JP2004055348A - Battery pack, composite battery pack, and vehicle - Google Patents

Battery pack, composite battery pack, and vehicle Download PDF

Info

Publication number
JP2004055348A
JP2004055348A JP2002211480A JP2002211480A JP2004055348A JP 2004055348 A JP2004055348 A JP 2004055348A JP 2002211480 A JP2002211480 A JP 2002211480A JP 2002211480 A JP2002211480 A JP 2002211480A JP 2004055348 A JP2004055348 A JP 2004055348A
Authority
JP
Japan
Prior art keywords
battery
thin
terminal
electrode terminal
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002211480A
Other languages
Japanese (ja)
Inventor
Kyoichi Watanabe
渡邉 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002211480A priority Critical patent/JP2004055348A/en
Publication of JP2004055348A publication Critical patent/JP2004055348A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack capable of facilitating the replacement of a flat battery in repairing it. <P>SOLUTION: A fixing device 5 is composed by disposing, on a flat fixing base part 51, engagement members 52 each having a nearly arrow-like shape, a damping material 53 and openings 54. When the fixing base 51 is folded around shafts 51a, the engagement members 52 are inserted into the openings 54. By catching terminals 104 and 105 of the two flat batteries 10 stacked so that the positive electrode terminal 104 of one-side flat battery are set in the same direction as the positive electrode terminal 104 of the other-side flat battery by the damping material 53 disposed oppositely to them, and by engaging the engagement members 52 with the openings 54, the flat batteries 10 are fixed in this battery pack by the fixing device 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【技術分野】
本発明は、複数の薄型電池により構成される組電池に関し、特に薄型電池の容易な交換が可能な組電池に関する。
【0002】
【背景技術】
薄型電池の使用態様や使用条件の多様化に伴って、複数の薄型電池により組電池を構成することにより高電圧、高容量化を図っている。しかしながら、薄型電池の故障等により、組電池内部に組み込まれた薄型電池を交換する必要がある場合に、当該薄型電池を組電池から容易に取り出すことが出来ず、組電池の修理等が困難であった。
【0003】
【発明の開示】
本発明は、複数の薄型電池により構成される組電池に関し、特に薄型電池の容易な交換が可能な組電池を提供することを目的とする。
【0004】
上記目的を達成するために、本発明によれば、合成樹脂層を有する2枚のシート状封止手段の外周縁部を接合して、前記封止手段の内部に発電要素を封止し、前記発電要素に接続された正極端子及び負極端子を前記外周縁部から導出した薄型電池を複数備えた組電池であって、前記薄型電池の正極端子又は負極端子を固定及び開放可能な固定手段を有する組電池が提供される(請求項1参照)。
【0005】
さらに、本発明によれば、前記固定手段は、前記薄型電池の正極端子及び負極端子に接触する位置にダンピング材を有し、前記ダンピング材によって、前記薄型電池の正極端子又は負極端子を挟持して、前記薄型電池を支持することがより好ましい(請求項2参照)。
【0006】
本発明では、薄型電池の正極端子又は負極端子を固定及び開放可能な固定手段を組電池に具備させ、当該固定手段により薄型電池を組電池に固定することにより、当該組電池からの薄型電池の取り外しが容易となる。
【0007】
また、固定手段の正極端子又は負極端子への接触位置にダンピング材を配置し、当該ダンピング材により薄型電池の正極端子又は負極端子を挟持して当該薄型電池を支持することにより、組電池の外部から印加される振動が薄型電池へ伝達するのを著しく低減することが可能となる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0009】
第1実施形態
図1(A)は本発明の第1実施形態に係る薄型電池の全体を示す平面図、図1(B)は図1(A)のII−II線に沿う断面図である。図1は一つの薄型電池(単位電池)を示し、この薄型電池10を複数接続することにより所望の電圧、容量の組電池が構成される。
【0010】
まず図1を参照しながら、本発明の実施形態に係る薄型電池10の全体構成について説明すると、本例の薄型電池10はリチウム系の薄型二次電池であり、2枚の正極板101と、5枚のセパレータ102と、2枚の負極板103と、正極端子104と、負極端子105と、上部電池外装部材106と、下部電池外装部材107と、特に図示しない電解質とから構成されている。このうちの正極板101,セパレータ102,負極板103および電解質を特に発電要素109と称する。
【0011】
なお、正極板101,セパレータ102,負極板103の枚数には何ら限定されず、1枚の正極板101,3枚のセパレータ102,1枚の負極板104でも発電要素109を構成することができる。必要に応じて正極板、負極板およびセパレータの枚数を選択して構成することができる。
【0012】
発電要素109を構成する正極板101は、金属酸化物などの正極活物質に、カーボンブラックなどの導電材と、ポリ四フッ化エンチレンの水性ディスパージョンなどの接着剤とを、重量比でたとえば100:3:10の割合で混合したものを、正極側集電体としてのアルミニウム箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。なお、上記のポリ四フッ化エチレンの水性ディスパージョンの混合比率は、その固形分である。
【0013】
正極活物質としては、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、コバルト酸リチウム(LiCoO)などのリチウム複合酸化物や、カルコゲン(S、Se、Te)化物を挙げることができる。これらの材質は薄型電池内部の発熱を比較的拡散し易く、端子への伝熱による端子の膨張による伸びを少なく出来、端子から後述する電池外装部材へ伝達する引張り応力を極力抑制することが可能となる。
【0014】
発電要素109を構成する負極板103は、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、または黒鉛などのように、正極活物質のリチウムイオンを吸蔵および放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンをたとえば固形分比100:5で混合し、乾燥させたのち粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これに、アクリル樹脂エマルジョンなどの結着剤をたとえば重量比100:5で混合し、この混合物を、負極側集電体としてのニッケル箔或いは銅箔などの金属箔の両面に塗着、乾燥させ、圧延したのち所定の大きさに切断したものである。
【0015】
特に負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量にともなって出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車等の電源として用いると急激な出力低下がないので有利である。
【0016】
また、発電要素109のセパレータ102は、上述した正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えてもよい。セパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。
【0017】
なお、本発明のセパレータ102は、ポリオレフィンなどの単層膜にのみ限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布などを積層したものも用いることができる。セパレータ102を複層化することで、過電流の防止機能、電解質保持機能およびセパレータの形状維持(剛性向上)機能などの諸機能を付与することができる。また、セパレータ102の代わりにゲル電解質又は真性ポリマー電解質等を用いることもできる。
【0018】
以上の発電要素109は、上から正極板101と負極板103とが交互に、且つ当該正極板101と負極板103との間にセパレータ102が位置するような順序で積層され、さらに、その最上部及び最下部にセパレータ102が一枚ずつ積層されている。そして、2枚の正極板101のそれぞれは、正極側集電部104aを介して、金属箔製の正極端子104に接続される一方で、2枚の負極板103は、負極側集電部105aを介して、同じく金属箔製の負極端子105に接続されている。なお、正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としてはアルミニウムやアルミニウム合金、銅又はニッケルなどを挙げることができ、負極端子105としてはニッケル、銅、ステンレス又は鉄などを挙げることができる。これらの金属は、金属の抵抗値、線膨張係数、抵抗率において薄型電池の構成要素として特に適当であり、使用温度を変えた場合にも、端子から後述する電池外装部材へ伝達する引張り応力を極力抑制することが可能となる。また、本例の正極側集電部104aも負極側集電部105aの何れも、正極板104および負極板105の集電体を構成するアルミニウム箔やニッケル箔、銅箔、鉄箔を延長して構成されているが、別途の材料や部品により当該集電部104a,105aを構成することもできる。
【0019】
発電要素109は、上部電池外装部材106及び下部電池外装部材107(封止手段)により封止されている。本発明の実施形態における上部電池外装部材106は、特に図示しないが、薄型電池10の内側から外側に向かって、第1の樹脂層、金属層、第2の樹脂層の順で3つの層が積層される。この3つの層は、上部電池外装部材106の全面に渡って積層されており、第1の樹脂層は、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。第2の樹脂層は、例えば、ポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。金属層は、例えば、アルミニウムなどの金属箔である。従って、上部電池外装部材106及び下部電池外装部材107は、例えば、アルミニウムなどの金属箔の一方の面(薄型電池の内側面)をポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの樹脂でラミネートし、他方の面(薄型電池の外側面)をポリアミド系樹脂、ポリエステル系樹脂等でラミネートした、樹脂−金属薄膜ラミネート材などの可撓性を有する材料で形成される。このように、電池外装部材が樹脂層に加えて金属層を具備することにより、電池外装部材の強度を向上させることが可能となる。
【0020】
下部電池外装部材107は、上部電池外装部材106と同様の構造のものが用いられ、特に図示しないが、薄型電池10の内側から外側に向かって、第1の樹脂層、金属層、第2の樹脂層の順で、3つの層が積層される。下部電池外装部材107の第1の樹脂層は、上部電池外装部材106の第1の樹脂層と同様に、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、アイオノマーなどの耐電解液性及び熱融着性に優れた樹脂フィルムである。下部電池外装部材107の金属層は、上部電池外装部材106の金属層と同様に、例えば、アルミニウムなどの金属箔である。下部電池外装部材107の第2の樹脂層は、上部電池外装部材106の第2の樹脂層と同様に、例えばポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムである。
【0021】
以上のように、電池外装部材の内側面(薄型電池の内側面)を、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、アイオノマーなどの樹脂で構成することにより、金属からなる端子との良好な融着性を確保することが可能となる。
【0022】
さらに、図1に示すように、封止された電池外装106、107の一方の端部から、正極端子104が導出するが、正極端子104の厚さ分だけ上部電池外装106と下部電池外装107との接合部に隙間が生じるので、薄型電池10内の封止性を維持するために、当該正極端子104と電池外装106、107とが接触する部分に、ポリエチレンやポリプロピレン等から構成されたシールフィルムを熱融着などの方法により介在させることもできる。
【0023】
同様に、封止された電池外装106、107の他方の端部からは、負極端子105が導出するが、ここにも正極端子104側と同様に、当該負極端子105と電池外装106、107とが接触する部分にシールフィルムを介在させることもできる。なお、正極端子104および負極端子105の何れにおいても、シールフィルムは電池外装106,107を構成する樹脂と同系統の樹脂から構成することが熱融着性の点から望ましい。
【0024】
これらの電池外装部材106、107によって、上述した発電要素109、正極側集電部104a、正極端子104の一部、負極側集電部105aおよび負極端子105の一部を包み込み、当該電池外装部材106、107により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入したのち、上部電池外装部材106及び下部電池外装部材107の外周縁の熱融着領域110を熱プレスにより熱融着し、封止する。
【0025】
有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)などのエステル系溶媒を挙げることができるが、本発明の有機液体溶媒はこれにのみ限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒も用いることができる。
【0026】
このように封止された薄型電池10は、総厚1〜10[mm]を有することが好ましい。薄型電池の厚さを10[mm]以下とすることにより、当該薄型電池内部に熱がこもりにくくなり、電池外装部材の界面に応力を伝達する可能性が低くなると共に、電池の熱劣化の影響も減少する。また、薄型電池の厚さを1[mm]以上とすることにより、十分な容量を確保することが出来、経済的な効率を高くすることが可能となる。
【0027】
次に、この薄型電池10により組電池20を構成する際に、当該薄型電池10を組電池20に固定するための固定装置5について説明する。
【0028】
図2(A)は本発明の第1実施形態に係る固定装置の平面図であり、図2(B)は薄型電池の端子を固定する前の当該固定装置の部分側面図、図2(C)は薄型電池の端子を固定した後の当該固定装置の部分側面図である。
【0029】
図2に示すように、本発明の第1実施形態に係る固定装置5は、薄型電池10の正極端子104及び負極端子105を支持して、薄型電池10を組電池20に固定する手段であり、2つの薄型電池10の正極端子104又は負極端子105を同時に固定可能であり、固定ベース部51と、係合部材52と、ダンピング材53とから構成されている。
【0030】
固定ベース部51は、軸51aを中心として折り曲げ可能な導電性の材料から成る略矩形の平板形状であり、その表面上に係合部材52と、ダンピング材53と、開口部54とが配置されている。
【0031】
係合部材52は、図2(B)に示すように略矢印型の形状を有しており、固定ベース部51が軸51aを中心として折り曲げられて互いに対向する当該固定ベース部51の対向する一方の表面の各角部に配置されている。これに対し、固定ベース部51の対向する他方の表面の各角部には開口部54が形成されており、当該開口部54は、係合部材52の略矢印形状の同図中のX軸方向の最大幅より若干大きな幅を有し、係合部材52のY軸方向の中心に対して偏心した位置にその中心を有する。固定ベース部51が軸51aを中心として折り曲げられると、係合部材52が開口部54に挿入され、係合部材52に具備されたかえし部が開口部54の縁部に係合する。
【0032】
ダンピング材53は、2つの薄型電池10の正極端子104を同時に支持し、薄型電池10に対して外部から印加される振動等をその弾性特性により吸収する手段であり、薄型電池10の正極端子104及び負極端子105のバネ定数より小さなバネ定数の機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成され、その表面に固定ベース部51にリード線55によって電気的に接続された金属箔等の接続部53aを有する。当該ダンピング材53は、固定ベース部51が軸51aを中心として折り曲げられて互いに対向する当該固定ベース部51の各表面の、図2(A)の破線で示すような固定の対象となる正極端子104又は負極端子105と接触する位置に設けられている。なお、当該ダンピング材53の接続部53aは、端子104、105の電池外装部材106、107から導出する部分の50%以上の面積と接触していることが好ましく、50%以下とすると端子104,105と接続部53aとの間に接続不良を引き起こす可能性が高く、且つ接続抵抗が高くなる。
【0033】
図2(B)に示すように、当該固定装置5で2つの薄型電池10の正極端子104を固定する場合には、一の薄型電池10に対して他の薄型電池10を反転させて当該他の薄型電池10の下面を当該一の薄型電池10の下面に合わせるようにして積層する。そして、固定ベース部51の表面上の互いに対向するダンピング材53の間に、一の薄型電池10の正極端子104と、鉛直方向に反転された他の薄型電池10の正極端子104とを位置させる。そして、固定ベース部51を図2(B)中の矢印の方向に折り曲げて、固定ベース部51のダンピング材53が具備されていない側の表面を同図中Y軸負方向に押圧する。
【0034】
次に、図2(C)に示すように、係合部材52のかえし部が開口部54を十分に貫通するまで、係合部材52を対応する各開口部54に挿入する。係合部材52と開口部54とが係合すると、互いに対向するダンピング材53の間に2つの薄型電池10の正極端子104が挟まれて支持され、2つの薄型電池10が固定装置5により固定される。このように端子のバネ定数より小さなバネ定数を有するダンピング材を有する固定装置により薄型電池を固定することにより、薄型電池への振動の伝達を低減することが可能となり、当該薄型電池の故障率の低減を図ることが可能となる。
【0035】
薄型電池10を固定装置5から取り外す場合は、図2(C)において、係合部材52を同図中のX軸正方向に押し、当該係合部材52のかえし部を開口部54の縁部から外して固定を解除する。
【0036】
当該固定装置5は正極側バスバー21aにより他の固定装置5と連結されており、当該固定装置5により固定された薄型電池10の正極端子104は、ダンピング材53の接続部53a、リード線55及び当該バスバー21aを介して、他の固定装置5に固定された薄型電池10の正極端子104と電気的に接続されている。なお、固定装置5により薄型電池10の正極端子104を固定する際に、同時に正極側バスバー104をダンピング材53、53の接続部53a、53aによって上下から挟み込んで、正極端子104と正極側バスバー21aとを直接的に電気的に接続することによりリード線55を用いずに、当該薄型電池10と他の薄型電池10とを接続しても良い。なお、この場合固定ベース部51は導電性の材料とする必要は無く、例えば非導電性の樹脂から形成しても良い。
【0037】
図2(B)及び図2(C)は、正極端子側の部分側面図であるが、負極端子側の固定装置も同様の方法で着脱可能であり、固定装置5により固定された薄型電池10の負極端子105は、ダンピング材53の接続部53a、リード線55及び負極側バスバー21bを介して、他の固定装置5に固定された薄型電池10の負極端子105に電気的に接続されている。
【0038】
以上のように、組電池へ薄型電池を組み込む際に着脱可能な固定装置により薄型電池を固定することにより、例えば組電池内部の薄型電池の故障等の際に、当該薄型電池の容易な交換が可能となり、組電池自体の寿命を長くすることが可能となる。また、組電池に組み込まれた薄型電池の交換が困難或いは不可能であると、当該薄型電池及び組電池の品質を向上させて、故障率を非常に低くする必要がありコストアップの一因ともなりうるが、上記の様な交換が可能となることで、組電池のコストダウンを図ることが可能となる。
【0039】
以下に、上述の薄型電池を複数組み合わせることにより構成される組電池、及び当該組電池を複数組み合わせることにより構成される複合組電池について説明する。
【0040】
図3は本発明の第1実施形態に係る組電池を示す図であり、図3(A)は平面図、図3(B)は正面図、図3(C)は側面図、図4は図3の組電池より構成される複合組電池の斜視図、図5(A)は図4の複合組電池の平面図、図5(B)は図4の複合組電池の正面図、図5(C)は図4の複合組電池の側面図、図6は本発明の第1実施形態に係る複合組電池を車両に搭載した模式図を示す。
【0041】
図3に示すように、本発明の第1実施形態に係る組電池20は、10個の薄型電池10a〜10jと、当該薄型電池10a〜10jの正極端子104又は負極端子105を固定するための10個の固定装置5と、正極側バスバー21a及び負極側バスバー22bと、組電池用端子22、23と、組電池用カバー25とから構成されている。なお、図5(B)、(C)には固定装置5及びバスバー21a、21bは図示していない。
【0042】
10個の薄型電池10a〜10jは、上述の図2で説明したような方法で、2つの薄型電池を一つの単位として、対応する固定装置5で薄型電池の各正極端子104を挟んで支持することにより固定され、同様に対応する固定装置5で各負極端子105を挟んで支持することにより固定されている。例えば、第1の薄型電池10aに対して第6の薄型電池10fが鉛直方向に反転して積層され、第1の薄型電池10aの正極端子104と第6の薄型電池10fの正極端子104とを固定装置5により挟んで固定する。同様に、第1の薄型電池10aの負極端子105と第6の薄型電池10fの負極端子105とを他の固定装置5により挟んで固定する。同様の方法で、各正極端子104又は各負極端子105を対応する固定装置5で挟むことにより、第2の薄型電池10bと第7の薄型電池10gとが固定され、第3の薄型電池10cと第8の薄型電池10hとが固定され、第4の薄型電池10dと第9の薄型電池10iとが固定され、第5の薄型電池10eと第10の薄型電池10jとが固定装置5で固定されている。
【0043】
各正極端子104を挟んで支持する各固定装置5は、正極側バスバー21aで連結されており、一の固定装置5により挟持される正極端子104は、ダンピング材53の接続部53a及び当該正極側バスバー21aを介して、他の固定装置5により挟持される正極端子104と電気的に接続されている。同様に、各負極端子105を挟んで支持する各固定装置5は、負極側バスバー21bで連結されており、一の固定装置5により挟持される負極端子105は、ダンピング材53の接続部53a及び当該負極側バスバー21bを介して、他の固定装置5により挟持される負極端子105と電気的に接続されており、結果的に10個の薄型電池10a〜10jがバスバー21a、21bにより並列接続されている。
【0044】
そして、正極側バスバー21aは、特に図示しないが組電池用カバー25から導出する略円柱形状の組電池用正極端子22に電気的に接続されており、同様に負極側バスバー21bは、組電池用カバー25から導出する略円柱形状の組電池用負極端子23に電気的に接続されている。これらの接続が完了すると、10個の薄型電池10が組電池用カバー25に挿入され、封止される。さらに、後述する複合組電池として薄型電池が積層された際に、組電池同士の振動を極力低減するために、組電池用カバー25の下面四隅に外部弾性体26が取り付けられる。
【0045】
図4及び図5(A)〜(C)は、図3に示す組電池20を電気的に接続した6個の組電池20から構成される複合組電池30を示す。図4及び図5(A)〜(C)に示すように、複合組電池30は、組電池20の端子22、23がそれぞれ同一方向に向くように積層されている。すなわち、m段目に位置する組電池20の端子22、23と、m+1段目に位置する組電池20の端子22、23とが同一方向に向くように、m段目の組電池20の上にm+1段目の組電池20が積層される(m:自然数)。そして、同一方向を向いた全ての組電池20の組電池用正極端子22を、当該複合組電池30と外部とを接続する外部接続用正極端子31で電気的に接続する。同様に、同一方向を向いた全ての組電池20の組電池用負極端子23を、外部接続用負極端子32で電気的に接続する。同図に示すように、外部接続用正極端子31は、略矩形の平板形状であり、組電池用正極端子22を挿入或いは圧入可能な直径を有する複数の端子接続用孔が加工されている。当該端子接続用孔は、積層された組電池20の組電池用正極端子22間のピッチに等しいピッチで加工されており、外部接続用負極端子32にも同様に端子接続用孔が加工されている。
【0046】
さらに、組電池用端子22、23が複合組電池30の外部に露出しないように、接続された全ての組電池用端子22、23を覆うように、絶縁性の材料の絶縁カバー33が具備されている。なお、図4において当該絶縁カバー33は、説明の便宜上、透視図により描かれており、図5には図示しない。そして、上述のように積層された6個の組電池20は、その両側面部に平板状の連結部材34で連結され、さらに固定ネジ35により締結、固定される。
【0047】
以上のように、薄型電池により所定の数を単位とした組電池を構成し、さらに当該組電池を単位として、所定の数の組電池を組み合わせて複合組電池を構成することにより、要求される容量、電圧等に適当な複合組電池を容易に得ることが可能となる。また、複雑な接続を伴うことなく複合組電池を構成するので、接続不良による、複合組電池の故障率を低減することが可能となる。さらに、複合組電池を構成する一つの薄型電池が故障或いは劣化し、当該薄型電池の交換を必要とする場合、当該薄型電池を有する組電池を容易に交換することも可能となる。
【0048】
図6は、車両1のフロア下に上述の複合組電池30を車載した例を示す模式図である。車両1の移動に伴って、車内には多くの振動が発生する。同図に示すように、上述の複合組電池30を車載することにより、当該振動により薄型電池の端子と電池外装部材との間に界面剥離が発生する可能性が著しく減少し、車両で電池を有効に活用することが可能となる。
【0049】
第2実施形態
図7は本発明の第2実施形態に係る固定装置の概略平面図であり、図8は本発明の第2実施形態に係る組電池を示す図であり、図8(A)は概略平面図、図8(B)は正面図、図8(C)は側面図である。本発明の第2実施形態に係る薄型電池10は第1実施形態に説明した薄型電池と同様の構造である。
【0050】
図7に示すように、本発明の第2実施形態に係る固定装置5’は、2段5列に積層された10個の薄型電池10を一括に挟んで固定する手段であり、各薄型電池の端子間を接続するバスバーの機能をも有している。当該固定装置5’は、固定ベース部51と、係合部材52と、ダンピング材53とから構成されている。
【0051】
固定ベース部51は、2本の直線状の支持部材51c、51dから構成されており、当該各支持部材51c、51dは、一方の端部の支点51bで回転可能に支持されており、他方の端部には係合部材52が取り付けられている。そして、第1の支持部材51cの他方の端部には係合部材52の2つの略矢印形状を有する凸部材52aが取り付けられており、第2の支持部材51dの他方の端部には凹部材52bが取り付けられている。第2の支持部材51dの他方の端部に取り付けられた凹部材52bは、凸部材52aが有する略矢印形状が挿入可能な大きさの開口を有している。そして、第1の支持部材51cが、支点51bを中心として、第2の支持部材51に向かって回転し、第1実施形態と同様の要領で、凸部材52aの略矢印形状のかえし部が凹部材52bの開口の縁部に係合することにより、固定ベース部51が固定される。
【0052】
さらに、第1の支持部材51cは、第2の支持部材51dに対向する表面上に、薄型電池10の各正極端子104又は105が位置するピッチと実質的に同一のピッチで、薄型電池10の正極端子104及び負極端子105のバネ定数より小さなバネ定数の機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成されるダンピング材53が取り付けられている。同様に、第2の支持部材51dも、第1の支持部材51dに対向する表面に、上記のピッチと実質的に同一のピッチで、機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成されるダンピング材53が取り付けられている。
【0053】
さらに、第2の支持部材51dに対向する第1の支持部材51cの表面には、配置されたダンピング材53の表面も含めて全面に渡って、金属箔等の接続部53aが具備されている。同様に、第1の支持部材51cに対向する第2の支持部材51dの表面にも、配置されたダンピング材53の表面も含めて全面に渡って、金属箔等の接続部53aが具備されている。これにより、ダンピング材53により端子104、105が挟持された際に、一の薄型電池10の正極端子104又は負極端子105が、第1の支持部材51c及び第2の支持部材51dの接続部53aを介して、他の薄型電池10の正極端子104又は負極端子105に電気的に接続される。
【0054】
このように、バスバーの機能を具備した一つの固定装置で複数の薄型電池の端子を固定することにより、薄型電池の交換が容易になると共に、組電池を構成するに当たりバスバーが不要となり、組電池の部品点数が削減される。
【0055】
当該固定装置5で10個の薄型電池10の正極端子104又は負極端子105を固定する場合には、第1実施形態と同様に、一の薄型電池10に対して他の薄型電池10を反転させて当該他の薄型電池10の下面を当該一の薄型電池10の下面に合わせるようにして積層する。
【0056】
そして、対向するダンピング材53の間に、一の薄型電池10の正極端子104と、鉛直方向に反転された他の薄型電池10の正極端子104とを位置させる。同様に、対向するダンピング材53の間に、一の薄型電池10の負極端子105と、鉛直方向に反転された他の薄型電池10の負極端子105とを位置させる。そして、係合部材52の凸部材52aを支点51bを中心に図7中の矢印の方向に回転させ、係合部材52の凸部材52aのかえし部が凹部材の開口を十分に貫通するまで、凸部材52aを凹部材52bに挿入する。係合部材52の凸部材52aと凹部材52bとが係合すると、互いに対向するダンピング材53の間に薄型電池10の正極端子104及び負極端子105とが挟持されて固定される。このように端子のバネ定数より小さなバネ定数のダンピング材を有する固定装置により薄型電池を固定することにより、薄型電池への振動の伝達を低減することが可能となり、当該薄型電池の故障率の低減を図ることが可能となる。
【0057】
図8(A)〜(C)は、上述の図7の固定装置により接続された10個の薄型電池10から構成される組電池20を示す。当該組電池20は、10個の薄型電池10a〜10jと、正極側及び負極側の2つの固定装置5’と、組電池用端子22、23と、組電池用カバー25と、外部弾性体26とから構成されており、上述の図7に示す固定装置5’を用いた以外は、第1実施形態に係る組電池と同様の構造である。
【0058】
第2実施形態における組電池20は、本発明の第1実施形態と同様に当該組電池20を積層して、各組電池用端子を接続することにより、複合組電池を構成することが可能であり、さらに当該複合組電池を車両に車載することが可能である。
【0059】
第3実施形態
図9は本発明の第3実施形態に係る組電池を示す図であり、図9(A)は組電池の斜視図であり、図9(B)は図9(A)のIII−III線に沿う断面図である。本発明の第3実施形態に係る組電池を構成する薄型電池10は第1実施形態に説明した薄型電池と同様の構造である。
【0060】
図9に示すように、本発明の第3実施形態に係る組電池20は、組電池カバー25を固定用ボルト24aにより固定して、複数の薄型電池10の固定を行う構造であり、12個の薄型電池10と、固定用ボルト24aと、組電池用カバー25と、ダンピング材53とから構成されている。
【0061】
図9(A)に示すように、組電池用カバー25の負極端子105側の上下の長辺の近傍の内面に所定のピッチ間隔で、薄型電池10の正極端子104及び負極端子105のバネ定数より小さなバネ定数の機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成される12個のダンピング材53が配置されており、同様に、特に図示しないが正極端子104側の上下の長辺の近傍の内面に所定のピッチ間隔で、薄型電池10の正極端子104及び負極端子105のバネ定数より小さなバネ定数の機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成される12個のダンピング材53が配置されている。このように端子のバネ定数より小さなバネ定数のダンピング材により薄型電池を固定することにより、薄型電池への振動の伝達を低減することが可能となり、当該薄型電池の故障率の低減を図ることが可能となる。
【0062】
図9(B)に示すように、第1実施形態と同様に、2つの薄型電池を一つの単位として、一の薄型電池10の正極端子104と他の薄型電池10の正極端子104との間に正極側バスバー21aを挟み、当該一の薄型電池10の負極端子105と他の薄型電池10の負極端子105との間に負極側バスバー21bを挟み、一の薄型電池10を、鉛直方向に反転した他の薄型電池10に積層する。そして、当該正極端子104を正極側に位置する上下のダンピング材53の間に合わせると共に当該負極端子105を負極側に位置する上下のダンピング材53に合わせて搭載する。同様に合計12個の薄型電池10の正極端子104及び負極端子105を対応するダンピング材53の間に合わせ、組電池用カバー25の内部に搭載する。次に、組電池用カバー25の各角部の近傍に貫通して設けられた孔に固定用ボルト24aを挿入し、当該固定用ボルト24aを締め込むことにより、対応する上下のダンピング材53が各薄型電池10の正極端子104及び負極端子105を挟んで支持し、12個の薄型電池10が組電池20に固定される。薄型電池10を組電池20から取り出す際は、固定用ボルト24aを緩めることにより容易に取り出すことが出来る。
【0063】
このように、固定装置を特別に設けずに、組電池カバーにダンピング材を直接配置し、固定用ボルトで固定を行うことにより、組電池に組み込まれた薄型電池を容易に取り出す構造を比較的安価なものとすることが可能となる。
【0064】
なお、特に図示しないが、第1実施形態と同様に、正極側バスバー21aは、組電池20の外部に接続するための組電池用正極端子に接続されても良く、同様に負極側バスバー21bは、組電池用負極端子に接続されても良い。また、後述する複合組電池として薄型電池が積層された際に、薄型電池同士の振動を極力低減するために、組電池用カバー25の下面四隅に外部弾性体が取り付けられても良い。
【0065】
第3実施形態における組電池20は、本発明の第1実施形態と同様に当該組電池20を積層して、各組電池用端子を接続することにより、複合組電池を構成することが可能であり、さらに当該複合組電池を車両に車載することが可能である。
【0066】
第4実施形態
図10は本発明の第4実施形態に係る組電池の斜視図であり、図11は図10に示すホルダーの断面図である。本発明の第4実施形態に係る組電池を構成する薄型電池10は第1実施形態に説明した薄型電池と同様の構造である。
【0067】
本発明の第4実施形態に係る組電池20は、2つの薄型電池10を搭載可能なホルダー15を単位として、6つのホルダー15を積層して構成されており、合計12個の薄型電池10を搭載可能となっている。
【0068】
当該ホルダー15は、主に4つの層151〜154を積層されて構成されており、第1の層151、第2の層152、第3の層153、第4の層154の順で積層されて構成されている。
【0069】
第1〜第4の層151〜154は、いずれも同一の大きさで厚さが異なる略矩形の平板形状であり、それぞれ各四隅と図中の上辺及び下辺の略中央部との6箇所に固定用ボルト24aが貫通する貫通孔155が設けられている。
【0070】
第2の層152は、第3の層153と対向する面に薄型電池10の端子104、105を除いた電池外装部材106、107の外周を挿入可能な形状の加工が施されている。また、端子104、105が接触する部分には薄型電池10の正極端子104及び負極端子105のバネ定数より小さなバネ定数の機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成されるダンピング材156が取り付けられており、当該ダンピング材53の表面には金属箔等の接続部156aが取り付けられている。
【0071】
第3の層153は、薄型電池10の端子104、105も含めた外周を挿入可能な形状が貫通して加工されている。また、第2の層152と第4の層154との間が十分に広がるように、当該第3の層153にはスプリング157が具備されており、これにより、交換時に薄型電池10の取り出しが容易になる。
【0072】
第4の層154は、第3の層153と対向する面に薄型電池10の端子104、105を除いた電池外装部材106、107の外周を挿入可能な形状の加工が施されている。また、端子104、105が接触する部分には薄型電池10の正極端子104及び負極端子105のバネ定数より小さなバネ定数の機械的バネ、ゴム系弾性体、エラストマー系弾性体等から構成されるダンピング材156が取り付けられており、当該ダンピング材53の表面には金属箔等の接続部156aが取り付けられている。従って、当該第4の層154は、上述の第2の層152と鏡映関係にある。
【0073】
これら第1〜第4の層151〜154を積層してホルダー15が形成されると、当該ホルダー15内部に2つの薄型電池10を挿入可能な挿入口27を有する空間が形成される。このようなホルダー15を6個積層し、各貫通孔155にそれぞれ固定用ボルト24aを貫通させて固定用ナット24bに仮締めし、当該組電池20の各ホルダー15の上面に形成された各挿入口27に薄型電池10を挿入する。全ての挿入口27への挿入が完了したら固定用ボルト24aを本締めすることにより、各ホルダー15の第2の層152のダンピング材156と第4の層154のダンピング材156とが端子104、105を挟持し、薄型電池10が組電池20に固定される。このように端子のバネ定数より小さなバネ定数のダンピング材により薄型電池を固定することにより、薄型電池への振動の伝達を低減することが可能となり、当該薄型電池の故障率の低減を図ることが可能となる。
【0074】
図11に示すように、ホルダー15内の2つの薄型電池10は直列に接続されており、図10に示すように、当該直列接続の正極端子及び負極端子の近傍の第1の層151、第2の層152、第4の層154には、金属等の導通部158が貫通して設けられている。また、組電池20の最外層を形成する一方の第1の層151には、組電池用正極端子22が取り付けられている。そして、各層の導通部158と組電池用正極端子22とが導通して、組電池20内部に組み込まれた12個の薄型電池10が電気的に接続される。同様に、組電池20の最外層を形成する他方の第1の層151には、組電池用負極端子23が取り付けられており、特に図示しないが、上述の各層の導通部158と当該組電池用負極端子23とが導通して、12個の薄型電池10が電気的に接続される。従って、図10に示す組電池20は、2直列6並列に接続された薄型電池10で構成される。なお、端子と接触するダンピング材156の接続部156aと第3の層153の導通部158は電気的に接続されている。
【0075】
以上のようなホルダーを積層して組電池を構成することにより、組電池に組み込まれた薄型電池の容易な交換が可能となる。
【0076】
なお、ホルダーに搭載可能な薄型電池の数、ホルダーの数、組電池を構成する薄型電池の接続方式は、上述の数及び接続方式に限定されるものではなく、要求される電気容量、電圧等から適宜その数及び接続方式(直列接続、並列接続、直列並列複合接続)を設定することが出来る。
【0077】
第4実施形態における組電池20は、本発明の第1実施形態と同様に当該組電池20を積層して、各組電池用端子を接続することにより、複合組電池を構成することが可能であり、さらに当該複合組電池を車両に車載することが可能である。
【0078】
なお、以上説明した実施形態における組電池を構成する薄型電池の数、複合組電池を構成する組電池の数、組電池を構成する薄型電池の接続方式、及び複合組電池を構成する組電池の接続方式は、上述の数及び接続方式に限定されるものではなく、要求される電気容量、電圧等から適宜その数及び接続方式(直列接続、並列接続、直列並列複合接続)を設定することが出来る。
【0079】
また、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【0080】
【実施例】
以下、本発明をさらに具体化した実施例及び比較例により本発明の効果を確認した。以下の実施例は、上述した実施形態で用いた薄型電池の効果を確認するためのものである。
【0081】
実施例1
実施例1の組電池は、第1の樹脂層にポリプロピレン(PP)樹脂フィルム、金属層にアルミニウム(Al)箔、第2の樹脂層にナイロン樹脂フィルムの電池外装部材、正極端子にアルミニウム(Al)箔、負極端子にニッケル(Ni)箔、正極活性物質にマンガン酸リチウム(LiMnO)を用い、負極活性物質に結晶性炭素材、電解液にプロピレンカーボネート(PC)及びエチルメチルカーボネート(EMC)の混合液を用いて、縦140mm×横80mm×厚さ5mmの薄型電池を作製し、この薄型電池を10個用いて、図2に示す固定装置により組電池に固定し、10並列接続で作製した。当該組電池の大きさは、縦250mm×横500mm×高さ20mmであり、固定装置のダンピング材にはブチルゴムを主成分とする合成ゴムを用いた。なお、正極端子及び負極端子のダンピング材への接触面積は90%とした。
【0082】
この組電池について、振動伝達率の測定を行った。振動伝達率の測定は、組電池の上部略中央部に加速度ピックアップを設定し、強制加振したときに得られる応答振動の加速度を測定した。
【0083】
図12は本発明の実施例1における組電池の振動伝達率グラフである。図12に示すように、後述する比較例1では約100Hz以下に共振周波数が位置するのに対して、実施例1における組電池は、主たる共振周波数が約100Hz以上に移行していることを確認した。
【0084】
実施例2
実施例2の組電池は、実施例1と同様の薄型電池を10個用いて、図7に示す固定装置により組電池に固定し、10並列接続で作製した。当該組電池の大きさは、縦250mm×横500mm×高さ20mmであり、固定装置のダンピング材にはブチルゴムを主成分とする合成ゴムを用いた。なお、正極端子及び負極端子のダンピング材への接触面積は70%とした。
【0085】
この組電池について、実施例1と同様の振動伝達率の測定を行った。図13は本発明の実施例2における組電池の振動伝達率グラフである。図13に示すように、後述する比較例2では約100Hz以下に共振周波数が位置するのに対して、実施例2における組電池は、主たる共振周波数が約100Hz以上に移行していることを確認した。
【0086】
実施例3
実施例3の組電池は、実施例1と同様の薄型電池を12個用いて、図9に示す組電池を2並列6直列で作製した。当該組電池の大きさは、縦250mm×横600mm×高さ20mmであり、固定装置のダンピング材にはブチルゴムを主成分とする合成ゴムを用いた。なお、正極端子及び負極端子のダンピング材への接触面積は90%とした。
【0087】
この組電池について、実施例1と同様の振動伝達率の測定を行った。図14は本発明の実施例3における組電池の振動伝達率グラフである。図14に示すように、後述する比較例3では約100Hz以下に共振周波数が位置するのに対して、実施例3における組電池は、主たる共振周波数が約100Hz以上に移行していることを確認した。
【0088】
実施例4
実施例4の組電池は、実施例1と同様の薄型電池を24個用いて、図10に示す組電池を4並列6直列で作製した。当該組電池の大きさは、縦250mm×横450mm×縦50mmであり、固定装置のダンピング材にはブチルゴムを主成分とする合成ゴムを用いた。なお、正極端子及び負極端子のダンピング材への接触面積は90%とした。
【0089】
この組電池について、実施例1と同様の振動伝達率の測定を行った。その結果、特に図示しないが、実施例1〜3と同様に、主たる共振周波数が約100Hz以上にあることを確認した。
比較例1
比較例1の組電池は、実施例1と同様の薄型電池を用いて、実施例1と同様の組電池を作製した。但し、薄型電池の固定には固定装置を用いず、薄型電池の正極端子及び負極端子とバスバーとを直接、リベットにより固定した。
【0090】
比較例2
比較例2の組電池は、実施例2と同様の薄型電池を用いて、実施例2と同様の組電池を作製した。但し、薄型電池の固定には固定装置を用いず、薄型電池の正極端子及び負極端子とバスバーとを直接、リベットにより固定した。
【0091】
比較例3
比較例3の組電池は、実施例3と同様の薄型電池を用いて、実施例3と同様の組電池を作製した。但し、薄型電池の固定にはダンピング材を用いず、薄型電池の正極端子及び負極端子とバスバーとを直接、リベットにより固定した。
考察
【0092】
実施例1〜4における組電池では、共振周波数が約100Hz以上に位置することが確認された。このように、約100Hz以下の共振を回避することにより、例えば車両などの振動が比較的多い用途にも、当該組電池を有効に活用することが可能であることが明らかとなった。
【図面の簡単な説明】
【図1】図1(A)は本発明の第1実施形態に係る薄型電池の全体を示す平面図であり、図1(B)は図1(A)のII−II線に沿う断面図である。
【図2】図2(A)は本発明の第1実施形態に係る固定装置の平面図であり、図2(B)は薄型電池を固定する前の当該固定装置の部分側面図、図2(C)は薄型電池を固定後の当該固定装置の部分側面図である。
【図3】本発明の第1実施形態に係る組電池を示す図であり、図3(A)は平面図、図3(B)は正面図、図3(C)は側面図である。
【図4】図3の組電池より構成される複合組電池の斜視図である。
【図5】図4(A)は図3の複合組電池の平面図、図4(B)は図3の複合組電池の正面図、図4(C)は図3の複合組電池の側面図である。
【図6】本発明の第1実施形態に係る複合組電池を車両に搭載した模式図を示す。
【図7】本発明の第2実施形態に係る固定装置の概略平面図である。
【図8】本発明の第2実施形態に係る組電池を示す図であり、図8(A)は概略平面図、図8(B)は正面図、図8(C)は側面図である。
【図9】本発明の第3実施形態に係る組電池を示す図であり、図9(A)は組電池の斜視図であり、図9(B)は図9(A)のIII−III線に沿う断面図である。
【図10】本発明の第4実施形態に係る組電池の斜視図である。
【図11】図10に示すホルダーの断面図である。
【図12】実施例1の振動伝達率測定の結果を示すグラフである。
【図13】実施例2の振動伝達率測定の結果を示すグラフである。
【図14】実施例3の振動伝達率測定の結果を示すグラフである。
【符号の説明】
1…車両
5、5’…固定装置
51…固定ベース部
51a…軸
51b…支点
51c、51d…部材
52…係合部材
52a…凸部材
52b…凹部材
53…ダンピング材
53a…接続部
54…開口部
55…リード線
10…薄型電池
10a〜10j…第1〜第10の薄型電池
101…正極板
102…セパレータ
103…負極板
104…正極端子
105…負極端子
106…上部電池外装部材
107…下部電池外装部材
109…発電要素
110…熱融着領域
15…ホルダー
151…第1の層
152…第2の層
153…第3の層
154…第4の層
155…貫通孔
156…ダンピング材
157…スプリング
158…導通部
20…組電池
21a…正極側バスバー
21b…負極側バスバー
22…組電池用正極端子
23…組電池用負極端子
24a…固定用ボルト
24b…固定用ナット
25…組電池用カバー
26…外部弾性体
27…挿入口
30…複合組電池
31…外部接続用正極端子
32…外部接続用負極端子
33…絶縁カバー
34…連結部材
35…固定ネジ
[0001]
【Technical field】
The present invention relates to an assembled battery including a plurality of thin batteries, and more particularly to an assembled battery that allows easy replacement of thin batteries.
[0002]
[Background Art]
Along with the diversification of usage modes and usage conditions of thin batteries, high voltage and high capacity have been achieved by configuring an assembled battery with a plurality of thin batteries. However, when it is necessary to replace the thin battery incorporated in the battery pack due to a failure of the thin battery or the like, the thin battery cannot be easily removed from the battery pack, and it is difficult to repair the battery pack. there were.
[0003]
DISCLOSURE OF THE INVENTION
The present invention relates to an assembled battery including a plurality of thin batteries, and an object of the present invention is to provide an assembled battery in which thin batteries can be easily replaced.
[0004]
In order to achieve the above object, according to the present invention, the outer peripheral edges of two sheet-shaped sealing means having a synthetic resin layer are joined, and a power generation element is sealed inside the sealing means. A battery pack comprising a plurality of thin batteries each having a positive electrode terminal and a negative electrode terminal connected to the power generating element derived from the outer peripheral edge, wherein a fixing means capable of fixing and releasing the positive terminal or the negative electrode terminal of the thin battery is provided. The present invention provides an assembled battery having the same (see claim 1).
[0005]
Further, according to the present invention, the fixing means has a damping material at a position in contact with the positive electrode terminal and the negative electrode terminal of the thin battery, and holds the positive electrode terminal or the negative electrode terminal of the thin battery by the damping material. Thus, it is more preferable to support the thin battery (see claim 2).
[0006]
In the present invention, the assembled battery is provided with fixing means capable of fixing and opening the positive terminal or the negative electrode terminal of the thin battery, and the thin battery is fixed to the assembled battery by the fixing means. Removal becomes easy.
[0007]
In addition, a damping material is disposed at a position where the fixing means contacts the positive electrode terminal or the negative electrode terminal, and the thin battery is supported by sandwiching the positive terminal or the negative electrode terminal of the thin battery with the damping material. It is possible to significantly reduce the transmission of the vibration applied from the battery to the thin battery.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
First embodiment
FIG. 1A is a plan view showing the entire thin battery according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line II-II of FIG. 1A. FIG. 1 shows one thin battery (unit battery), and an assembled battery having a desired voltage and capacity is formed by connecting a plurality of the thin batteries 10.
[0010]
First, the overall configuration of a thin battery 10 according to an embodiment of the present invention will be described with reference to FIG. 1. The thin battery 10 of this example is a lithium-based thin secondary battery, and includes two positive plates 101 and It is composed of five separators 102, two negative plates 103, a positive terminal 104, a negative terminal 105, an upper battery outer member 106, a lower battery outer member 107, and an electrolyte (not shown). Among these, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 109.
[0011]
The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is not limited at all, and the power generating element 109 can be constituted by one positive electrode plate 101, three separators 102, and one negative electrode plate 104. . If necessary, the number of the positive electrode plate, the negative electrode plate, and the number of separators can be selected and configured.
[0012]
The positive electrode plate 101 constituting the power generating element 109 is composed of a positive electrode active material such as a metal oxide, a conductive material such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene in a weight ratio of, for example, 100%. : A mixture of 3:10 was applied to both sides of a metal foil such as an aluminum foil as a positive electrode current collector, dried, rolled, and then cut into a predetermined size. The mixing ratio of the aqueous dispersion of polytetrafluoroethylene is the solid content.
[0013]
As the positive electrode active material, for example, lithium nickelate (LiNiO2), Lithium manganate (LiMnO)2), Lithium cobaltate (LiCoO)2) And chalcogen (S, Se, Te) compounds. These materials relatively easily diffuse the heat generated inside the thin battery, reduce the expansion due to the expansion of the terminal due to heat transfer to the terminal, and minimize the tensile stress transmitted from the terminal to the battery exterior member described later. It becomes.
[0014]
The negative electrode plate 103 constituting the power generation element 109 is formed of, for example, an amorphous carbon, a non-graphitizable carbon, a graphitizable carbon, or a negative electrode active material that occludes and releases lithium ions of a positive electrode active material, such as graphite. An aqueous dispersion of styrene-butadiene rubber resin powder as a precursor material for the organic fired body is mixed at, for example, a solid content ratio of 100: 5, dried, and then pulverized to carry carbonized styrene-butadiene rubber on the carbon particle surfaces. The main material is mixed with a binder such as an acrylic resin emulsion at a weight ratio of 100: 5, for example, and this mixture is used as a metal foil such as a nickel foil or a copper foil as a negative electrode current collector. Is dried, rolled, and then cut into a predetermined size.
[0015]
In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge and discharge is poor, and the output voltage decreases with the amount of discharge, so it is not suitable for the power supply of communication equipment and office equipment. However, when used as a power source for an electric vehicle or the like, there is no sharp drop in output, which is advantageous.
[0016]
Further, the separator 102 of the power generation element 109 prevents short-circuit between the positive electrode plate 101 and the negative electrode plate 103 described above, and may have a function of retaining an electrolyte. The separator 102 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP). When an overcurrent flows, the heat generated by the separator 102 causes pores in the layer to be closed and cuts off the current. It also has
[0017]
Note that the separator 102 of the present invention is not limited to a single-layer film of polyolefin or the like, and a three-layer structure in which a polypropylene film is sandwiched by a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used. . By forming the separator 102 into multiple layers, various functions such as a function of preventing an overcurrent, a function of retaining an electrolyte, and a function of maintaining the shape of the separator (improving rigidity) can be provided. Further, a gel electrolyte, an intrinsic polymer electrolyte, or the like can be used instead of the separator 102.
[0018]
The above-described power generation elements 109 are stacked in such a manner that the positive electrode plate 101 and the negative electrode plate 103 are alternately arranged from the top and the separator 102 is positioned between the positive electrode plate 101 and the negative electrode plate 103. One separator 102 is stacked on each of the upper and lower parts. Each of the two positive plates 101 is connected to a metal foil positive terminal 104 via a positive current collector 104a, while the two negative plates 103 are connected to a negative current collector 105a. Is connected to the negative electrode terminal 105 also made of metal foil. Note that the positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. Examples of the positive electrode terminal 104 include aluminum, an aluminum alloy, copper, and nickel. May be nickel, copper, stainless steel, iron or the like. These metals are particularly suitable as components of a thin battery in terms of metal resistance, coefficient of linear expansion, and resistivity.Even when the operating temperature is changed, the tensile stress transmitted from the terminal to the battery exterior member described later is also reduced. It is possible to suppress as much as possible. Further, in each of the positive-side current collector 104a and the negative-side current collector 105a of the present example, an aluminum foil, a nickel foil, a copper foil, and an iron foil constituting the current collector of the positive electrode plate 104 and the negative electrode plate 105 are extended. However, the current collectors 104a and 105a may be formed of separate materials and components.
[0019]
The power generation element 109 is sealed by the upper battery outer member 106 and the lower battery outer member 107 (sealing means). Although not shown, the upper battery exterior member 106 in the embodiment of the present invention includes three layers in the order of a first resin layer, a metal layer, and a second resin layer from the inside to the outside of the thin battery 10. It is laminated. These three layers are laminated over the entire surface of the upper battery exterior member 106, and the first resin layer is made of, for example, an electrolytic solution resistant material such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer, and heat fusion. It is a resin film with excellent properties. The second resin layer is, for example, a resin film having excellent electric insulation such as a polyamide resin or a polyester resin. The metal layer is, for example, a metal foil such as aluminum. Therefore, the upper battery exterior member 106 and the lower battery exterior member 107 are formed by laminating one surface of a metal foil such as aluminum (the inner surface of a thin battery) with a resin such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer. Then, the other surface (the outer surface of the thin battery) is formed of a flexible material such as a resin-metal thin film laminate in which a polyamide-based resin, a polyester-based resin, or the like is laminated. As described above, when the battery exterior member includes the metal layer in addition to the resin layer, the strength of the battery exterior member can be improved.
[0020]
The lower battery exterior member 107 has a structure similar to that of the upper battery exterior member 106. Although not particularly shown, the first resin layer, the metal layer, the second Three layers are laminated in the order of the resin layer. Similar to the first resin layer of the upper battery exterior member 106, the first resin layer of the lower battery exterior member 107 is made of, for example, an electrolytic solution such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, and ionomer, and heat fusion. It is a resin film with excellent properties. The metal layer of the lower battery exterior member 107 is, for example, a metal foil of aluminum or the like, like the metal layer of the upper battery exterior member 106. The second resin layer of the lower battery exterior member 107 is a resin film having excellent electrical insulation properties, such as a polyamide resin or a polyester resin, like the second resin layer of the upper battery exterior member 106.
[0021]
As described above, by forming the inner surface of the battery exterior member (the inner surface of the thin battery) with a resin such as polypropylene, modified polypropylene, polyethylene, modified polyethylene, and ionomer, satisfactory fusion with a metal terminal is achieved. It is possible to secure the property.
[0022]
Further, as shown in FIG. 1, the positive terminal 104 is led out from one end of the sealed battery outer casings 106 and 107. In order to maintain a sealing property in the thin battery 10, a seal made of polyethylene, polypropylene, or the like is provided at a portion where the positive electrode terminal 104 and the battery exteriors 106 and 107 are in contact with each other. A film can be interposed by a method such as heat fusion.
[0023]
Similarly, a negative electrode terminal 105 is led out from the other end of the sealed battery casings 106 and 107. Here, similarly to the positive terminal 104 side, the negative terminal 105 and the battery casings 106 and 107 are connected. A seal film may be interposed in a portion where the contact is made. In any of the positive electrode terminal 104 and the negative electrode terminal 105, it is preferable that the seal film is formed of the same resin as the resin forming the battery casings 106 and 107 from the viewpoint of heat fusion.
[0024]
These battery exterior members 106 and 107 wrap the above-described power generation element 109, the positive-side current collector 104 a, a part of the positive terminal 104, and the negative-side current collector 105 a and a part of the negative terminal 105. After injecting a liquid electrolyte in which a lithium salt such as lithium perchlorate or lithium borofluoride is dissolved in an organic liquid solvent into a space formed by 106 and 107, the outside of the upper battery exterior member 106 and the lower battery exterior member 107 is injected. The peripheral heat-sealed region 110 is heat-sealed by a hot press and sealed.
[0025]
Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC). However, the organic liquid solvent of the present invention is not limited thereto. An organic liquid solvent obtained by mixing and preparing an ether-based solvent such as γ-butylactone (γ-BL), diethoxyethane (DEE) or the like with an ester-based solvent can also be used.
[0026]
It is preferable that the thin battery 10 sealed in this way has a total thickness of 1 to 10 [mm]. By setting the thickness of the thin battery to 10 mm or less, heat is hardly trapped inside the thin battery, the possibility of transmitting stress to the interface of the battery exterior member is reduced, and the effect of thermal degradation of the battery is reduced. Is also reduced. Further, by setting the thickness of the thin battery to 1 mm or more, a sufficient capacity can be secured, and economic efficiency can be increased.
[0027]
Next, a fixing device 5 for fixing the thin battery 10 to the assembled battery 20 when the assembled battery 20 is configured by the thin battery 10 will be described.
[0028]
2A is a plan view of the fixing device according to the first embodiment of the present invention, and FIG. 2B is a partial side view of the fixing device before fixing the terminals of the thin battery, and FIG. () Is a partial side view of the fixing device after fixing the terminals of the thin battery.
[0029]
As shown in FIG. 2, the fixing device 5 according to the first embodiment of the present invention is a means for supporting the positive terminal 104 and the negative terminal 105 of the thin battery 10 and fixing the thin battery 10 to the assembled battery 20. The positive terminal 104 or the negative terminal 105 of the two thin batteries 10 can be fixed at the same time, and includes a fixed base 51, an engaging member 52, and a damping material 53.
[0030]
The fixed base portion 51 is a substantially rectangular flat plate made of a conductive material that can be bent around the shaft 51a, and has an engaging member 52, a damping material 53, and an opening 54 disposed on the surface thereof. ing.
[0031]
The engagement member 52 has a substantially arrow-shaped shape as shown in FIG. 2 (B), and the fixed base portion 51 is bent about the shaft 51a to face the fixed base portion 51 facing each other. It is located at each corner of one surface. On the other hand, an opening 54 is formed at each corner of the other surface of the fixed base portion 51 opposite to the fixed base portion 51. The opening 54 is formed by a substantially arrow-shaped X-axis in FIG. It has a width slightly larger than the maximum width in the direction, and has a center at a position eccentric to the center of the engagement member 52 in the Y-axis direction. When the fixed base portion 51 is bent about the shaft 51a, the engaging member 52 is inserted into the opening 54, and the barb provided on the engaging member 52 engages with the edge of the opening 54.
[0032]
The damping material 53 is a means that simultaneously supports the positive terminals 104 of the two thin batteries 10 and absorbs vibration or the like applied from the outside to the thin batteries 10 by its elastic characteristics. And a metal foil composed of a mechanical spring, a rubber-based elastic body, an elastomer-based elastic body, or the like having a spring constant smaller than the spring constant of the negative electrode terminal 105, and having a surface electrically connected to the fixed base portion 51 by a lead wire 55. And the like. The damping material 53 is a positive electrode terminal to be fixed as shown by a broken line in FIG. 2A on each surface of the fixed base portion 51 where the fixed base portion 51 is bent about the shaft 51a and faces each other. It is provided at a position in contact with 104 or the negative electrode terminal 105. The connecting portion 53a of the damping material 53 is preferably in contact with an area of 50% or more of a portion of the terminals 104 and 105 derived from the battery exterior members 106 and 107. There is a high possibility that a connection failure occurs between the connection portion 105 and the connection portion 53a, and the connection resistance increases.
[0033]
As shown in FIG. 2B, when fixing the positive terminals 104 of the two thin batteries 10 with the fixing device 5, the other thin batteries 10 are inverted with respect to the one thin battery 10 and the other thin batteries 10 are inverted. Are stacked so that the lower surface of the thin battery 10 is aligned with the lower surface of the one thin battery 10. Then, the positive terminal 104 of one thin battery 10 and the positive terminal 104 of the other thin battery 10 that is inverted in the vertical direction are located between the damping members 53 facing each other on the surface of the fixed base portion 51. . Then, the fixed base 51 is bent in the direction of the arrow in FIG. 2B, and the surface of the fixed base 51 on which the damping material 53 is not provided is pressed in the negative Y-axis direction in FIG.
[0034]
Next, as shown in FIG. 2C, the engaging members 52 are inserted into the corresponding openings 54 until the barbs of the engaging members 52 sufficiently penetrate the openings 54. When the engagement member 52 and the opening 54 are engaged, the positive terminals 104 of the two thin batteries 10 are sandwiched and supported between the damping members 53 facing each other, and the two thin batteries 10 are fixed by the fixing device 5. Is done. By fixing the thin battery by the fixing device having the damping material having a spring constant smaller than the spring constant of the terminal, transmission of vibration to the thin battery can be reduced, and the failure rate of the thin battery can be reduced. Reduction can be achieved.
[0035]
To remove the thin battery 10 from the fixing device 5, the engaging member 52 is pushed in the positive direction of the X-axis in FIG. And release the lock.
[0036]
The fixing device 5 is connected to another fixing device 5 by the positive bus bar 21a. The positive terminal 104 of the thin battery 10 fixed by the fixing device 5 includes a connecting portion 53a of the damping material 53, a lead wire 55, Via the bus bar 21a, it is electrically connected to the positive electrode terminal 104 of the thin battery 10 fixed to another fixing device 5. When the positive electrode terminal 104 of the thin battery 10 is fixed by the fixing device 5, the positive electrode side bus bar 104 is simultaneously sandwiched from above and below by the connecting portions 53 a, 53 a of the damping materials 53, 53, so that the positive electrode terminal 104 and the positive electrode side bus bar 21 a May be directly connected electrically to connect the thin battery 10 to another thin battery 10 without using the lead wire 55. In this case, the fixed base 51 does not need to be made of a conductive material, and may be formed of, for example, a non-conductive resin.
[0037]
2 (B) and 2 (C) are partial side views on the positive terminal side, the fixing device on the negative terminal side can also be attached and detached in the same manner, and the thin battery 10 fixed by the fixing device 5 The negative electrode terminal 105 is electrically connected to the negative electrode terminal 105 of the thin battery 10 fixed to another fixing device 5 via the connection portion 53a of the damping material 53, the lead wire 55, and the negative electrode side bus bar 21b. .
[0038]
As described above, by fixing the thin battery with the detachable fixing device when the thin battery is incorporated into the assembled battery, for example, when the thin battery inside the assembled battery fails, the thin battery can be easily replaced. This makes it possible to extend the life of the battery pack itself. Further, if it is difficult or impossible to replace the thin battery incorporated in the assembled battery, it is necessary to improve the quality of the thin battery and the assembled battery and to extremely reduce the failure rate, which is one of the causes of cost increase. Although such replacement is possible, the cost of the assembled battery can be reduced.
[0039]
Hereinafter, an assembled battery formed by combining a plurality of the above-described thin batteries and a composite assembled battery formed by combining a plurality of the assembled batteries will be described.
[0040]
3A and 3B are views showing the battery pack according to the first embodiment of the present invention, wherein FIG. 3A is a plan view, FIG. 3B is a front view, FIG. 3C is a side view, and FIG. FIG. 5A is a plan view of the composite battery pack shown in FIG. 4, FIG. 5B is a front view of the composite battery pack shown in FIG. 4, and FIG. (C) is a side view of the composite battery pack of FIG. 4, and FIG. 6 is a schematic view of the composite battery pack according to the first embodiment of the present invention mounted on a vehicle.
[0041]
As shown in FIG. 3, the battery pack 20 according to the first embodiment of the present invention includes ten thin batteries 10 a to 10 j and a positive electrode terminal 104 or a negative electrode terminal 105 of each of the thin batteries 10 a to 10 j. It is composed of ten fixing devices 5, a positive electrode side bus bar 21 a and a negative electrode side bus bar 22 b, assembled battery terminals 22 and 23, and an assembled battery cover 25. Note that FIGS. 5B and 5C do not show the fixing device 5 and the bus bars 21a and 21b.
[0042]
The ten thin batteries 10a to 10j are supported by the corresponding fixing device 5 with each of the positive terminals 104 of the thin batteries sandwiched therebetween by using the two thin batteries as one unit by the method described with reference to FIG. Similarly, it is fixed by supporting the respective negative electrode terminals 105 with corresponding fixing devices 5 therebetween. For example, a sixth thin battery 10f is vertically inverted and stacked on the first thin battery 10a, and the positive terminal 104 of the first thin battery 10a and the positive terminal 104 of the sixth thin battery 10f are connected to each other. It is sandwiched and fixed by the fixing device 5. Similarly, the negative terminal 105 of the first thin battery 10a and the negative terminal 105 of the sixth thin battery 10f are sandwiched and fixed by another fixing device 5. In the same manner, by sandwiching each positive electrode terminal 104 or each negative electrode terminal 105 with the corresponding fixing device 5, the second thin battery 10b and the seventh thin battery 10g are fixed, and the third thin battery 10c is The eighth thin battery 10h is fixed, the fourth thin battery 10d and the ninth thin battery 10i are fixed, and the fifth thin battery 10e and the tenth thin battery 10j are fixed by the fixing device 5. ing.
[0043]
The fixing devices 5 supporting the respective positive electrode terminals 104 are connected by a positive bus bar 21a, and the positive terminals 104 held by one fixing device 5 are connected to the connecting portion 53a of the damping material 53 and the positive electrode side. It is electrically connected to the positive electrode terminal 104 held by another fixing device 5 via the bus bar 21a. Similarly, the fixing devices 5 supporting the respective negative electrode terminals 105 are connected by the negative electrode side bus bar 21b, and the negative terminal 105 held by one fixing device 5 is connected to the connecting portion 53a of the damping material 53 and It is electrically connected to the negative electrode terminal 105 sandwiched by the other fixing device 5 via the negative electrode side bus bar 21b. As a result, ten thin batteries 10a to 10j are connected in parallel by the bus bars 21a and 21b. ing.
[0044]
The positive bus bar 21a is electrically connected to a substantially cylindrical positive electrode terminal 22 for battery assembly, which is not shown, but is drawn out from the battery cover 25. Similarly, the negative bus bar 21b is It is electrically connected to a substantially cylindrical negative electrode terminal 23 for a battery assembly derived from the cover 25. When these connections are completed, the ten thin batteries 10 are inserted into the battery pack cover 25 and sealed. Further, when thin batteries are stacked as a composite battery described later, external elastic bodies 26 are attached to four corners on the lower surface of the battery pack cover 25 in order to minimize vibration between the battery packs.
[0045]
FIGS. 4 and 5A to 5C show a composite battery pack 30 including six battery packs 20 electrically connected to the battery pack 20 shown in FIG. As shown in FIGS. 4 and 5A to 5C, the composite battery pack 30 is stacked such that the terminals 22 and 23 of the battery pack 20 face the same direction. That is, the terminals 22 and 23 of the assembled battery 20 located at the m-th stage and the terminals 22 and 23 of the assembled battery 20 located at the (m + 1) -th stage face in the same direction. Then, the assembled battery 20 of the (m + 1) th stage is stacked (m: natural number). Then, the battery pack positive terminals 22 of all the battery packs 20 facing in the same direction are electrically connected by the external connection positive terminal 31 connecting the composite battery pack 30 to the outside. Similarly, the assembled battery negative terminals 23 of all the assembled batteries 20 facing in the same direction are electrically connected by the external connection negative terminal 32. As shown in the figure, the external connection positive terminal 31 has a substantially rectangular flat plate shape, and has a plurality of terminal connection holes having a diameter capable of inserting or press-fitting the assembled battery positive terminal 22. The terminal connection holes are formed at a pitch equal to the pitch between the assembled battery positive terminals 22 of the stacked battery assembly 20, and the terminal connection holes are similarly formed in the external connection negative terminal 32. I have.
[0046]
Further, an insulating cover 33 made of an insulating material is provided to cover all the connected battery terminals 22 and 23 so that the battery terminals 22 and 23 are not exposed to the outside of the composite battery 30. ing. Note that, in FIG. 4, the insulating cover 33 is illustrated in a perspective view for convenience of description, and is not illustrated in FIG. Then, the six assembled batteries 20 stacked as described above are connected to both side surfaces thereof by flat connecting members 34, and further fastened and fixed by fixing screws 35.
[0047]
As described above, this is required by configuring a battery pack in units of a predetermined number of thin batteries and further combining the battery packs of a predetermined number in units of the battery pack to form a composite battery pack. A composite battery pack suitable for capacity, voltage, and the like can be easily obtained. In addition, since the composite battery pack is configured without complicated connection, the failure rate of the composite battery pack due to poor connection can be reduced. Furthermore, when one of the thin batteries constituting the composite battery is broken or deteriorated and the thin battery needs to be replaced, the battery having the thin battery can be easily replaced.
[0048]
FIG. 6 is a schematic diagram illustrating an example in which the above-described composite battery 30 is mounted below the floor of the vehicle 1. As the vehicle 1 moves, many vibrations are generated inside the vehicle. As shown in the figure, by mounting the above-mentioned composite battery pack 30 on the vehicle, the possibility that interfacial separation occurs between the terminal of the thin battery and the battery exterior member due to the vibration is significantly reduced. It can be used effectively.
[0049]
Second embodiment
FIG. 7 is a schematic plan view of a fixing device according to a second embodiment of the present invention, FIG. 8 is a diagram showing an assembled battery according to the second embodiment of the present invention, and FIG. 8B is a front view, and FIG. 8C is a side view. The thin battery 10 according to the second embodiment of the present invention has the same structure as the thin battery described in the first embodiment.
[0050]
As shown in FIG. 7, the fixing device 5 ′ according to the second embodiment of the present invention is a means for fixing ten thin batteries 10 stacked in two stages and five rows at once, and fixing each thin battery. It also has the function of a bus bar for connecting between the terminals. The fixing device 5 ′ includes a fixing base 51, an engaging member 52, and a damping material 53.
[0051]
The fixed base portion 51 is composed of two linear support members 51c and 51d. Each of the support members 51c and 51d is rotatably supported at a fulcrum 51b at one end, and is supported at the other end. An engagement member 52 is attached to the end. Further, two substantially arrow-shaped convex members 52a of the engaging member 52 are attached to the other end of the first support member 51c, and a concave is formed at the other end of the second support member 51d. The member 52b is attached. The concave member 52b attached to the other end of the second support member 51d has an opening large enough to insert the substantially arrow shape of the convex member 52a. Then, the first support member 51c rotates toward the second support member 51 about the fulcrum 51b, and in the same manner as in the first embodiment, the barbed portion of the convex member 52a having the substantially arrow shape is concave. The fixed base 51 is fixed by engaging with the edge of the opening of the member 52b.
[0052]
Further, the first support member 51c is provided on the surface facing the second support member 51d at substantially the same pitch as the pitch at which each positive electrode terminal 104 or 105 of the thin battery 10 is located. A damping member 53 composed of a mechanical spring having a spring constant smaller than that of the positive electrode terminal 104 and the negative electrode terminal 105, a rubber-based elastic body, an elastomer-based elastic body, and the like is attached. Similarly, the second support member 51d is also provided on the surface facing the first support member 51d at substantially the same pitch as the above-described pitch from a mechanical spring, a rubber-based elastic body, an elastomer-based elastic body, or the like. The configured damping material 53 is attached.
[0053]
Further, on the surface of the first support member 51c facing the second support member 51d, a connection portion 53a such as a metal foil is provided over the entire surface including the surface of the disposed damping material 53. . Similarly, a connection portion 53a such as a metal foil is provided on the entire surface of the second support member 51d facing the first support member 51c, including the surface of the disposed damping material 53. I have. Thereby, when the terminals 104 and 105 are sandwiched by the damping material 53, the positive terminal 104 or the negative terminal 105 of one thin battery 10 is connected to the connecting portion 53a of the first supporting member 51c and the second supporting member 51d. Is electrically connected to the positive electrode terminal 104 or the negative electrode terminal 105 of another thin battery 10.
[0054]
As described above, by fixing the terminals of a plurality of thin batteries with a single fixing device having the function of a bus bar, replacement of the thin batteries is facilitated, and the bus bar is not required in forming the assembled battery. The number of parts is reduced.
[0055]
When fixing the positive electrode terminal 104 or the negative electrode terminal 105 of the ten thin batteries 10 with the fixing device 5, the other thin batteries 10 are inverted with respect to one thin battery 10, as in the first embodiment. Thus, the lower surface of the other thin battery 10 is laminated so as to match the lower surface of the one thin battery 10.
[0056]
Then, the positive electrode terminal 104 of one thin battery 10 and the positive electrode terminal 104 of another thin battery 10 that is vertically inverted are positioned between the opposing damping members 53. Similarly, the negative electrode terminal 105 of one thin battery 10 and the negative electrode terminal 105 of another thin battery 10 inverted in the vertical direction are positioned between the opposing damping members 53. Then, the protruding member 52a of the engaging member 52 is rotated about the fulcrum 51b in the direction of the arrow in FIG. 7 until the barbed portion of the protruding member 52a of the engaging member 52 sufficiently penetrates the opening of the concave member. The convex member 52a is inserted into the concave member 52b. When the convex member 52a and the concave member 52b of the engaging member 52 are engaged, the positive terminal 104 and the negative terminal 105 of the thin battery 10 are sandwiched and fixed between the damping members 53 facing each other. By fixing the thin battery with the fixing device having the damping material having a spring constant smaller than the spring constant of the terminal, transmission of vibration to the thin battery can be reduced, and the failure rate of the thin battery can be reduced. Can be achieved.
[0057]
FIGS. 8A to 8C show an assembled battery 20 including ten thin batteries 10 connected by the fixing device of FIG. 7 described above. The assembled battery 20 includes ten thin batteries 10a to 10j, two fixing devices 5 'on the positive electrode side and the negative electrode side, assembled battery terminals 22, 23, an assembled battery cover 25, and an external elastic body 26. And has the same structure as the assembled battery according to the first embodiment except that the fixing device 5 'shown in FIG. 7 is used.
[0058]
The assembled battery 20 according to the second embodiment can form a composite assembled battery by stacking the assembled batteries 20 and connecting the terminals for each assembled battery as in the first embodiment of the present invention. In addition, the composite battery pack can be mounted on a vehicle.
[0059]
Third embodiment
9A and 9B are views showing a battery pack according to a third embodiment of the present invention, FIG. 9A is a perspective view of the battery pack, and FIG. 9B is a line III-III in FIG. FIG. The thin battery 10 constituting the battery pack according to the third embodiment of the present invention has the same structure as the thin battery described in the first embodiment.
[0060]
As shown in FIG. 9, the battery pack 20 according to the third embodiment of the present invention has a structure in which the battery pack cover 25 is fixed by the fixing bolts 24 a to fix the plurality of thin batteries 10. , A fixing battery 24, a battery pack cover 25, and a damping material 53.
[0061]
As shown in FIG. 9A, the spring constant of the positive electrode terminal 104 and the negative electrode terminal 105 of the thin battery 10 on the inner surface near the upper and lower long sides on the negative electrode terminal 105 side of the battery pack cover 25 at a predetermined pitch interval. Twelve damping members 53 composed of a mechanical spring having a smaller spring constant, a rubber-based elastic body, an elastomer-based elastic body, and the like are arranged. The inner surface near the side is made of a mechanical spring, a rubber-based elastic body, an elastomer-based elastic body, or the like having a spring constant smaller than the spring constant of the positive terminal 104 and the negative terminal 105 of the thin battery 10 at a predetermined pitch interval. The plurality of damping members 53 are arranged. By fixing the thin battery with a damping material having a spring constant smaller than the spring constant of the terminal, transmission of vibration to the thin battery can be reduced, and the failure rate of the thin battery can be reduced. It becomes possible.
[0062]
As shown in FIG. 9B, similarly to the first embodiment, two thin batteries are taken as one unit, and the positive electrode terminal 104 of one thin battery 10 and the positive terminal 104 of another thin battery 10 are used as a unit. The negative bus bar 21b is interposed between the negative terminal 105 of the one thin battery 10 and the negative terminal 105 of the other thin battery 10, and the one thin battery 10 is vertically inverted. It is stacked on another thin battery 10. Then, the positive electrode terminal 104 is fitted between the upper and lower damping materials 53 located on the positive electrode side, and the negative electrode terminal 105 is mounted on the upper and lower damping materials 53 located on the negative electrode side. Similarly, the positive electrode terminal 104 and the negative electrode terminal 105 of a total of twelve thin batteries 10 are arranged between the corresponding damping members 53 and mounted inside the assembled battery cover 25. Next, the fixing bolts 24a are inserted into the holes provided through the vicinity of each corner of the battery pack cover 25, and the corresponding upper and lower damping members 53 are tightened by tightening the fixing bolts 24a. The positive electrode terminal 104 and the negative electrode terminal 105 of each thin battery 10 are sandwiched and supported, and twelve thin batteries 10 are fixed to the assembled battery 20. When removing the thin battery 10 from the battery pack 20, the thin battery 10 can be easily removed by loosening the fixing bolt 24a.
[0063]
As described above, the structure in which the thin battery incorporated in the battery pack is easily taken out by disposing the damping material directly on the battery pack cover and fixing with the fixing bolts without specially providing the fixing device is provided. It becomes possible to make it cheap.
[0064]
Although not particularly shown, similarly to the first embodiment, the positive bus bar 21a may be connected to a positive battery terminal for connection to the outside of the battery assembly 20, and similarly, the negative bus bar 21b is , May be connected to the negative electrode terminal for the assembled battery. Further, when thin batteries are stacked as a composite battery to be described later, external elastic bodies may be attached to the four lower corners of the battery pack cover 25 in order to minimize vibration between the thin batteries.
[0065]
The assembled battery 20 according to the third embodiment can form a composite assembled battery by stacking the assembled batteries 20 and connecting the terminals for each assembled battery as in the first embodiment of the present invention. In addition, the composite battery pack can be mounted on a vehicle.
[0066]
Fourth embodiment
FIG. 10 is a perspective view of a battery pack according to a fourth embodiment of the present invention, and FIG. 11 is a cross-sectional view of the holder shown in FIG. The thin battery 10 constituting the battery pack according to the fourth embodiment of the present invention has the same structure as the thin battery described in the first embodiment.
[0067]
The battery pack 20 according to the fourth embodiment of the present invention is configured by stacking six holders 15 in units of holders 15 on which two thin batteries 10 can be mounted. It can be installed.
[0068]
The holder 15 is mainly configured by stacking four layers 151 to 154, and is stacked in the order of a first layer 151, a second layer 152, a third layer 153, and a fourth layer 154. It is configured.
[0069]
Each of the first to fourth layers 151 to 154 has a substantially rectangular flat plate shape having the same size and different thickness, and is provided at six places of each of four corners and a substantially central portion of an upper side and a lower side in the drawing. A through hole 155 through which the fixing bolt 24a passes is provided.
[0070]
The second layer 152 is formed on the surface facing the third layer 153 in such a shape that the outer periphery of the battery exterior members 106 and 107 excluding the terminals 104 and 105 of the thin battery 10 can be inserted. Further, a damping portion formed of a mechanical spring, a rubber-based elastic body, an elastomer-based elastic body, or the like having a spring constant smaller than that of the positive terminal 104 and the negative terminal 105 of the thin battery 10 is provided at a portion where the terminals 104 and 105 are in contact. A material 156 is attached, and a connection portion 156a such as a metal foil is attached to the surface of the damping material 53.
[0071]
The third layer 153 is formed by penetrating a shape into which the outer circumference including the terminals 104 and 105 of the thin battery 10 can be inserted. Further, the third layer 153 is provided with a spring 157 so that the space between the second layer 152 and the fourth layer 154 is sufficiently widened, so that the thin battery 10 can be taken out at the time of replacement. It will be easier.
[0072]
The fourth layer 154 is formed on the surface facing the third layer 153 in such a shape that the outer periphery of the battery exterior members 106 and 107 except for the terminals 104 and 105 of the thin battery 10 can be inserted. Further, a damping portion formed of a mechanical spring, a rubber-based elastic body, an elastomer-based elastic body, or the like having a spring constant smaller than that of the positive terminal 104 and the negative terminal 105 of the thin battery 10 is provided at a portion where the terminals 104 and 105 are in contact. A material 156 is attached, and a connection portion 156a such as a metal foil is attached to the surface of the damping material 53. Therefore, the fourth layer 154 has a mirror relationship with the second layer 152 described above.
[0073]
When the holder 15 is formed by laminating the first to fourth layers 151 to 154, a space having an insertion port 27 into which the two thin batteries 10 can be inserted is formed inside the holder 15. Six such holders 15 are stacked, and the fixing bolts 24a are respectively passed through the through holes 155 and temporarily fastened to the fixing nuts 24b, and the respective inserts formed on the upper surface of the holders 15 of the battery pack 20 are inserted. The thin battery 10 is inserted into the opening 27. When the insertion into all the insertion openings 27 is completed, the fixing bolts 24a are fully tightened, so that the damping material 156 of the second layer 152 and the damping material 156 of the fourth layer 154 of each holder 15 are connected to the terminal 104, The thin battery 10 is fixed to the assembled battery 20 with the battery 105 held therebetween. By fixing the thin battery with a damping material having a spring constant smaller than the spring constant of the terminal, transmission of vibration to the thin battery can be reduced, and the failure rate of the thin battery can be reduced. It becomes possible.
[0074]
As shown in FIG. 11, the two thin batteries 10 in the holder 15 are connected in series, and as shown in FIG. 10, the first layer 151 near the positive terminal and the negative terminal of the series connection, In the second layer 152 and the fourth layer 154, a conductive portion 158 such as a metal is provided so as to penetrate therethrough. A positive electrode terminal 22 for an assembled battery is attached to one first layer 151 that forms the outermost layer of the assembled battery 20. Then, the conduction portion 158 of each layer and the positive electrode terminal 22 for the assembled battery conduct, and the twelve thin batteries 10 incorporated in the assembled battery 20 are electrically connected. Similarly, a negative electrode terminal 23 for an assembled battery is attached to the other first layer 151 that forms the outermost layer of the assembled battery 20. Although not particularly shown, the conductive portion 158 of each of the above-described layers and the assembled battery The negative electrode terminal 23 is electrically connected, and the twelve thin batteries 10 are electrically connected. Therefore, the assembled battery 20 shown in FIG. 10 is configured by the thin batteries 10 connected in two series and six parallel. Note that the connection portion 156a of the damping material 156 that contacts the terminal and the conduction portion 158 of the third layer 153 are electrically connected.
[0075]
By forming the assembled battery by stacking the above-described holders, the thin battery incorporated in the assembled battery can be easily replaced.
[0076]
In addition, the number of thin batteries that can be mounted on the holder, the number of holders, and the connection method of the thin batteries constituting the assembled battery are not limited to the above-described number and connection method, but include required electric capacity, voltage, and the like. From, the number and connection method (series connection, parallel connection, series / parallel composite connection) can be appropriately set.
[0077]
The assembled battery 20 according to the fourth embodiment can form a composite assembled battery by stacking the assembled batteries 20 and connecting the terminals for each assembled battery as in the first embodiment of the present invention. In addition, the composite battery pack can be mounted on a vehicle.
[0078]
The number of thin batteries constituting the assembled battery, the number of assembled batteries constituting the combined battery, the connection method of the thin batteries constituting the assembled battery, and the number of assembled batteries constituting the combined battery in the embodiment described above. The connection method is not limited to the number and the connection method described above, and the number and the connection method (series connection, parallel connection, series-parallel composite connection) can be appropriately set based on required electric capacity, voltage, and the like. I can do it.
[0079]
The embodiments described above are described for facilitating the understanding of the present invention, and are not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
[0080]
【Example】
Hereinafter, the effects of the present invention were confirmed by Examples and Comparative Examples that further embody the present invention. The following examples are for confirming the effects of the thin battery used in the above-described embodiment.
[0081]
Example 1
The battery pack of Example 1 has a battery exterior member made of a polypropylene (PP) resin film for the first resin layer, an aluminum (Al) foil for the metal layer, a nylon resin film for the second resin layer, and aluminum (Al) for the positive electrode terminal. ) Foil, nickel (Ni) foil on the negative electrode terminal, lithium manganate (LiMnO) on the positive electrode active material2), Using a crystalline carbon material as the negative electrode active material and a mixed solution of propylene carbonate (PC) and ethyl methyl carbonate (EMC) as the electrolytic solution, to produce a thin battery of 140 mm long × 80 mm wide × 5 mm thick. Using ten thin batteries, the battery was fixed to the assembled battery by the fixing device shown in FIG. The size of the battery pack was 250 mm in length × 500 mm in width × 20 mm in height, and synthetic rubber mainly composed of butyl rubber was used as a damping material of the fixing device. In addition, the contact area of the positive electrode terminal and the negative electrode terminal with the damping material was set to 90%.
[0082]
The vibration transmissibility of this assembled battery was measured. For the measurement of the vibration transmissibility, an acceleration pickup was set substantially at the center of the upper part of the battery pack, and the acceleration of the response vibration obtained when forced vibration was measured.
[0083]
FIG. 12 is a graph showing the vibration transmissibility of the battery pack according to the first embodiment of the present invention. As shown in FIG. 12, while the resonance frequency is located at about 100 Hz or less in Comparative Example 1 described below, it was confirmed that the main resonance frequency of the assembled battery in Example 1 was shifted to about 100 Hz or more. did.
[0084]
Example 2
The assembled battery of Example 2 was manufactured using ten thin batteries similar to those of Example 1 and fixed to the assembled battery by the fixing device shown in FIG. The size of the battery pack was 250 mm in length × 500 mm in width × 20 mm in height, and synthetic rubber mainly composed of butyl rubber was used as a damping material of the fixing device. In addition, the contact area of the positive electrode terminal and the negative electrode terminal with the damping material was 70%.
[0085]
For this assembled battery, the same measurement of the vibration transmissibility as in Example 1 was performed. FIG. 13 is a graph showing the vibration transmissibility of the battery pack according to the second embodiment of the present invention. As shown in FIG. 13, in Comparative Example 2 described below, the resonance frequency is located at about 100 Hz or less, whereas in the assembled battery in Example 2, the main resonance frequency is shifted to about 100 Hz or more. did.
[0086]
Example 3
As the assembled battery of Example 3, 12 thin batteries similar to those of Example 1 were used, and the assembled battery shown in FIG. 9 was manufactured in two parallel and six series. The size of the battery pack was 250 mm in length × 600 mm in width × 20 mm in height, and synthetic rubber mainly composed of butyl rubber was used as a damping material for the fixing device. In addition, the contact area of the positive electrode terminal and the negative electrode terminal with the damping material was set to 90%.
[0087]
For this assembled battery, the same measurement of the vibration transmissibility as in Example 1 was performed. FIG. 14 is a graph showing the vibration transmissibility of the battery pack according to the third embodiment of the present invention. As shown in FIG. 14, it was confirmed that the resonance frequency was located at about 100 Hz or less in Comparative Example 3 described below, whereas the main resonance frequency of the battery pack in Example 3 was shifted to about 100 Hz or more. did.
[0088]
Example 4
The battery pack of Example 4 was manufactured by using 24 thin batteries similar to those of Example 1 and forming the battery pack shown in FIG. 10 in four parallels and six series. The size of the battery pack was 250 mm long × 450 mm wide × 50 mm long, and a synthetic rubber containing butyl rubber as a main component was used as a damping material for the fixing device. In addition, the contact area of the positive electrode terminal and the negative electrode terminal with the damping material was set to 90%.
[0089]
For this assembled battery, the same measurement of the vibration transmissibility as in Example 1 was performed. As a result, although not particularly shown, it was confirmed that the main resonance frequency was about 100 Hz or more as in Examples 1 to 3.
Comparative Example 1
As the battery pack of Comparative Example 1, a battery pack similar to that of Example 1 was manufactured using a thin battery similar to that of Example 1. However, the fixing device was not used for fixing the thin battery, and the positive terminal and the negative terminal of the thin battery and the bus bar were directly fixed by rivets.
[0090]
Comparative Example 2
As the battery pack of Comparative Example 2, a battery pack similar to that of Example 2 was manufactured using a thin battery similar to that of Example 2. However, the fixing device was not used for fixing the thin battery, and the positive terminal and the negative terminal of the thin battery and the bus bar were directly fixed by rivets.
[0091]
Comparative Example 3
As the battery pack of Comparative Example 3, a battery pack similar to that of Example 3 was manufactured using a thin battery similar to that of Example 3. However, the damping material was not used for fixing the thin battery, and the positive terminal and the negative terminal of the thin battery and the bus bar were directly fixed by rivets.
Consideration
[0092]
In the assembled batteries in Examples 1 to 4, it was confirmed that the resonance frequency was located at about 100 Hz or more. Thus, by avoiding the resonance of about 100 Hz or less, it has been clarified that the assembled battery can be effectively used even in an application such as a vehicle where vibration is relatively large.
[Brief description of the drawings]
FIG. 1A is a plan view showing the entire thin battery according to a first embodiment of the present invention, and FIG. 1B is a cross-sectional view taken along line II-II in FIG. 1A. It is.
FIG. 2A is a plan view of a fixing device according to the first embodiment of the present invention, and FIG. 2B is a partial side view of the fixing device before fixing a thin battery; (C) is a partial side view of the fixing device after fixing the thin battery.
3A and 3B are diagrams showing a battery pack according to the first embodiment of the present invention, wherein FIG. 3A is a plan view, FIG. 3B is a front view, and FIG. 3C is a side view.
FIG. 4 is a perspective view of a composite battery pack including the battery pack of FIG. 3;
5 (A) is a plan view of the composite battery pack of FIG. 3, FIG. 4 (B) is a front view of the composite battery pack of FIG. 3, and FIG. 4 (C) is a side view of the composite battery pack of FIG. FIG.
FIG. 6 is a schematic view showing the composite battery pack according to the first embodiment of the present invention mounted on a vehicle.
FIG. 7 is a schematic plan view of a fixing device according to a second embodiment of the present invention.
FIG. 8 is a view showing a battery pack according to a second embodiment of the present invention, wherein FIG. 8 (A) is a schematic plan view, FIG. 8 (B) is a front view, and FIG. 8 (C) is a side view. .
FIG. 9 is a view showing an assembled battery according to a third embodiment of the present invention, FIG. 9 (A) is a perspective view of the assembled battery, and FIG. 9 (B) is III-III in FIG. 9 (A). It is sectional drawing which follows a line.
FIG. 10 is a perspective view of a battery pack according to a fourth embodiment of the present invention.
FIG. 11 is a sectional view of the holder shown in FIG. 10;
FIG. 12 is a graph showing the results of measuring the vibration transmissibility of Example 1.
FIG. 13 is a graph showing the results of measuring the vibration transmissibility of Example 2.
FIG. 14 is a graph showing a result of a vibration transmission rate measurement of Example 3.
[Explanation of symbols]
1 ... Vehicle
5, 5 ': fixing device
51: Fixed base part
51a ... axis
51b ... fulcrum
51c, 51d ... members
52 ... engaging member
52a ... convex member
52b ... recess material
53 ... Damping material
53a ... connection part
54 ... Opening
55 ... Lead wire
10. Thin battery
10a to 10j: first to tenth thin batteries
101 ... Positive electrode plate
102 ... Separator
103 ... Negative electrode plate
104 ... Positive terminal
105 ... negative electrode terminal
106: Upper battery exterior member
107: Lower battery exterior member
109 ... power generation element
110: heat fusion area
15 ... Holder
151: first layer
152: second layer
153: Third layer
154: fourth layer
155 ... through-hole
156 ... Damping material
157 ... Spring
158 ... conductive part
20… Battery pack
21a ... Positive side busbar
21b: negative electrode side bus bar
22 ... Positive electrode terminal for assembled battery
23 ... Negative electrode terminal for assembled battery
24a ... fixing bolt
24b ... fixing nut
25 ... Battery cover
26 ... External elastic body
27 ... Insert
30 ... Composite battery
31 ... Positive terminal for external connection
32 ... Negative terminal for external connection
33 ... Insulation cover
34 ... Connecting member
35 ... fixing screw

Claims (20)

合成樹脂層を有する2枚のシート状封止手段の外周縁部を接合して、前記封止手段の内部に発電要素を封止し、前記発電要素に接続された正極端子及び負極端子を前記外周縁部から導出した薄型電池を複数備えた組電池であって、
前記薄型電池の正極端子又は負極端子を固定及び開放可能な固定手段を有する組電池。
The outer peripheral edges of two sheet-shaped sealing means having a synthetic resin layer are joined to seal a power generating element inside the sealing means, and the positive terminal and the negative terminal connected to the power generating element are connected to each other. An assembled battery including a plurality of thin batteries derived from an outer peripheral portion,
An assembled battery having fixing means capable of fixing and opening the positive terminal or the negative terminal of the thin battery.
前記固定手段は、前記薄型電池の正極端子及び負極端子に接触する位置にダンピング材を有し、
前記ダンピング材によって、前記薄型電池の正極端子又は負極端子を挟持して、前記薄型電池を支持する請求項1記載の組電池。
The fixing means has a damping material at a position in contact with the positive terminal and the negative terminal of the thin battery,
The battery pack according to claim 1, wherein the thin battery is supported by sandwiching a positive electrode terminal or a negative electrode terminal of the thin battery with the damping material.
前記ダンピング材が、前記薄型電池の正極端子及び負極端子の前記シート状封止手段から導出した部分の50%以上の面積と接触する請求項2記載の組電池。3. The battery pack according to claim 2, wherein the damping material is in contact with an area of 50% or more of a portion of the positive electrode terminal and the negative electrode terminal of the thin battery derived from the sheet-shaped sealing means. 前記ダンピング材が、前記薄型電池の正極端子及び負極端子のバネ定数より小さなバネ定数を有する請求項2又は3記載の組電池。The assembled battery according to claim 2, wherein the damping material has a spring constant smaller than a spring constant of a positive terminal and a negative terminal of the thin battery. 前記ダンピング材が、バネ、ゴム、エラストマーから選ばれる材料を有する請求項2〜4の何れかに記載の組電池。The assembled battery according to any one of claims 2 to 4, wherein the damping material includes a material selected from a spring, a rubber, and an elastomer. 前記固定手段は、複数の前記薄型電池の正極端子又は負極端子を同時に固定及び開放可能な請求項1〜5の何れかに記載の組電池。The assembled battery according to claim 1, wherein the fixing unit is capable of simultaneously fixing and opening the positive electrode terminal or the negative electrode terminal of the plurality of thin batteries. 前記組電池が、一の薄型電池の前記正極端子又は負極端子のうちの一方の端子と、他の薄型電池の正極端子又は負極端子のうちの一方の端子とが同方向となるように、積層された2以上の薄型電池を含み、
前記固定手段は、前記積層された2以上の薄型電池の正極端子又は負極端子を同時に固定及び開放可能な請求項6記載の組電池。
The assembled battery is stacked so that one of the positive electrode terminal or the negative electrode terminal of one thin battery and one of the positive electrode terminal or the negative electrode terminal of the other thin battery are in the same direction. Including two or more thin batteries,
7. The assembled battery according to claim 6, wherein the fixing means can simultaneously fix and open the positive electrode terminal or the negative electrode terminal of the stacked two or more thin batteries.
前記固定手段が、一の薄型電池の前記正極端子又は負極端子のうちの一方の端子と、他の薄型電池の正極端子又は負極端子のうちの一方の端子とが同方向となるように、並置された2以上の薄型電池を含み、
前記固定手段が、前記並置された2以上の薄型電池の正極端子又は負極端子を同時に固定及び開放可能な請求項6又は7記載の組電池。
The fixing means is juxtaposed such that one of the positive electrode terminal or the negative electrode terminal of one thin battery and one of the positive electrode terminal or the negative electrode terminal of the other thin battery are in the same direction. Including two or more thin batteries,
8. The battery pack according to claim 6, wherein the fixing means can simultaneously fix and open the positive electrode terminal or the negative electrode terminal of the two or more thin batteries arranged side by side.
前記固定手段が、前記一の薄型電池の正極端子又は負極端子と、前記他の薄型電池の正極端子又は負極端子とを電気的に接続する接続手段を有する請求項6〜8の何れかに記載の組電池。9. The fixing device according to claim 6, wherein the fixing unit includes a connecting unit that electrically connects a positive terminal or a negative terminal of the one thin battery and a positive terminal or a negative terminal of the other thin battery. 9. Battery pack. 前記薄型電池の合成樹脂層が、ポリプロピレン、変性ポリプロピレン、ポリエチレン、変性ポリエチレン、又はアイオノマーからなる群より選ばれる材料を含む請求項1〜9の何れかに記載の組電池。The assembled battery according to any one of claims 1 to 9, wherein the synthetic resin layer of the thin battery includes a material selected from the group consisting of polypropylene, modified polypropylene, polyethylene, modified polyethylene, and ionomer. 前記薄型電池の正極端子が、アルミニウム、鉄、及びニッケルからなる群より選ばれる一又はそれ以上の成分を含む請求項1〜10の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 10, wherein the positive electrode terminal of the thin battery includes one or more components selected from the group consisting of aluminum, iron, and nickel. 前記薄型電池の負極端子が、鉄、ニッケル、及び銅からなる群より選ばれる一又はそれ以上の成分を含む請求項1〜11の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 11, wherein the negative electrode terminal of the thin battery includes one or more components selected from the group consisting of iron, nickel, and copper. 前記薄型電池の厚さが、1〜10mmである請求項1〜12の何れかに記載の薄型電池。The thin battery according to any one of claims 1 to 12, wherein the thickness of the thin battery is 1 to 10 mm. 前記発電要素は、正極として機能する正極活性物質を有し、
前記正極活性物質が、リチウム複合酸化物である請求項1〜13の何れかに記載の薄型電池。
The power generating element has a positive electrode active material that functions as a positive electrode,
14. The thin battery according to claim 1, wherein the positive electrode active material is a lithium composite oxide.
前記リチウム複合酸化物が、リチウム−マンガン系複合酸化物である請求項14記載の薄型電池。The thin battery according to claim 14, wherein the lithium composite oxide is a lithium-manganese composite oxide. 前記発電要素は、負極として機能する負極活性物質を有し、
前記負極活性物質が、炭素系材料である請求項1〜15の何れかに記載の薄型電池。
The power generation element has a negative electrode active material that functions as a negative electrode,
The thin battery according to claim 1, wherein the negative electrode active material is a carbon-based material.
前記炭素系材料が、非結晶性炭素材である請求項16記載の薄型電池。17. The thin battery according to claim 16, wherein the carbon-based material is an amorphous carbon material. 請求項1〜17の何れかに記載の組電池を電気的に接続した、複数の組電池を有する複合組電池であって、
前記各組電池が、外部と電気的に接続する組電池用正極端子及び組電池用負極端子を有し、
一の前記組電池の組電池用正極端子又は組電池用負極端子の一方の組電池用端子と、他の前記組電池の前記一の組電池用端子の一方の組電池用端子とは極の異なる組電池用端子とを電気的に接続した少なくとも2以上の前記組電池を含む複合組電池。
A composite battery pack having a plurality of battery packs, wherein the battery packs according to claim 1 are electrically connected,
Each of the assembled batteries has an assembled battery positive terminal and an assembled battery negative terminal that are electrically connected to the outside,
One of the assembled battery terminals of the assembled battery positive terminal or the assembled battery negative terminal, and the other assembled battery terminal of the one assembled battery terminal is a positive electrode. A composite battery pack including at least two or more of said battery packs electrically connected to different battery pack terminals.
請求項1〜17の何れかに記載の組電池を電気的に接続した、複数の組電池を有する複合組電池であって、
前記各組電池が、外部と電気的に接続する組電池用正極端子及び組電池用負極端子を有し、
一の前記組電池の組電池用正極端子と、他の前記組電池の組電池用負極端子とを電気的に接続し、
前記一の組電池の組電池用負極端子と、前記他の組電池の組電池用負極端子とを電気的に接続した少なくとも2以上の前記組電池を含む複合組電池。
A composite battery pack having a plurality of battery packs, wherein the battery packs according to claim 1 are electrically connected,
Each of the assembled batteries has an assembled battery positive terminal and an assembled battery negative terminal that are electrically connected to the outside,
The battery pack positive electrode terminal of one of the battery packs is electrically connected to the battery pack negative electrode terminal of the other battery pack,
A composite battery pack including at least two or more of the battery packs, wherein the battery pack negative electrode terminal of the one battery pack and the battery pack negative electrode terminal of the other battery pack are electrically connected.
請求項18又は19に記載の複合組電池を車載した車両。A vehicle on which the composite battery pack according to claim 18 or 19 is mounted.
JP2002211480A 2002-07-19 2002-07-19 Battery pack, composite battery pack, and vehicle Pending JP2004055348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211480A JP2004055348A (en) 2002-07-19 2002-07-19 Battery pack, composite battery pack, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211480A JP2004055348A (en) 2002-07-19 2002-07-19 Battery pack, composite battery pack, and vehicle

Publications (1)

Publication Number Publication Date
JP2004055348A true JP2004055348A (en) 2004-02-19

Family

ID=31934707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211480A Pending JP2004055348A (en) 2002-07-19 2002-07-19 Battery pack, composite battery pack, and vehicle

Country Status (1)

Country Link
JP (1) JP2004055348A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127964A (en) * 2004-10-29 2006-05-18 Nec Lamilion Energy Ltd Connection device and electric device assembly using it
WO2006059421A1 (en) * 2004-11-30 2006-06-08 Nec Corporation Electric device aggregation
WO2006059420A1 (en) * 2004-11-30 2006-06-08 Nec Corporation Electric device module and electric device module aggregation
JP2006172882A (en) * 2004-12-15 2006-06-29 Nec Lamilion Energy Ltd Electric device assembly
JP2006190530A (en) * 2005-01-05 2006-07-20 Nec Lamilion Energy Ltd Battery cell holding member and battery module
WO2006114993A1 (en) * 2005-04-22 2006-11-02 Nec Corporation Electrode laminate and electric device
JP2006313733A (en) * 2005-04-07 2006-11-16 Nissan Motor Co Ltd Battery module and battery pack
JP2007018779A (en) * 2005-07-05 2007-01-25 Nissan Motor Co Ltd Battery pack and battery pack case
JP2007280617A (en) * 2006-04-03 2007-10-25 Sony Corp Battery pack
JP2008016202A (en) * 2006-07-03 2008-01-24 Hitachi Maxell Ltd Battery module of laminate-armored flat battery
JP2008192471A (en) * 2007-02-06 2008-08-21 Gs Yuasa Corporation:Kk Battery
JP2008300083A (en) * 2007-05-29 2008-12-11 Sanyo Electric Co Ltd Packed battery
KR100932227B1 (en) 2005-09-02 2009-12-16 주식회사 엘지화학 Secondary battery and battery module including same
JP2010108607A (en) * 2008-10-28 2010-05-13 Nec Tokin Corp Battery pack, and method of manufacturing the same
WO2010050697A3 (en) * 2008-10-30 2010-07-15 주식회사 엘지화학 Battery cartridge, and battery module comprising same
WO2011108680A1 (en) * 2010-03-01 2011-09-09 株式会社ピューズ Thin battery module and assembled battery using same
WO2014171559A1 (en) * 2013-04-15 2014-10-23 주식회사 엘지화학 Battery module having novel structure and battery pack comprising same
EP2624334A4 (en) * 2010-11-22 2016-09-14 Lg Chemical Ltd Battery pack having a compact structure
WO2019202960A1 (en) * 2018-04-16 2019-10-24 マクセルホールディングス株式会社 Battery module
CN114424399A (en) * 2019-10-08 2022-04-29 株式会社Lg新能源 Connection member connected to electrode lead by physical coupling and battery cell stack including the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127964A (en) * 2004-10-29 2006-05-18 Nec Lamilion Energy Ltd Connection device and electric device assembly using it
JP4690013B2 (en) * 2004-10-29 2011-06-01 日本電気株式会社 Connection apparatus and electrical device assembly using the same
JPWO2006059421A1 (en) * 2004-11-30 2008-06-05 日本電気株式会社 Electrical device assembly
WO2006059421A1 (en) * 2004-11-30 2006-06-08 Nec Corporation Electric device aggregation
WO2006059420A1 (en) * 2004-11-30 2006-06-08 Nec Corporation Electric device module and electric device module aggregation
JP5296989B2 (en) * 2004-11-30 2013-09-25 日本電気株式会社 Electrical device assembly
JP5248781B2 (en) * 2004-11-30 2013-07-31 日本電気株式会社 Electrical device module and electrical device module assembly
JP2006172882A (en) * 2004-12-15 2006-06-29 Nec Lamilion Energy Ltd Electric device assembly
JP2006190530A (en) * 2005-01-05 2006-07-20 Nec Lamilion Energy Ltd Battery cell holding member and battery module
JP2006313733A (en) * 2005-04-07 2006-11-16 Nissan Motor Co Ltd Battery module and battery pack
WO2006114993A1 (en) * 2005-04-22 2006-11-02 Nec Corporation Electrode laminate and electric device
JP5228482B2 (en) * 2005-04-22 2013-07-03 日本電気株式会社 Electrical device
JP2007018779A (en) * 2005-07-05 2007-01-25 Nissan Motor Co Ltd Battery pack and battery pack case
KR100932227B1 (en) 2005-09-02 2009-12-16 주식회사 엘지화학 Secondary battery and battery module including same
US11011799B2 (en) 2006-04-03 2021-05-18 Murata Manufacturing Co., Ltd. Battery pack
JP2007280617A (en) * 2006-04-03 2007-10-25 Sony Corp Battery pack
JP2008016202A (en) * 2006-07-03 2008-01-24 Hitachi Maxell Ltd Battery module of laminate-armored flat battery
JP2008192471A (en) * 2007-02-06 2008-08-21 Gs Yuasa Corporation:Kk Battery
JP2008300083A (en) * 2007-05-29 2008-12-11 Sanyo Electric Co Ltd Packed battery
JP2010108607A (en) * 2008-10-28 2010-05-13 Nec Tokin Corp Battery pack, and method of manufacturing the same
WO2010050697A3 (en) * 2008-10-30 2010-07-15 주식회사 엘지화학 Battery cartridge, and battery module comprising same
US8703322B2 (en) 2008-10-30 2014-04-22 Lg Chem, Ltd. Battery cartridge and battery module containing the same
JPWO2011108680A1 (en) * 2010-03-01 2013-06-27 株式会社ピューズ Thin battery module and assembled battery using the same
TWI479723B (en) * 2010-03-01 2015-04-01 Pues Corp A thin battery module and an assembled battery using the same
JP5750097B2 (en) * 2010-03-01 2015-07-15 株式会社ピューズ Thin battery module and assembled battery using the same
WO2011108680A1 (en) * 2010-03-01 2011-09-09 株式会社ピューズ Thin battery module and assembled battery using same
EP2624334A4 (en) * 2010-11-22 2016-09-14 Lg Chemical Ltd Battery pack having a compact structure
WO2014171559A1 (en) * 2013-04-15 2014-10-23 주식회사 엘지화학 Battery module having novel structure and battery pack comprising same
US9741984B2 (en) 2013-04-15 2017-08-22 Lg Chem, Ltd. Battery module of novel structure and battery pack comprising the same
JPWO2019202960A1 (en) * 2018-04-16 2021-04-22 マクセルホールディングス株式会社 Battery module
WO2019202960A1 (en) * 2018-04-16 2019-10-24 マクセルホールディングス株式会社 Battery module
JP7284152B2 (en) 2018-04-16 2023-05-30 古河電池株式会社 battery module
CN114424399A (en) * 2019-10-08 2022-04-29 株式会社Lg新能源 Connection member connected to electrode lead by physical coupling and battery cell stack including the same
JP2022542996A (en) * 2019-10-08 2022-10-07 エルジー エナジー ソリューション リミテッド Connection member connected to electrode lead by physical connection, and battery cell stack including the same
JP7463011B2 (en) 2019-10-08 2024-04-08 エルジー エナジー ソリューション リミテッド CONNECTION MEMBER CONNECTED TO ELECTRODE LEAD BY PHYSICAL BONDING AND BATTERY CELL STACK INCLUDING THE SAME
CN114424399B (en) * 2019-10-08 2024-07-05 株式会社Lg新能源 Connecting member connected to electrode leads by physical coupling, battery cell stack including the same, and battery pack

Similar Documents

Publication Publication Date Title
JP2004055348A (en) Battery pack, composite battery pack, and vehicle
US6908711B2 (en) Rechargeable high power electrochemical device
US7476463B2 (en) Rechargeable bipolar high power electrochemical device with reduced monitoring requirement
JP3899423B2 (en) Thin battery module
US20130177787A1 (en) Current collector and nonaqueous secondary battery
WO2012081368A1 (en) Non-aqueous secondary battery
US7754379B2 (en) Secondary battery
JP2014187040A (en) Battery and battery pack
JP4096664B2 (en) Laminated battery
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP2005116482A (en) Thin battery, battery pack, composite battery pack and vehicle
JP3573141B2 (en) Thin batteries, assembled batteries, composite assembled batteries and vehicles
JP5871067B2 (en) Battery structure
US9034500B2 (en) Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
JP4182858B2 (en) Secondary battery and assembled battery
JP3797311B2 (en) Thin battery support device and assembled battery including the same
JP3711962B2 (en) Thin battery
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP2004055346A (en) Battery pack, composite battery pack, and vehicle mounting it
JP3959448B2 (en) Batteries, composite batteries and vehicles
JPH0896841A (en) Lithium ion secondary battery
JP6520565B2 (en) Lithium ion secondary battery and assembled battery
JP3702868B2 (en) Thin battery
JP3719235B2 (en) Thin battery, assembled battery, composite assembled battery and vehicle
JP3852110B2 (en) Thin battery and manufacturing method thereof