces such as vibrations applied from the outside to the thin batteries increase. Due to this external force, the terminal of the thin battery terminal is led out from the battery outer member (hereinafter also referred to as a terminal lead-out portion) or the sealing portion of the battery outer member is pulled or pushed to seal the terminal lead-out portion or the battery outer member. There is a case where the electrolyte injected into the thin battery leaks due to the peeling of the stop portion or the like, and the performance of the thin battery is deteriorated.
[0003]
DISCLOSURE OF THE INVENTION
An object of this invention is to provide the thin battery which has a structure strong with respect to the applied external force.
[0004]
In order to achieve the above object, according to the present invention, the outer peripheral edge of two sheet-shaped sealing means having at least a part of the outer peripheral edge having two or more synthetic resin layers laminated adjacent to each other is provided. A thin battery in which a power generation element is sealed inside by heat fusion, and a positive electrode terminal and a negative electrode terminal connected to the power generation element are led out from the outer peripheral edge portion. A thin battery having a corrugated structure between the synthetic resin layers laminated adjacent to each other is provided in at least a part of the attached sealing portion (see claim 1).
[0005]
In the present invention, the terminal lead-out portion or the battery exterior member is sealed by an external force applied from the outside by providing a corrugated structure between at least two or more adjacent synthetic resin layers of the thin battery sealing means. It becomes possible to remarkably reduce the peeling of the stop portion, and it is possible to obtain a thin battery having a structure strong against an applied external force.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0007]
Embodiment
FIG. 1A is a plan view showing an entire thin battery according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line BB in FIG. FIG. 2 is a cross-sectional view taken along the line CC in FIG. FIG. 3 is a terminal lead-out portion stress-elongation displacement graph according to the embodiment of the present invention. FIG. 1 shows one thin battery (unit battery), and an assembled battery having a desired voltage and capacity is formed by stacking a plurality of thin batteries 10.
[0008]
First, the overall configuration of the thin battery 10 according to the embodiment of the present invention will be described with reference to FIG. 1. The thin battery 10 of this example is a lithium-based thin secondary battery, and includes two positive electrode plates 101, Five separators 102, two negative plates 103, a positive terminal 104, a negative terminal 105, an upper battery exterior member 106 (sealing means), a lower battery exterior member 107 (sealing means), and a seal It is composed of a film 108 (sealing means) and an electrolyte (not shown). Among these, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 109.
[0009]
The number of positive plates 101, separators 102, and negative plates 103 is not limited in any way, and the power generation element 109 can be configured with one positive plate 101, three separators 102, and one negative plate 104. . The number of positive electrode plates, negative electrode plates, and separators can be selected and configured as necessary.
[0010]
The positive electrode plate 101 that constitutes the power generation element 109 includes, for example, 100 weight ratio of a positive electrode active material such as a metal oxide, a conductive material such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene. : A mixture of 3:10 is applied to both surfaces of a metal foil such as an aluminum foil as a positive electrode side current collector, dried, rolled, and then cut into a predetermined size. In addition, the mixing ratio of said aqueous dispersion of polytetrafluoroethylene is the solid content.
[0011]
As the positive electrode active material, for example, lithium nickelate (LiNiO)2), Lithium manganate (LiMnO)2), Lithium cobaltate (LiCoO)2) And the like, and chalcogen (S, Se, Te) compounds. These materials are relatively easy to diffuse the heat generated in the thin battery, can reduce the expansion due to the expansion of the terminal due to the heat transfer to the terminal, and generate as much tensile stress as possible at the interface between the terminal and the seal film described later. It becomes possible to suppress.
[0012]
The negative electrode plate 103 constituting the power generation element 109 is made of a negative electrode active material that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An aqueous dispersion of styrene butadiene rubber resin powder as a precursor material of an organic fired body is mixed at a solid content ratio of, for example, 100: 5, dried and then pulverized to support carbonized styrene butadiene rubber on the surface of carbon particles The resulting material is mixed with a binder such as an acrylic resin emulsion at a weight ratio of, for example, 100: 5, and this mixture is used as a metal foil such as nickel foil or copper foil as a negative electrode side current collector. These are coated on both sides, dried, rolled, and then cut into a predetermined size.
[0013]
In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor and the output voltage decreases with the amount of discharge. However, when used as a power source for an electric vehicle or the like, it is advantageous because there is no sudden drop in output.
[0014]
In addition, the separator 102 of the power generation element 109 prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of holding an electrolyte. The separator 102 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation, thereby blocking the current. It also has.
[0015]
The separator 102 of the present invention is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can be used. . By forming the separator 102 in multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (rigidity improvement) function can be provided. Further, instead of the separator 102, a gel electrolyte or an intrinsic polymer electrolyte can be used.
[0016]
The above power generation element 109 is laminated in such an order that the positive electrode plate 101 and the negative electrode plate 103 are alternately arranged from above and the separator 102 is positioned between the positive electrode plate 101 and the negative electrode plate 103. The separators 102 are stacked one by one on the top and bottom. Each of the two positive plates 101 is connected to the positive terminal 104 made of metal foil via the positive current collector 104a, while the two negative plates 103 are connected to the negative current collector 105a. Is connected to the negative electrode terminal 105 which is also made of metal foil. The positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include aluminum, an aluminum alloy, copper, and nickel. Can include nickel, copper, stainless steel or iron. These metals are particularly suitable as components of thin batteries in terms of the resistance value, linear expansion coefficient, and resistivity of the metal, and even when the use temperature is changed, the generation of stress on the seal film described later is kept relatively small. I can do it. Further, both the positive electrode side current collector 104a and the negative electrode side current collector 105a in this example extend the aluminum foil, nickel foil, copper foil, and iron foil constituting the current collector of the positive electrode plate 104 and the negative electrode plate 105. However, the current collectors 104a and 105a can be formed of separate materials and parts.
[0017]
The power generation element 109 is sealed by the upper battery exterior member 106 and the lower battery exterior member 107 (sealing means). As shown in FIG. 2, the upper battery exterior member 106 according to the embodiment of the present invention includes a first resin layer 106a, a metal layer 106b, and a second resin layer from the positive terminal 104 side toward the outside of the thin battery. Three layers 106a to 106c are stacked in the order of 106c. The three layers 106a to 106c are laminated over the entire surface of the upper battery exterior member 106, and the first resin layer 106a is resistant to an electrolytic solution such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer. And a resin film excellent in heat-fusibility. The second resin layer 106c is a resin film excellent in electrical insulation, such as a polyamide resin or a polyester resin. The metal layer 106b is, for example, a metal foil such as aluminum. Therefore, the upper battery exterior member 106 and the lower battery exterior member 107 are laminated with a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer on one surface (inner surface of a thin battery) of a metal foil such as aluminum. Then, the other surface (the outer surface of the thin battery) is formed of a flexible material such as a resin-metal thin film laminate material in which a polyamide resin, a polyester resin, or the like is laminated.
[0018]
The lower battery exterior member 107 has the same structure as the upper battery exterior member 106, and as shown in FIG. 2, the first resin layer 107a, from the positive terminal 104 side toward the outside of the thin battery, Three layers 107a to 107c are stacked in the order of the metal layer 107b and the second resin layer 107c. Similar to the first resin layer 106a of the upper battery exterior member 106, the first resin layer 107a of the lower battery exterior member 107 is resistant to electrolyte solution and heat such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer. It is a resin film excellent in fusing property. The metal layer 107b of the lower battery exterior member 107 is, for example, a metal foil such as aluminum, like the metal layer 106b of the upper battery exterior member 106. Similar to the second resin layer 106c of the upper battery exterior member 106, the second resin layer 107c of the lower battery exterior member 107 is a resin film excellent in electrical insulation, such as a polyamide resin or a polyester resin. . 2 shows a cross-sectional view of the positive electrode terminal 104, the cross-section on the negative electrode terminal side has the same structure. As described above, when the battery exterior member includes the metal layer in addition to the resin layer, the strength of the battery exterior member itself can be improved.
[0019]
Furthermore, in the embodiment of the present invention, in order to maintain the sealing performance in the thin battery 10, the electrolytic solution resistance and the heat-fusibility are provided at the portion where the positive electrode terminal 104 and the battery exterior member 106, 107 are in contact with each other. Is provided with a sealing film 108 (sealing means). Similarly, the negative electrode terminal 105 is led out from the other end portion of the battery exterior members 106 and 107, and the negative electrode terminal 105 and the battery exterior members 106 and 107 are in contact with each other as well as the positive electrode terminal 104 side. The sealing film 108 is interposed in the part to be performed.
[0020]
As described above, the battery exterior member and the seal film can be made of a resin such as polypropylene, modified polypropylene, polyethylene, modified polyethylene, or ionomer, thereby ensuring good fusion with a metal terminal. It becomes.
[0021]
These seal films 108 are composed of two resin layers, ie, an inner resin layer 108a and an outer resin layer 108b, which have different expansion / contraction ratios with respect to heat, for example, a linear expansion coefficient [1 / ° C.] and a heat shrinkage ratio [mm / mm]. It is configured. The inner resin layer 108 a is disposed so as to be in contact with the positive electrode terminal 104 and the negative electrode terminal 105, and the outer resin layer 108 b is the first resin layer 106 a of the upper battery outer member 106 and the first resin of the lower battery outer member 107. Arranged in contact with the layer 107a.
[0022]
The inner resin layer 108a is, for example, in the same manner as the first resin layers 106a and 107a of the battery exterior members 106 and 107 described above, for example, an electrolyte solution resistance such as polyethylene, modified polyethylene, polypropylene, modified propylene, and ionomer, and heat fusion. It is a resin film with excellent properties.
[0023]
On the other hand, the outer resin layer 108b is a resin layer having a lower expansion / contraction ratio with respect to heat than the inner resin layer 108a, such as crosslinked polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer. In order to obtain good fusing properties, it is preferable to use the same type of resin for the outer resin layer 108a and the inner resin layer 108a, and to use a resin in which only the outer resin layer 108b is crosslinked, for example, the inner resin layer 108a. When polypropylene is used for the outer resin layer, it is preferable to use crosslinked polypropylene for the outer resin layer 108b.
[0024]
When the battery exterior members 106 and 107 are sealed by thermal fusion, which will be described later, a corrugated interface is formed between the inner resin layer 108a and the outer resin layer 108b, which have different expansion / contraction ratios due to heat transfer. And an anchoring effect (anchor effect) at the interface can be obtained. Thus, by obtaining the anchor effect with the interface of the seal film as a corrugated structure, it becomes possible to firmly fuse the thermal fusion region of the terminal lead-out part or the battery exterior member, as shown in FIG. Compared with the case where the interface is formed in a straight line and the anchor effect cannot be obtained, it is possible to give the thin battery a strong structure against external force, and it is possible to ensure the long life of the thin battery. Become.
[0025]
Further, by using the outer resin layer 108b whose linear expansion coefficient is smaller than the linear expansion coefficient of the inner resin layer 108a, the inner resin layer positioned in the vicinity of the terminals 104 and 105 in the shrinkage of the sealing film 108 against heat. 108a extends following the shrinkage of the outer resin layer 108b, and a corrugated structure can be easily formed at the interface.
[0026]
In order to change the expansion / contraction ratio of the inner resin layer 108a and the outer resin layer 108b of the seal film 108 with respect to heat, that is, the linear expansion coefficient and the thermal contraction ratio, it is limited only to changing the crosslinking ratio of each resin described above. However, it is also possible to change the modification rate of each resin or change the type of each resin.
[0027]
In addition, the sealing film 108 may be provided not only in the vicinity of the positive electrode terminal and the negative electrode terminal, but also on the entire periphery of the heat-sealing region 110 of the battery exterior members 106 and 107. A strong structure can be imparted to the thin battery.
[0028]
In addition, the number of layers which comprise a battery exterior member and a sealing film is not limited above, It is possible to set the required number of layers suitably. Further, the terminal may be directly sealed by heat-sealing the first resin layer of the battery exterior member without interposing a seal film, or the seal film 108 may be included in the battery exterior member in advance. good.
[0029]
The battery exterior members 106 and 107 enclose the power generation element 109, the positive current collector 104a, a part of the positive terminal 104, the negative current collector 105a, and a part of the negative terminal 105, and the battery exterior member. After injecting a liquid electrolyte having a lithium salt such as lithium perchlorate or lithium borofluoride into an organic liquid solvent into the space formed by 106, 107, the outer surfaces of the upper battery outer member 106 and the lower battery outer member 107 are removed. The peripheral heat fusion region 110 is sealed by a method such as heat fusion.
[0030]
The thin battery 10 thus sealed preferably has a total thickness of 1 to 10 [mm]. By setting the thickness of the thin battery to 10 [mm] or less, it becomes difficult for heat to be trapped inside the thin battery, the possibility of transmitting stress to the interface between the terminal and the seal film is reduced, and the battery is thermally deteriorated. The impact of will also decrease. Further, by setting the thickness of the thin battery to 1 [mm] or more, a sufficient capacity can be ensured, and economic efficiency can be increased.
[0031]
Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC), but the organic liquid solvent of the present invention is not limited thereto, An organic liquid solvent prepared by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) and dietoshikiethane (DEE) in an ester solvent can also be used.
[0032]
Hereinafter, an assembled battery configured by combining a plurality of the above-described thin batteries and a composite assembled battery configured by combining a plurality of the assembled batteries will be described.
[0033]
4A and 4B are diagrams showing a method for connecting a plurality of thin batteries according to an embodiment of the present invention. FIG. 4A shows parallel connection and FIG. 4B shows serial connection for comparison. FIG. 5 is a diagram showing another connection method for a plurality of thin batteries according to an embodiment of the present invention, FIG. 5 (A) shows parallel connection, and FIG. 5 (B) shows series connection for comparison. . 6 is a perspective view of an assembled battery including a plurality of thin batteries according to an embodiment of the present invention, FIG. 7A is a plan view of the assembled battery of FIG. 6, and FIG. 7B is an assembled battery of FIG. 7 (C) is a side view of the assembled battery of FIG. 6, FIG. 8 is a perspective view of a composite assembled battery composed of the assembled battery of FIG. 6, and FIG. 9 (A) is a composite assembled battery of FIG. 9B is a front view of the composite battery pack of FIG. 8, FIG. 9C is a side view of the composite battery pack of FIG. 8, and FIG. 10 shows the composite battery pack according to the embodiment of the present invention. The schematic diagram mounted in the vehicle is shown.
[0034]
When the assembled battery 20 having the plurality of thin batteries 10 is configured by electrically connecting the thin batteries 10 described above, two connection structures with the arrangement shown in FIGS. 4A and 5A are particularly applicable. A structure that is stronger against external force is added.
[0035]
As shown in FIG. 4A, the first connection structure is a direction in which the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are led out in the same direction. Thus, the first thin battery 10a and the second thin battery 10b are juxtaposed on substantially the same plane. Then, the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are electrically connected by the first bus bar 21a. Further, the negative terminal 105 of the first thin battery 10a and the negative terminal 105 of the second thin battery 10b are electrically connected by the second bus bar 21b.
[0036]
In the second connection structure, as shown in FIG. 5A, the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the second thin battery 10b are led out in the same direction. Thus, the first thin battery 10a and the second thin battery 10b are stacked by bringing the vertically upward surface of the first thin battery 10a into contact with the vertically downward surface of the second thin battery 10b. Then, the positive electrode terminal 104 of the first thin battery 10a and the positive electrode terminal 104 of the second thin battery 10b are welded and electrically connected, and similarly, the negative electrode terminal 105 of the first thin battery 10a and the second terminal The thin-film battery 10b is electrically connected to the negative electrode terminal 105 by welding.
[0037]
When connected in series as shown in FIG. 4 (B) and FIG. 5 (B), the positive terminal 104 of each thin battery 10a, 10b is twisted in the opposite phase by the applied external force (FIG. 4 (B)). In FIG. 5B, the twisting direction is indicated by an arrow.) On the other hand, in the connection structure described above, the positive terminals 104 and the negative terminals 105 of the thin batteries 10a and 10b are connected to each other. Therefore, the stress generated in each of the thin batteries 10a and 10b has the same phase, the twist generated in the terminals 104 and 105 can be suppressed as much as possible, and the possibility that peeling occurs at the interface between the terminal and the seal film is reduced. . In addition, if the metal of the positive electrode terminal and the metal of the negative electrode terminal are different, the tensile stress generated in the terminal lead-out portion may be different and cause interfacial delamination. It is possible to substantially equalize the tensile stress generated in the part.
[0038]
FIGS. 6 and 7A to 7C show an assembled battery 20 constituted by 24 thin batteries 10 connected in parallel using, for example, the above-described two connection structures. The assembled battery 20 includes 24 thin batteries 10, assembled battery terminals 22 and 23, and an assembled battery cover 25. Although not shown in particular, the same-polarity terminals of each thin battery 10 are connected in parallel by the bus bars 21a and 21b in the above-described connection structure, and the first bus bar 21a connecting each positive terminal 104 is an assembled battery cover. 25 is connected to a substantially cylindrical assembled battery positive electrode terminal 22 led out from 25. Similarly, the second bus bar 21 b connecting each negative electrode terminal 105 is connected to a substantially cylindrical assembled battery negative terminal 23 that is led out from the assembled battery cover 25. When these connections are completed and 24 thin batteries 10 are inserted into the assembled battery cover 25, a space formed between the assembled battery cover 25 and the other components of the assembled battery 20 is formed. Filler 24 is filled and sealed. Furthermore, when thin batteries are stacked as a composite battery pack, which will be described later, in order to reduce vibration between the thin batteries as much as possible, external elastic bodies 26 are attached to the bottom four corners of the battery pack cover 25.
[0039]
8 and 9A to 9C show a composite battery pack 30 including six battery packs 20 electrically connected to the battery pack 20 shown in FIG. As shown in FIGS. 8 and 9A to 9C, the composite battery pack 30 is laminated so that the terminals 22 and 23 of the battery pack 20 face each other in the same direction. That is, the terminals 22 and 23 of the assembled battery 20 located at the m-th stage and the terminals 22 and 23 of the assembled battery 20 located at the (m + 1) -th stage are oriented in the same direction. M + 1-stage assembled batteries 20 are stacked (m: natural number). Then, the assembled battery positive terminals 22 of all assembled batteries 20 facing in the same direction are electrically connected by the external connection positive terminal 31 that connects the composite assembled battery 30 and the outside. Similarly, the assembled battery negative terminals 23 of all assembled batteries 20 facing in the same direction are electrically connected by the external connection negative terminal 32. As shown in the figure, the external connection positive electrode terminal 31 has a substantially rectangular flat plate shape, and a plurality of terminal connection holes having a diameter into which the assembled battery positive electrode terminal 22 can be inserted or press-fitted are processed. The terminal connection holes are processed at a pitch equal to the pitch between the assembled battery positive terminals 22 of the stacked assembled battery 20, and the terminal connection holes are similarly processed in the external connection negative terminal 32. Yes.
[0040]
Further, an insulating cover 33 made of an insulating material is provided so as to cover all the connected assembled battery terminals 22 and 23 so that the assembled battery terminals 22 and 23 are not exposed to the outside of the composite assembled battery 30. ing. In FIG. 8, the insulating cover 33 is depicted in a perspective view for convenience of explanation, and is not shown in FIG. Then, the six assembled batteries 20 stacked as described above are connected to both side surfaces by flat connecting members 34 and further fastened and fixed by fixing screws 35.
[0041]
As described above, it is required that a battery pack is formed in units of a predetermined number of thin batteries, and further a battery pack is combined with a predetermined number of battery packs in units of the battery pack. It becomes possible to easily obtain a composite battery pack suitable for capacity, voltage and the like. In addition, since the composite battery pack is configured without complicated connection, the failure rate of the composite battery pack due to poor connection can be reduced. Furthermore, when one thin battery constituting the composite assembled battery fails or deteriorates and the thin battery needs to be replaced, the assembled battery having the thin battery can be easily replaced.
[0042]
FIG. 10 is a schematic diagram showing an example in which the above-mentioned composite battery pack 30 is mounted on the vehicle 1 below the floor. As the vehicle 1 moves, a lot of vibration is generated in the vehicle. As shown in the figure, when the above-described composite assembled battery 30 is mounted on the vehicle, the possibility of interface peeling between the terminals of the thin battery and the seal film due to the vibration is significantly reduced, and the battery is effectively used in the vehicle. It becomes possible to utilize it.
[0043]
The number of thin batteries constituting the assembled battery, the number of assembled batteries constituting the composite battery, the connection method of the thin batteries constituting the assembled battery, and the connection method of the assembled batteries constituting the composite battery are described above. The number and connection method are not limited, and the number and connection method (series connection, parallel connection, series-parallel composite connection) can be appropriately set based on required electric capacity, voltage, and the like.
[0044]
The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[0045]
【Example】
Hereinafter, the effects of the present invention were confirmed by examples and comparative examples that further embody the present invention. The following examples are for confirming the effects of the thin battery used in the above-described embodiment.
[0046]
Example 1
In the thin battery of Example 1, the positive electrode active material was lithium manganate (LiMnO2), Using amorphous carbon as the negative electrode active material, a mixed solution of propylene carbonate (PC) and ethyl methyl carbonate (EMC) as the electrolyte, aluminum (Al) as the positive electrode terminal, and nickel (Ni) as the negative electrode terminal. . In addition, a polymer resin composite film in which a nylon resin film 25 μm is used for the second resin layer, aluminum 40 μm is used for the metal layer, and a modified polypropylene resin film 50 μm is used for the first resin layer is used. The film was the fused surface. Further, a non-crosslinked polypropylene (PP) resin film and a cross-linked polypropylene resin film were used as a two-layer sealing film, and the non-crosslinked polypropylene resin film was brought into contact with the positive electrode terminal and the negative electrode terminal for crosslinking. The polypropylene resin film was brought into contact with the first resin layer of the battery exterior member and fused to produce a thin battery having a length of 140 [mm] × width of 80 [mm] × thickness of 4 [mm]. In addition, the linear expansion coefficient of the polypropylene used for this thin battery is 8.0 × 10-5[1 / ° C.], thermal shrinkage rate is 0.025 [mm / mm], and the linear expansion coefficient of the crosslinked polypropylene of the seal film is 4.0 × 10-5[1 / ° C.] and thermal shrinkage 0.01 [mm / mm].
[0047]
This thin battery was subjected to a tensile test. In the tensile test, the terminals of the thin battery, the upper battery exterior member, and the lower battery exterior member were tested in accordance with the tensile strength test method described in the automotive sealing material test method of JIS K6830. Here, the elongation amount during the tensile test was calculated, and the elongation ratio relative to the elongation amount of the reference sample in the test under the same conditions was calculated in%. The reference sample in the tensile test is a thin battery using a single-layer seal film of Comparative Example 1 described later.
[0048]
As a result, in Example 1, an allowable elongation of 190% with respect to the reference sample was confirmed. FIG. 11 shows a cross-sectional photograph of the terminal lead-out portion of the thin battery of Example 1. As shown in FIG. 11, it was confirmed that a corrugated structure was formed at the interface between the two layers of the polypropylene resin film constituting the seal film and the crosslinked polypropylene resin film.
[0049]
Comparative Example 1
As Comparative Example 1, a positive electrode terminal, a negative electrode terminal, a positive electrode active material, a negative electrode active material, an electrolyte solution, and a battery exterior member similar to those in Example 1 were used, and a single-layer seal film of a polypropylene resin film that was not crosslinked was used. A thin battery having a length of 140 [mm] × width of 80 [mm] × thickness of 4 [mm] was produced. The thin battery was subjected to a tensile test test under the same conditions as in the first example.
[0050]
As a result, since the comparative example 1 in the tensile test is used as a reference, the allowance for the elongation is 100%. FIG. 12 shows a cross-sectional photograph of the terminal lead-out portion of the thin battery of Comparative Example 1. As shown in FIG. 12, it was confirmed that a corrugated structure was not formed at the interface of the seal film.
[0051]
Consideration
Compared with the thin battery of Comparative Example 1, it is clear that the thin battery of Example 1 has a corrugated structure formed on the seal film, significantly improves the strength due to the anchor effect, and has a structure strong against the applied external force. It became.
[Brief description of the drawings]
FIG. 1A is a plan view showing an entire thin battery according to an embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line BB in FIG.
FIG. 2 is a cross-sectional view taken along the line CC in FIG.
FIG. 3 is a terminal lead-out portion stress displacement graph according to an embodiment of the present invention.
4A and 4B are diagrams showing a connection structure of a plurality of thin batteries according to an embodiment of the present invention, in which FIG. 4A shows parallel connection and FIG. 4B shows serial connection for comparison.
5A and 5B are diagrams showing another connection structure of a plurality of thin batteries according to an embodiment of the present invention, where FIG. 5A shows parallel connection and FIG. 5B shows serial connection for comparison. Show.
FIG. 6 is a perspective view of an assembled battery including a plurality of thin batteries according to an embodiment of the present invention.
7A is a plan view of the assembled battery of FIG. 6, FIG. 7B is a front view of the assembled battery of FIG. 6, and FIG. 7C is a side view of the assembled battery of FIG. .
FIG. 8 is a perspective view of a composite battery pack constituted by the battery pack of FIG.
9A is a plan view of the composite battery of FIG. 8, FIG. 9B is a front view of the composite battery of FIG. 8, and FIG. 9C is a side view of the composite battery of FIG. It is.
FIG. 10 is a schematic view in which a composite battery pack according to an embodiment of the present invention is mounted on a vehicle.
11 shows a cross-sectional photograph of the terminal lead-out portion of the thin battery of Example 1. FIG.
12 shows a cross-sectional photograph of the terminal lead-out portion of the thin battery of Comparative Example 1. FIG.
[Explanation of symbols]
1 ... Vehicle
10 ... Thin battery
10a: first thin battery
10b ... second thin battery
101 ... Positive electrode plate
102 ... Separator
103 ... Negative electrode plate
104: Positive terminal
105 ... Negative terminal
106: Upper battery exterior member
106a ... 1st resin layer
106b ... metal layer
106c ... second resin layer
107 ... Lower battery exterior member
107a ... first resin layer
107b ... metal layer
107c ... second resin layer
108 ... Sealing film
109 ... Power generation element
110 ... heat fusion region
20 ... Battery
21a ... first bus bar
22b ... second bus bar
22 ... Positive electrode terminal for battery pack
23 ... Negative electrode terminal for battery pack
24 ... Filler
25 ... Battery cover
26. External elastic body
30 ... Composite battery pack
31 ... Positive terminal for external connection
32 ... Negative terminal for external connection
33 ... Insulation cover
34. Connecting member
35 ... Fixing screw

Claims (20)

隣接して積層される2以上の合成樹脂層を少なくとも外周縁部の一部に有する2枚のシート状封止手段の前記外周縁部を、熱融着する事によって、内部に発電要素を封止し、
前記発電要素に接続された正極端子及び負極端子を前記外周縁部から導出した薄型電池であって、
前記封止手段の熱融着された封止部の少なくとも一部は、前記隣接して積層される合成樹脂層間に波形構造を有する薄型電池。
The power generation element is sealed inside by heat-sealing the outer peripheral edge portions of two sheet-shaped sealing means having at least a part of the outer peripheral edge portions of two or more synthetic resin layers laminated adjacent to each other. Stop,
A thin battery in which a positive electrode terminal and a negative electrode terminal connected to the power generation element are led out from the outer periphery,
A thin battery in which at least a part of the heat-sealed sealing portion of the sealing means has a corrugated structure between the adjacent synthetic resin layers.
前記封止部が熱融着される事によって、前記隣接して積層される合成樹脂層間に前記波形構造が形成される請求項1記載の薄型電池。  The thin battery according to claim 1, wherein the corrugated structure is formed between the adjacent synthetic resin layers by heat sealing the sealing portion. 前記封止手段が、少なくとも1以上の金属層をさらに有する請求項1又は2記載の薄型電池。  The thin battery according to claim 1 or 2, wherein the sealing means further includes at least one metal layer. 前記隣接して積層される少なくとも2以上の合成樹脂層は、互いに線膨張係数が異なる少なくとも2以上の合成樹脂層を含む請求項1〜3の何れかに記載の薄型電池。  The thin battery according to any one of claims 1 to 3, wherein the at least two or more synthetic resin layers stacked adjacent to each other include at least two or more synthetic resin layers having different linear expansion coefficients. 前記線膨張係数が異なる少なくとも2以上の合成樹脂層は、前記正極端子及び負極端子に接触する第1の合成樹脂層と、
前記第1の合成樹脂層に隣接して積層される第2の合成樹脂層と、を有し、
前記第2の合成樹脂層が、前記第1の合成樹脂層より小さい線膨張係数を有する請求項4記載の薄型電池。
The at least two or more synthetic resin layers having different linear expansion coefficients include a first synthetic resin layer in contact with the positive electrode terminal and the negative electrode terminal;
A second synthetic resin layer laminated adjacent to the first synthetic resin layer,
The thin battery according to claim 4, wherein the second synthetic resin layer has a smaller linear expansion coefficient than the first synthetic resin layer.
前記第1の合成樹脂層は、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、又はアイオノマーからなる群より選ばれる材料を含む請求項5記載の薄型電池。  The thin battery according to claim 5, wherein the first synthetic resin layer includes a material selected from the group consisting of polypropylene, modified polypropylene, polyethylene, modified polyethylene, or ionomer. 前記第2の合成樹脂層は、架橋されたポリプロピレン、架橋された変性ポリプロピレン、架橋されたポリエチレン、架橋された変性ポリエチレン、又は架橋されたアイオノマーからなる群より選ばれる材料を含む請求項5又は6記載の薄型電池。  The second synthetic resin layer includes a material selected from the group consisting of cross-linked polypropylene, cross-linked modified polypropylene, cross-linked polyethylene, cross-linked modified polyethylene, or cross-linked ionomer. The thin battery as described. 前記第1の合成樹脂層がポリプロピレンを含む場合、第2の合成樹脂層が架橋されたポリプロピレンを含む請求項5〜7の何れかに記載の薄型電池。  The thin battery according to any one of claims 5 to 7, wherein when the first synthetic resin layer includes polypropylene, the second synthetic resin layer includes crosslinked polypropylene. 前記第1の合成樹脂層がポリエチレンを含む場合、第2の合成樹脂層が架橋されたポリエチレンを含む請求項5〜8の何れかに記載の薄型電池。  The thin battery according to any one of claims 5 to 8, wherein when the first synthetic resin layer includes polyethylene, the second synthetic resin layer includes crosslinked polyethylene. 前記正極端子が、アルミニウム、、及びニッケルからなる群より選ばれる一又はそれ以上の成分を含む請求項1〜9の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 9, wherein the positive electrode terminal includes one or more components selected from the group consisting of aluminum, copper , and nickel. 前記負極端子が、鉄、ニッケル、及び銅からなる群より選ばれる一又はそれ以上の成分を含む請求項1〜10の何れかに記載の薄型電池。  The thin battery according to any one of claims 1 to 10, wherein the negative electrode terminal includes one or more components selected from the group consisting of iron, nickel, and copper. 前記薄型電池の厚さは1〜10mmである請求項1〜11の何れかに記載の薄型電池。  The thickness of the said thin battery is 1-10 mm, The thin battery in any one of Claims 1-11. 前記発電要素は正極として機能する正極活性物質を有し、
前記正極活性物質が、リチウム複合酸化物である請求項1〜12の何れかに記載の薄型電池。
The power generation element has a positive electrode active material that functions as a positive electrode,
The thin battery according to claim 1, wherein the positive electrode active material is a lithium composite oxide.
前記リチウム複合酸化物が、リチウム-マンガン系複合酸化物である請求項13記載の薄型電池。  The thin battery according to claim 13, wherein the lithium composite oxide is a lithium-manganese composite oxide. 前記発電要素は負極として機能する負極活性物質を有し、
前記負極活性物質が、炭素系材料である請求項1〜14の何れかに記載の薄型電池。
The power generation element has a negative electrode active material that functions as a negative electrode,
The thin battery according to claim 1, wherein the negative electrode active material is a carbon-based material.
前記炭素系材料が、非結晶性炭素材である請求項15記載の薄型電池。  The thin battery according to claim 15, wherein the carbon-based material is an amorphous carbon material. 請求項1〜16の何れかに記載の薄型電池を複数備え、
一の前記薄型電池の正極端子又は負極端子の一方と、他の前記薄型電池の同極端子又は他極端子の一方とを電気的に接続する複数の接続手段、を有する組電池であって、
前記一の薄型電池の正極端子と前記他の薄型電池の同極端子とが同方向となるように、前記一の薄型電池の側方に前記他の薄型電池を並置し、
一の前記接続手段により、前記一の薄型電池の正極端子と、前記他の薄型電池の正極端子とを電気的に接続し、
他の前記接続手段により、前記一の薄型電池の負極端子と、前記他の薄型電池の負極端子とを電気的に接続した少なくとも2以上の前記薄型電池を含む組電池。
A plurality of the thin batteries according to any one of claims 1 to 16,
A battery assembly having a plurality of connecting means for electrically connecting one of the positive electrode terminal or the negative electrode terminal of one thin battery and the same polarity terminal or one of the other electrode terminals of the other thin battery,
The other thin battery is juxtaposed to the side of the one thin battery so that the positive terminal of the one thin battery and the same polarity terminal of the other thin battery are in the same direction,
The one connecting means electrically connects the positive terminal of the one thin battery and the positive terminal of the other thin battery,
An assembled battery including at least two or more thin batteries in which the negative terminal of the one thin battery and the negative terminal of the other thin battery are electrically connected by another connection means.
請求項1〜16の何れかに記載の薄型電池を電気的に接続した、複数の薄型電池を有する組電池であって、
一の前記薄型電池の正極端子と他の前記薄型電池の同極端子とが同方向となるように、前記一の薄型電池の鉛直方向上部に前記他の薄型電池を積層し、
前記一の薄型電池の正極端子と、前記他の薄型電池の正極端子とを電気的に接続し、
前記一の薄型電池の負極端子と、前記他の薄型電池の負極端子とを電気的に接続した少なくとも2以上の前記薄型電池を含む組電池。
An assembled battery having a plurality of thin batteries, wherein the thin batteries according to claim 1 are electrically connected,
Laminating the other thin battery on the upper part in the vertical direction of the one thin battery so that the positive electrode terminal of the one thin battery and the same polarity terminal of the other thin battery are in the same direction,
Electrically connecting the positive terminal of the one thin battery and the positive terminal of the other thin battery;
An assembled battery including at least two or more thin batteries in which the negative terminal of the one thin battery and the negative terminal of the other thin battery are electrically connected.
請求項17又は18記載の組電池を電気的に直列接続、並列接続、又は、直列並列複合接続した、複数の組電池を有する複合組電池。A composite assembled battery comprising a plurality of assembled batteries, wherein the assembled batteries according to claim 17 or 18 are electrically connected in series, connected in parallel, or connected in series and parallel . 請求項19に記載の複合組電池を車載した車両。A vehicle on which the composite assembled battery according to claim 19 is mounted.
JP2002189908A 2002-06-28 2002-06-28 Thin battery Expired - Fee Related JP3711962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189908A JP3711962B2 (en) 2002-06-28 2002-06-28 Thin battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189908A JP3711962B2 (en) 2002-06-28 2002-06-28 Thin battery

Publications (2)

Publication Number Publication Date
JP2004031289A JP2004031289A (en) 2004-01-29
JP3711962B2 true JP3711962B2 (en) 2005-11-02

Family

ID=31184191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189908A Expired - Fee Related JP3711962B2 (en) 2002-06-28 2002-06-28 Thin battery

Country Status (1)

Country Link
JP (1) JP3711962B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100544075C (en) * 2004-03-31 2009-09-23 日本电气株式会社 The method of layer-built battery, splice terminal, battery pack and manufacturing battery pack
JP2007005102A (en) * 2005-06-23 2007-01-11 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery and lead wire for nonaqueous electrolyte battery
JP5194361B2 (en) * 2005-12-15 2013-05-08 日産自動車株式会社 Secondary battery module
JP2011129451A (en) * 2009-12-21 2011-06-30 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP5472284B2 (en) * 2011-12-26 2014-04-16 日本電気株式会社 Film outer battery and battery pack
KR20140011962A (en) * 2012-07-20 2014-01-29 스미토모 덴키 고교 가부시키가이샤 Tab lead and battery
JP6159516B2 (en) * 2012-09-24 2017-07-05 大倉工業株式会社 Terminal adhesive tape and method of manufacturing the tape
JP2014165045A (en) * 2013-02-26 2014-09-08 Auto Network Gijutsu Kenkyusho:Kk Power storage unit and power storage module
KR102379222B1 (en) * 2017-01-20 2022-03-28 주식회사 엘지에너지솔루션 Pouch-type case for secondary battery
KR102379221B1 (en) * 2017-01-20 2022-03-28 주식회사 엘지에너지솔루션 Pouch-type secondary battery case and lithium secondary battery comprising the same
CN107170943A (en) * 2017-07-05 2017-09-15 江西优特汽车技术有限公司 Dividing plate and the Soft Roll electrokinetic cell with it
KR20210109018A (en) * 2019-01-09 2021-09-03 비와이디 컴퍼니 리미티드 Battery packs and electric vehicles

Also Published As

Publication number Publication date
JP2004031289A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP4894129B2 (en) Thin battery and battery pack
US20130177787A1 (en) Current collector and nonaqueous secondary battery
JP6315269B2 (en) Sealed battery module and manufacturing method thereof
JP4852882B2 (en) Secondary battery and method for manufacturing secondary battery
JP2007194090A (en) Bipolar type battery, battery module, and battery pack
JP2007299680A (en) Dipole secondary battery
JP3573141B2 (en) Thin batteries, assembled batteries, composite assembled batteries and vehicles
JP2004055348A (en) Battery pack, composite battery pack, and vehicle
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP3711962B2 (en) Thin battery
JP4182858B2 (en) Secondary battery and assembled battery
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP3797311B2 (en) Thin battery support device and assembled battery including the same
JP2005251617A (en) Secondary battery and battery pack
JP5329018B2 (en) Battery separator
JP2004055346A (en) Battery pack, composite battery pack, and vehicle mounting it
JP3719235B2 (en) Thin battery, assembled battery, composite assembled battery and vehicle
JP6048477B2 (en) Method for producing non-aqueous electrolyte battery
JP2006164782A (en) Bipolar battery, battery pack, composite battery, and vehicle mounting them
JP3852110B2 (en) Thin battery and manufacturing method thereof
JP3702868B2 (en) Thin battery
JP2005129393A (en) Secondary battery
JP4052127B2 (en) Thin battery support structure, assembled battery and vehicle
JP2005197015A (en) Battery pack

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees