JP4182858B2 - Secondary battery and assembled battery - Google Patents

Secondary battery and assembled battery Download PDF

Info

Publication number
JP4182858B2
JP4182858B2 JP2003370425A JP2003370425A JP4182858B2 JP 4182858 B2 JP4182858 B2 JP 4182858B2 JP 2003370425 A JP2003370425 A JP 2003370425A JP 2003370425 A JP2003370425 A JP 2003370425A JP 4182858 B2 JP4182858 B2 JP 4182858B2
Authority
JP
Japan
Prior art keywords
secondary battery
electrode
electrode terminal
exterior member
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003370425A
Other languages
Japanese (ja)
Other versions
JP2005135743A (en
Inventor
慎也 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003370425A priority Critical patent/JP4182858B2/en
Publication of JP2005135743A publication Critical patent/JP2005135743A/en
Application granted granted Critical
Publication of JP4182858B2 publication Critical patent/JP4182858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本発明は、セパレータを介して電極板を積層して外装部材に収容して封止すると共に、電極端子が外装部材の外周縁から導出した二次電池に関する。   The present invention relates to a secondary battery in which electrode plates are stacked via a separator, accommodated in an exterior member and sealed, and electrode terminals are led out from an outer peripheral edge of the exterior member.

従来から、セパレータを介して積層した電極板を、2つの樹脂層の間に金属層をサンドイッチした3層構造の外装部材に収容して封止すると共に当該電極板に接続された電極端子が外装部材の外周縁から導出した二次電池が知られている(例えば、特許文献1参照)。   Conventionally, an electrode plate laminated via a separator is housed and sealed in a three-layer exterior member in which a metal layer is sandwiched between two resin layers, and an electrode terminal connected to the electrode plate is exteriorly provided. A secondary battery derived from the outer peripheral edge of a member is known (see, for example, Patent Document 1).

このような二次電池では、金属製の平板状のヒートシンクを外装部材に積層することにより当該二次電池の放熱が行われているが、外装部材の端部が単に切断され、金属層の端面が外部に露出しているため、この外装部材の金属層の端面と金属製のヒートシンクとが接触し、電位を持つ二次電池とヒートシンクとが導通する可能性があり、二次電池の電気絶縁性を維持することが出来ないおそれがある。
特開2003−187857号公報
In such a secondary battery, heat radiation of the secondary battery is performed by laminating a metal flat heat sink on the exterior member, but the end of the exterior member is simply cut and the end surface of the metal layer Is exposed to the outside, and the end face of the metal layer of the exterior member and the metal heat sink come into contact with each other, and there is a possibility that the secondary battery having a potential and the heat sink may conduct, and the electrical insulation of the secondary battery There is a risk that the sex cannot be maintained.
JP 2003-187857 A

本発明は、外部との電気絶縁性に優れた二次電池を提供することを目的とする。
上記目的を達成するために、本発明によれば、セパレータを介して積層された電極板を有する電極積層体と、前記電極積層体を収容して封止する外装部材と、前記電極積層体に接続されると共に前記外装部材の外周縁から一部が導出した電極端子と、前記外装部材に積層された導電性を持つ放熱手段と、を備えた二次電池であって、前記電極端子が前記外装部材から導出する方向に対して直交する方向において、前記放熱手段は前記外装部材より短い二次電池が提供される。
An object of this invention is to provide the secondary battery excellent in the electrical insulation with the exterior.
In order to achieve the above object, according to the present invention, an electrode laminate having an electrode plate laminated via a separator, an exterior member that accommodates and seals the electrode laminate, and the electrode laminate A secondary battery comprising: an electrode terminal that is connected and partly led out from an outer peripheral edge of the exterior member; and a heat radiating means having conductivity laminated on the exterior member, wherein the electrode terminal is the A secondary battery in which the heat dissipation means is shorter than the exterior member in a direction perpendicular to the direction derived from the exterior member is provided.

また、上記目的を達成するために、本発明によれば、セパレータを介して積層された電極板を持つ電極積層体、前記電極積層体を収容して封止する外装部材、及び、前記電極積層体に接続されると共に前記外装部材の外周縁から一部が導出した電極端子を有する2以上の二次電池と、前記各二次電池の外装部材に積層された少なくとも1つの導電性を持つ放熱手段と、を備えた組電池であって、前記電極端子が前記外装部材から導出する方向に対して直交する方向において、前記放熱手段は、前記各二次電池の外装部材より短い組電池が提供される。
In order to achieve the above object, according to the present invention, an electrode laminate having electrode plates laminated via separators, an exterior member that accommodates and seals the electrode laminate, and the electrode laminate Two or more secondary batteries connected to the body and having electrode terminals partially derived from the outer peripheral edge of the exterior member, and at least one conductive heat dissipation layered on the exterior member of each secondary battery Provided that the heat dissipation means is shorter than the exterior member of each secondary battery in a direction orthogonal to the direction in which the electrode terminal is led out from the exterior member. Is done.

本発明では、電極端子が外装部材から導出する方向に対して直交する方向において、放熱手段を外装部材より短くする。これにより、外装部材の金属層の端面が放熱手段に届かず、当該金属層の端面と導電性を持つ放熱手段との接触が防止されるので、外装部材の金属層の端面が外部に露出していても、放熱手段に対する二次電池の絶縁を維持することが出来、外部との電気絶縁性に優れた二次電池を提供することが可能となる。
In the present invention , the heat radiating means is made shorter than the exterior member in the direction orthogonal to the direction in which the electrode terminal is led out from the exterior member. As a result, the end surface of the metal layer of the exterior member does not reach the heat dissipation means, and contact between the end surface of the metal layer and the heat dissipation means having conductivity is prevented, so that the end surface of the metal layer of the exterior member is exposed to the outside. Even in this case, it is possible to maintain the insulation of the secondary battery with respect to the heat radiating means, and it is possible to provide a secondary battery excellent in electrical insulation from the outside.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る二次電池の全体の平面図、図2は図1のII-II線に沿った二次電池の断面図である。図1及び図2は一つの二次電池10(単位電池)を示し、この二次電池10を複数積層して接続することにより所望の電圧、容量の組電池が構成される。   FIG. 1 is a plan view of an entire secondary battery according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the secondary battery taken along line II-II in FIG. 1 and 2 show one secondary battery 10 (unit battery), and a plurality of the secondary batteries 10 are stacked and connected to form an assembled battery having a desired voltage and capacity.

先ず、本発明の実施形態に係る二次電池10について説明すると、この二次電池10は、リチウム系の薄型の二次電池であり、図1及び図2に示すように、3枚の正極板102、7枚のセパレータ103、及び、3枚の負極板104を有する電極積層体101と、当該電極積層体101にそれぞれ接続された正極端子105及び負極端子106と、これら電極発電体101及び電極端子105、106を収容して封止している上部外装部材107及び下部外装部材108と、特に図示しない電解質とから構成されている。   First, a secondary battery 10 according to an embodiment of the present invention will be described. The secondary battery 10 is a lithium-based thin secondary battery, and includes three positive electrode plates as shown in FIGS. 1 and 2. 102, electrode separator 101 having seven separators 103 and three negative electrodes 104, positive electrode terminal 105 and negative electrode terminal 106 respectively connected to electrode laminate 101, and electrode power generator 101 and electrodes It comprises an upper exterior member 107 and a lower exterior member 108 that house and seal the terminals 105 and 106, and an electrolyte (not shown).

電極積層体101を構成する正極板102は、正極端子105まで伸びている正極側集電体102aと、この正極側集電体102aの一部の主面にそれぞれ形成された正極層(不図示)とを有している。なお、正極板102の正極層は、正極側集電体102aの全体に亘って形成されているのではなく、図2のように電極積層体101を構成した際に、正極板102においてセパレータ103が実質的に重なる部分のみに形成されている。   The positive electrode plate 102 constituting the electrode laminate 101 includes a positive electrode current collector 102a extending to the positive electrode terminal 105 and a positive electrode layer (not shown) formed on a part of the main surface of the positive electrode current collector 102a. ). The positive electrode layer of the positive electrode plate 102 is not formed over the entire positive electrode side current collector 102a. When the electrode laminate 101 is configured as shown in FIG. Are formed only in the overlapping part.

この正極板102の正極側集電体102aは、例えば、厚さ20μm程度のアルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔である。   The positive electrode side current collector 102 a of the positive electrode plate 102 is an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil having a thickness of about 20 μm.

また、この正極板102の正極層は、金属酸化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤とを混合したものを、正極側集電体102aの一部の主面に塗布し、乾燥及び圧延することにより形成されている。正極活物質としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、又は、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等を挙げることが出来る。これらの材質は、二次電池内部の発熱を比較的放散し易く、二次電池において発熱による膨張に伴う応力を抑制することが出来るので、特に本実施形態のような薄型の二次電池には特に有効である。 The positive electrode layer of the positive electrode plate 102 is a mixture of a positive electrode active material such as a metal oxide, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene. It is formed by applying to a part of the main surface of the side current collector 102a, drying and rolling. Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and chalcogen (S, Se, Te) compounds. Etc. can be mentioned. These materials are relatively easy to dissipate the heat generated in the secondary battery, and can suppress the stress accompanying expansion due to the heat generated in the secondary battery. It is particularly effective.

電極積層体101を構成する負極板104は、負極端子106まで伸びている負極側集電体104aと、当該負極側集電体104aの一部の両主面にそれぞれ形成された負極層(不図示)とを有している。なお、負極板104の負極層は、負極側集電体104aの全体に亘って形成されているのではなく、上述の正極層と同様に、図2のように電極積層体101を構成した際に、負極板104においてセパレータ103が実質的に重なる部分のみに形成されている。   The negative electrode plate 104 constituting the electrode laminate 101 includes a negative electrode side current collector 104a extending to the negative electrode terminal 106 and a negative electrode layer (non-deposited) formed on both main surfaces of a part of the negative electrode side current collector 104a. (Shown). The negative electrode layer of the negative electrode plate 104 is not formed over the entire negative electrode side current collector 104a, but when the electrode laminate 101 is configured as shown in FIG. In addition, the separator 103 is formed only in the portion where the separator 103 substantially overlaps in the negative electrode plate 104.

この負極板104の負極側集電体104aは、例えば、厚さ10μm程度のニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔である。   The negative electrode side current collector 104a of the negative electrode plate 104 is an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 10 μm.

また、この負極板104の負極層は、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体104aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。   Further, the negative electrode layer of the negative electrode plate 104 includes, for example, a negative electrode active material that occludes and releases lithium ions of the positive electrode active material such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. Mainly a substance in which an aqueous dispersion of a styrene butadiene rubber resin powder as a precursor material of an organic fired body is mixed with a substance, dried, and pulverized to carry carbonized styrene butadiene rubber on the surface of carbon particles. The material is formed by further mixing a binder such as an acrylic resin emulsion with the mixture, applying the mixture to both main surfaces of a part of the negative electrode current collector 104a, and drying and rolling.

特に、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく、放電量に伴って出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車の電源として用いると急激な出力低下がないので有利である。   In particular, if amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor, and the output voltage decreases with the amount of discharge. Is not suitable, but it is advantageous when used as a power source for an electric vehicle because there is no sudden drop in output.

電極積層体101のセパレータ103は、上述した正極板102と負極板104との短絡を防止するもので、電解質を保持する機能を備えても良い。このセパレータ103は、例えば、厚さ25μm程度のポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって、層の空穴が閉塞され、電流を遮断する機能をも有する。   The separator 103 of the electrode laminate 101 prevents the short circuit between the positive electrode plate 102 and the negative electrode plate 104 described above, and may have a function of holding an electrolyte. The separator 103 is a microporous film made of, for example, a polyolefin such as polyethylene (PE) or polypropylene (PP) having a thickness of about 25 μm. Has a function of blocking the current.

なお、本発明のセパレータは、ポリオレフィン等の単層膜のみに限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔膜と有機不織布等を積層したものも用いることが出来る。セパレータを複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することが出来る。   The separator of the present invention is not limited to a single-layer film such as polyolefin, but a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric can also be used. By forming the separator in multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (rigidity improvement) function can be provided.

以上の電極積層体101は、図2に示すように、セパレータ103を介して、正極板102と負極板104とが交互に積層され、さらに、その最上層及び最下層にセパレータ103がそれぞれ積層されており、全体として幅Wを有している。そして、3枚の正極板102は、正極側集電体102aを介して、金属箔製の正極端子105にそれぞれ接続される一方で、3枚の負極板104は、負極側集電体104aを介して、同じく金属箔製の負極端子106にそれぞれ接続されている。 As shown in FIG. 2, the electrode laminate 101 has the positive plates 102 and the negative plates 104 alternately laminated via the separators 103, and the separators 103 are laminated on the uppermost layer and the lowermost layer, respectively. and has a width W 1 as a whole. The three positive plates 102 are respectively connected to the positive terminal 105 made of metal foil via the positive current collector 102a, while the three negative plates 104 are connected to the negative current collector 104a. To the negative electrode terminal 106 made of metal foil.

なお、電極積層体101の正極板102、セパレータ103、及び、負極板104は、本発明では上記の枚数に何ら限定されず、例えば、1枚の正極板102、3枚のセパレータ103、及び、1枚の負極板104でも当該電極積層体101を構成することが出来、必要に応じて正極板、セパレータ及び負極板の枚数を選択して構成することが出来る。また、電極積層体101の幅Wは、二次電池に要求される容量やこの正極板、セパレータ及び負極板の枚数等に応じて設定される。 The positive electrode plate 102, the separator 103, and the negative electrode plate 104 of the electrode laminate 101 are not limited to the above number in the present invention. For example, one positive electrode plate 102, three separators 103, and The electrode laminate 101 can also be configured with a single negative electrode plate 104, and the number of positive electrode plates, separators, and negative electrode plates can be selected as necessary. The width W 1 of the electrode stack 101, the capacity and the positive electrode plate is required to the secondary battery, is set according to the number of sheets of separators and the negative electrode plate.

正極端子105も負極端子106も電気化学的に安定した金属箔であれば特に限定されないが、正極端子105としては、例えば、厚さ0.2mm程度のアルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等を挙げることが出来る。また、負極端子106としては、例えば、厚さ0.2mm程度のニッケル箔、銅箔、ステンレス箔、又は、鉄箔等を挙げることが出来る。これらの金属は、金属の抵抗値、線膨張係数、抵抗率において、二次電池の構成要素として適当であり、二次電池において発熱による膨張に伴う応力を適切に抑制することが出来るので、特に本実施形態のような薄型の二次電池には特に有効である。   The positive electrode terminal 105 and the negative electrode terminal 106 are not particularly limited as long as they are electrochemically stable metal foils. Examples of the positive electrode terminal 105 include an aluminum foil having a thickness of about 0.2 mm, an aluminum alloy foil, a copper foil, or And nickel foil. Examples of the negative electrode terminal 106 include a nickel foil, a copper foil, a stainless steel foil, or an iron foil having a thickness of about 0.2 mm. These metals are suitable as a constituent element of a secondary battery in terms of the resistance value, linear expansion coefficient, and resistivity of the metal, and particularly can suppress the stress accompanying expansion due to heat generation in the secondary battery. This is particularly effective for a thin secondary battery as in this embodiment.

なお、本実施形態では、電極体102、104の集電体102a、104aを構成する金属箔自体を電極端子105、106まで延長することにより、電極板102、104を電極端子105、106に直接接続しているが、集電体102a、104aを構成する金属箔とは別の材料や部品により、電極板102、104の集電体102a、104aと、電極端子105、106とを接続しても良い。   In this embodiment, the electrode plates 102 and 104 are directly connected to the electrode terminals 105 and 106 by extending the metal foil itself constituting the current collectors 102a and 104a of the electrode bodies 102 and 104 to the electrode terminals 105 and 106. Although connected, the current collectors 102a and 104a of the electrode plates 102 and 104 and the electrode terminals 105 and 106 are connected by a material or a part different from the metal foil constituting the current collectors 102a and 104a. Also good.

以上のように構成されている電極積層体101は、上部外装部材107、下部外装部材108に収容されて封止されている。本実施形態における上部外装部材107及び下部外装部材108は何れも、図2に示すように、その外形が電極積層体101を収容する凸部を設けたカップ形状となっており、特に図示しないが、二次電池10の外側に向かって、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の耐電解液性及び熱融着性に優れた樹脂フィルムから構成されている内側層と、例えば、アルミニウム箔等の金属箔から構成されている中間層と、例えば、ポリアミド系樹脂、ポリエステル系樹脂等の電気絶縁性に優れた樹脂フィルムで構成されている外側層と、の3層構造となっている。従って、上部外装部材107及び下部外装部材108の何れも、金属箔の一方の面(二次電池10の内側面)を耐電解液性及び熱融着性に優れた材料でラミネートし、他方の面(二次電池10の外側面)を電気絶縁性に優れた材料でラミネートした、例えば、厚さ125μm程度の樹脂−金属薄膜ラミネート材で構成されている。   The electrode laminate 101 configured as described above is housed and sealed in the upper exterior member 107 and the lower exterior member 108. As shown in FIG. 2, the upper exterior member 107 and the lower exterior member 108 in this embodiment both have a cup shape with a convex portion that accommodates the electrode stack 101, and are not particularly illustrated. And toward the outside of the secondary battery 10, for example, an inner layer composed of a resin film excellent in electrolytic solution resistance and heat fusion properties such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer For example, a three-layer structure of an intermediate layer made of a metal foil such as an aluminum foil and an outer layer made of a resin film having an excellent electrical insulation property such as a polyamide resin or a polyester resin It has become. Therefore, in both the upper exterior member 107 and the lower exterior member 108, one surface of the metal foil (the inner surface of the secondary battery 10) is laminated with a material excellent in electrolytic solution resistance and heat fusion property, The surface (the outer surface of the secondary battery 10) is made of a resin-metal thin film laminate material having a thickness of about 125 μm, for example, laminated with a material having excellent electrical insulation.

このように、外装部材が樹脂層に加えて金属層を具備することにより、外装部材自体の強度向上を図ることが可能となる。また、外装部材の内側層を、例えば、ポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン、又は、アイオノマー等の合成樹脂材料で構成することにより、金属製の電極端子との良好な融着性を確保することが可能となる。   As described above, when the exterior member includes the metal layer in addition to the resin layer, it is possible to improve the strength of the exterior member itself. Further, the inner layer of the exterior member is made of, for example, a synthetic resin material such as polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer, thereby ensuring good fusion property with a metal electrode terminal. It becomes possible.

なお、図1及び図2に示すように、封止された外装部材107、108の一方の端部から正極端子105が導出し、当該他方の端部から負極端子106が導出するが、電極端子105、106の厚さ分だけ上部外装部材107と下部外装部材108との間に隙間が生じるので、二次電池10の内部の封止性を維持するために、電極端子105、106と外装部材107、108とが接触する部分に、例えば、ポリエチレンやポリプロピレン等から構成されたシールフィルムを介在させても良い。このシールフィルムは、正極端子105及び負極端子106の何れの側においても、外装部材107、108の内側層と同系統の合成樹脂材料で構成することが熱融着性の観点から好ましい。   As shown in FIGS. 1 and 2, the positive terminal 105 is led out from one end of the sealed exterior members 107 and 108, and the negative terminal 106 is led out from the other end. Since a gap is generated between the upper exterior member 107 and the lower exterior member 108 by the thickness of 105, 106, the electrode terminals 105, 106 and the exterior member are maintained in order to maintain the sealing performance inside the secondary battery 10. For example, a seal film made of polyethylene, polypropylene, or the like may be interposed between the portions 107 and 108 in contact with each other. It is preferable from the viewpoint of heat-sealing property that this seal film is made of a synthetic resin material of the same system as the inner layers of the exterior members 107 and 108 on either side of the positive electrode terminal 105 and the negative electrode terminal 106.

これらの外装部材107、108によって、上述の電極積層体101と、電極端子105、106の一部とを包む込み、当該外装部材107、108により形成される空間に、有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、前記空間内を吸引して真空状態とした後に、図1に示すように、外装部材107、108を熱融着して封止し、図1に示すような全体として幅Wを有する二次電池10が構成される。なお、この二次電池10の幅Wは、上述の電極積層体101の幅Wや外装部材107、108の熱融着幅等に応じて設定される。 These exterior members 107 and 108 enclose the electrode laminate 101 described above and a part of the electrode terminals 105 and 106, and in a space formed by the exterior members 107 and 108, perchloric acid is added to the organic liquid solvent. While injecting a liquid electrolyte having a lithium salt such as lithium or lithium borofluoride as a solute and sucking the space to form a vacuum, the exterior members 107 and 108 were thermally fused as shown in FIG. sealed Te, the secondary battery 10 is configured to have a width W 2 as a whole as shown in FIG. Note that the width W 2 of the secondary battery 10 is set according to the width W 1 of the electrode laminate 101 and the thermal fusion width of the exterior members 107 and 108.

有機液体溶媒として、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)等のエステル系溶媒を挙げることが出来るが、本発明の有機液体溶媒は特にこれに限定されることなく、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることも出来る。   Examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC), but the organic liquid solvent of the present invention is not particularly limited thereto, An organic liquid solvent prepared by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) and dietoshikitane (DEE) in the ester solvent can also be used.

以下に、上述の実施形態に係る二次電池を複数組み合わせることにより構成される組電池について説明する。   Hereinafter, an assembled battery configured by combining a plurality of secondary batteries according to the above-described embodiments will be described.

図3(A)〜(C)は本発明の実施形態に係る複数の二次電池により構成される組電池を示す図であり、図3(A)はその正面図、図3(B)はその側面図、図3(C)は図3(A)のIIIC-IIIC線に沿った断面図、図4は図3(A)〜(C)に示す組電池の分解斜視図、図5(A)〜(D)は図3(A)〜(C)の組電池に用いられるヒートシンクを示す図であり、図5(A)はその斜視図、図5(B)はその平面図、図5(C)は図5(B)のVC-VC線に沿った断面図、図5(D)は図5(B)のVD-VD線に沿った断面図、図6(A)〜(D)は図3(A)〜(C)の組電池に用いられる第1のスペーサを示す図であり、図6(A)はその斜視図、図6(B)はその平面図、図6(C)は図6(B)のVIC-VIC線に沿った断面図、図6(D)は図6(B)のVID-VID線に沿った断面図、図7(A)〜(D)は図3(A)〜(C)の組電池に用いられる第2のスペーサを示す図であり、図7(A)はその斜視図、図7(B)はその平面図、図7(C)は図7(B)のVIIC-VIIC線に沿った断面図、図7(D)は図7(B)のVIID-VIID線に沿った断面図、図8(A)〜(C)は図3(A)〜(C)の組電池に用いられる絶縁スリーブを示す図であり、図8(A)はその斜視図、図8(B)はその側面図、図8(C)はその正面図、図9は図3(A)のIX部の拡大断面図、図10は図3(A)のX部の拡大断面図である。   3 (A) to 3 (C) are views showing an assembled battery including a plurality of secondary batteries according to the embodiment of the present invention, FIG. 3 (A) is a front view thereof, and FIG. 3C is a sectional view taken along line IIIC-IIIC in FIG. 3A, FIG. 4 is an exploded perspective view of the assembled battery shown in FIGS. 3A to 3C, and FIG. (A)-(D) is a figure which shows the heat sink used for the assembled battery of FIG. 3 (A)-(C), FIG.5 (A) is the perspective view, FIG.5 (B) is the top view, figure 5C is a cross-sectional view taken along the line VC-VC in FIG. 5B, FIG. 5D is a cross-sectional view taken along the line VD-VD in FIG. 5B, and FIGS. FIG. 6D is a view showing a first spacer used in the assembled battery of FIGS. 3A to 3C, FIG. 6A is a perspective view thereof, FIG. 6B is a plan view thereof, and FIG. 6C is a cross-sectional view taken along the line VIC-VIC in FIG. 6B, and FIG. ) Is a cross-sectional view taken along the line VID-VID, and FIGS. 7A to 7D are views showing a second spacer used in the assembled battery of FIGS. 3A to 3C. 7A is a perspective view, FIG. 7B is a plan view thereof, FIG. 7C is a cross-sectional view taken along line VIIC-VIIC in FIG. 7B, and FIG. 7D is FIG. 7B. 8A to 8C are cross-sectional views taken along the line VIID-VIID of FIGS. 8A to 8C, showing the insulating sleeve used in the assembled battery of FIGS. 3A to 3C. FIG. FIG. 8B is a side view thereof, FIG. 8C is a front view thereof, FIG. 9 is an enlarged cross-sectional view of a portion IX in FIG. 3A, and FIG. 10 is an X portion in FIG. It is an expanded sectional view of a part.

本実施形態に係る組電池20は、図3(A)〜(C)及び図4に示すように、3個の二次電池10a〜10c、10d〜10f及び10g〜10iを一列に並べてそれぞれ形成された第1〜第3の層21〜23と、各層21〜23を構成する二次電池10a〜10iに対して放熱及び面圧の印加を行う4枚のヒートシンク24と、各二次電池10a〜10iの電極端子105、106とヒートシンク24との間に設けられた16個のスペーサ25、26と、二次電池10a〜10i、ヒートシンク24、及び、スペーサ25、26を固定する4組のボルト27及びナット28と、このボルト27による二次電池10a〜10iの短絡を防止する4本の絶縁スリーブ29と、これらの構成要素を収容する筐体30と、この筐体30から導出して、当該筐体30の内部に収容された二次電池10a〜10iを外部に接続するための組電池用端子31、32とを備えている。なお、組電池20の内部の構造を明瞭にするために、筐体30及び組電池用電極端子31、32は、図3(A)及び(B)では破線により図示しており、図4では図示していない。
The assembled battery 20 according to this embodiment is formed by arranging three secondary batteries 10a to 10c, 10d to 10f, and 10g to 10i in a line, as shown in FIGS. 3 (A) to 3 (C) and FIG. The first to third layers 21 to 23, the four heat sinks 24 that perform heat radiation and application of surface pressure to the secondary batteries 10a to 10i constituting the layers 21 to 23, and the secondary batteries 10a. 10 spacers 25 and 26 provided between the electrode terminals 105 and 106 of 10 to 10i and the heat sink 24, and four sets of bolts for fixing the secondary batteries 10a to 10i, the heat sink 24 and the spacers 25 and 26. 27, the nut 28, four insulating sleeves 29 for preventing the secondary batteries 10a to 10i from being short-circuited by the bolts 27, a housing 30 for housing these components, and a lead-out from the housing 30. And a battery pack terminal 31 and 32 for connecting the secondary battery 10a~10i housed inside of the casing 30 to the outside. In addition, in order to clarify the internal structure of the assembled battery 20, the housing 30 and the assembled battery electrode terminals 31 and 32 are illustrated by broken lines in FIGS. 3A and 3B, and in FIG. Not shown.

先ず、この組電池20の各構成要素について説明すると、合計9個の第1〜第9の二次電池10a〜10iの各正極端子105には、図1及び図2に示すように、第1の貫通孔105aがそれぞれ形成されている。同様に、二次電池10a〜10iの各負極端子106にも、第1の貫通孔106aがそれぞれ形成されている。この第1の貫通孔105a、106aの内径は、絶縁スリーブ29を挿入可能な大きさである。また、各二次電池10a〜10iにおいて、正極端子105に形成された第1の貫通孔105aと、負極端子106の第1の貫通孔106aとの間の間隔は、ピッチPとなっている。 First, each component of the assembled battery 20 will be described. As shown in FIG. 1 and FIG. 2, the first positive terminal 105 of each of the nine first to ninth secondary batteries 10 a to 10 i has a first Through-holes 105a are respectively formed. Similarly, the first through holes 106a are also formed in the negative terminals 106 of the secondary batteries 10a to 10i. The inner diameters of the first through holes 105 a and 106 a are large enough to insert the insulating sleeve 29. Further, in each of the secondary batteries 10a-10i, the first through-hole 105a formed in the positive terminal 105, the distance between the first through-hole 106a of the negative terminal 106 has a pitch P 1 .

組電池20のヒートシンク24(放熱手段)は、図5(A)〜(D)に示すように、金属材料等の導電性を有する材料で構成された平板状部材であり、各二次電池10a〜10iの電極積層体101の幅Wより広く、且つ、各二次電池10a〜10iの全体幅Wより狭い幅Wを有している(W<W<W)。また、このヒートシンク24には、同図に示すように、4つの第2の貫通孔241がピッチPの間隔で形成されている。このピッチPは、各二次電池10a〜10iの電極端子105、106に形成された第1の貫通孔105a、106aのピッチPと実質的に同一となっている(P=P)。 As shown in FIGS. 5A to 5D, the heat sink 24 (heat dissipating means) of the assembled battery 20 is a flat plate member made of a conductive material such as a metal material, and each secondary battery 10a. wider than the width W 1 of the electrode stack 101 of ~10I, and has a width W 3 than the entire width W 2 of each of the secondary batteries 10a~10i (W 1 <W 3 < W 2). Further, this heat sink 24, as shown in the figure, four second through-hole 241 is formed at intervals of a pitch P 2. The pitch P 2, the first through-hole 105a formed in the electrode terminal 105 of each of the secondary batteries 10a-10i, and has a 106a substantially the same as the pitch P 1 of the (P 1 = P 2 ).

このように、ヒートシンク24の幅Wを二次電池10a〜10iの外装部材107、108の幅Wより狭くすることにより(W<W)、例えばヒートシンク24に対して二次電池10a〜10iの外装部材107、108の厚さが相対的に薄く、当該外装部材107、108がヒートシンク24に対して湾曲するような場合であっても、外装部材107、108の金属層の端面がヒートシンクに届かず、当該金属層の端面と導電性のヒートシンク24との接触が防止されるので、外装部材107、108の金属層の端面が外部に露出していても、ヒートシンク24に対する二次電池10a〜10iの電気絶縁性を維持することが出来る。 Thus, by making the width W 3 of the heat sink 24 narrower than the width W 2 of the exterior members 107 and 108 of the secondary batteries 10 a to 10 i (W 3 <W 2 ), for example, the secondary battery 10 a with respect to the heat sink 24. 10i of the exterior members 107 and 108 are relatively thin, and even if the exterior members 107 and 108 are curved with respect to the heat sink 24, the end surfaces of the metal layers of the exterior members 107 and 108 are Since it does not reach the heat sink and contact between the end face of the metal layer and the conductive heat sink 24 is prevented, even if the end face of the metal layer of the exterior members 107 and 108 is exposed to the outside, the secondary battery for the heat sink 24 The electric insulation of 10a to 10i can be maintained.

また、ヒートシンク24の幅Wを二次電池10a〜10iの電極積層体101の幅Wより広くすることにより(W>W)、このヒートシンク24により二次電池10a〜10iの外装部材107、108に対して実質的に均一な面圧を印加することが可能となる。
Further, by making the width W 3 of the heat sink 24 wider than the width W 1 of the electrode stack 101 of the secondary batteries 10 a to 10 i (W 3 > W 1 ), the exterior member of the secondary batteries 10 a to 10 i is formed by the heat sink 24. It becomes possible to apply a substantially uniform surface pressure to 107 and 108.

組電池20の第1のスペーサ25及び第2のスペーサ26は、何れも各二次電池10a〜10iの電極端子105、106をヒートシンク24に対して固定するスペーサであり、図6(A)〜(D)及び図7(A)〜(D)に示すように、その略中央に凸部251、261が突出した凸状の外形形状を有しており、さらに、その内部に第3の貫通孔252、262を有している。この凸部251、261の外径は、ヒートシンク24の第2の貫通孔241に挿入可能であり、且つ、各二次電池10a〜10iの第1の貫通孔105a、106aの内径より大きくなっている。また、第3の貫通孔252、262の内径は、絶縁スリーブ29を挿入可能な大きさである。   Each of the first spacer 25 and the second spacer 26 of the assembled battery 20 is a spacer that fixes the electrode terminals 105 and 106 of the secondary batteries 10a to 10i to the heat sink 24. FIG. (D) and as shown in FIGS. 7 (A) to (D), it has a convex outer shape in which convex portions 251 and 261 protrude at substantially the center thereof, and further has a third penetration inside thereof. Holes 252 and 262 are provided. The outer diameters of the convex portions 251 and 261 can be inserted into the second through holes 241 of the heat sink 24 and are larger than the inner diameters of the first through holes 105a and 106a of the secondary batteries 10a to 10i. Yes. The inner diameters of the third through holes 252 and 262 are large enough to insert the insulating sleeve 29.

また、第1のスペーサ25及び第2のスペーサ26は、例えばセラミック等の電気絶縁性に優れた材料から構成されているが、図7(A)〜(D)に示すように、第2のスペーサ26の内周には、例えば金属材料等の導電性に優れた材料で構成された導電スリーブ263が埋め込まれている。   Further, the first spacer 25 and the second spacer 26 are made of a material having excellent electrical insulation, such as ceramic, but as shown in FIGS. A conductive sleeve 263 made of a material having excellent conductivity, such as a metal material, is embedded in the inner periphery of the spacer 26.

絶縁スリーブ29は、図8(A)〜(C)に示すように、例えばポリプロピレン(PP)等の合成樹脂材料等の電気絶縁性に優れた材料から構成された管状部材である。この絶縁スリーブ29の外径は、二次電池10a〜10iの各第1の貫通孔105a、106a、及び、スペーサ25、26の第3の貫通孔252、262に挿入可能な大きさであり、その内部に形成された第4の貫通孔291の内径は、ボルト27を挿入可能な大きさである。   As shown in FIGS. 8A to 8C, the insulating sleeve 29 is a tubular member made of a material having excellent electrical insulation such as a synthetic resin material such as polypropylene (PP). The outer diameter of the insulating sleeve 29 is a size that can be inserted into the first through holes 105a and 106a of the secondary batteries 10a to 10i and the third through holes 252 and 262 of the spacers 25 and 26, The inner diameter of the fourth through-hole 291 formed therein is a size that allows the bolt 27 to be inserted.

以上の第1〜第9の二次電池10a〜10i、ヒートシンク24、スペーサ25、26、及び、絶縁スリーブ29は、以下のように組み立てられている。   The first to ninth secondary batteries 10a to 10i, the heat sink 24, the spacers 25 and 26, and the insulating sleeve 29 are assembled as follows.

先ず、第1〜第3の二次電池10a〜10iは、図4に示すように、当該二次電池10a〜10cの異極端子105、106同士を重ね合わせるように、一列に並べられて、第1の層21が形成されている。同様に、第4〜第6の二次電池10d〜10fが、当該二次電池の10d〜10fの異極端子105、106同士を重ね合わせるように、一列に並べられて、第2の層2が形成されており、また、第7〜第9の二次電池10g〜10iが、当該二次電池10g〜10iの異極端子105、106同士を重ね合わせるように一列に並べられて、第3の層23が形成されている。   First, as shown in FIG. 4, the first to third secondary batteries 10a to 10i are arranged in a row so that the different polarity terminals 105 and 106 of the secondary batteries 10a to 10c are overlapped with each other. A first layer 21 is formed. Similarly, the fourth to sixth secondary batteries 10d to 10f are arranged in a line so that the different polarity terminals 105 and 106 of the secondary batteries 10d to 10f overlap with each other, and the second layer 2 In addition, the seventh to ninth secondary batteries 10g to 10i are arranged in a line so that the different polarity terminals 105 and 106 of the secondary batteries 10g to 10i overlap each other, and the third Layer 23 is formed.

より具体的には、第1の二次電池10aの負極端子106と、第2の二次電池10bの正極端子105とを重ね合わせると共に、第2の二次電池10bの負極端子106と、第3の二次電池10cの正極端子105とを重ね合わせるように、第1〜第3の二次電池10aが一列に並べられて第1の層21が形成されている。また、第4の二次電池10dの負極端子106と第5の二次電池10eの正極端子105とを重ね合わせると共に、第5の二次電池10eの負極端子106と第6の二次電池10fの正極端子105とを重ね合わせるように、第4〜第6の二次電池10d〜10fが一列に並べて第2の層22が形成されている。さらに、第7の二次電池10gの負極端子106と第8の二次電池10hの正極端子105とを重ね合わせると共に、第8の二次電池10hの負極端子106と第9の二次電池10iの正極端子105とを重ね合わせるように、第7〜第9の二次電池10g〜10iが一列に並べられて第3の層23が形成されている。なお、相互に重ね合わせられた何れの電極端子105、106においても、当該電極端子105、106に形成された第1の貫通孔105a、106aの中心線が互いに実質的に一致するように重ね合わせられている。   More specifically, the negative terminal 106 of the first secondary battery 10a and the positive terminal 105 of the second secondary battery 10b are overlapped, and the negative terminal 106 of the second secondary battery 10b, The first layer 21 is formed by arranging the first to third secondary batteries 10a in a row so as to overlap the positive electrode terminal 105 of the third secondary battery 10c. Further, the negative electrode terminal 106 of the fourth secondary battery 10d and the positive electrode terminal 105 of the fifth secondary battery 10e are overlapped, and the negative electrode terminal 106 of the fifth secondary battery 10e and the sixth secondary battery 10f. The second layer 22 is formed by arranging the fourth to sixth secondary batteries 10d to 10f in a line so as to overlap the positive electrode terminal 105. Further, the negative terminal 106 of the seventh secondary battery 10g and the positive terminal 105 of the eighth secondary battery 10h are overlapped, and the negative terminal 106 of the eighth secondary battery 10h and the ninth secondary battery 10i. The third layer 23 is formed by arranging the seventh to ninth secondary batteries 10g to 10i in a line so as to overlap the positive electrode terminal 105. Note that in any of the electrode terminals 105 and 106 superimposed on each other, the center lines of the first through holes 105a and 106a formed in the electrode terminals 105 and 106 are overlapped with each other. It has been.

このように形成された第3の層23の上面に、一枚のヒートシンク24が積層されている。このヒートシンク24に形成された各第2の貫通孔241には、第1のスペーサ25の凸部251がそれぞれ挿入されており、このヒートシンク24は、各凸部251が図4において下方に突出するように積層されている。また、第7の二次電池10gの正極端子105と、第6の二次電池10fの負極端子106とを同一方向に向けるように、ヒートシンク24を介して、第3の層23と第2の層22とが積層されている。同様に、第4の二次電池10dの正極端子105と第3の二次電池10cの負極端子106とを同一方向に向けるように、ヒートシンク24を介して、第2の層22と第1の層21とが積層されている。さらに、第1の層21の下面にヒートシンク24が積層されている。なお、これらのヒートシンク24の各第2の貫通孔211にも、第1のスペーサ25又は第2のスペーサ26の凸部251、261がそれぞれ挿入されているが、当該各凸部251、261が同図において上方に突出するように積層されている。また、第2の層22は、当該第2の層22の二次電池10d〜10fの電極端子105、106と、第1の層21及び第3の層23の二次電池10a〜10c、10g〜10iの異極端子106、105とが同一方向に導出するような向きで、即ち、第1の層21及び第3の層23と反対の向きで積層されている。   A single heat sink 24 is laminated on the upper surface of the third layer 23 thus formed. The convex portions 251 of the first spacers 25 are inserted into the respective second through holes 241 formed in the heat sink 24, and the convex portions 251 of the heat sink 24 protrude downward in FIG. Are stacked. In addition, the third layer 23 and the second layer are disposed via the heat sink 24 so that the positive electrode terminal 105 of the seventh secondary battery 10g and the negative electrode terminal 106 of the sixth secondary battery 10f are directed in the same direction. Layer 22 is laminated. Similarly, the positive electrode terminal 105 of the fourth secondary battery 10d and the negative electrode terminal 106 of the third secondary battery 10c are oriented in the same direction via the heat sink 24 and the second layer 22 and the first Layer 21 is laminated. Further, a heat sink 24 is laminated on the lower surface of the first layer 21. The convex portions 251 and 261 of the first spacer 25 or the second spacer 26 are also inserted into the second through holes 211 of these heat sinks 24, respectively. In the figure, they are stacked so as to protrude upward. In addition, the second layer 22 includes the electrode terminals 105 and 106 of the secondary batteries 10d to 10f of the second layer 22 and the secondary batteries 10a to 10c and 10g of the first layer 21 and the third layer 23. 10i of different polarity terminals 106 and 105 are stacked in the direction leading out in the same direction, that is, in the direction opposite to the first layer 21 and the third layer 23.

以上のように組み立てられている第1〜第3の層21〜23、各ヒートシンク24、及び、各スペーサ25、26は、図4、図9及び図10に示すように、同一の中心線上に合わせられた各スペーサ25、26の各第3の貫通孔252、262に絶縁スリーブ29がそれぞれ挿入され、さらに、当該各絶縁スリーブ29の第4の貫通孔291にボルト27が挿入され、当該ボルト27及びナット28が締結されることにより固定されている。   As shown in FIGS. 4, 9, and 10, the first to third layers 21 to 23, the heat sinks 24, and the spacers 25 and 26 assembled as described above are on the same center line. Insulating sleeves 29 are inserted into the respective third through holes 252 and 262 of the respective spacers 25 and 26, and bolts 27 are inserted into the fourth through holes 291 of the respective insulating sleeves 29. 27 and the nut 28 are fixed by being fastened.

このボルト27及びナット28の固定により、二次電池10a〜10iの各電極端子105、106と、各ヒートシンク24との間に設けられた各スペーサ25、26が、当該電極端子105、106をヒートシンク24に対して固定する。   By fixing the bolts 27 and the nuts 28, the spacers 25 and 26 provided between the electrode terminals 105 and 106 of the secondary batteries 10a to 10i and the heat sinks 24 cause the electrode terminals 105 and 106 to be heat sinks. 24 is fixed.

この際に、一つのスペーサ25、26により、相互に重ね合わせた状態の二次電池10a〜10iの異極端子105、106同士を固定するので、当該電極端子105、106のヒートシンク24に対する固定と、当該電極端子105、106同士の電気的な接続とを、同一の部品により行うことが出来、組電池20の部品点数の削減や当該組電池20の組立工程の短縮化を図ることが可能となる。   At this time, since the different polarity terminals 105 and 106 of the secondary batteries 10a to 10i in a state of being overlapped with each other are fixed by the single spacers 25 and 26, the electrode terminals 105 and 106 are fixed to the heat sink 24. The electrode terminals 105 and 106 can be electrically connected to each other with the same parts, and the number of parts of the assembled battery 20 can be reduced and the assembly process of the assembled battery 20 can be shortened. Become.

また、二次電池10a〜10iの電極端子105、106とヒートシンク24との間にスペーサ25、26を介在させることにより、比較的広い面で電極端子105、106を固定することが可能となるので、固定による電極端子105、106の変形を防止することが可能となる。   Further, by interposing the spacers 25 and 26 between the electrode terminals 105 and 106 of the secondary batteries 10a to 10i and the heat sink 24, the electrode terminals 105 and 106 can be fixed on a relatively wide surface. It becomes possible to prevent deformation of the electrode terminals 105 and 106 due to the fixing.

ここで、第1の層21と第2の層22との間に積層されたヒートシンク24では、図4及び図9に示すように、第3の二次電池10cの負極端子106と第4の二次電池10dの正極端子105との間に位置する第2の貫通孔241に、第2のスペーサ26が挿入されており、この第2のスペーサ26に挿入された導電スペーサ263により、第3の二次電池10cの負極端子106と第4の二次電池10dの正極端子105とを介して、第1の層21と第2の層22とが電気的に接続されている。   Here, in the heat sink 24 laminated between the first layer 21 and the second layer 22, as shown in FIGS. 4 and 9, the negative electrode terminal 106 of the third secondary battery 10c and the fourth layer A second spacer 26 is inserted into the second through hole 241 located between the positive electrode terminal 105 of the secondary battery 10d, and the third spacer 26 is inserted into the third through hole 241 by the conductive spacer 263 inserted into the second spacer 26. The first layer 21 and the second layer 22 are electrically connected through the negative electrode terminal 106 of the secondary battery 10c and the positive electrode terminal 105 of the fourth secondary battery 10d.

同様に、第2の層22と第3の層23との間に積層されたヒートシンク24では、図4に示すように、第6の二次電池10fの負極端子106と第7の二次電池10gの正極端子105との間に位置する第2の貫通孔241に、第2のスペーサ26が挿入されており、この第2のスペーサ26に挿入された導電スペーサ263により、第6の二次電池10fの負極端子106と第7の二次電池10gの正極端子105とを介して、第2の層22と第3の層23とが電気的に接続されている。   Similarly, in the heat sink 24 laminated between the second layer 22 and the third layer 23, as shown in FIG. 4, the negative terminal 106 of the sixth secondary battery 10f and the seventh secondary battery. The second spacer 26 is inserted into the second through hole 241 located between the positive electrode terminal 105 of 10 g, and the sixth secondary electrode is formed by the conductive spacer 263 inserted into the second spacer 26. The second layer 22 and the third layer 23 are electrically connected via the negative electrode terminal 106 of the battery 10f and the positive electrode terminal 105 of the seventh secondary battery 10g.

なお、各ヒートシンク24のそれ以外の第2の貫通孔241には、図4、図9及び図10に示すように、第1のスペーサ25が挿入されており、この第1のスペーサ25が挿入されている部分では、各層21〜23の間は電気的に絶縁されている。例えば、図10に示すように、同一のボルト27により固定された全てのスペーサが、第1のスペーサ25である場合には、この部分においては第1〜第3の層21〜23が電気的に絶縁されている。   In addition, as shown in FIG. 4, FIG. 9, and FIG. 10, the first spacer 25 is inserted into the other second through hole 241 of each heat sink 24, and this first spacer 25 is inserted. In the part which is done, between each layer 21-23 is electrically insulated. For example, as shown in FIG. 10, when all the spacers fixed by the same bolt 27 are the first spacers 25, the first to third layers 21 to 23 are electrically connected in this portion. Is insulated.

従って、9個の二次電池10a〜10iは、上記の2つの第2のスペーサ26により直列接続されており、各層21〜23における二次電池10a〜10i同士が各電極端子105、106同士を直接重ね合わせることにより接続され、2つの第2のスペーサ26を介して、各層21〜23が接続されている。なお、本実施形態では、9個の二次電池10a〜10iが直列接続となるように、二次電池10a〜10iの電極端子105、106の向きを設定すると共に、第1及び第2のスペーサ25、26を配置したが、本発明では特にこの配置に限定されず、組電池に要求される容量や電圧等に応じた所望する並列接続や直列接続が得られるように、二次電池の電極端子の向きを任意に設定すると共に、第1及び第2のスペーサを任意に配置することが出来る。   Accordingly, the nine secondary batteries 10a to 10i are connected in series by the two second spacers 26, and the secondary batteries 10a to 10i in the layers 21 to 23 are connected to the electrode terminals 105 and 106, respectively. The layers 21 to 23 are connected to each other through two second spacers 26 by being directly overlapped. In the present embodiment, the orientations of the electrode terminals 105 and 106 of the secondary batteries 10a to 10i are set so that the nine secondary batteries 10a to 10i are connected in series, and the first and second spacers are set. 25 and 26 are arranged, but the present invention is not particularly limited to this arrangement, and the electrodes of the secondary battery are obtained so that a desired parallel connection or series connection according to the capacity or voltage required for the assembled battery can be obtained. The direction of the terminal can be arbitrarily set, and the first and second spacers can be arbitrarily arranged.

このように、本実施形態に係る組電池20では、二次電池10a〜10iとヒートシンク24との間に設けられるスペーサを、異なる層21〜23の二次電池10a〜10i同士を電気的に絶縁する第1のスペーサ25と、異なる層21〜23の二次電池10a〜10i同士を電気的に接続する第2のスペーサ26とから選択することにより、要求される容量、電圧等に応じて二次電池間の電気的な接続を任意に設定することが可能となる。   Thus, in the assembled battery 20 according to the present embodiment, the spacers provided between the secondary batteries 10a to 10i and the heat sink 24 are electrically insulated from the secondary batteries 10a to 10i of the different layers 21 to 23. By selecting from the first spacer 25 to be connected and the second spacer 26 to electrically connect the secondary batteries 10a to 10i of the different layers 21 to 23, the second spacer 26 can be selected according to the required capacity, voltage, etc. It becomes possible to arbitrarily set the electrical connection between the secondary batteries.

以上のように組み立てられた構造体21〜29は、図3に示すように、例えば合成樹脂材料等から構成されている筐体30に収容されており、第1の二次電池10aの正極端子105に組電池用正極端子31が接続されていると共に、第9の二次電池10iの負極端子106に組電池用負極端子32が接続されており、外部との電気的な接続が可能なように各組電池用電極端子31、32が筐体27から導出している。   As shown in FIG. 3, the structures 21 to 29 assembled as described above are accommodated in a casing 30 made of, for example, a synthetic resin material or the like, and are positive terminals of the first secondary battery 10a. The assembled battery positive electrode terminal 31 is connected to 105, and the assembled battery negative electrode terminal 32 is connected to the negative electrode terminal 106 of the ninth secondary battery 10i so that it can be electrically connected to the outside. In addition, the assembled battery electrode terminals 31 and 32 are led out from the housing 27.

以上のように、本実施形態では、ヒートシンクの幅を二次電池の外装部材の幅より狭い幅にすることにより、外装部材の金属層の端面がヒートシンクに届かず、当該金属層の端面と導電性を持つヒートシンクとの接触が防止されるので、外装部材の金属層の端面が外部に露出していてもヒートシンクに対する二次電池の絶縁を維持することが出来、外部との電気絶縁性に優れた二次電池を提供することが可能となる。   As described above, in this embodiment, by setting the width of the heat sink to be narrower than the width of the exterior member of the secondary battery, the end surface of the metal layer of the exterior member does not reach the heat sink, and the end surface of the metal layer is electrically conductive. Because it prevents contact with the heat sink, it can maintain the insulation of the secondary battery against the heat sink even if the end surface of the metal layer of the exterior member is exposed to the outside, and it has excellent electrical insulation from the outside A secondary battery can be provided.

また、本実施形態では、ヒートシンクの幅を二次電池の電極積層体の幅より広くすることにより、ヒートシンクにより二次電池の外装部材に対して実質的に均一な面圧を印加することが可能となる。
Further, in the present embodiment, by greater than the width of the electrode stack of a secondary battery the width of the heat sink, it is possible to apply a substantially uniform surface pressure against the exterior member of the rechargeable battery by the heat sink It becomes.

さらに、本実施形態では、一つのスペーサにより、相互に重ね合わせた状態の電極端子同士を固定するので、当該電極端子のヒートシンクに対する固定と、当該電極端子同士の電気的な接触とを、同一の部品により行うことが出来、組電池の部品点数の削減や組電池の組立工程の短縮化を図ることが可能となる。   Furthermore, in this embodiment, the electrode terminals in a state where they are overlapped with each other are fixed by a single spacer, so that the fixing of the electrode terminals to the heat sink and the electrical contact between the electrode terminals are the same. This can be done with parts, and the number of parts of the assembled battery can be reduced and the assembly process of the assembled battery can be shortened.

また、二次電池の電極端子とヒートシンクとの間にスペーサを介在させることにより、比較的広い面で電極端子を固定することが可能となるので、固定による電極端子の変形を防止することが可能となる。   In addition, by interposing a spacer between the electrode terminal of the secondary battery and the heat sink, it becomes possible to fix the electrode terminal on a relatively wide surface, thus preventing deformation of the electrode terminal due to fixation. It becomes.

さらに、本実施形態では、二次電池とヒートシンクとの間に設けられるスペーサを、異なる層の二次電池同士を絶縁する第1のスペーサと、異なる層の二次電池同士を電気的に接続する第2のスペーサとから選択することにより、組電池に要求される容量、電圧等に応じて、二次電池間の電気的な接続を任意に設定することが可能となる。   Furthermore, in this embodiment, the spacer provided between the secondary battery and the heat sink is electrically connected to the first spacer that insulates the secondary batteries of different layers from each other. By selecting from the second spacer, it is possible to arbitrarily set the electrical connection between the secondary batteries according to the capacity, voltage, etc. required for the assembled battery.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであ
って、本発明を限定するために記載されたものではない。したがって、上記の実施形態に
開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨
である。
The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

図1は、本発明の実施形態に係る二次電池の全体の平面図である。FIG. 1 is a plan view of an entire secondary battery according to an embodiment of the present invention. 図2は、図1のII-II線に沿った二次電池の断面図である。FIG. 2 is a cross-sectional view of the secondary battery taken along line II-II in FIG. 図3(A)〜(C)は、本発明の実施形態に係る複数の二次電池により構成される組電池を示す図であり、図3(A)はその正面図、図3(B)はその側面図、図3(C)は図3(A)のIIIC-IIIC線に沿った断面図である。3 (A) to 3 (C) are views showing an assembled battery including a plurality of secondary batteries according to the embodiment of the present invention, and FIG. 3 (A) is a front view thereof, and FIG. 3 (B). Is a side view thereof, and FIG. 3C is a sectional view taken along line IIIC-IIIC in FIG. 図4は、図3(A)〜(C)に示す組電池の分解斜視図である。FIG. 4 is an exploded perspective view of the assembled battery shown in FIGS. 図5(A)〜(D)は、図3(A)〜(C)の組電池に用いられるヒートシンクを示す図であり、図5(A)はその斜視図、図5(B)はその平面図、図5(C)は図5(B)のVC-VC線に沿った断面図、図5(D)は図5(B)のVD-VD線に沿った断面図である。5A to 5D are views showing a heat sink used in the assembled battery of FIGS. 3A to 3C, FIG. 5A is a perspective view thereof, and FIG. FIG. 5C is a cross-sectional view taken along the line VC-VC in FIG. 5B, and FIG. 5D is a cross-sectional view taken along the line VD-VD in FIG. 5B. 図6(A)〜(D)は、図3(A)〜(C)の組電池に用いられる第1のスペーサを示す図であり、図6(A)はその斜視図、図6(B)はその平面図、図6(C)は図6(B)のVIC-VIC線に沿った断面図、図6(D)は図6(B)のVID-VID線に沿った断面図である。FIGS. 6A to 6D are views showing a first spacer used in the assembled battery of FIGS. 3A to 3C. FIG. 6A is a perspective view thereof, and FIG. ) Is a plan view thereof, FIG. 6C is a cross-sectional view taken along line VIC-VIC in FIG. 6B, and FIG. 6D is a cross-sectional view taken along line VID-VID in FIG. is there. 図7(A)〜(D)は、図3(A)〜(C)の組電池に用いられる第2のスペーサを示す図であり、図7(A)はその斜視図、図7(B)はその平面図、図7(C)は図7(B)のVIIC-VIIC線に沿った断面図、図7(D)は図7(B)のVIID-VIID線に沿った断面図である。FIGS. 7A to 7D are views showing a second spacer used in the assembled battery of FIGS. 3A to 3C. FIG. 7A is a perspective view thereof, and FIG. ) Is a plan view thereof, FIG. 7C is a cross-sectional view taken along line VIIC-VIIC in FIG. 7B, and FIG. 7D is a cross-sectional view taken along line VIID-VIID in FIG. 7B. is there. 図8(A)〜(C)は、図3(A)〜(C)の組電池に用いられる絶縁スリーブを示す図であり、図8(A)はその斜視図、図8(B)はその側面図、図8(C)はその正面図である。8A to 8C are diagrams showing an insulating sleeve used in the assembled battery of FIGS. 3A to 3C, FIG. 8A is a perspective view thereof, and FIG. The side view and FIG. 8C are front views thereof. 図9は、図3(A)のIX部の拡大断面図である。FIG. 9 is an enlarged cross-sectional view of a part IX in FIG. 図10は、図3(A)のX部の拡大断面図である。FIG. 10 is an enlarged cross-sectional view of a portion X in FIG.

符号の説明Explanation of symbols

10、10a〜10i…二次電池
101…電極積層体
102…正極板
102a…正極側集電体
103…セパレータ
104…負極板
104a…負極側集電体
105…正極端子
105a…第1の貫通孔
106…負極端子
106a…第1の貫通孔
107…上部外装部材
108…下部外装部材
20…組電池
21〜23…第1〜第3の層
24…ヒートシンク
241…第2の貫通孔
25…第1のスペーサ
251…凸部
252…第3の貫通孔
26…第2のスペーサ
261…凸部
262…第3の貫通孔
263…導電スリーブ
27…ボルト
28…ナット
29…絶縁スリーブ
291…第4の貫通孔
30…筐体
31、32…組電池用端子
…電極積層体の幅
…二次電池の幅
…ヒートシンクの幅
DESCRIPTION OF SYMBOLS 10, 10a-10i ... Secondary battery 101 ... Electrode laminated body 102 ... Positive electrode plate 102a ... Positive electrode side collector 103 ... Separator 104 ... Negative electrode plate 104a ... Negative electrode side collector 105 ... Positive electrode terminal 105a ... First through-hole DESCRIPTION OF SYMBOLS 106 ... Negative electrode terminal 106a ... 1st through-hole 107 ... Upper exterior member 108 ... Lower exterior member 20 ... Assembly battery 21-23 ... 1st-3rd layer 24 ... Heat sink 241 ... 2nd through-hole 25 ... 1st Spacer 251 ... convex portion 252 ... third through hole 26 ... second spacer 261 ... convex portion 262 ... third through hole 263 ... conductive sleeve 27 ... bolt 28 ... nut 29 ... insulating sleeve 291 ... fourth through hole Hole 30 ... Housing 31, 32 ... Battery pack terminal W 1 ... Width of electrode stack W 2 ... Width of secondary battery W 3 ... Width of heat sink

Claims (12)

セパレータを介して積層された電極板を有する電極積層体と、
前記電極積層体を収容して封止する外装部材と、
前記電極積層体に接続されると共に前記外装部材の外周縁から一部が導出した電極端子と、
前記外装部材に積層された導電性を持つ放熱手段と、を備えた二次電池であって、
前記電極端子が前記外装部材から導出する方向に対して直交する方向において、前記放熱手段は前記外装部材より短い二次電池。
An electrode laminate having an electrode plate laminated via a separator;
An exterior member that houses and seals the electrode laminate;
An electrode terminal connected to the electrode laminate and partially derived from the outer periphery of the exterior member;
A heat radiating means having conductivity laminated on the exterior member, and a secondary battery comprising:
A secondary battery in which the heat dissipation means is shorter than the exterior member in a direction orthogonal to the direction in which the electrode terminal is led out from the exterior member.
前記電極端子が前記外装部材から導出する方向に対して直交する方向において、前記放熱手段は前記電極積層体より長い請求項1記載の二次電池。
The secondary battery according to claim 1 , wherein the heat dissipating means is longer than the electrode laminate in a direction orthogonal to a direction in which the electrode terminal is led out from the exterior member .
前記電極端子と前記放熱手段との間に設けられ、前記電極端子を前記放熱手段に対して固定する固定手段をさらに備えた請求項1又は2記載の二次電池。   The secondary battery according to claim 1, further comprising a fixing unit that is provided between the electrode terminal and the heat radiating unit and fixes the electrode terminal to the heat radiating unit. 前記固定手段は、一の前記二次電池の電極端子と他の前記二次電池の電極端子とを重ね合わせた状態で、前記一の二次電池の電極端子と前記他の二次電池の電極端子とを前記放熱手段に対して固定する請求項3記載の二次電池。   The fixing means includes the electrode terminal of the one secondary battery and the electrode terminal of the other secondary battery in a state where the electrode terminal of the one secondary battery and the electrode terminal of the other secondary battery overlap each other. The secondary battery according to claim 3, wherein a terminal is fixed to the heat dissipation means. 前記固定手段は、絶縁性材料から成る第1の固定手段を含む請求項3又は4記載の二次電池。   The secondary battery according to claim 3 or 4, wherein the fixing means includes first fixing means made of an insulating material. 前記固定手段は、導電性部材を有する第2の固定手段を含む請求項3〜5の何れかに記載の二次電池。   The secondary battery according to claim 3, wherein the fixing means includes second fixing means having a conductive member. セパレータを介して積層された電極板を持つ電極積層体、前記電極積層体を収容して封止する外装部材、及び、前記電極積層体に接続されると共に前記外装部材の外周縁から一部が導出した電極端子を有する2以上の二次電池と、
前記各二次電池の外装部材に積層された少なくとも1つの導電性を持つ放熱手段と、を備えた組電池であって、
前記電極端子が前記外装部材から導出する方向に対して直交する方向において、前記放熱手段は、前記各二次電池の外装部材より短い組電池。
An electrode laminate having an electrode plate laminated via a separator, an exterior member that accommodates and seals the electrode laminate, and a part from the outer periphery of the exterior member that is connected to the electrode laminate and Two or more secondary batteries having derived electrode terminals;
An assembled battery comprising at least one conductive heat dissipating means laminated on the exterior member of each secondary battery,
In the direction orthogonal to the direction in which the electrode terminal is led out from the exterior member, the heat dissipation means is a battery assembly shorter than the exterior member of each secondary battery.
前記電極端子が前記外装部材から導出する方向に対して直交する方向において、前記放熱手段は、前記各二次電池の電極積層体より長い請求項7記載の組電池。
The assembled battery according to claim 7 , wherein the heat dissipating means is longer than the electrode stack of each of the secondary batteries in a direction orthogonal to a direction in which the electrode terminal is led out from the exterior member .
前記各二次電池の電極端子と前記放熱手段との間に設けられ、前記電極端子を前記放熱手段に対して固定する固定手段をさらに備えた請求項7又は8記載の組電池。   The assembled battery according to claim 7, further comprising a fixing unit that is provided between the electrode terminal of each secondary battery and the heat dissipation unit, and fixes the electrode terminal to the heat dissipation unit. 前記固定手段は、一の前記二次電池の電極端子と他の前記二次電池の電極端子とを重ね合わせた状態で、前記一の二次電池の電極端子と前記他の二次電池の電極端子とを前記放熱手段に対して固定する請求項9記載の組電池。   The fixing means includes the electrode terminal of the one secondary battery and the electrode terminal of the other secondary battery in a state where the electrode terminal of the one secondary battery and the electrode terminal of the other secondary battery overlap each other. The assembled battery according to claim 9, wherein a terminal is fixed to the heat dissipation means. 前記固定手段は、絶縁性材料から成る第1の固定手段を含む請求項9又は10記載の組電池。   The assembled battery according to claim 9 or 10, wherein the fixing means includes first fixing means made of an insulating material. 前記固定手段は、導電性部材を有する第2の固定手段を含む請求項9〜11の何れかに記載の組電池。   The assembled battery according to any one of claims 9 to 11, wherein the fixing means includes second fixing means having a conductive member.
JP2003370425A 2003-10-30 2003-10-30 Secondary battery and assembled battery Expired - Fee Related JP4182858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370425A JP4182858B2 (en) 2003-10-30 2003-10-30 Secondary battery and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370425A JP4182858B2 (en) 2003-10-30 2003-10-30 Secondary battery and assembled battery

Publications (2)

Publication Number Publication Date
JP2005135743A JP2005135743A (en) 2005-05-26
JP4182858B2 true JP4182858B2 (en) 2008-11-19

Family

ID=34647441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370425A Expired - Fee Related JP4182858B2 (en) 2003-10-30 2003-10-30 Secondary battery and assembled battery

Country Status (1)

Country Link
JP (1) JP4182858B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601223B1 (en) 2006-09-19 2013-12-03 Nvidia Corporation Techniques for servicing fetch requests utilizing coalesing page table entries

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832018B2 (en) * 2005-07-22 2011-12-07 トヨタ自動車株式会社 Assembled battery
JP4730705B2 (en) * 2005-10-27 2011-07-20 Tdkラムダ株式会社 Battery pack
KR101051485B1 (en) * 2005-11-08 2011-07-22 주식회사 엘지화학 Thin battery of novel structure and battery module consisting of
KR100913838B1 (en) * 2005-11-30 2009-08-26 주식회사 엘지화학 Battery Module of Novel Structure
JP4904863B2 (en) * 2006-03-15 2012-03-28 日産自動車株式会社 Battery module and manufacturing method thereof
JP4569534B2 (en) * 2006-07-19 2010-10-27 トヨタ自動車株式会社 Assembled battery
JP5114944B2 (en) * 2006-12-26 2013-01-09 日産自動車株式会社 Assembled battery
JP5161533B2 (en) * 2007-10-18 2013-03-13 株式会社東芝 Battery module and battery pack
JP5505962B2 (en) * 2009-11-13 2014-05-28 Necエナジーデバイス株式会社 Battery pack and battery pack connection method
JP2011134541A (en) * 2009-12-24 2011-07-07 Nifco Inc Connection structure
KR101271567B1 (en) 2010-08-16 2013-06-11 주식회사 엘지화학 Battery Module of Structure Having Fixing Member Inserted into Through-Hole of Plates and Battery Pack Employed with the Same
JP2012064492A (en) * 2010-09-17 2012-03-29 Nifco Inc Coupling structure
JP5585854B2 (en) * 2012-04-10 2014-09-10 株式会社デンソー Thermal conductivity structure of battery pack
JP6641008B2 (en) * 2015-11-09 2020-02-05 ゴゴロ インク System and method for thermal management of portable electrical energy storage devices
JP2017216087A (en) * 2016-05-30 2017-12-07 株式会社東芝 Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8601223B1 (en) 2006-09-19 2013-12-03 Nvidia Corporation Techniques for servicing fetch requests utilizing coalesing page table entries

Also Published As

Publication number Publication date
JP2005135743A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4182858B2 (en) Secondary battery and assembled battery
JP4720384B2 (en) Bipolar battery
JP5172496B2 (en) Power storage unit and manufacturing method thereof
US20130029201A1 (en) Cell module
JP2006324143A (en) Secondary battery
JP4096664B2 (en) Laminated battery
JP5871067B2 (en) Battery structure
JP2004047262A (en) Thin battery and battery pack
JP2004055348A (en) Battery pack, composite battery pack, and vehicle
JP7468233B2 (en) Energy Storage Module
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP2005251617A (en) Secondary battery and battery pack
JP2004047239A (en) Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP3687632B2 (en) Thin battery
JP3797311B2 (en) Thin battery support device and assembled battery including the same
JP3711962B2 (en) Thin battery
JP2004055346A (en) Battery pack, composite battery pack, and vehicle mounting it
WO2023132181A1 (en) Electric power storage module
JP3702868B2 (en) Thin battery
JP2005129393A (en) Secondary battery
JP2006236775A (en) Secondary battery
JP4052127B2 (en) Thin battery support structure, assembled battery and vehicle
JP2007048668A (en) Battery and battery pack
JP4720129B2 (en) Secondary battery
JP2005149783A (en) Secondary battery, battery pack, complex battery pack, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees