WO2006114993A1 - Electrode laminate and electric device - Google Patents

Electrode laminate and electric device Download PDF

Info

Publication number
WO2006114993A1
WO2006114993A1 PCT/JP2006/307099 JP2006307099W WO2006114993A1 WO 2006114993 A1 WO2006114993 A1 WO 2006114993A1 JP 2006307099 W JP2006307099 W JP 2006307099W WO 2006114993 A1 WO2006114993 A1 WO 2006114993A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
negative electrode
positive electrode
coated portion
electrolyte
Prior art date
Application number
PCT/JP2006/307099
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuaki Utsumi
Hiroshi Yageta
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007514523A priority Critical patent/JP5228482B2/en
Publication of WO2006114993A1 publication Critical patent/WO2006114993A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/72Current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • H01G11/76Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrode laminate used for a chemical battery element, a capacitor element, and the like, and an electric device represented by a battery and a capacitor using the electrode laminate.
  • an electrode laminate in which a plurality of positive plates and a plurality of negative plates are alternately stacked via separators is hermetically sealed with an electrolyte and an exterior material such as metal or film.
  • the configuration is simply referred to as “sealing”.
  • a positive electrode plate and a negative electrode plate (hereinafter simply referred to as an electrode plate when the positive electrode and the negative electrode are not distinguished from each other) are configured by applying an electrode material on both surfaces of a metal foil.
  • electrode material is applied from the electrode plate to connect to the lead part for external lead! The metal foil part extends! /
  • Patent Document 1 discloses a battery module in which a plurality of single cells are arranged and connected in a plane.
  • the single cell has one positive electrode in which the positive electrode material is applied to the central region on one side of the electrode plate serving as the positive electrode, and one negative electrode in which the negative electrode material is applied to the central region on one side of the electrode plate serving as the negative electrode.
  • the positive electrode and the negative electrode are laminated so that the respective electrode materials face each other through the electrolyte, and the outer peripheral portion is sealed with an insulating material over the entire circumference in a region where the electrode material is not applied.
  • connection between the single cells is made by adjoining a plurality of single cells in a row so that the polarities of the electrode plates are different from each other, interposing a conductive paste between one electrode plate and the other electrode adjacent to each other. This is done by interposing an insulator between the plates. As a result, a plurality of single cells are connected in series.
  • the lead In the assembly to which the single cells are connected, the lead is connected to the positive electrode on one end side and the negative electrode on the other end side, respectively, and is sealed in the exterior material.
  • Patent Document 2 discloses a battery module in which a plurality of battery elements are connected in series and the whole is sealed with an exterior material.
  • the battery element has a structure in which a positive electrode and a negative electrode are laminated via a solid electrolyte.
  • the positive electrode and the negative electrode have an electrode plate and an electrode material applied to a region excluding one end thereof, and are laminated so that the respective electrode material non-applied portions face in opposite directions.
  • the positive electrode and negative electrode material non-applied portions are collected for each electrode, and their tips are joined together by welding or the like.
  • the plurality of battery elements configured as described above are arranged in such a manner that the electrode material non-applied portion on the positive electrode side and the electrode material non-applied portion on the negative electrode side are arranged adjacent to each other, and these are overlapped and joined in series. Connected to.
  • connection between single cells is a connection in an extremely unstable state that is easy to be separated when bending stress is applied to the battery module. As a result, it is difficult to ensure connection reliability between single cells.
  • Patent Document 1 also discloses that at least one electrode plate on the positive electrode side and the negative electrode side is provided with an extending portion, and this extending portion is overlapped on the electrode plate of an adjacent single cell. Yes.
  • the extension part is a part that does not contribute to charging / discharging, so we want to eliminate this increase in thickness if possible.
  • a plurality of battery modules are stacked. In this case, since each battery module is sealed with the exterior material, the thickness of the exterior material that extends only by the extension portion is accumulated, which is further disadvantageous for thinning. .
  • the battery module disclosed in Patent Document 2 can obtain necessary capacity and output by appropriately setting the number of stacked positive electrodes and negative electrodes and the number of battery elements to be connected.
  • the electrical connection between the battery elements is made by superimposing the integral parts, which are the parts where the electrode material non-coated parts of the electrode plate are gathered together. Is going by.
  • the battery module described in Patent Document 2 has a limitation when viewed from the viewpoint of reducing the overall planar dimensions.
  • an electrode plate coated with electrode material on both sides is used. In that respect, if attention is paid only to the laminated portion of the electrode material and the electrode plate, the volume is larger than that disclosed in Patent Document 1. Efficiency is high. However, for the following reasons, volumetric efficiency loss still existed elsewhere.
  • the area of the battery element where the portions where the positive electrode and negative electrode electrode materials are applied are opposed to each other (hereinafter also referred to as a laminated portion). This is a region that does not contribute to connection with adjacent battery elements. Therefore, from the viewpoint of reducing the planar dimensions, it is preferable that the integral flange portion is as close as possible to the laminated portion. On the other hand, the following must also be taken into account when determining the distance to the laminating force unit.
  • the battery element has a total thickness including the thickness of each substrate, the thickness of the electrode material applied to each substrate, and the thickness of the solid electrolyte between the substrates.
  • the thickness of the integral part has a total thickness of only the substrates of the respective poles. Therefore, the electrode material non-applied portion is collected in a curved shape so as to reduce the overall thickness as it goes from the laminated portion to the integral portion.
  • a substrate to which the electrode material is applied is generally a metal foil. Further, if the distance from the laminated portion to the integrated portion is the same, the greater the total number of stacked positive electrodes and negative electrodes, the greater the angle of curvature of the electrode material non-coated portion with respect to the laminated portion. Therefore, for example, the thickness of each of the positive electrode and the negative electrode is 60 m or more, and the total number of laminated sheets When the number is 30 or more, the angle of curvature of the electrode material non-applied portion becomes too large, and the metal foil may break. Therefore, it is necessary to relax the curvature of the non-coated portion of the electrode material to such an extent that the metal foil does not break.
  • the present invention has been made in view of the conventional problems described above, and is flexible to increase the capacity and output while minimizing the size of the portion that does not contribute to the accumulation of electric energy.
  • An object of the present invention is to provide an electrode laminate and an electric device that can be used.
  • an electrode laminate of the present invention is an electrode laminate in which electric energy is accumulated, and a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via an electrolyte. A plurality of cells.
  • the positive electrode and the negative electrode have a sheet-like metal member coated with an electrode material so that one end portion is a non-coated portion, and the non-coated portion of the positive electrode and the non-coated portion of the negative electrode protrude toward opposite sides. Are stacked.
  • the plurality of cells are arranged with the non-coated portion of the positive electrode and the non-coated portion of the negative electrode facing each other, and between the cells adjacent to each other, a part of the non-coated portion of the positive electrode of one cell and the non-coated portion of the other cell are arranged.
  • a part of the non-coated portion of the negative electrode and the force are electrically connected in an overlapping manner in the stacking direction of the positive electrode and the negative electrode.
  • the non-coated portions of adjacent cells are alternately overlapped and electrically connected.
  • the curvature of the non-coated portion is reduced, so that the cells can be arranged closer to each other.
  • the limitation on the number of stacked positive and negative electrodes is eased.
  • the electrolyte may be an electrolytic solution, a solid electrolyte, or a polymer electrolyte.
  • the electrolyte in one cell belongs to the other cell between the separators impregnated with the electrolyte disposed between the stacked positive and negative electrodes and the cells adjacent to each other It is preferable to further include a sealing material that prevents contact with the battery working member.
  • the non-coated portion of the positive electrode and the non-coated portion of the negative electrode By having a fixed conductive member in between, and the positive electrode and the negative electrode are electrically connected by the conductive member, the curvature of the non-applied portion is further alleviated.
  • the electrical device of the present invention is electrically connected to the non-coated portion of the positive electrode and the non-coated portion of the negative electrode at both ends in the arrangement direction of the plurality of cells of the electrode stacked body of the present invention.
  • the “battery acting member” means a member having a potential due to a battery action, such as an electrode material, a sheet-like metal member coated with the electrode material, and an electrolyte. Not included.
  • the present invention it is possible to improve the arrangement efficiency of the positive electrode and the negative electrode by connecting a plurality of cells by alternately overlapping the non-coated portions of the positive electrode and the negative electrode adjacent in the stacking direction. Further, the limit of the number of layers of the positive electrode and the negative electrode can be relaxed.
  • FIG. 1 is an exploded perspective view of a film-clad battery that is an electrical device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the film-clad battery shown in FIG. 1 along the cell arrangement direction.
  • FIG. 3 is a schematic cross-sectional view along the cell arrangement direction of a film-clad battery according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a connection portion between cells of a film-clad battery, showing a modification of the conductive member used in the present invention.
  • FIG. 5A is a cross-sectional view of a connection portion between cells of a film-clad battery, showing another example of a conductive member used in the present invention.
  • FIG. 5B is a cross-sectional view of the film-clad battery cut along the line BB shown in FIG. 5A.
  • FIG. 5C is a cross-sectional view of the film-clad battery cut along the CC line shown in FIG. 5A.
  • FIG. 6 A film-clad battery showing still another modification of the conductive member used in the present invention. It is sectional drawing of the connection part between cells.
  • FIG. 7 is a view showing a modification of the control terminal used in the present invention.
  • the positive electrode tab 3a is connected to the positive electrode 21 of the cell 2 located on one end side, and the other end A negative electrode tab 3b is connected to the negative electrode 24 of the cell 2 located on the side.
  • the positive electrode tab 3a and the negative electrode tab 3b are connected with their tip portions protruding from the outer films 4 and 5, respectively, and are used to electrically connect the film outer battery 1 to an external device.
  • the exterior films 4 and 5 have a planar dimension larger than that of the electrode laminate, and surround the electrode laminate from both sides in the thickness direction (the laminate direction of the positive electrode 21 and the negative electrode 24). is doing. As a result, the exterior films 4 and 5 overlap each other around the electrode laminate, and the overlapping opposing surfaces are heat-sealed to seal the electrode laminate.
  • One exterior film 4 has a cup portion 4a formed in the central region in order to form a space surrounding the electrode laminate.
  • the exterior films 4 and 5 are heat-sealed over the entire circumference of the cup portion 4a.
  • the cup portion 4a can be processed by deep drawing. In this embodiment, the force of forming the cup portion 4a only on one of the exterior films 4 may be formed on each of the exterior films 4 and 5, or the flexibility of the exterior films 4 and 5 without forming the cup portion. You can use to surround the electrode stack.
  • a laminate film can be preferably used.
  • various films can be used as long as they have flexibility and can seal the electrode laminate together with the electrolyte.
  • a heat-sealing layer made of heat-fusible resin, a strong non-breathing layer such as a metal thin film, and a protective layer made of a film of polyester or nylon such as polyethylene terephthalate are laminated in this order.
  • the exterior films 4 and 5 are provided with a protective layer as needed as long as they have at least a heat-sealing layer and a non-air-permeable layer. When sealing the electrode laminate, the electrode laminate is surrounded with the heat-sealing layer facing each other.
  • the metal thin film constituting the non-breathing layer for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 to: LOO / zm can be used.
  • the resin constituting the heat-sealing layer for example, polypropylene, polyethylene, these acid-modified products, polyester such as polyethylene terephthalate, polyethylene terephthalate, polyamide, ethylene acetate butyl copolymer, ionomer, etc. can be used. .
  • an inorganic insulator such as silicon oxide or acid aluminum can be used as the gas-impermeable layer as long as it has gas permeability.
  • an inorganic insulator such as silicon oxide or acid aluminum can be used as the gas-impermeable layer as long as it has gas permeability.
  • the thickness of the heat-sealing layer is preferably 10 to 200 ⁇ m, and more preferably 30 to LOO ⁇ m, for good sealing of the electrode laminate.
  • the positive electrode 21 has a positive electrode metal foil 22 that is a sheet-like metal member, and a positive electrode active material 23 applied to both surfaces thereof.
  • the positive electrode active material 23 is applied to a region excluding one end portion of the positive electrode metal foil 22, and one end portion of the positive electrode 21 where the positive electrode active material 23 is not applied is an uncoated portion 22a.
  • the negative electrode 24 has a negative electrode metal foil 25 that is a sheet-like metal member, and a negative electrode active material 26 applied to both surfaces thereof.
  • the negative electrode active material 26 is applied to a region excluding one end portion of the negative electrode metal foil 25, and the negative electrode active material 26 of the negative electrode 24 is applied, and one end portion becomes an uncoated portion 25a.
  • the positive electrode 21 and the negative electrode 24 have their respective non-coated portions 22a and 25a facing away from each other, and the positive electrode active material 23 and the negative electrode active material 26 are interposed via the separator 27. They are stacked so as to face each other. Therefore, in each cell 2, the non-coated portion 22a of the positive electrode 21 protrudes from one end of the electrode laminate portion where the positive electrode active material 23 and the negative electrode active material 26 are laminated via the separator 27, and the other end force is also The non-coated part 25a of the negative electrode 24 is projected.
  • FIG. 2 simply shows an example of the connection structure of each cell 2 and the laminated structure of each cell 2.
  • the number of cells 2 and the number of positive electrodes 21 and negative electrodes 24 in each cell 2 are not limited to those shown in FIG.
  • each cell 2 two cells 2 located at both ends are gathered in the laminating direction on one side, and the non-coated portions 22a of the positive electrode 21 are collectively connected to the positive electrode tab 3a on the other side.
  • the non-coated portions 25a of the negative electrode 24 are gathered in the stacking direction and collectively connected to the negative electrode tab 3b.
  • the connection between the non-coated portion 22a of the positive electrode 21 and the positive electrode tab 3a and the connection between the non-coated portion 25a of the negative electrode 24 and the negative electrode tab 3b can be performed by, for example, ultrasonic welding.
  • the cell 2 includes the non-applied portion 22a of the positive electrode 21 and the negative electrode 24 in relation to the adjacent two cells 2 so that the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24 face the same direction. They are arranged in a row with the non-application part 25a facing each other. Between two adjacent cells 2, the non-applied part 25 a of the negative electrode 24 of the other cell 2 enters between the non-applied part 22 a of the positive electrode 21 of one cell 2.
  • a part of the non-coated part 22a of the positive electrode 21 of one cell and a part of the non-coated part 25a of the negative electrode 24 of the other cell 2 are connected to the positive electrode 21 and the negative electrode. 24 and are stacked alternately in the stacking direction.
  • a block-shaped or bar-shaped conductive member is provided between adjacent two cells 2, between the overlapping portions of the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24, a block-shaped or bar-shaped conductive member is provided. 6 is arranged. The non-coating portions 22a and 25a are electrically connected by these conductive members 6, whereby a plurality of cells 2 are connected in series.
  • Each cell 2 holds an electrolytic solution as an electrolyte.
  • a sealing material 7 is provided between the adjacent cells 2 so that the electrolyte in one cell 2 does not come into contact with the members constituting the other cell 2 between the two adjacent cells 2. It has been. Specifically, in the sealing material 7, between the two adjacent cells 2, the non-applied portions 22a and 25a and the conductive member 6 connected thereto are not exposed to the electrolyte storage portion of the adjacent cell 2.
  • the conductive member 6 can be made of a metal that can be bonded to both aluminum and copper, for example, nickel that can be ultrasonically welded to aluminum and copper. Also, iron, stainless steel, copper, nickel-plated or tin-plated V, etc.
  • Methods for connecting the conductive member 6 to the positive electrode metal foil 22 or negative electrode metal foil 25 include contact, welding, force squeezing, screwing, fitting, sandwiching, soldering, and using a conductive adhesive. This method can be used.
  • an aluminum plate can be used for the positive electrode tab 3a.
  • a copper foil is used for the negative electrode metal foil 25
  • a negative electrode tab is used.
  • a copper plate can be used for 3b.
  • the negative electrode tab 3b is formed of a copper plate, the surface thereof may be plated with nickel.
  • the separator 27 and the sealing material 7 are appropriately selected in accordance with the required function regardless of the type of the film-clad battery 1.
  • a sheet-like member that can be impregnated with an electrolytic solution such as a microporous film (microporous film), a nonwoven fabric, or a woven fabric made of thermoplastic resin such as polyolefin can be used. .
  • the sealing material 7 can be formed of a hot melt adhesive or can be formed by pouring a two-component curable adhesive.
  • the sealing material 7 has a columnar shape that is long in the stacking direction, but it may be a flat plate or a film with the main surface facing in the stacking direction.
  • the surface treatment may be performed.
  • Such surface treatments include chromium-based treatment, zirconium-based treatment, phosphoric acid-based treatment, oxide film treatment, hydroxide film treatment and other film-based treatments, partially aminated phenolic resin-based treatments, and silane coupling. And organic treatments such as chemicals and titanate coupling agents, and surface roughening by chemical etching or polishing.
  • the positive electrode 21 of one cell 2 and the negative electrode 24 of the other cell 2 are not connected to each other.
  • the coating parts 22a and 25a are alternately overlapped and connected with the conductive member 6 interposed therebetween.
  • the positive electrode 21 of one cell 2 and the negative electrode 24 of the other cell 2 can be connected in a state where the curvature of the non-applied portions 22a and 25a is greatly relaxed.
  • the root of the non-applied part 22a of the positive electrode 21 (boundary with the applied part of the positive electrode active material 23) is also connected to the non-applied part 25a of the negative electrode 24 (conductive member). 6) and the base of the non-coated portion 25a of the negative electrode 24 (boundary with the coated portion of the negative electrode active material 26) force is also connected to the non-coated portion 22a of the positive electrode 21 (conductive member).
  • the distance B up to the connecting portion with 6) can be greatly reduced as compared with the conventional case where the metal foil for positive electrode 22 and the metal foil for negative electrode 25 are not broken.
  • the dimension C in the arrangement direction of the cells 2 in the area where the non-coated part 22a of the positive electrode 21 and the non-coated part 25a of the negative electrode 24 overlap is the minimum dimension required to connect the cells 2 to each other. It can be.
  • the negative electrode 24 is not applied from the base of the non-applied portion 22a of the positive electrode 21 in the relationship between the positive electrode 21 and the negative electrode 24 connected to each other, which is a portion that does not contribute to charge / discharge of the electrode laminate.
  • the distance L to the root of part 25a can be greatly reduced compared to the conventional method.
  • the planar dimensions of the electrode laminate without reducing the performance as the film-clad battery 1 can be reduced.
  • the effect of greatly reducing the planar dimensions of the parts that do not contribute to charging / discharging can be said at all the connections between adjacent cells 2, so a larger number of cells 2 are connected in series to obtain a higher voltage. This is more effective when connected electrode stacks are used.
  • the adjacent cells 2 can be connected in a state where the curvature of the non-applied portions 22a and 25a is greatly relaxed as described above, the positive electrode 21 and the negative electrode 24 Even when the number of laminated layers is further increased, the positive electrode metal foil 22 and the negative electrode metal foil 25 are unlikely to break.
  • the conductive member 6 is interposed between the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24 that overlap each other, the non-applied portions 22a and 25a are hardly curved. be able to.
  • the thickness of the conductive member 6 in the laminating direction is made equal to the distance between the positive electrode metal foil 22 and the negative electrode metal foil 25 facing each other with the separator 27 therebetween, the non-coated portion 22a and the negative electrode 24 of the positive electrode 21 It is possible to connect the cell 2 without bending the non-application part 25a. Specifically, this means that the thickness of the conductive member 6, the thickness of one separator 27, the coating thickness of the positive electrode active material 23 for one side of the positive electrode metal foil 22, and the negative electrode metal foil The thickness of the negative electrode active material 26 for one side of 25 is the same as the total thickness. In this case, the maximum number of stacked layers of the positive electrode 21 and the negative electrode 24 is not particularly limited as long as it is within a practical range.
  • the separator 27 is impregnated with the electrolytic solution, the above-mentioned “opposite the separator 27 in between” is synonymous with “opposite the electrolyte in between!”. . Further, “the thickness of one separator 27” is synonymous with “the thickness of the electrolyte disposed between the positive electrode and the negative electrode”.
  • the film-clad battery 1 of the present embodiment has a control terminal 6a electrically connected to the connecting portion between the positive electrode 21 and the negative electrode 24 between the adjacent cells 2.
  • a member similar to the conductive member 6 can be used for the control terminal 6a.
  • the control terminal 6a is joined to the non-coated part 25a of the negative electrode 24 at the uppermost position in the laminating direction, and the tip thereof is outside the exterior film 4. Protruding to
  • each cell 2 In a battery in which a plurality of cells 2 are connected, in order to effectively exhibit the performance of each cell 2, it is desirable that the voltage of each cell 2 is equal. However, depending on the performance variation of each cell 2 itself and the charge / discharge conditions, the voltage may vary from cell 2 to cell 2.
  • the control terminal 6a as in the present embodiment, the control terminal 6a, the positive electrode tab 3a, and the negative electrode tab 3b can be obtained even in the film-clad battery 1 in which a plurality of cells 2 are sealed. Can be used to check the voltage of each cell 2. If the voltages of the cells 2 are different, the cells 2 can be individually charged or discharged so that the voltages of the cells 2 are equal. As a result, the performance of the film-clad battery 1 can be maintained satisfactorily. However, if individual control for each cell 2 is not required, the control terminal 6a may not be provided.
  • the force conductive member 6 in which the conductive member 6 is disposed between the non-application portions 22a and 25a in the connection portion between the cells 2 is not necessarily required.
  • the non-application part 22a of the positive electrode 21 and the non-application part 25a of the negative electrode 24 are alternately arranged in the stacking direction.
  • the non-coated portion 22a of the positive electrode 21 and the non-coated portion 25a of the negative electrode 24 are gathered in the stacking direction and directly joined at the connection portion of the cells 2 and the like.
  • the non-coated portion 25a of the negative electrode 24 of the adjacent cell 2 is interposed between the non-coated portions 22a of the positive electrode 21 adjacent in the stacking direction, and the non-coated portion of the negative electrode 24 adjacent in the stacking direction is not.
  • the non-application part 22a of the positive electrode 21 of the adjacent cell 2 is interposed between the application parts 25a.
  • the lower surface force of the lowermost non-applied portion 22a in the stacking direction is also the highest non-coated portion.
  • the distance to the upper surface of the cloth portion 22a and the distance from the lower surface of the lowermost non-application portion 25a to the upper surface of the uppermost non-application portion 25a are the same as the conventional non-application portions 22a, This is about twice as much as when 25a are collected and joined.
  • the control terminal 6a may be provided as described above to charge / discharge each cell 2 individually.
  • FIG. 3 shows a schematic cross-sectional view similar to FIG. 2, of a film-clad battery according to another embodiment of the present invention. 3, parts similar to those in FIG. 2 are given the same reference numerals as those in FIG. 2, and descriptions thereof are omitted.
  • the film-clad battery of this embodiment is different from the above-described embodiment in that a solid electrolyte 37 is used as an electrolyte instead of an electrolyte.
  • a solid electrolyte 37 various kinds of solid electrolytes can be used as long as they do not contain a free solvent but can conduct ions.
  • an oxide-based inorganic compound such as j8 alumina and a polymer bridge such as polyethylene oxide can be used. Examples include bridges and non-cross-linked ones.
  • the separator 27 see FIG.
  • the solid electrolyte 37 includes a region where the positive electrode active material 23 of the positive electrode 21 is applied and a negative electrode 24 so that the positive electrode active material 23 and the negative electrode active material 26 do not directly contact each other.
  • the negative electrode active material is larger than the region where the negative electrode active material is applied and has a planar dimension.
  • the sealing material 7 as shown in FIG. 2 is not necessary. Since the sealing material 7 is not required, the structure of the film-clad battery is simplified. Furthermore, the distance A and the distance B shown in FIG. As a result, it is possible to further reduce the planar dimensions of the electrode laminate, and hence the film exterior battery, while maintaining the configuration of the portion that contributes to charging and discharging.
  • the conductive member 6 and the control terminal 6a are not necessarily provided, as in the above-described embodiment.
  • the number of cells 2 in the electrode stack and the number of positive electrodes 21 and negative electrodes 24 in each cell are not limited to those shown in the figure, as in the above-described embodiment.
  • the solid electrolyte 37 is used as the electrolyte, but a polymer electrolyte can be used instead of the solid electrolyte 37.
  • a polymer electrolyte various polymers can be used as long as they contain a solvent in a polymer matrix and the liquid does not bleed out.
  • an ion-conducting solvent can be used inside a cross-linked polyethylene oxide.
  • examples thereof include a mixture of a crosslinked or non-crosslinked polyvinylidene fluoride polymer and an electrolytic solution.
  • the sealing material is unnecessary.
  • a liquid electrolyte is an electrolyte that can exude, such as a composite of a solid electrolyte and a liquid electrolyte, or a composite of a polymer electrolyte and a liquid electrolyte, such an electrolyte is an “electrolyte”. Included in the concept.
  • a configuration may be adopted in which the connection and the connection by the conductive member 6 are alternately repeated.
  • an electrode pair in which one positive electrode metal foil 22 and one negative electrode metal foil 25 are welded at their non-applied portion is prepared in advance, and the electrode pair is formed on the welded portion. It is possible to repeatedly form the conductive member 6 and further place the welded portion of another electrode pair thereon.
  • the thickness of the positive electrode 21, the thickness of the negative electrode 24, and the thickness of the electrolyte (the separator 27 impregnated with the electrolytic solution or the solid electrolyte 37) between the positive electrode 21 and the negative electrode 24 facing each other in the stacking direction It is preferable to use the conductive member 6 having a thickness (hereinafter referred to as “unit stacking cycle thickness” t) which is twice the thickness of the thickness.
  • the conductive member has a structure in which a plurality of conductive members having a predetermined thickness are stacked through the non-applied portion of the electrode metal foil.
  • the following configuration is also conceivable.
  • the first example is a configuration in which one conductive member continuous in the electrode stacking direction is used, and the positive electrode and the negative electrode are alternately connected to the conductive member at intervals.
  • Figure 4 shows a specific example.
  • the conductive member 26 has a wave shape so as to sew between the non-coated portion of the positive electrode metal foil 22 of one cell and the non-coated portion of the other cell negative electrode metal foil 25 adjacent thereto. It is made of a metal sheet that is bent and extends in the stacking direction of the positive electrode metal foil 22 and the negative electrode metal foil 25. The conductive member 26 is bent so that portions parallel to the in-plane direction of the positive electrode metal foil 22 and the negative electrode metal foil 25 are formed.
  • the concave portions 26a into which the non-coated portions of the positive electrode metal foil 22 of one cell enter and the concave portions 26b into which the non-coated portions of the negative electrode metal foil 25 of the other cell enter are alternately formed.
  • the non-applied portion is welded to the conductive member 26 in the recesses 26a and 26b of the conductive member 26, whereby the positive electrode metal foil 22 and the negative electrode metal foil 25 are electrically connected to the conductive member 26.
  • the period of the waveform of the conductive member 26 is a unit lamination period thickness.
  • FIG. 4 shows the case where the electrolyte is an electrolytic solution. However, when the electrolyte is a solid electrolyte or a polymer electrolyte, the sealing material 7 is not necessary.
  • the second example is an example in which the above-described metal sheet is a composite metal sheet in which two different types of metal layers are laminated. Specific examples thereof will be described with reference to FIGS. 5A to 5C.
  • the conductive member is shown as a single layer for simplification!
  • the conductive member 36 is between the non-applied portion of the positive electrode metal foil 22 of one cell and the non-applied portion of the negative electrode metal foil 25 of the other cell adjacent thereto.
  • the metal sheet is bent in a wave shape and is bent in a wave shape so as to extend in the stacking direction of the positive electrode metal foil 22 and the negative electrode metal foil 25.
  • the metal sheet used for the conductive member 36 is a composite metal sheet in which a first metal layer 36a and a second metal layer 36b are laminated in a state where they can conduct each other.
  • the first metal layer 36a and the second metal layer 36b also have different metal forces.
  • the conductive member 36 has the first metal layer 36a directed to the side where the positive electrode metal foil 22 of one cell is connected, and the second metal layer 36b is connected to the negative electrode metal foil 25 of the other cell. It is arranged toward the side.
  • the bending shape of the conductive member 36 and the electrical connection between the metal foils 22 and 25 and the conductive member 36 are the same as in the example shown in FIG.
  • the sealing material 32 is disposed between the conductive member 36 and the exterior film 35 so as to surround the entire outer periphery of the conductive member 36.
  • the outer surface of the sealing material 32 is bonded to the exterior film 35 over the entire periphery, and the inner surface of the sealing material 32 is bonded to the conductive member 36 over the entire periphery.
  • a liquid-tight partition is formed by the conductive member 36 and the sealing material 32.
  • the material of the sealing material 32 various materials as described above can be used as long as they can block the electrolytic solution.
  • the sealing member 32 is provided between the conductive member 36 and the exterior film 35 so as to surround the periphery of the conductive member 36, thereby being disposed between the overlapping metal foils described above. It is not necessary to provide each layer individually as in the case of the sealing material 7 (see Fig. 2). As a result, the number of parts and the number of manufacturing steps can be reduced.
  • the configuration of the sealing material 32 shown in FIG. 5B can also be applied to each example described above.
  • the electrolyte is a solid electrolyte or a polymer electrolyte, it is not necessary to provide a sealing material. However, as described above, an electrolyte from which a liquid electrolyte can bleed is considered as an electrolytic solution.
  • the first metal layer 36a is a battery action member belonging to the cell on the side to which the positive electrode metal foil 22 is connected.
  • the metal layer 36b is a battery operation part belonging to the cell on the side to which the negative electrode metal foil 25 is connected.
  • the second metal layer 36b is preferably Ni, Cu, Fe, or stainless steel.
  • Each metal layer 36a, 36b need not be composed of a single metal, for example, the second metal layer 36b can be composed of Ni-plated Cu or Ni-plated Fe.
  • a surface treatment for improving the adhesion to the sealing material 32 may be applied to the entire surface of the conductive member 36 or in the vicinity of the bonding portion with the sealing material 32.
  • Such surface treatments include chromium-based treatment, zirconium-based treatment, phosphoric acid-based treatment, oxide film treatment, hydroxide film treatment and other film-based treatments, partially aminated phenolic resin-based treatments, silane coupling agents, titanates. And organic treatments such as coupling agents.
  • the method of laminating the first metal layer 36a and the second metal layer 36b is not particularly limited as long as the two metal layers 36a and 36b are laminated so that they can conduct, and a clad method, welding, and a conductive adhesive are used. Adhesion, crimping, force squeezing, and squeezing can be used. Alternatively, an assembly in which the first metal layer 36a bent in a wave shape is connected to the non-coated portion of the positive electrode metal foil 22 in one cell and the second metal foil 36b bent in a wave shape in the negative electrode of the other cell.
  • the assembly connected to the non-coated portion of the metal foil 25 may be made separately, and the metal layers 36a and 36b may be joined together by corrugating the corrugations.
  • the first metal layer 36a and the second metal layer 36b are electrically connected even if they are brought into contact with each other. In order to obtain a better conduction state, it is preferable to metal bond metal layers to each other by a clad method or welding. In this case, the place where the metal is bonded need not be the entire surface to be contacted, and may be partially formed at the upper end or the lower end in FIG. 5A.
  • connection method is not particularly limited. As a connection method, for example, both may be simply brought into contact, or resistance welding, laser welding, ultrasonic welding, force squeeze, fitting, pinching, or a method using a conductive adhesive may be used. Can be mentioned.
  • the thickness of the metal sheet used for the conductive members 26 and 32 is not particularly limited. However, like the conductive member 32 shown in FIG. 5A, the coating thickness of the positive electrode active material on one side of the positive electrode metal foil 22 and the coating thickness of the negative electrode active material on one side of the negative electrode metal foil 25
  • the thickness of the electrolyte (the thickness of the separator in the case of an electrolytic solution) between the overlapping positive electrode Z and negative electrode is preferably set equal to the sum. Accordingly, when the conductive member 32 is compressed from above and below after the conductive member 32 is disposed between adjacent cells, the interval between the positive electrode and the negative electrode can be maintained at an appropriate interval and can be firmly sandwiched. As a result, it is possible to prevent the positive electrode and the negative electrode from coming off from the conductive member 32, and to reduce the contact resistance.
  • a metal foil is used instead of a block-like or bar-like member as the conductive member, and the space around the connecting portion between the positive electrode and the negative electrode is filled with a sealing material.
  • a metal foil for positive electrode and a metal foil for negative electrode can be used.
  • FIG. 6 A specific example is shown in FIG. In the configuration shown in FIG. 6, as the positive electrode metal foil 22 and the negative electrode metal foil 25, those in which the non-coated portions are further extended than those shown in the respective embodiments described above are used.
  • the extended non-coated part is bent in the middle of the stacking direction of the positive electrode 21 and the negative electrode 24, and the height thereof is the distance between the positive electrode metal foil 22 and the negative electrode metal foil 25 in the stacking direction. Furthermore, it is folded back in the extending direction of the non-coated part at the same height.
  • a portion where the non-applied portion of the positive electrode metal foil 22 and the non-applied portion of the negative electrode metal foil 25 formed by this folding are welded is welded. Also, by bending the non-applied part
  • the formed space is filled with a sealing material 38 that also functions as a spacer.
  • the sealing material 38 includes a first portion 38a having a unit lamination period thickness, and a second portion having a thickness equal to the interval between the positive electrode metal foil 22 and the negative electrode metal foil 25 facing each other with the electrolyte therebetween.
  • the sealing material 38 is disposed so that the second portion 38b is located in a space formed by bending the non-application portion.
  • the bent shape of the non-application portion can be formed in advance.
  • the sealing material 38 is placed in a predetermined position of the non-application part with the second portion 38b facing the extending direction of the non-application part. In this state, it is preferable to form the non-coated portion by bending it so as to lie over the second portion 38b.
  • a sealing material in a fluid state after welding of the non-applied parts is provided with a space around the non-applied parts. It can also be formed by pouring and curing.
  • FIG. 6 shows the case where the electrolyte is an electrolytic solution.
  • the sealing material 38 does not need a blocking function of the electrolytic solution. It can be made into the shape which has the part 38b.
  • the fourth example is a configuration combining the configuration shown in FIG. 4 and the configuration shown in FIG. In other words, the concave and convex portion of the conductive member bent in a wave shape is embedded with a sealing material having an L-shaped cross section.
  • connection position and the pull-out position are arbitrary.
  • An example is shown in Fig. 7.
  • the control terminal 39 is composed of a strip-shaped metal plate, and is welded to a portion where the positive electrode metal foil 22 and the negative electrode metal foil 25 are overlapped and connected to each other, and the exterior film 4, It is pulled out of the film-clad battery via 5 heat-sealing parts.
  • two exterior films 4, 5 are used as the exterior material.
  • the exterior material a rigid container such as a metal container made of only a film or a plastic container may be used.
  • the electrode stack is described as a plurality of cells 2 connected in series, but another view can be taken. That is, a plurality of positive electrode groups, in which a plurality of positive electrodes 21 are arranged in a line in an in-plane direction facing the non-coated portion 22a with the non-coated portion 22a facing the same side, and a plurality of negative electrodes 24 are arranged. With the non-applied part 25a facing the same side, multiple negative electrode groups arranged in a line in the in-plane direction facing the non-applied part 25a should be considered alternately stacked via an electrolyte. Chisaru
  • the positive electrode group and the negative electrode group are arranged so that the positive electrode active material 23 and the negative electrode active material 26 face each other, and the non-coated portion 22a of the positive electrode 21 and the non-coated portion 25a of the negative electrode 24 are opposite to each other. They are stacked alternately so that they face each other.
  • the electrolyte (the separator 27 impregnated with the electrolytic solution or the solid electrolyte 37) is disposed in a region between the positive electrode group and the negative electrode group where each positive electrode active material 23 and each negative electrode active material 26 face each other. That is, each positive electrode active material 23 and each negative electrode active material 26 are opposed to each other via the electrolyte.
  • the non-applied portions 22a and 25a of the positive electrode 21 and the negative electrode 24 have a length that can overlap with the non-applied portions 22a and 25a of the counter electrode opposite to each other through the electrolyte. And a part of the non-application part 25a of the negative electrode 24 are alternately connected in the stacking direction and are electrically connected.
  • the conductive member 6 is provided, the non-application portions 22a and 25a are connected via the conductive member 6.
  • the sealing material 7 is provided so as to cover the connection part between the non-application parts 22a and 25a.
  • the electrode laminate is considered to be a laminate of a positive electrode group having a plurality of positive electrodes 21 and a negative electrode group having a plurality of negative electrodes 24 via an electrolyte, the effects thereof are the same as those described above.
  • the form is the same.
  • the chemical battery is described as an example of the electric device.
  • the present invention is an electrode that accumulates electric energy inside, such as a capacitor such as an electric double layer capacitor or an electrolytic capacitor.
  • the present invention can be applied to various electric devices in which the laminate is sealed with an exterior material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

A film packing battery (1) comprises a plurality of cells (2) connected in series, and packing films (4, 5) for sealing them. The cell (2) is arranged such that a plurality of positive electrodes (21) and negative electrodes (24) are laid alternately in layers through separators (27). The positive electrodes (21) and negative electrodes (24) have metal foils (22, 25) coated with electrode materials (23, 26) such that the ends on either side become uncoated parts (22a, 25a). The positive and negative electrodes are laid by directing the uncoated parts (22a, 25a) to the opposite sides. Adjacent cells (2) are connected electrically while overlapping the uncoated part (22a) of the positive electrode (21) and the uncoated part (25a) of the negative electrode (24) alternately in the laying direction.

Description

明 細 書  Specification
電極積層体および電気デバイス  Electrode laminate and electrical device
技術分野  Technical field
[0001] 本発明は、化学電池要素やキャパシタ要素などに用いられる電極積層体、および この電極積層体を用いた、電池やキャパシタに代表される電気デバイスに関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to an electrode laminate used for a chemical battery element, a capacitor element, and the like, and an electric device represented by a battery and a capacitor using the electrode laminate. Background art
[0002] 化学電池やキャパシタは、複数の正極板と複数の負極板とをセパレータを介して交 互に積層した電極積層体を、電解質とともに、金属やフィルムなど力もなる外装材で 気密封止(以下、単に「封止」という)した構成を有している。正極板および負極板 (以 下、正極と負極を区別しない場合は単に電極板という)は、金属箔の両面に電極材 料が塗布されて構成されている。また、電極板からは、外部引き出し用のリード部と接 続するために、電極材料が塗布されて!、な 、金属箔の部分が延びて!/、る。  [0002] For chemical batteries and capacitors, an electrode laminate in which a plurality of positive plates and a plurality of negative plates are alternately stacked via separators is hermetically sealed with an electrolyte and an exterior material such as metal or film. Hereinafter, the configuration is simply referred to as “sealing”. A positive electrode plate and a negative electrode plate (hereinafter simply referred to as an electrode plate when the positive electrode and the negative electrode are not distinguished from each other) are configured by applying an electrode material on both surfaces of a metal foil. In addition, electrode material is applied from the electrode plate to connect to the lead part for external lead! The metal foil part extends! /
[0003] 化学電池やキャパシタと!ヽつた電気デバイスの中でも、携帯電話、ノート型パソコン 、デジタルスチルカメラ、ビデオカメラといった携帯機器等の電源として用いられる電 池には、省スペース化が強く要求されている。また、国際的な地球環境の保護のため の省資源化や省エネルギ化の要請が高まるなか、モータを動力源として利用する電 気自動車やハイブリッド電気自動車の開発が急速に進められつつある。これら電気 自動車等にはモータ駆動用の電池が搭載される。電気自動車等に搭載される電池 には、軽量化や薄型化に加え、高工ネルギ密度、高出力密度が要求される。  [0003] Among electrical devices such as chemical batteries and capacitors, there is a strong demand for space saving in batteries used as power sources for mobile devices such as mobile phones, notebook computers, digital still cameras, and video cameras. ing. In addition, the development of electric vehicles and hybrid electric vehicles that use motors as a power source is rapidly progressing in response to increasing demands for resource saving and energy saving to protect the global environment. These electric vehicles are equipped with a battery for driving the motor. Batteries mounted on electric vehicles and the like are required to have high energy density and high output density in addition to being lighter and thinner.
[0004] このような要求を満たすため、特開 2003— 257473号公報 (特許文献 1)には、複 数の単セルを平面内で並べて接続した電池モジュールが開示されて 、る。単セルは 、正極となる電極板の片面の中央領域に正極材料を塗布した 1つの正極と、負極と なる電極板の片面の中央領域に負極材料を塗布した 1つの負極とを有する。正極と 負極とは、電解質を介してそれぞれの電極材料が対向するように積層され、電極材 料が塗布されていない領域で、外周部が全周にわたって絶縁材で封止される。単セ ル同士の接続は、複数の単セルを、電極板の極性が互いに異なるように列状に隣接 させ、一方の電極板間に導電ペーストを介在させるとともに、相隣接する他方の電極 板間に絶縁体を介在させることで行う。これにより、複数の単セルが直列に接続され る。そして、単セルを接続した集合体は、一端側の正極および他端側の負極にそれ ぞれリードが接続され、外装材内に封止される。 In order to satisfy such a requirement, Japanese Patent Application Laid-Open No. 2003-257473 (Patent Document 1) discloses a battery module in which a plurality of single cells are arranged and connected in a plane. The single cell has one positive electrode in which the positive electrode material is applied to the central region on one side of the electrode plate serving as the positive electrode, and one negative electrode in which the negative electrode material is applied to the central region on one side of the electrode plate serving as the negative electrode. The positive electrode and the negative electrode are laminated so that the respective electrode materials face each other through the electrolyte, and the outer peripheral portion is sealed with an insulating material over the entire circumference in a region where the electrode material is not applied. The connection between the single cells is made by adjoining a plurality of single cells in a row so that the polarities of the electrode plates are different from each other, interposing a conductive paste between one electrode plate and the other electrode adjacent to each other. This is done by interposing an insulator between the plates. As a result, a plurality of single cells are connected in series. In the assembly to which the single cells are connected, the lead is connected to the positive electrode on one end side and the negative electrode on the other end side, respectively, and is sealed in the exterior material.
[0005] 一方、特開 2003— 187781号公報 (特許文献 2)には、複数の電池要素を直列に 接続し、全体を外装材で封止した電池モジュールが開示されている。電池要素は、 正極と負極とが固体電解質を介して積層された構造を有する。正極および負極は、 電極板と、その一端部を除いた領域に塗布された電極材料とを有し、それぞれの電 極材料非塗布部が互いに反対方向を向くように積層される。正極および負極の電極 材料非塗布部は、それぞれの極ごとに集められて、その先端部が溶接などによって 一体的に接合される。そして、このように構成された複数の電池要素は、正極側の電 極材料非塗布部と負極側の電極材料非塗布部を隣接させて配置され、これらを重ね 合わせて接合することにより、直列に接続される。  [0005] On the other hand, Japanese Patent Application Laid-Open No. 2003-187781 (Patent Document 2) discloses a battery module in which a plurality of battery elements are connected in series and the whole is sealed with an exterior material. The battery element has a structure in which a positive electrode and a negative electrode are laminated via a solid electrolyte. The positive electrode and the negative electrode have an electrode plate and an electrode material applied to a region excluding one end thereof, and are laminated so that the respective electrode material non-applied portions face in opposite directions. The positive electrode and negative electrode material non-applied portions are collected for each electrode, and their tips are joined together by welding or the like. The plurality of battery elements configured as described above are arranged in such a manner that the electrode material non-applied portion on the positive electrode side and the electrode material non-applied portion on the negative electrode side are arranged adjacent to each other, and these are overlapped and joined in series. Connected to.
[0006] しかし、上述した従来の電池モジュールには、以下に示すような問題点があった。  [0006] However, the conventional battery module described above has the following problems.
[0007] 特許文献 1に開示された電池モジュールは、単セル同士の電気的接続力 電極板 の端面で行われる。そのため、単セル同士の接続は、電池モジュールに曲げ応力が 加わった場合に分離し易 、ような極めて不安定な状態での接続となって 、る。その 結果、単セル同士の接続信頼性の確保が困難である。  [0007] The battery module disclosed in Patent Document 1 is performed on the end face of the electrode plate of the electrical connection force between the single cells. Therefore, the connection between single cells is a connection in an extremely unstable state that is easy to be separated when bending stress is applied to the battery module. As a result, it is difficult to ensure connection reliability between single cells.
[0008] なお、特許文献 1には、正極側および負極側の少なくとも一方の電極板に延出部を 設け、この延出部を、隣接する単セルの電極板上に重ねることも開示されている。こ の構成によれば上記の問題は解決できる力 延出部の厚さ分だけ電池モジュールの 厚さが厚くなり、薄型化の妨げになってしまう。延出部は、充放電には寄与しない部 分であるので、この厚さの増加分はできればなくしたい。また、特許文献 1に開示され た構成でさらなる大容量ィ匕および大出力化を達成するには、複数の電池モジュール を積層することになる。この場合には、各電池モジュールはそれぞれ外装材に封止さ れているので、延出部だけでなぐ外装材の厚さも累積されることになるので、薄型化 に対してはさらに不利となる。  [0008] Note that Patent Document 1 also discloses that at least one electrode plate on the positive electrode side and the negative electrode side is provided with an extending portion, and this extending portion is overlapped on the electrode plate of an adjacent single cell. Yes. According to this configuration, the thickness of the battery module is increased by the thickness of the force extending portion that can solve the above problem, which hinders thinning. The extension part is a part that does not contribute to charging / discharging, so we want to eliminate this increase in thickness if possible. Further, in order to achieve a larger capacity and a higher output with the configuration disclosed in Patent Document 1, a plurality of battery modules are stacked. In this case, since each battery module is sealed with the exterior material, the thickness of the exterior material that extends only by the extension portion is accumulated, which is further disadvantageous for thinning. .
[0009] また、特許文献 1に開示されて!ヽるような、電極板に筐体の機能を兼ねさせた単セ ルでは、電極材料が片面のみに塗布された電極板を用いらざるを得なくなる。そのた め、大容量あるいは高電圧を得るために複数の単セルを積み重ねたとしても、電極 材料と電極板との積層部分だけに着目すれば、電極材料が両面に塗布された電極 板を積層した場合と比較して、電極板が重複する分だけ、体積効率が悪くなる。 [0009] In addition, as disclosed in Patent Document 1, a single cell in which an electrode plate also serves as a housing is used, an electrode plate in which an electrode material is applied only on one side must be used. You won't get. That Therefore, even if multiple single cells are stacked in order to obtain a large capacity or high voltage, when focusing only on the layered part of the electrode material and the electrode plate, the electrode plate coated with electrode material on both sides is stacked. In comparison with, the volume efficiency is reduced by the amount of overlap of the electrode plates.
[0010] 一方、特許文献 2に開示された電池モジュールは、正極と負極との積層数、および 接続する電池要素の数を適宜設定すれば、必要な容量および出力を得ることができ る。しかし、特許文献 2に記載の電池モジュールでは、電池要素間の電気的接続を、 電極板の電極材料非塗布部を集めて一体ィ匕した部分である一体ィ匕部同士を重ね合 わせることによって行っている。そのため、特許文献 2に記載の電池モジュールは、 全体での平面寸法の小型化という観点力も見た場合に制限があった。特許文献 2で は電極材料が両面に塗布された電極板を用いており、その点では、電極材料と電極 板との積層部分だけに着目すれば、特許文献 1に開示されたものよりも体積効率は 高い。しかし、次に述べる理由で、他の部分において体積効率のロスが依然として存 在していた。  [0010] On the other hand, the battery module disclosed in Patent Document 2 can obtain necessary capacity and output by appropriately setting the number of stacked positive electrodes and negative electrodes and the number of battery elements to be connected. However, in the battery module described in Patent Document 2, the electrical connection between the battery elements is made by superimposing the integral parts, which are the parts where the electrode material non-coated parts of the electrode plate are gathered together. Is going by. For this reason, the battery module described in Patent Document 2 has a limitation when viewed from the viewpoint of reducing the overall planar dimensions. In Patent Document 2, an electrode plate coated with electrode material on both sides is used. In that respect, if attention is paid only to the laminated portion of the electrode material and the electrode plate, the volume is larger than that disclosed in Patent Document 1. Efficiency is high. However, for the following reasons, volumetric efficiency loss still existed elsewhere.
[0011] 電池要素の、正極および負極の電極材料が塗布された部分が対向した領域 (以下 、積層部ともいう)力 一体ィ匕部までの領域は、充放電には寄与せず、し力も隣接す る電池要素との接続にも寄与しない領域である。そのため、平面寸法の小型化という 観点からは、一体ィ匕部はできるだけ積層部に近接させることが好ましい。その一方で 、積層部力 一体ィ匕部までの距離を決めるに当たっては、以下のことも考慮する必要 がある。  [0011] The area of the battery element where the portions where the positive electrode and negative electrode electrode materials are applied are opposed to each other (hereinafter also referred to as a laminated portion). This is a region that does not contribute to connection with adjacent battery elements. Therefore, from the viewpoint of reducing the planar dimensions, it is preferable that the integral flange portion is as close as possible to the laminated portion. On the other hand, the following must also be taken into account when determining the distance to the laminating force unit.
[0012] 電池要素は、積層部では、各基板の厚さ、各基板に塗布された電極材料の厚さ、 および各基板間の固体電解質の厚さを合計した厚さを有する。それに対し、一体ィ匕 部の厚さは、それぞれの極の各基板のみの厚さを合計した厚さを有する。そのため、 積層部から一体ィ匕部へ向カゝぅにつれて、電極材料非塗布部は全体としての厚みを減 じるように湾曲して集められる。  [0012] In the stacked portion, the battery element has a total thickness including the thickness of each substrate, the thickness of the electrode material applied to each substrate, and the thickness of the solid electrolyte between the substrates. On the other hand, the thickness of the integral part has a total thickness of only the substrates of the respective poles. Therefore, the electrode material non-applied portion is collected in a curved shape so as to reduce the overall thickness as it goes from the laminated portion to the integral portion.
[0013] 電極材料が塗布される基板は、一般的に金属箔カゝらなる。また、積層部から一体化 部までの距離が同じであれば、正極および負極の合計の積層枚数が多くなればなる ほど、積層部に対する電極材料非塗布部の湾曲の角度が大きくなる。したがって、例 えば、正極および負極の厚さがそれぞれ 60 m以上であり、それらの合計の積層枚 数が 30枚以上となるような場合、電極材料非塗布部の湾曲の角度が大きくなり過ぎ、 金属箔が破断してしまうことがある。そこで、金属箔が破断しない程度まで電極材料 非塗布部の湾曲を緩和する必要がある。そのためには、一体化部を積層部からでき るだけ離す必要が生じて、充放電に寄与しない部分のサイズの増大につながつてし まう。つまり、従来の構成では、金属箔の破断という問題を考慮すると、結果的に、平 面寸法の小型化が制限されてしまう。 [0013] A substrate to which the electrode material is applied is generally a metal foil. Further, if the distance from the laminated portion to the integrated portion is the same, the greater the total number of stacked positive electrodes and negative electrodes, the greater the angle of curvature of the electrode material non-coated portion with respect to the laminated portion. Therefore, for example, the thickness of each of the positive electrode and the negative electrode is 60 m or more, and the total number of laminated sheets When the number is 30 or more, the angle of curvature of the electrode material non-applied portion becomes too large, and the metal foil may break. Therefore, it is necessary to relax the curvature of the non-coated portion of the electrode material to such an extent that the metal foil does not break. For this purpose, it is necessary to separate the integrated part from the laminated part as much as possible, which leads to an increase in the size of the part that does not contribute to charge / discharge. In other words, in the conventional configuration, if the problem of breaking the metal foil is taken into consideration, as a result, downsizing of the planar dimensions is limited.
発明の開示  Disclosure of the invention
[0014] 本発明は、上述した従来の問題点に鑑みてなされたものであり、電気工ネルギの蓄 積に寄与しない部分の寸法をできるだけ抑えつつ、大容量化および大出力化に柔 軟に対応し得る電極積層体および電気デバイスを提供することを目的とする。  [0014] The present invention has been made in view of the conventional problems described above, and is flexible to increase the capacity and output while minimizing the size of the portion that does not contribute to the accumulation of electric energy. An object of the present invention is to provide an electrode laminate and an electric device that can be used.
[0015] 上記目的を達成するため本発明の電極積層体は、電気工ネルギを内部に蓄積す る電極積層体であって、それぞれ複数の正極および複数の負極が電解質を介して 交互に積層された複数のセルを有する。正極および負極は、一端部が非塗布部とな るように電極材料が塗布されたシート状金属部材を有し、正極の非塗布部と負極の 非塗布部とを互いに反対側に向けて突出させて積層される。複数のセルは、正極の 非塗布部と負極の非塗布部とを向かい合わせて配列され、互いに隣り合ったセルの 間で、一方のセルの正極の非塗布部の一部と他方のセルの負極の非塗布部の一部 と力 正極と負極との積層方向に交互に重なって電気的に接続されて 、る。  [0015] In order to achieve the above object, an electrode laminate of the present invention is an electrode laminate in which electric energy is accumulated, and a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via an electrolyte. A plurality of cells. The positive electrode and the negative electrode have a sheet-like metal member coated with an electrode material so that one end portion is a non-coated portion, and the non-coated portion of the positive electrode and the non-coated portion of the negative electrode protrude toward opposite sides. Are stacked. The plurality of cells are arranged with the non-coated portion of the positive electrode and the non-coated portion of the negative electrode facing each other, and between the cells adjacent to each other, a part of the non-coated portion of the positive electrode of one cell and the non-coated portion of the other cell are arranged. A part of the non-coated portion of the negative electrode and the force are electrically connected in an overlapping manner in the stacking direction of the positive electrode and the negative electrode.
[0016] 上記のとおり構成された本発明の電極積層体では、隣り合ったセル同士の非塗布 部が交互に重なり合って電気的に接続されている。このように、隣り合うセルの非塗 布部を交互に重ね合わせて複数のセルを配列することにより、非塗布部の湾曲が緩 和されるので、セルをより近接して配列することができるようになるとともに、正極と負 極との積層枚数の制限も緩和される。  [0016] In the electrode laminate of the present invention configured as described above, the non-coated portions of adjacent cells are alternately overlapped and electrically connected. In this way, by arranging the plurality of cells by alternately overlapping the non-coated portions of adjacent cells, the curvature of the non-coated portion is reduced, so that the cells can be arranged closer to each other. As a result, the limitation on the number of stacked positive and negative electrodes is eased.
[0017] 電解質は、電解液であってもよいし、固体電解質またはポリマー電解質であっても よい。電解質が電解液の場合は、積層された正極と負極との間に配された、電解液 を含浸したセパレータと、互いに隣り合うセルの間で、一方のセルの電解液が他方の セルに属する電池作用部材と接触しないようにするシール材とをさらに有することが 好ましい。また、互いに隣り合ったセルの間で、正極の非塗布部と負極の非塗布部と の間に、定まった導電部材を有し、導電部材によって正極と負極とが電気的に接続 された構成とすることで、非塗布部の湾曲がさらに緩和される。 [0017] The electrolyte may be an electrolytic solution, a solid electrolyte, or a polymer electrolyte. When the electrolyte is an electrolyte, the electrolyte in one cell belongs to the other cell between the separators impregnated with the electrolyte disposed between the stacked positive and negative electrodes and the cells adjacent to each other It is preferable to further include a sealing material that prevents contact with the battery working member. In addition, between the cells adjacent to each other, the non-coated portion of the positive electrode and the non-coated portion of the negative electrode By having a fixed conductive member in between, and the positive electrode and the negative electrode are electrically connected by the conductive member, the curvature of the non-applied portion is further alleviated.
[0018] 本発明の電気デバイスは、上記本発明の電極積層体と、電極積層体の、複数のセ ルの配列方向での両端の正極の非塗布部および負極の非塗布部にそれぞれ電気 的に接続された、正極用および負極用のタブと、タブを延出させて電極積層体を封 止する外装材とを有する。このように、上述した本発明の電極積層体を有すること〖こ より、セルがより近接して配列されているとともに正極と負極との積層枚数の制限も緩 和された電気デバイスが達成される。  [0018] The electrical device of the present invention is electrically connected to the non-coated portion of the positive electrode and the non-coated portion of the negative electrode at both ends in the arrangement direction of the plurality of cells of the electrode stacked body of the present invention. A positive electrode tab and a negative electrode tab, and an exterior material that extends the tab and seals the electrode laminate. Thus, by having the electrode laminate of the present invention described above, an electric device is achieved in which cells are arranged closer together and the limitation on the number of stacked positive and negative electrodes is relaxed. .
[0019] 本発明にお 、て、「電池作用部材」とは、電極材料、およびそれが塗布されたシート 状金属部材、および電解質といった、電池作用によって電位を持つ部材を意味し、 絶縁物は含まない。  In the present invention, the “battery acting member” means a member having a potential due to a battery action, such as an electrode material, a sheet-like metal member coated with the electrode material, and an electrolyte. Not included.
[0020] 本発明によれば、積層方向に隣接する正極と負極との非塗布部を交互に重ね合わ せて複数のセルを接続することで、正極および負極の配列効率を向上することがで き、し力も正極と負極との積層数の制限を緩和することができる。  [0020] According to the present invention, it is possible to improve the arrangement efficiency of the positive electrode and the negative electrode by connecting a plurality of cells by alternately overlapping the non-coated portions of the positive electrode and the negative electrode adjacent in the stacking direction. Further, the limit of the number of layers of the positive electrode and the negative electrode can be relaxed.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]本発明の一実施形態による電気デバイスであるフィルム外装電池の分解斜視 図である。  FIG. 1 is an exploded perspective view of a film-clad battery that is an electrical device according to an embodiment of the present invention.
[図 2]図 1に示すフィルム外装電池の、セルの配列方向に沿った模式的断面図である  2 is a schematic cross-sectional view of the film-clad battery shown in FIG. 1 along the cell arrangement direction.
[図 3]本発明の他の実施形態によるフィルム外装電池の、セルの配列方向に沿った 模式的断面図である。 FIG. 3 is a schematic cross-sectional view along the cell arrangement direction of a film-clad battery according to another embodiment of the present invention.
[図 4]本発明に用いられる導電部材の一変形例を示す、フィルム外装電池のセル間 の接続部の断面図である。  FIG. 4 is a cross-sectional view of a connection portion between cells of a film-clad battery, showing a modification of the conductive member used in the present invention.
[図 5A]本発明に用いられる導電部材の他の例を示す、フィルム外装電池のセル間の 接続部の断面図である。  FIG. 5A is a cross-sectional view of a connection portion between cells of a film-clad battery, showing another example of a conductive member used in the present invention.
[図 5B]図 5Aに示す B— B線で切断した、フィルム外装電池の断面図である。  FIG. 5B is a cross-sectional view of the film-clad battery cut along the line BB shown in FIG. 5A.
[図 5C]図 5Aに示す C C線で切断した、フィルム外装電池の断面図である。  FIG. 5C is a cross-sectional view of the film-clad battery cut along the CC line shown in FIG. 5A.
[図 6]本発明に用いられる導電部材のさらに他の変形例を示す、フィルム外装電池の セル間の接続部の断面図である。 [FIG. 6] A film-clad battery showing still another modification of the conductive member used in the present invention. It is sectional drawing of the connection part between cells.
[図 7]本発明に用いられる制御用端子の一変形例を示す図である。  FIG. 7 is a view showing a modification of the control terminal used in the present invention.
符号の説明  Explanation of symbols
[0022] 1 フィルム外装電池 [0022] 1 film-clad battery
2 セル  2 cells
3a 正極タブ  3a Positive tab
3b 負極タブ  3b Negative electrode tab
4, 5 外装フィルム  4, 5 Exterior film
6, 26, 36 導電部材  6, 26, 36 Conductive member
6a, 39 制御用端子  6a, 39 Control terminal
7, 32, 38 シール材  7, 32, 38 Sealing material
21  twenty one
22 正極用金属箔  22 Metal foil for positive electrode
22a, 25a 非塗布部  22a, 25a Unapplied part
23 正極活物質  23 Cathode active material
24 負極  24 Negative electrode
25 負極用金属箔  25 Metal foil for negative electrode
26 負極活物質  26 Negative electrode active material
27 セパレータ  27 Separator
37 固体電解質  37 Solid electrolyte
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 図 1および図 2を参照すると、複数の正極 21および複数の負極 24を含む電極積層 体と、電極積層体を電解質とともに封止する外装フィルム 4, 5と、を有する、本発明 の一実施形態によるフィルム外装電池 1が示されている。正極 21および負極 24は、 電極積層体が電気工ネルギを内部に蓄積し、かつ蓄積した電気工ネルギを外部に 放出することのできるように、交互に積層されている。電極積層体は、一列に配列さ れて直列接続された複数のセル 2 (本実施形態では 3つ)を有する。セル 2の配列方 向において、一端側に位置するセル 2の正極 21には正極タブ 3aが接続され、他端 側に位置するセル 2の負極 24には負極タブ 3bが接続されている。正極タブ 3aおよ び負極タブ 3bは、それぞれ先端部を外装フィルム 4, 5から突出させて接続されてお り、フィルム外装電池 1を外部装置と電気的に接続するのに用 ヽられる。 [0023] Referring to FIG. 1 and FIG. 2, the present invention has an electrode laminate including a plurality of positive electrodes 21 and a plurality of negative electrodes 24, and exterior films 4 and 5 that seal the electrode laminate together with an electrolyte. A film-clad battery 1 according to one embodiment is shown. The positive electrode 21 and the negative electrode 24 are alternately laminated so that the electrode laminate can accumulate the electric energy and discharge the accumulated electric energy to the outside. The electrode stack has a plurality of cells 2 (three in this embodiment) arranged in a line and connected in series. In the arrangement direction of the cell 2, the positive electrode tab 3a is connected to the positive electrode 21 of the cell 2 located on one end side, and the other end A negative electrode tab 3b is connected to the negative electrode 24 of the cell 2 located on the side. The positive electrode tab 3a and the negative electrode tab 3b are connected with their tip portions protruding from the outer films 4 and 5, respectively, and are used to electrically connect the film outer battery 1 to an external device.
[0024] 外装フィルム 4, 5は、電極積層体の平面寸法よりも大きな平面寸法を有しており、 電極積層体をその厚み方向(正極 21と負極 24との積層方向)両側から挟んで包囲し ている。これによつて外装フィルム 4, 5は、電極積層体の周囲で重なり合い、重なり 合った対向面同士が熱融着されることで、電極積層体が封止される。一方の外装フィ ルム 4には、電極積層体を包囲する空間を形成するために、カップ部 4aが中央領域 に形成されている。外装フィルム 4, 5は、このカップ部 4aの全周にわたって熱融着さ れる。カップ部 4aの加工は、深絞り成形によって行うことができる。本実施形態では 一方の外装フィルム 4のみにカップ部 4aを形成した力 各外装フィルム 4, 5にカップ 部を形成してもよいし、カップ部を形成せずに外装フィルム 4, 5の柔軟性を利用して 電極積層体を包囲してもよ ヽ。 [0024] The exterior films 4 and 5 have a planar dimension larger than that of the electrode laminate, and surround the electrode laminate from both sides in the thickness direction (the laminate direction of the positive electrode 21 and the negative electrode 24). is doing. As a result, the exterior films 4 and 5 overlap each other around the electrode laminate, and the overlapping opposing surfaces are heat-sealed to seal the electrode laminate. One exterior film 4 has a cup portion 4a formed in the central region in order to form a space surrounding the electrode laminate. The exterior films 4 and 5 are heat-sealed over the entire circumference of the cup portion 4a. The cup portion 4a can be processed by deep drawing. In this embodiment, the force of forming the cup portion 4a only on one of the exterior films 4 may be formed on each of the exterior films 4 and 5, or the flexibility of the exterior films 4 and 5 without forming the cup portion. You can use to surround the electrode stack.
[0025] 外装フィルム 4, 5としてはラミネートフィルムを好ましく用いることができる。外装フィ ルム 4, 5を構成するラミネートフィルムとしては、柔軟性を有しており、かつ電極積層 体を電解質とともに封止できるものであれば種々のフィルムを利用することができる。 代表的には、熱融着性榭脂からなる熱融着層と、金属薄膜など力 なる非通気層と、 ポリエチレンテレフタレートなどのポリエステルやナイロンなどのフィルムからなる保護 層とをこの順に積層したものが挙げられる。外装フィルム 4, 5は、これらのうち少なくと も熱融着層と非通気層とを有していればよぐ保護層は必要に応じて設けられる。電 極積層体を封止するに際しては、熱融着層を対向させて電極積層体を包囲する。  [0025] As the exterior films 4 and 5, a laminate film can be preferably used. As the laminate film constituting the exterior films 4 and 5, various films can be used as long as they have flexibility and can seal the electrode laminate together with the electrolyte. Typically, a heat-sealing layer made of heat-fusible resin, a strong non-breathing layer such as a metal thin film, and a protective layer made of a film of polyester or nylon such as polyethylene terephthalate are laminated in this order. Is mentioned. The exterior films 4 and 5 are provided with a protective layer as needed as long as they have at least a heat-sealing layer and a non-air-permeable layer. When sealing the electrode laminate, the electrode laminate is surrounded with the heat-sealing layer facing each other.
[0026] 非通気層を構成する金属薄膜としては、例えば、厚さが 10〜: LOO /z mの Al、 Ti、 T i合金、 Fe、ステンレス、 Mg合金などの箔を用いることができる。熱融着層を構成する 榭脂としては、例えば、ポリプロピレン、ポリエチレン、これらの酸変成物、ポリフエ-レ ンサルファイド、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、エチレン 酢酸ビュル共重合体、アイオノマーなどが使用できる。  [0026] As the metal thin film constituting the non-breathing layer, for example, a foil of Al, Ti, Ti alloy, Fe, stainless steel, Mg alloy or the like having a thickness of 10 to: LOO / zm can be used. As the resin constituting the heat-sealing layer, for example, polypropylene, polyethylene, these acid-modified products, polyester such as polyethylene terephthalate, polyethylene terephthalate, polyamide, ethylene acetate butyl copolymer, ionomer, etc. can be used. .
[0027] また、非通気層としては、金属薄膜以外に、酸ィ匕珪素や酸ィ匕アルミニウムなどの無 機絶縁体であっても、非通気性を有していれば用いることができる。本実施形態のよ うに、直列に接続された複数のセル 2を 1つの外装体に収納する場合、異なる電位を 持つ電解液を収納することになるので、非通気層を絶縁性とすれば、不慮の事態に より電解液と非通気層とが接触しても、セル間でショートするのを防止できる。また、 非水電解質電池の場合は非通気層が必要であるが、そうでない場合は、非通気層 は必ずしも必要はない。 In addition to the metal thin film, an inorganic insulator such as silicon oxide or acid aluminum can be used as the gas-impermeable layer as long as it has gas permeability. This embodiment Thus, when storing multiple cells 2 connected in series in one exterior body, electrolytes with different potentials will be stored. Even if the electrolytic solution and the non-venting layer come into contact with each other, it is possible to prevent a short circuit between the cells. In the case of a nonaqueous electrolyte battery, a non-venting layer is necessary, but in other cases, the non-venting layer is not necessarily required.
[0028] 熱融着層の厚さは、電極積層体の良好な封止のためには、 10〜200 μ mが好まし く、より好ましくは 30〜: LOO μ mである。  [0028] The thickness of the heat-sealing layer is preferably 10 to 200 µm, and more preferably 30 to LOO µm, for good sealing of the electrode laminate.
[0029] 電極積層体は、前述したように、直列に接続された 3つのセル 2を有する。セル 2に ついて、図 2を参照して以下に詳しく説明する。 [0029] As described above, the electrode stack includes three cells 2 connected in series. Cell 2 is described in detail below with reference to FIG.
[0030] セル 2は、複数の正極 21と複数の負極 24とを、各正極 21と各負極 24との間にセパ レータ 27が介在し、かつ負極 24が最上面および最下面に位置するように、交互に積 層した構造を有する。 [0030] Cell 2 includes a plurality of positive electrodes 21 and a plurality of negative electrodes 24, with separators 27 interposed between each positive electrode 21 and each negative electrode 24, and negative electrode 24 positioned on the uppermost surface and the lowermost surface. In addition, it has a structure in which layers are alternately stacked.
[0031] 正極 21は、シート状の金属部材である正極用金属箔 22と、その両面に塗布された 正極活物質 23とを有する。正極活物質 23は、正極用金属箔 22の一端部を除いた 領域に塗布されており、正極 21の正極活物質 23が塗布されていない一端部は、非 塗布部 22aとなっている。負極 24は、シート状の金属部材である負極用金属箔 25と 、その両面に塗布された負極活物質 26とを有する。負極活物質 26は、負極用金属 箔 25の一端部を除いた領域に塗布されており、負極 24の負極活物質 26が塗布され て 、な 、一端部は、非塗布部 25aとなって 、る。  [0031] The positive electrode 21 has a positive electrode metal foil 22 that is a sheet-like metal member, and a positive electrode active material 23 applied to both surfaces thereof. The positive electrode active material 23 is applied to a region excluding one end portion of the positive electrode metal foil 22, and one end portion of the positive electrode 21 where the positive electrode active material 23 is not applied is an uncoated portion 22a. The negative electrode 24 has a negative electrode metal foil 25 that is a sheet-like metal member, and a negative electrode active material 26 applied to both surfaces thereof. The negative electrode active material 26 is applied to a region excluding one end portion of the negative electrode metal foil 25, and the negative electrode active material 26 of the negative electrode 24 is applied, and one end portion becomes an uncoated portion 25a. The
[0032] 各セル 2において、正極 21と負極 24とは、それぞれの非塗布部 22a, 25aを互いに 反対側に向けて、かつ正極活物質 23と負極活物質 26とが、セパレータ 27を介して 互いに対向するように積層されている。したがって、各セル 2は、正極活物質 23と負 極活物質 26とがセパレータ 27を介して積層された部分である電極積層部の一端か ら正極 21の非塗布部 22aが突出し、他端力も負極 24の非塗布部 25aが突出した構 成となっている。  [0032] In each cell 2, the positive electrode 21 and the negative electrode 24 have their respective non-coated portions 22a and 25a facing away from each other, and the positive electrode active material 23 and the negative electrode active material 26 are interposed via the separator 27. They are stacked so as to face each other. Therefore, in each cell 2, the non-coated portion 22a of the positive electrode 21 protrudes from one end of the electrode laminate portion where the positive electrode active material 23 and the negative electrode active material 26 are laminated via the separator 27, and the other end force is also The non-coated part 25a of the negative electrode 24 is projected.
[0033] なお、図 2では、正極 21とセパレータ 27、および負極 24とセパレータ 27は、互いに 間隔をあけて配置しているように示されている力 実際には、これらは密着して積層さ れる。また、図 2は単に各セル 2の接続構造および各セル 2での積層構造の一例を示 すものであって、セル 2の数、および各セル 2における正極 21、負極 24の数は、図 2 に示したものに限らない。 In FIG. 2, the positive electrode 21 and the separator 27, and the negative electrode 24 and the separator 27 are shown as being spaced apart from each other. It is. Fig. 2 simply shows an example of the connection structure of each cell 2 and the laminated structure of each cell 2. The number of cells 2 and the number of positive electrodes 21 and negative electrodes 24 in each cell 2 are not limited to those shown in FIG.
[0034] 各セル 2のうち、両端に位置する 2つのセル 2は、一方においては正極 21の非塗布 部 22aが積層方向に集められて一括して正極タブ 3aと電気的に接続され、他方にお いては負極 24の非塗布部 25aが積層方向に集められて一括して負極タブ 3bと電気 的に接続されている。正極 21の非塗布部 22aと正極タブ 3aとの接続、および負極 24 の非塗布部 25aと負極タブ 3bとの接続は、例えば超音波溶接によって行うことができ る。 [0034] Of each cell 2, two cells 2 located at both ends are gathered in the laminating direction on one side, and the non-coated portions 22a of the positive electrode 21 are collectively connected to the positive electrode tab 3a on the other side. In this case, the non-coated portions 25a of the negative electrode 24 are gathered in the stacking direction and collectively connected to the negative electrode tab 3b. The connection between the non-coated portion 22a of the positive electrode 21 and the positive electrode tab 3a and the connection between the non-coated portion 25a of the negative electrode 24 and the negative electrode tab 3b can be performed by, for example, ultrasonic welding.
[0035] セル 2は、正極 21の非塗布部 22aおよび負極 24の非塗布部 25aが同じ向きを向く ように、隣接する 2つのセル 2の関係で正極 21の非塗布部 22aと負極 24の非塗布部 25aとを向かい合わせて 1列に並べられる。隣接する 2つのセル 2の間では、一方の セル 2の正極 21の非塗布部 22aの間に、他方のセル 2の負極 24の非塗布部 25aが 進入している。つまり、隣接する 2つのセルの間では、一方のセルの正極 21の非塗 布部 22aの一部と他方のセル 2の負極 24の非塗布部 25aの一部とが、正極 21と負 極 24との積層方向に交互に重なって配置されて 、る。  [0035] The cell 2 includes the non-applied portion 22a of the positive electrode 21 and the negative electrode 24 in relation to the adjacent two cells 2 so that the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24 face the same direction. They are arranged in a row with the non-application part 25a facing each other. Between two adjacent cells 2, the non-applied part 25 a of the negative electrode 24 of the other cell 2 enters between the non-applied part 22 a of the positive electrode 21 of one cell 2. That is, between two adjacent cells, a part of the non-coated part 22a of the positive electrode 21 of one cell and a part of the non-coated part 25a of the negative electrode 24 of the other cell 2 are connected to the positive electrode 21 and the negative electrode. 24 and are stacked alternately in the stacking direction.
[0036] 隣接する 2つのセル 2の間で、正極 21の非塗布部 22aと負極 24の非塗布部 25aと の互いに重なり合つている部分の間にはそれぞれ、ブロック状またはバー状の導電 部材 6が配置されている。これら導電部材 6によって非塗布部 22a, 25aが電気的に 接続され、これによつて、複数のセル 2が直列接続される。  [0036] Between adjacent two cells 2, between the overlapping portions of the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24, a block-shaped or bar-shaped conductive member is provided. 6 is arranged. The non-coating portions 22a and 25a are electrically connected by these conductive members 6, whereby a plurality of cells 2 are connected in series.
[0037] 各セル 2はそれぞれ、電解質として電解液を保持して!/、る。複数のセル 2を直列接 続した場合、セル 2間を電解液が自由に流通できると、各セル 2が短絡した状態とな るなど正常な直列接続状態でなくなる。そこで、隣接する 2つのセル 2間において、一 方のセル 2の電解液が他方のセル 2を構成する部材と接触しな ヽように、隣接するセ ル 2の間にはシール材 7が設けられている。具体的には、シール材 7は、隣接する 2 つのセル 2の間で、非塗布部 22a, 25aおよびそれに接続された導電部材 6が、隣接 するセル 2の電解液収納部分に露出しな 、ように、重なり合って 、る正極 21の非塗 布部 21a間の隙間、重なり合つている負極 24の非塗布部 24a間の隙間を埋めるよう に設けられている。これによつて、セル 2ごとに電解液が個別に保持される。 [0038] 正極 21、負極 24、および電解液等の材料は、電極積層 [0037] Each cell 2 holds an electrolytic solution as an electrolyte. When a plurality of cells 2 are connected in series, if the electrolyte can freely flow between the cells 2, the cells 2 are not in a normal series connection state such as a short circuit. Therefore, a sealing material 7 is provided between the adjacent cells 2 so that the electrolyte in one cell 2 does not come into contact with the members constituting the other cell 2 between the two adjacent cells 2. It has been. Specifically, in the sealing material 7, between the two adjacent cells 2, the non-applied portions 22a and 25a and the conductive member 6 connected thereto are not exposed to the electrolyte storage portion of the adjacent cell 2. As described above, the gaps between the non-coated portions 21a of the positive electrode 21 and the gaps between the non-coated portions 24a of the overlapping negative electrodes 24 are filled. As a result, the electrolyte is individually held for each cell 2. [0038] Materials such as positive electrode 21, negative electrode 24, and electrolyte solution are laminated
体の用途、すなわち本実施形態で 、えばフィルム外装電池 1の種類に応じて適宜選 択される。フィルム外装電池 1の種類は特に限定されるものではなぐリチウムイオン 二次電池、リチウムメタル一次電池あるいは二次電池、リチウムポリマー電池などの 非水電解質電池、ニッケル水素電池、ニッケルカドミウム電池、鉛蓄電池などの水系 電池など、種々の化学電池が挙げられる。  In the present embodiment, for example, according to the type of the film-clad battery 1, it is appropriately selected. The type of film-clad battery 1 is not particularly limited Lithium ion secondary battery, lithium metal primary or secondary battery, non-aqueous electrolyte battery such as lithium polymer battery, nickel metal hydride battery, nickel cadmium battery, lead acid battery, etc. There are various chemical batteries such as water-based batteries.
[0039] 例えばリチウムイオン二次電池の場合、正極 21は、正極活物質 23としてリチウム' マンガン複合酸化物、コバルト酸リチウム等を、正極用金属箔 22として、厚さ 3〜50 mのアルミニウム箔を用いることがでる。負極 24は、負極活物質 26としてリチウムを ドープ '脱ドープ可能な炭素材料を、負極用金属箔 25として、厚さ 3〜50 mの銅箔 を用いることができる。この場合、電解液としては、リチウム塩を含む電解液を用いる ことができる。また、導電部材 6には、アルミニウムおよび銅の双方と接合できる金属、 例えば、アルミニウムおよび銅と超音波溶接が可能なニッケルを用いることができる。 また、鉄、ステンレス、銅、これらをニッケルめつきしたもの、スズめっきしたものでもよ V、。導電部材 6と正極用金属箔 22あるいは負極用金属箔 25との接続方法としては、 接触、溶接、力シメ、ねじ止め、嵌め込み、挟み込み、半田付け、導電性接着剤を用 V、る方法などの方法を用いることができる。  [0039] For example, in the case of a lithium ion secondary battery, the positive electrode 21 is an aluminum foil having a thickness of 3 to 50 m using a lithium-manganese composite oxide, lithium cobalt oxide or the like as the positive electrode active material 23 and the metal foil 22 for the positive electrode. Can be used. For the negative electrode 24, a carbon material that can be doped and dedoped with lithium as the negative electrode active material 26, and a copper foil with a thickness of 3 to 50 m can be used as the metal foil 25 for the negative electrode. In this case, an electrolytic solution containing a lithium salt can be used as the electrolytic solution. The conductive member 6 can be made of a metal that can be bonded to both aluminum and copper, for example, nickel that can be ultrasonically welded to aluminum and copper. Also, iron, stainless steel, copper, nickel-plated or tin-plated V, etc. Methods for connecting the conductive member 6 to the positive electrode metal foil 22 or negative electrode metal foil 25 include contact, welding, force squeezing, screwing, fitting, sandwiching, soldering, and using a conductive adhesive. This method can be used.
[0040] さらに、正極用金属箔 22にアルミニウム箔を用いた場合、正極タブ 3aにはアルミ- ゥム板を用いることができ、負極用金属箔 25に銅箔を用いた場合は、負極タブ 3bに は銅板を用いることができる。負極タブ 3bを銅板で構成する場合、その表面に-ッケ ルめっきを施してもよい。  [0040] Furthermore, when an aluminum foil is used for the positive electrode metal foil 22, an aluminum plate can be used for the positive electrode tab 3a. When a copper foil is used for the negative electrode metal foil 25, a negative electrode tab is used. A copper plate can be used for 3b. When the negative electrode tab 3b is formed of a copper plate, the surface thereof may be plated with nickel.
[0041] セパレータ 27やシール材 7は、フィルム外装電池 1の種類によらず、必要な機能に 応じた材料が適宜選択される。セパレータ 27としては、ポリオレフイン等の熱可塑性 榭脂から作られた、マイクロポーラスフイルム (微多孔フィルム)、不織布または織布な ど、電解液を含浸することのできるシート状の部材を用いることができる。  [0041] The separator 27 and the sealing material 7 are appropriately selected in accordance with the required function regardless of the type of the film-clad battery 1. As the separator 27, a sheet-like member that can be impregnated with an electrolytic solution, such as a microporous film (microporous film), a nonwoven fabric, or a woven fabric made of thermoplastic resin such as polyolefin can be used. .
[0042] シール材 7としては、電解液を遮断することのできる種々の材料を用いることができ る。ただし、シール材 7には、一方のセル 2の電解液が隣接する他方のセル 2に属す る電池作用部材と電気的に接触するのを遮断し、かつセル間で電解液がリークしな いように非塗布部 22a、 25aと良好に密着する性能が求められる。そのことを考慮す ると、シール材 7には、金属接着性榭脂を用いることが好ましい。金属接着性榭脂とし ては、例えば酸変性ポリエチレン、酸変性ポリプロピレンなどの酸変性ポリオレフイン 、エチレン 酢酸ビュル共重合体、アイオノマーが特に好ましぐその他にもアタリレ ート系ポリマー、メタタリレート系ポリマー、ウレタン系ポリマー、エポキシ系ポリマー、 ポリエステル、ポリアミド、ポリフッ化ビ-リデン系ポリマーなどの極性ポリマーが挙げら れる。また、シール材 7を、ホットメルト接着剤で形成したり、 2液硬化型接着剤を流し 込んで形成したりすることもできる。図では、シール材 7は積層方向に長い柱状にな つているが、積層方向に主面を向けた平板状あるいはフィルム状でもよい。また、正 極用金属箔 22および負極用金属箔 25の少なくとも一方に対して、その全面あるい はシール材 7を接着させる部分とその近傍に、シール材 7との密着性を向上させるた めの表面処理を施してもよい。そのような表面処理としては、クロム系処理、ジルコ- ゥム系処理、燐酸系処理、酸化皮膜処理、水酸化皮膜処理などの皮膜系処理や、 部分アミノ化フエノール榭脂系処理、シランカップリング剤、チタネート系カップリング 剤などの有機系処理、化学エッチングや研磨による粗面化処理などが挙げられる。 [0042] As the sealing material 7, various materials capable of blocking the electrolytic solution can be used. However, the sealing material 7 prevents the electrolytic solution of one cell 2 from being in electrical contact with the battery operating member belonging to the other adjacent cell 2, and the electrolytic solution does not leak between the cells. Thus, the ability to adhere well to the non-applied portions 22a and 25a is required. Considering this, it is preferable to use a metal-adhesive resin for the sealing material 7. Examples of the metal-adhesive resin include acid-modified polyethylene such as acid-modified polyethylene and acid-modified polypropylene, ethylene acetate butyl copolymer, and ionomer, in addition to acrylate polymer, metal acrylate polymer, and urethane. Polar polymers such as polymer, epoxy polymer, polyester, polyamide, and polyvinylidene fluoride polymer. Further, the sealing material 7 can be formed of a hot melt adhesive or can be formed by pouring a two-component curable adhesive. In the figure, the sealing material 7 has a columnar shape that is long in the stacking direction, but it may be a flat plate or a film with the main surface facing in the stacking direction. In addition, in order to improve the adhesion to the sealing material 7 on the entire surface or a portion where the sealing material 7 is adhered to at least one of the positive electrode metal foil 22 and the negative electrode metal foil 25, or in the vicinity thereof. The surface treatment may be performed. Such surface treatments include chromium-based treatment, zirconium-based treatment, phosphoric acid-based treatment, oxide film treatment, hydroxide film treatment and other film-based treatments, partially aminated phenolic resin-based treatments, and silane coupling. And organic treatments such as chemicals and titanate coupling agents, and surface roughening by chemical etching or polishing.
[0043] 以上のように、本実施形態のフィルム外装電池 1では、直列接続された 2つのセル 2 間において、一方のセル 2の正極 21と他方のセル 2の負極 24とが、それぞれの非塗 布部 22a, 25aが交互に重なり、かつ、それらの間に導電部材 6を介在させて接続さ れている。そのことにより、非塗布部 22a, 25aの湾曲が大幅に緩和された状態で、 一方のセル 2の正極 21と他方のセル 2の負極 24とを接続することができる。  [0043] As described above, in the film-clad battery 1 of the present embodiment, between the two cells 2 connected in series, the positive electrode 21 of one cell 2 and the negative electrode 24 of the other cell 2 are not connected to each other. The coating parts 22a and 25a are alternately overlapped and connected with the conductive member 6 interposed therebetween. As a result, the positive electrode 21 of one cell 2 and the negative electrode 24 of the other cell 2 can be connected in a state where the curvature of the non-applied portions 22a and 25a is greatly relaxed.
[0044] したがって、セル 2の配列方向での、正極 21の非塗布部 22aの根元(正極活物質 2 3の塗布部との境界)力も負極 24の非塗布部 25aとの接続部(導電部材 6との接続部 と一致)までの距離 A、および負極 24の非塗布部 25aの根元 (負極活物質 26の塗布 部との境界)力も正極 21の非塗布部 22aとの接続部(導電部材 6との接続部と一致) までの距離 Bを、正極用金属箔 22および負極用金属箔 25を破断させることなぐ従 来と比べて大幅に削減することができる。また、正極 21の非塗布部 22aと負極 24の 非塗布部 25aとが重なっている領域の、セル 2の配列方向での寸法 Cは、セル 2同士 を接続するのに必要な最小限の寸法とすることができる。 [0045] 結果的に、電極積層体の充放電に寄与しない部分である、互いに接続された正極 21と負極 24との関係での、正極 21の非塗布部 22aの根元から負極 24の非塗布部 2 5aの根元までの距離 Lを、従来と比べて大幅に削減することができる。このことにより 、フィルム外装電池 1としての性能を低下させることなぐ電極積層体の平面寸法を小 さくすることができる。さらには、充放電に寄与しない部分の平面寸法を大幅に削減 できるという効果は、隣接するセル 2同士の全ての接続部にいえることなので、より高 い電圧を得るためにより多数のセル 2を直列接続した電極積層体とした場合に、より 効果的に発揮される。 [0044] Therefore, in the arrangement direction of the cells 2, the root of the non-applied part 22a of the positive electrode 21 (boundary with the applied part of the positive electrode active material 23) is also connected to the non-applied part 25a of the negative electrode 24 (conductive member). 6) and the base of the non-coated portion 25a of the negative electrode 24 (boundary with the coated portion of the negative electrode active material 26) force is also connected to the non-coated portion 22a of the positive electrode 21 (conductive member). The distance B up to the connecting portion with 6) can be greatly reduced as compared with the conventional case where the metal foil for positive electrode 22 and the metal foil for negative electrode 25 are not broken. In addition, the dimension C in the arrangement direction of the cells 2 in the area where the non-coated part 22a of the positive electrode 21 and the non-coated part 25a of the negative electrode 24 overlap is the minimum dimension required to connect the cells 2 to each other. It can be. As a result, the negative electrode 24 is not applied from the base of the non-applied portion 22a of the positive electrode 21 in the relationship between the positive electrode 21 and the negative electrode 24 connected to each other, which is a portion that does not contribute to charge / discharge of the electrode laminate. The distance L to the root of part 25a can be greatly reduced compared to the conventional method. As a result, the planar dimensions of the electrode laminate without reducing the performance as the film-clad battery 1 can be reduced. Furthermore, the effect of greatly reducing the planar dimensions of the parts that do not contribute to charging / discharging can be said at all the connections between adjacent cells 2, so a larger number of cells 2 are connected in series to obtain a higher voltage. This is more effective when connected electrode stacks are used.
[0046] また、隣接したセル 2同士の接続を、上述したように非塗布部 22a, 25aの湾曲を大 幅に緩和した状態で行えるので、大容量ィ匕のために正極 21と負極 24との積層数を さらに増やした場合であっても、正極用金属箔 22および負極用金属箔 25の破断は 生じにくい。特に本実施形態では、互いに重なった正極 21の非塗布部 22aと負極 2 4の非塗布部 25aとの間に導電部材 6を介在させているので、非塗布部 22a, 25aの 湾曲を殆どなくすことができる。積層方向での導電部材 6の厚さを、セパレータ 27を 間において対向する正極用金属箔 22と負極用金属箔 25との間の間隔と等しくすれ ば、正極 21の非塗布部 22aおよび負極 24の非塗布部 25aを湾曲させることなぐセ ル 2を接続することができる。このことは、具体的には、導電部材 6の厚さを、セパレー タ 27の 1枚分の厚さと、正極用金属箔 22の片面分の正極活物質 23の塗布厚さと、 負極用金属箔 25の片面分の負極活物質 26の塗布厚さとを加えた厚さと同じ厚さと することである。この場合は、正極 21と負極 24との最大積層数は、現実的な範囲内 であれば特に制限はない。ここで、セパレータ 27は電解液を含浸しているので、上記 の「セパレータ 27を間にお 、て対向する」とは、「電解質を間にお!/、て対向する」と同 義である。また、セパレータ 27の 1枚分の厚さ」とは、「正極と負極との間に配された 電解質の厚さ」と同義である。  [0046] Further, since the adjacent cells 2 can be connected in a state where the curvature of the non-applied portions 22a and 25a is greatly relaxed as described above, the positive electrode 21 and the negative electrode 24 Even when the number of laminated layers is further increased, the positive electrode metal foil 22 and the negative electrode metal foil 25 are unlikely to break. In particular, in the present embodiment, since the conductive member 6 is interposed between the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24 that overlap each other, the non-applied portions 22a and 25a are hardly curved. be able to. If the thickness of the conductive member 6 in the laminating direction is made equal to the distance between the positive electrode metal foil 22 and the negative electrode metal foil 25 facing each other with the separator 27 therebetween, the non-coated portion 22a and the negative electrode 24 of the positive electrode 21 It is possible to connect the cell 2 without bending the non-application part 25a. Specifically, this means that the thickness of the conductive member 6, the thickness of one separator 27, the coating thickness of the positive electrode active material 23 for one side of the positive electrode metal foil 22, and the negative electrode metal foil The thickness of the negative electrode active material 26 for one side of 25 is the same as the total thickness. In this case, the maximum number of stacked layers of the positive electrode 21 and the negative electrode 24 is not particularly limited as long as it is within a practical range. Here, since the separator 27 is impregnated with the electrolytic solution, the above-mentioned “opposite the separator 27 in between” is synonymous with “opposite the electrolyte in between!”. . Further, “the thickness of one separator 27” is synonymous with “the thickness of the electrolyte disposed between the positive electrode and the negative electrode”.
[0047] さらに本実施形態のフィルム外装電池 1は、隣接するセル 2の間に、正極 21と負極 24との接続部と電気的に接続された制御用端子 6aを有している。制御用端子 6aに は、導電部材 6と同様の部材を利用することができる。制御用端子 6aは、積層方向最 上位置の負極 24の非塗布部 25a上に接合され、その先端は外装フィルム 4の外側 へ突出している。 [0047] Furthermore, the film-clad battery 1 of the present embodiment has a control terminal 6a electrically connected to the connecting portion between the positive electrode 21 and the negative electrode 24 between the adjacent cells 2. A member similar to the conductive member 6 can be used for the control terminal 6a. The control terminal 6a is joined to the non-coated part 25a of the negative electrode 24 at the uppermost position in the laminating direction, and the tip thereof is outside the exterior film 4. Protruding to
[0048] 複数のセル 2を接続した電池においては、各セル 2の性能を効果的に発揮させるた めには、セル 2ごとの電圧が等しいことが望ましい。しかし、各セル 2自身の性能上の ばらつきや、充放電条件によっては、セル 2ごとに電圧がばらつくことがある。  [0048] In a battery in which a plurality of cells 2 are connected, in order to effectively exhibit the performance of each cell 2, it is desirable that the voltage of each cell 2 is equal. However, depending on the performance variation of each cell 2 itself and the charge / discharge conditions, the voltage may vary from cell 2 to cell 2.
[0049] そこで、本実施形態のように制御用端子 6aを設けることで、複数のセル 2を封止し たフィルム外装電池 1であっても、制御用端子 6a、正極タブ 3aおよび負極タブ 3bを 利用して、各セル 2の電圧をチェックすることができる。そして、各セル 2の電圧がばら っ ヽて 、る場合には各セル 2の電圧が等しくなるように各セル 2に対して個別に充電 あるいは放電を行える。その結果、フィルム外装電池 1の性能を良好に維持すること ができるようになる。ただし、各セル 2に対する個別の制御が不要な場合は、制御用 端子 6aは設けなくてもよい。  Therefore, by providing the control terminal 6a as in the present embodiment, the control terminal 6a, the positive electrode tab 3a, and the negative electrode tab 3b can be obtained even in the film-clad battery 1 in which a plurality of cells 2 are sealed. Can be used to check the voltage of each cell 2. If the voltages of the cells 2 are different, the cells 2 can be individually charged or discharged so that the voltages of the cells 2 are equal. As a result, the performance of the film-clad battery 1 can be maintained satisfactorily. However, if individual control for each cell 2 is not required, the control terminal 6a may not be provided.
[0050] なお、本実施形態では、セル 2同士の接続部において、非塗布部 22a, 25aの間に 導電部材 6を配置している力 導電部材 6は必ずしも必要なものではない。前述した ように、セル 2同士の接続部では、正極 21の非塗布部 22aと負極 24の非塗布部 25a とは積層方向に交互に配置される。導電部材 6が配置されていない場合、セル 2同 士の接続部では、正極 21の非塗布部 22aと負極 24の非塗布部 25aとが、積層方向 に集められて直接接合される。この状態では、積層方向に隣接する正極 21の非塗布 部 22aの間には隣のセル 2の負極 24の非塗布部 25aが介在しており、また、積層方 向に隣接する負極 24の非塗布部 25aの間には隣のセル 2の正極 21の非塗布部 22 aが介在している。  [0050] In the present embodiment, the force conductive member 6 in which the conductive member 6 is disposed between the non-application portions 22a and 25a in the connection portion between the cells 2 is not necessarily required. As described above, in the connection part between the cells 2, the non-application part 22a of the positive electrode 21 and the non-application part 25a of the negative electrode 24 are alternately arranged in the stacking direction. When the conductive member 6 is not disposed, the non-coated portion 22a of the positive electrode 21 and the non-coated portion 25a of the negative electrode 24 are gathered in the stacking direction and directly joined at the connection portion of the cells 2 and the like. In this state, the non-coated portion 25a of the negative electrode 24 of the adjacent cell 2 is interposed between the non-coated portions 22a of the positive electrode 21 adjacent in the stacking direction, and the non-coated portion of the negative electrode 24 adjacent in the stacking direction is not. The non-application part 22a of the positive electrode 21 of the adjacent cell 2 is interposed between the application parts 25a.
[0051] その結果、正極 21の非塗布部 22aと負極 24の非塗布部 25aとが接合された領域 では、積層方向についての、最下位置の非塗布部 22aの下面力も最上位置の非塗 布部 22aの上面までの距離、および最下位置の非塗布部 25aの下面カゝら最上位置 の非塗布部 25aの上面までの距離はそれぞれ、従来のように同じ極の非塗布部 22a , 25a同士を集めて接合した場合の約 2倍となる。したがって、導電部材 6を介さずに 正極 21の非塗布部 22aと負極 24の非塗布部 25aとを直接接合した場合であっても 従来と比べて非塗布部 22a, 25aの湾曲を緩和し、充放電に寄与しない部分の平面 寸法を小さくすることができる。 [0052] 導電部材 6を設けない場合であっても、前述したように制御用端子 6aを設けて各セ ル 2に対して個別に充放電する構成とすることもできる。 [0051] As a result, in the region where the non-applied portion 22a of the positive electrode 21 and the non-applied portion 25a of the negative electrode 24 are joined, the lower surface force of the lowermost non-applied portion 22a in the stacking direction is also the highest non-coated portion. The distance to the upper surface of the cloth portion 22a and the distance from the lower surface of the lowermost non-application portion 25a to the upper surface of the uppermost non-application portion 25a are the same as the conventional non-application portions 22a, This is about twice as much as when 25a are collected and joined. Therefore, even when the non-coated portion 22a of the positive electrode 21 and the non-coated portion 25a of the negative electrode 24 are directly joined without the conductive member 6, the bending of the non-coated portions 22a and 25a is reduced compared to the conventional case, The planar dimension of the part that does not contribute to charge / discharge can be reduced. [0052] Even when the conductive member 6 is not provided, the control terminal 6a may be provided as described above to charge / discharge each cell 2 individually.
[0053] 図 3に、本発明の他の実施形態によるフィルム外装電池の、図 2と同様の模式的断 面図を示す。図 3において、図 2と同様の部分については図 2と同じ符号を付し、それ らの説明は省略する。 FIG. 3 shows a schematic cross-sectional view similar to FIG. 2, of a film-clad battery according to another embodiment of the present invention. 3, parts similar to those in FIG. 2 are given the same reference numerals as those in FIG. 2, and descriptions thereof are omitted.
[0054] 本実施形態のフィルム外装電池は、電解質として電解液ではなく固体電解質 37を 用いている点が、前述した実施形態と異なる。固体電解質 37としては、フリーな溶媒 を含まないがイオンが伝導可能な固体であれば種々のものが利用でき、例えば、 j8 アルミナなどの酸ィ匕物系無機化合物、ポリエチレンオキサイドなどのポリマーの架 橋あるいは非架橋のものなどが例示できる。固体電解質 37は、セパレータ 27 (図 2参 照)と同様、正極活物質 23と負極活物質 26とが直接接触しないように、正極 21の正 極活物質 23が塗布された領域、および負極 24の負極活物質が塗布された領域より も大き 、平面寸法を有して 、る。  [0054] The film-clad battery of this embodiment is different from the above-described embodiment in that a solid electrolyte 37 is used as an electrolyte instead of an electrolyte. As the solid electrolyte 37, various kinds of solid electrolytes can be used as long as they do not contain a free solvent but can conduct ions. For example, an oxide-based inorganic compound such as j8 alumina and a polymer bridge such as polyethylene oxide can be used. Examples include bridges and non-cross-linked ones. In the same way as the separator 27 (see FIG. 2), the solid electrolyte 37 includes a region where the positive electrode active material 23 of the positive electrode 21 is applied and a negative electrode 24 so that the positive electrode active material 23 and the negative electrode active material 26 do not directly contact each other. The negative electrode active material is larger than the region where the negative electrode active material is applied and has a planar dimension.
[0055] このように固体電解質 37を用いることによって、イオンの移動は固体電解質 37を挟 んで対向する正極 21と負極 24との間のみに制限され、セル 2間でのイオンの移動が なくなる。したがって、図 2に示したようなシール材 7は不要となる。シール材 7が不要 となること〖こより、フィルム外装電池の構成が簡略化される。さらに、シール材 7がなく なった分だけ、図 2に示した距離 Aおよび距離 Bを短くすることができる。その結果、 充放電に寄与する部分の構成はそのままで、電極積層体の平面寸法、ひいてはフィ ルム外装電池の平面寸法をより小さくすることができる。  [0055] By using the solid electrolyte 37 in this manner, the movement of ions is limited only between the positive electrode 21 and the negative electrode 24 facing each other with the solid electrolyte 37 interposed therebetween, and the movement of ions between the cells 2 is eliminated. Therefore, the sealing material 7 as shown in FIG. 2 is not necessary. Since the sealing material 7 is not required, the structure of the film-clad battery is simplified. Furthermore, the distance A and the distance B shown in FIG. As a result, it is possible to further reduce the planar dimensions of the electrode laminate, and hence the film exterior battery, while maintaining the configuration of the portion that contributes to charging and discharging.
[0056] なお、導電部材 6および制御用端子 6aについて、これらは必ずしも設けなくてよい ことは、前述した実施形態と同様である。また、電極積層体のセル 2の数、および各セ ル 2〖こおける正極 21、負極 24の数が図に示したものに限らないことも、前述した実施 形態と同様である。  Note that the conductive member 6 and the control terminal 6a are not necessarily provided, as in the above-described embodiment. In addition, the number of cells 2 in the electrode stack and the number of positive electrodes 21 and negative electrodes 24 in each cell are not limited to those shown in the figure, as in the above-described embodiment.
[0057] 本実施形態では電解質として固体電解質 37を用いたが、固体電解質 37の代わり にポリマー電解質を用いることもできる。ポリマー電解質としては、ポリマーマトリクス 中に溶媒を含んでゲル状になっており液体が滲み出な 、ものであれば種々のものが 利用でき、例えば、架橋したポリエチレンオキサイドの内部にイオン伝導性の溶媒が 含まれているもの、架橋あるいは非架橋のポリフッ化ビ-リデン系ポリマーと電解液の 混合物などが例示できる。 In the present embodiment, the solid electrolyte 37 is used as the electrolyte, but a polymer electrolyte can be used instead of the solid electrolyte 37. As the polymer electrolyte, various polymers can be used as long as they contain a solvent in a polymer matrix and the liquid does not bleed out. For example, an ion-conducting solvent can be used inside a cross-linked polyethylene oxide. But Examples thereof include a mixture of a crosslinked or non-crosslinked polyvinylidene fluoride polymer and an electrolytic solution.
[0058] 本実施形態のように電解質として固体電解質 37やポリマー電解質を用いた場合、 シール材が不要であることは上述したとおりである。ただし本発明では、固体電解質 と液体電解質の複合体、あるいはポリマー電解質と液体電解質の複合体などのよう に、液体の電解質が滲み出し得る電解質である場合、そのような電解質は「電解液」 の概念に含まれる。  As described above, when the solid electrolyte 37 or the polymer electrolyte is used as the electrolyte as in the present embodiment, the sealing material is unnecessary. However, in the present invention, when a liquid electrolyte is an electrolyte that can exude, such as a composite of a solid electrolyte and a liquid electrolyte, or a composite of a polymer electrolyte and a liquid electrolyte, such an electrolyte is an “electrolyte”. Included in the concept.
[0059] 次に、上述した各実施形態に適用可能な変形例を示す。各実施形態では、正極用 金属箔 22および負極用金属箔 25の互いに対向するすべての非塗布部間に導電部 材 6を介在させている力 互いに対向している各非塗布部間力 溶接による接続と導 電部材 6による接続とが交互に繰り返されるように接続された構成としてもよい。このよ うな構成は、例えば、 1枚の正極用金属箔 22と 1枚の負極用金属箔 25とをそれらの 非塗布部で溶接した電極対を予め作製しておき、その溶接部の上に導電部材 6を設 置し、さらにその上に、別の電極対の溶接部を位置させることを繰り返して形成するこ とができる。この場合、正極 21の厚さと、負極 24の厚さと、積層方向に対向している 正極 21と負極 24との間での電解質 (電解液を含浸したセパレータ 27または固体電 解質 37)の厚さの 2倍の厚さとを加えた厚さ (以下、「単位積層周期厚さ」 t 、う)の導 電部材 6を用いることが好ま 、。  Next, modified examples applicable to each of the above-described embodiments will be shown. In each embodiment, the force in which the conductive member 6 is interposed between all the non-applied portions of the positive electrode metal foil 22 and the negative electrode metal foil 25 facing each other. A configuration may be adopted in which the connection and the connection by the conductive member 6 are alternately repeated. In such a configuration, for example, an electrode pair in which one positive electrode metal foil 22 and one negative electrode metal foil 25 are welded at their non-applied portion is prepared in advance, and the electrode pair is formed on the welded portion. It is possible to repeatedly form the conductive member 6 and further place the welded portion of another electrode pair thereon. In this case, the thickness of the positive electrode 21, the thickness of the negative electrode 24, and the thickness of the electrolyte (the separator 27 impregnated with the electrolytic solution or the solid electrolyte 37) between the positive electrode 21 and the negative electrode 24 facing each other in the stacking direction. It is preferable to use the conductive member 6 having a thickness (hereinafter referred to as “unit stacking cycle thickness” t) which is twice the thickness of the thickness.
[0060] また、導電部材につ!/、て、上述した実施形態では定まった厚さの導電部材を、電極 用金属箔の非塗布部を介して複数積み上げた構成を示したが、他にも下記のような 構成が考えられる。  [0060] In addition, in the above-described embodiment, the conductive member has a structure in which a plurality of conductive members having a predetermined thickness are stacked through the non-applied portion of the electrode metal foil. The following configuration is also conceivable.
[0061] 第 1の例は、電極の積層方向に連続した 1つの導電部材を用い、この導電部材に、 正極用と負極とを交互に間隔をおいて接続する構成である。その具体例を図 4に示 す。図 4では、導電部材 26は、一方のセルの正極用金属箔 22の非塗布部と、それと 隣接する他方のセル負極用金属箔 25の非塗布部と、の間を縫うように、波状に曲げ られて正極用金属箔 22と負極用金属箔 25との積層方向に延びて 、る金属シートか らなる。導電部材 26は、正極用金属箔 22および負極用金属箔 25の面内方向と平行 な部分が形成されるように曲げられている。これによつて、導電部材 26の両側には、 一方のセルの正極用金属箔 22の非塗布部が進入する凹部 26aと、他方のセルの負 極用金属箔 25の非塗布部が進入する凹部 26bと、が交互に形成される。非塗布部 は導電部材 26の凹部 26a, 26b内で導電部材 26に溶接され、これによつて、正極用 金属箔 22および負極用金属箔 25は導電部材 26と電気的に接続されている。この場 合、導電部材 26の波形の周期は単位積層周期厚さであることが好ましい。 The first example is a configuration in which one conductive member continuous in the electrode stacking direction is used, and the positive electrode and the negative electrode are alternately connected to the conductive member at intervals. Figure 4 shows a specific example. In FIG. 4, the conductive member 26 has a wave shape so as to sew between the non-coated portion of the positive electrode metal foil 22 of one cell and the non-coated portion of the other cell negative electrode metal foil 25 adjacent thereto. It is made of a metal sheet that is bent and extends in the stacking direction of the positive electrode metal foil 22 and the negative electrode metal foil 25. The conductive member 26 is bent so that portions parallel to the in-plane direction of the positive electrode metal foil 22 and the negative electrode metal foil 25 are formed. As a result, on both sides of the conductive member 26, The concave portions 26a into which the non-coated portions of the positive electrode metal foil 22 of one cell enter and the concave portions 26b into which the non-coated portions of the negative electrode metal foil 25 of the other cell enter are alternately formed. The non-applied portion is welded to the conductive member 26 in the recesses 26a and 26b of the conductive member 26, whereby the positive electrode metal foil 22 and the negative electrode metal foil 25 are electrically connected to the conductive member 26. In this case, it is preferable that the period of the waveform of the conductive member 26 is a unit lamination period thickness.
[0062] なお、図 4は電解質が電解液である場合を示しているが、電解質が固体電解質また はポリマー電解質である場合は、シール材 7は不要である。  FIG. 4 shows the case where the electrolyte is an electrolytic solution. However, when the electrolyte is a solid electrolyte or a polymer electrolyte, the sealing material 7 is not necessary.
[0063] 第 2の例は、上述した金属シートを、異なる 2種類の金属層を積層した複合金属シ ートとした例である。その具体例を、図 5A〜図 5Cを参照して説明する。なお、図 5B および図 5Cでは、簡略化のために導電部材を単層で示して!/ヽる。  [0063] The second example is an example in which the above-described metal sheet is a composite metal sheet in which two different types of metal layers are laminated. Specific examples thereof will be described with reference to FIGS. 5A to 5C. In FIGS. 5B and 5C, the conductive member is shown as a single layer for simplification!
[0064] 図 5Aに示すように、導電部材 36は、一方のセルの正極用金属箔 22の非塗布部と 、それと隣接する他方のセルの負極用金属箔 25の非塗布部と、の間を縫うように、波 状に曲げられて波状に曲げられて正極用金属箔 22と負極用金属箔 25との積層方 向に延びている金属シートからなる。導電部材 36に用いられている金属シートは、第 1の金属層 36aと第 2の金属層 36bとを、互いが導通可能な状態で積層された複合 金属シートである。  [0064] As shown in FIG. 5A, the conductive member 36 is between the non-applied portion of the positive electrode metal foil 22 of one cell and the non-applied portion of the negative electrode metal foil 25 of the other cell adjacent thereto. The metal sheet is bent in a wave shape and is bent in a wave shape so as to extend in the stacking direction of the positive electrode metal foil 22 and the negative electrode metal foil 25. The metal sheet used for the conductive member 36 is a composite metal sheet in which a first metal layer 36a and a second metal layer 36b are laminated in a state where they can conduct each other.
[0065] 第 1の金属層 36aと第 2の金属層 36bとは、互いに異なる金属力もなる。導電部材 3 6は、第 1の金属層 36aを一方のセルの正極用金属箔 22が接続される側に向け、第 2の金属層 36bを他方のセルの負極用金属箔 25が接続される側に向けて配置され ている。導電部材 36の曲げ形状や、各金属箔 22, 25と導電部材 36との電気的接続 については、図 4に示した例と同様であるので、説明は省略する。  [0065] The first metal layer 36a and the second metal layer 36b also have different metal forces. The conductive member 36 has the first metal layer 36a directed to the side where the positive electrode metal foil 22 of one cell is connected, and the second metal layer 36b is connected to the negative electrode metal foil 25 of the other cell. It is arranged toward the side. The bending shape of the conductive member 36 and the electrical connection between the metal foils 22 and 25 and the conductive member 36 are the same as in the example shown in FIG.
[0066] 図 5Bおよび図 5Cに示すように、シール材 32は、導電部材 36と外装フィルム 35と の間に、導電部材 36の外側全周を取り囲んで配置されている。シール材 32の外面 は全周にわたって外装フィルム 35に接着され、シール材 32の内面は全周にわたつ て導電部材 36に接着されている。これによつて、導電部材 36およびシール材 32で 液密な隔壁が形成される。その結果、電解質が電解液である場合でも、隣接するセ ル間での電解液の相互流入が防止される。シール材 32の材料としては、電解液を遮 断することのできるものであれば、前述したような種々の材料を用いることができる。 [0067] 以上のように、導電部材 36と外装フィルム 35との間で導電部材 36の周囲を取囲ん でシール材 32を設けることによって、前述した、重なり合つている金属箔間に配置さ れたシール材 7 (図 2参照)のように各層ごとに個別に設ける必要がなくなる。このこと により、部品点数および製造工数を削減することができる。図 5Bに示すシール材 32 の構成は、前述した各例に適用することもできる。 As shown in FIGS. 5B and 5C, the sealing material 32 is disposed between the conductive member 36 and the exterior film 35 so as to surround the entire outer periphery of the conductive member 36. The outer surface of the sealing material 32 is bonded to the exterior film 35 over the entire periphery, and the inner surface of the sealing material 32 is bonded to the conductive member 36 over the entire periphery. As a result, a liquid-tight partition is formed by the conductive member 36 and the sealing material 32. As a result, even when the electrolyte is an electrolytic solution, mutual inflow of the electrolytic solution between adjacent cells is prevented. As the material of the sealing material 32, various materials as described above can be used as long as they can block the electrolytic solution. [0067] As described above, the sealing member 32 is provided between the conductive member 36 and the exterior film 35 so as to surround the periphery of the conductive member 36, thereby being disposed between the overlapping metal foils described above. It is not necessary to provide each layer individually as in the case of the sealing material 7 (see Fig. 2). As a result, the number of parts and the number of manufacturing steps can be reduced. The configuration of the sealing material 32 shown in FIG. 5B can also be applied to each example described above.
[0068] なお、電解質が固体電解質またはポリマー電解質である場合は、シール材は設け る必要はない。ただし、前述したように、液体の電解質が滲み出し得る電解質は電解 液として考える。  [0068] When the electrolyte is a solid electrolyte or a polymer electrolyte, it is not necessary to provide a sealing material. However, as described above, an electrolyte from which a liquid electrolyte can bleed is considered as an electrolytic solution.
[0069] また、上記構成において、本発明における「電池作用部材」としては、第 1の金属層 36aは正極用金属箔 22が接続されている側のセルに属する電池作用部材であり、 第 2の金属層 36bは負極用金属箔 25が接続されている側のセルに属する電池作用 部である。  [0069] In the above configuration, as the "battery action member" in the present invention, the first metal layer 36a is a battery action member belonging to the cell on the side to which the positive electrode metal foil 22 is connected. The metal layer 36b is a battery operation part belonging to the cell on the side to which the negative electrode metal foil 25 is connected.
[0070] 第 1の金属層 36aとしては、 Aほたは Tiが好ましい。第 2の金属層 36bとしては、 Ni 、 Cu、 Fe、またはステンレスが好ましい。各金属層 36a, 36bは単一の金属で構成さ れている必要はない、例えば、第 2の金属層 36bを、 Niめっきされた Cu、または Niめ つきされた Feで構成することもできる。また、導電部材 36の全面あるいはシール材 32 との接着部近傍に、シール材 32との密着性を向上させるための表面処理を施しても よい。そのような表面処理としては、クロム系処理、ジルコニウム系処理、燐酸系処理 、酸化皮膜処理、水酸化皮膜処理などの皮膜系処理や、部分アミノ化フエノール榭 脂系処理、シランカップリング剤、チタネート系カップリング剤などの有機系処理など が挙げられる。  [0070] As the first metal layer 36a, A or Ti is preferable. The second metal layer 36b is preferably Ni, Cu, Fe, or stainless steel. Each metal layer 36a, 36b need not be composed of a single metal, for example, the second metal layer 36b can be composed of Ni-plated Cu or Ni-plated Fe. . Further, a surface treatment for improving the adhesion to the sealing material 32 may be applied to the entire surface of the conductive member 36 or in the vicinity of the bonding portion with the sealing material 32. Such surface treatments include chromium-based treatment, zirconium-based treatment, phosphoric acid-based treatment, oxide film treatment, hydroxide film treatment and other film-based treatments, partially aminated phenolic resin-based treatments, silane coupling agents, titanates. And organic treatments such as coupling agents.
[0071] 第 1の金属層 36aと第 2の金属層 36bとの積層方法は、両者が導通可能なように積 層されていれば特に限定されず、クラッド工法、溶接、導電性接着剤を用いた接着、 圧着、力シメ、嚙み合わせなどを利用できる。あるいは、波状に曲げられた第 1の金属 層 36aを一方のセルの正極用金属箔 22の非塗布部に接続したアセンブリと、波状に 曲げられた第 2の金属箔 36bを他方のセルの負極用金属箔 25の非塗布部に接続し たアセンブリと、を別々に作っておき、各金属層 36a, 36bをその波形同士を嚙み合 わせて接合してもよい。 [0072] 第 1の金属層 36aと第 2の金属層 36bとは互いに接触させるだけでも導通する。より 良好な導通状態を得るためには、クラッド工法や溶接などによって、金属層同士を金 属結合させることが好ましい。この場合、金属結合させる場所は、接触させる面の全 面である必要はなぐ図 5Aにおける上端部や下端部で部分的に行ってもよい。 [0071] The method of laminating the first metal layer 36a and the second metal layer 36b is not particularly limited as long as the two metal layers 36a and 36b are laminated so that they can conduct, and a clad method, welding, and a conductive adhesive are used. Adhesion, crimping, force squeezing, and squeezing can be used. Alternatively, an assembly in which the first metal layer 36a bent in a wave shape is connected to the non-coated portion of the positive electrode metal foil 22 in one cell and the second metal foil 36b bent in a wave shape in the negative electrode of the other cell. Alternatively, the assembly connected to the non-coated portion of the metal foil 25 may be made separately, and the metal layers 36a and 36b may be joined together by corrugating the corrugations. [0072] The first metal layer 36a and the second metal layer 36b are electrically connected even if they are brought into contact with each other. In order to obtain a better conduction state, it is preferable to metal bond metal layers to each other by a clad method or welding. In this case, the place where the metal is bonded need not be the entire surface to be contacted, and may be partially formed at the upper end or the lower end in FIG. 5A.
[0073] 図 4および図 5A〜図 5Cに示したような、金属シートからなる導電部材 26. 32を用 いた場合の、導電部材 26, 32と正極用および負極用の金属箔 22, 25との接続方法 は特に限定されない。その接続方法として、例えば、両者を単に接触させるだけであ つてもよいし、また、抵抗溶接、レーザ溶接、超音波溶接、力シメ、嵌め込み、挟み込 みあるいは導電性接着剤を用いた方法が挙げられる。  [0073] As shown in Fig. 4 and Figs. 5A to 5C, when the conductive member 26.32 made of a metal sheet is used, the conductive members 26, 32 and the positive and negative electrode metal foils 22, 25 The connection method is not particularly limited. As a connection method, for example, both may be simply brought into contact, or resistance welding, laser welding, ultrasonic welding, force squeeze, fitting, pinching, or a method using a conductive adhesive may be used. Can be mentioned.
[0074] 導電部材 26, 32に用いる金属シートの厚さも特に限定されない。ただし、図 5Aに 示した導電部材 32のように、正極用金属箔 22の片面側での正極活物質の塗布厚さ と、負極用金属箔 25の片面側での負極活物質の塗布厚さと、重なり合つている正極 Z負極間での電解質の厚さ(電解液の場合はセパレータの厚さ)と、の和と等しくす ることが好ましい。このことによって、隣り合うセル間に導電部材 32を配した後、導電 部材 32を上下から圧縮すると、正極と負極との間隔を適切な間隔に維持し、かつ強 固に挟み込むことができる。その結果、導電部材 32から正極や負極が抜けるのを防 止したり、接触抵抗を低減したりすることができる。  The thickness of the metal sheet used for the conductive members 26 and 32 is not particularly limited. However, like the conductive member 32 shown in FIG. 5A, the coating thickness of the positive electrode active material on one side of the positive electrode metal foil 22 and the coating thickness of the negative electrode active material on one side of the negative electrode metal foil 25 The thickness of the electrolyte (the thickness of the separator in the case of an electrolytic solution) between the overlapping positive electrode Z and negative electrode is preferably set equal to the sum. Accordingly, when the conductive member 32 is compressed from above and below after the conductive member 32 is disposed between adjacent cells, the interval between the positive electrode and the negative electrode can be maintained at an appropriate interval and can be firmly sandwiched. As a result, it is possible to prevent the positive electrode and the negative electrode from coming off from the conductive member 32, and to reduce the contact resistance.
[0075] 第 3の例は、導電部材としてブロック状あるいはバー状の部材ではなく金属箔を用 い、正極と負極との接続部の周囲の空間をシール材で埋めた構成である。この場合 の金属箔には、正極用金属箔および負極用金属箔を利用することができる。  [0075] In a third example, a metal foil is used instead of a block-like or bar-like member as the conductive member, and the space around the connecting portion between the positive electrode and the negative electrode is filled with a sealing material. As the metal foil in this case, a metal foil for positive electrode and a metal foil for negative electrode can be used.
[0076] その具体例を図 6に示す。図 6に示す構成では、正極用金属箔 22および負極用金 属箔 25として、その非塗布部を前述した各実施形態に示したものよりもさらに延長し たものを用いている。延長された非塗布部は、その途中で正極 21と負極 24との積層 方向に向けて折り曲げられ、その高さが積層方向での正極用金属箔 22と負極用金 属箔 25との間隔と等しい高さになる位置でさらに、非塗布部の延長方向に折り返さ れている。  A specific example is shown in FIG. In the configuration shown in FIG. 6, as the positive electrode metal foil 22 and the negative electrode metal foil 25, those in which the non-coated portions are further extended than those shown in the respective embodiments described above are used. The extended non-coated part is bent in the middle of the stacking direction of the positive electrode 21 and the negative electrode 24, and the height thereof is the distance between the positive electrode metal foil 22 and the negative electrode metal foil 25 in the stacking direction. Furthermore, it is folded back in the extending direction of the non-coated part at the same height.
[0077] この折り返しによって形成された、正極用金属箔 22の非塗布部と負極用金属箔 25 の非塗布部とが重なった部分が溶接されている。また、非塗布部の折り曲げによって 形成された空間は、スぺーサとしても機能するシール材 38で埋められている。シール 材 38は、単位積層周期厚さを有する第 1の部分 38aと、電解質を間において対向す る正極用金属箔 22と負極用金属箔 25との間隔と等しい厚さを有する第 2の部分 38b とを有する、断面 L字形のブロック状またはバー状の部材である。シール材 38は、第 2の部分 38bが非塗布部の折り曲げによって形成された空間内に位置するように配 置される。これによつて、正極 21および負極 24の互いに溶接された部分同士の間隔 が保持されるとともに、隣り合うセル間での電解液と電池作用部材との電気的な接触 が防止される。 [0077] A portion where the non-applied portion of the positive electrode metal foil 22 and the non-applied portion of the negative electrode metal foil 25 formed by this folding are welded is welded. Also, by bending the non-applied part The formed space is filled with a sealing material 38 that also functions as a spacer. The sealing material 38 includes a first portion 38a having a unit lamination period thickness, and a second portion having a thickness equal to the interval between the positive electrode metal foil 22 and the negative electrode metal foil 25 facing each other with the electrolyte therebetween. A block-shaped or bar-shaped member having an L-shaped cross section. The sealing material 38 is disposed so that the second portion 38b is located in a space formed by bending the non-application portion. As a result, the distance between the welded portions of the positive electrode 21 and the negative electrode 24 is maintained, and electrical contact between the electrolytic solution and the battery operating member between adjacent cells is prevented.
[0078] 非塗布部の折り曲げ形状は、予め形成しておくこともできる。ただし、製造上の簡便 さの観点からは、非塗布部を折り曲げる前に、非塗布部の所定の位置に、シール材 3 8を第 2の部分 38bを非塗布部の延長方向に向けて載置し、その状態で、非塗布部 を第 2の部分 38bに這わせるように折り曲げることによって形成するのが好ましい。ま た、シール材 38としては、ブロック状またはバー状に予め形成されたものを用いる他 に、非塗布部同士の溶接後に、流動性を有した状態のシール材を非塗布部の周囲 の空間内に流し込み、硬化させること〖こよって形成することもできる。  [0078] The bent shape of the non-application portion can be formed in advance. However, from the viewpoint of simplicity in manufacturing, before folding the non-application part, the sealing material 38 is placed in a predetermined position of the non-application part with the second portion 38b facing the extending direction of the non-application part. In this state, it is preferable to form the non-coated portion by bending it so as to lie over the second portion 38b. Further, as the sealing material 38, in addition to using a block-shaped or bar-shaped one formed in advance, a sealing material in a fluid state after welding of the non-applied parts is provided with a space around the non-applied parts. It can also be formed by pouring and curing.
[0079] 図 6では電解質が電解液である場合を示しているが、電解質が固体電解質または ポリマー電解質である場合は、シール材 38は、電解液の遮断機能は不要であるので 、少なくとも第 2の部分 38bを有する形状とすることができる。  [0079] FIG. 6 shows the case where the electrolyte is an electrolytic solution. However, when the electrolyte is a solid electrolyte or a polymer electrolyte, the sealing material 38 does not need a blocking function of the electrolytic solution. It can be made into the shape which has the part 38b.
[0080] 第 4の例は、図 4に示す構成と図 6に示す構成を組み合わせた構成である。すなわ ち、波状に曲げられた導電部材の凹凸部分を、断面が L字形のシール材で埋め込 む構成である。  The fourth example is a configuration combining the configuration shown in FIG. 4 and the configuration shown in FIG. In other words, the concave and convex portion of the conductive member bent in a wave shape is embedded with a sealing material having an L-shaped cross section.
[0081] 制御用端子については、正極 21と負極 24との接続部に接続されて外装フィルム 5 力 引き出されていれば、その接続位置および引き出し位置は任意である。その一 例を図 7に示す。図 7に示す例では、制御用端子 39は、短冊状の金属板で構成され 、正極用金属箔 22と負極用金属箔 25とが重なり合って接続された部分に溶接され て、外装フィルム 4, 5の熱融着部を経由させてフィルム外装電池の外部へ引き出し ている。  [0081] With respect to the control terminal, as long as it is connected to the connection portion between the positive electrode 21 and the negative electrode 24 and is pulled out by the external film 5 force, the connection position and the pull-out position are arbitrary. An example is shown in Fig. 7. In the example shown in FIG. 7, the control terminal 39 is composed of a strip-shaped metal plate, and is welded to a portion where the positive electrode metal foil 22 and the negative electrode metal foil 25 are overlapped and connected to each other, and the exterior film 4, It is pulled out of the film-clad battery via 5 heat-sealing parts.
[0082] 外装材については、上述した実施形態では、外装材として 2枚の外装フィルム 4, 5 を用いた例を示したが、 1枚の外装フィルムを 2つ折りにして電極積層体を挟み、開 放した 3辺の周囲を熱融着することによって、電極積層体を封止した構成としてもよい 。さらに、外装材としては、フィルムだけでなぐ金属製の容器やプラスチック製の容 器など、剛性を有する容器を用いてもよい。 With respect to the exterior material, in the above-described embodiment, two exterior films 4, 5 are used as the exterior material. However, it is possible to have a configuration in which the electrode stack is sealed by folding the outer film into two, sandwiching the electrode stack, and heat-sealing the three open sides. Good. Furthermore, as the exterior material, a rigid container such as a metal container made of only a film or a plastic container may be used.
[0083] ところで、以上の説明では、電極積層体は複数のセル 2を直列接続したものとして 説明したが、別の見方をすることもできる。すなわち、電極積層体を、複数の正極 21 をその非塗布部 22aを同じ側に向けて、非塗布部 22aが向く面内方向に 1列に並べ た複数の正極群と、複数の負極 24をその非塗布部 25aを同じ側に向けて、非塗布 部 25aが向く面内方向に 1列に並べた複数の負極群とを、電解質を介して交互に積 層したちのと考免ることちでさる。  In the above description, the electrode stack is described as a plurality of cells 2 connected in series, but another view can be taken. That is, a plurality of positive electrode groups, in which a plurality of positive electrodes 21 are arranged in a line in an in-plane direction facing the non-coated portion 22a with the non-coated portion 22a facing the same side, and a plurality of negative electrodes 24 are arranged. With the non-applied part 25a facing the same side, multiple negative electrode groups arranged in a line in the in-plane direction facing the non-applied part 25a should be considered alternately stacked via an electrolyte. Chisaru
[0084] 正極群と負極群とは、正極活物質 23と負極活物質 26とが対向するように、かつ、正 極 21の非塗布部 22aと負極 24の非塗布部 25aとが反対側を向くように交互に積層さ れる。電解質 (電解液を含浸したセパレータ 27または固体電解質 37)は、正極群と 負極群との間の、各正極活物質 23と各負極活物質 26とが対向する領域に配される 。つまり、各正極活物質 23と各負極活物質 26とは、電解質を介して対向している。そ して、正極 21および負極 24の非塗布部 22a, 25aは、電解質を介して対向する極の 対極の非塗布部 22a, 25aと重なり得る長さを有し、正極 21の非塗布部 22aの一部と 負極 24の非塗布部 25aの一部とは、積層方向に交互に重なりあって電気的に接続 されている。導電部材 6を設けた場合は、導電部材 6を介して非塗布部 22a, 25a同 士が接続される。また、電解質が電解液である場合、シール材 7は、非塗布部 22a, 2 5a同士の接続部を覆って設けられる。このように、電極積層体は、複数の正極 21を 有する正極群と、複数の負極 24を有する負極群とを、電解質を介して積層したものと 考えても、その作用効果は、前述した実施形態と同じである。  [0084] The positive electrode group and the negative electrode group are arranged so that the positive electrode active material 23 and the negative electrode active material 26 face each other, and the non-coated portion 22a of the positive electrode 21 and the non-coated portion 25a of the negative electrode 24 are opposite to each other. They are stacked alternately so that they face each other. The electrolyte (the separator 27 impregnated with the electrolytic solution or the solid electrolyte 37) is disposed in a region between the positive electrode group and the negative electrode group where each positive electrode active material 23 and each negative electrode active material 26 face each other. That is, each positive electrode active material 23 and each negative electrode active material 26 are opposed to each other via the electrolyte. The non-applied portions 22a and 25a of the positive electrode 21 and the negative electrode 24 have a length that can overlap with the non-applied portions 22a and 25a of the counter electrode opposite to each other through the electrolyte. And a part of the non-application part 25a of the negative electrode 24 are alternately connected in the stacking direction and are electrically connected. When the conductive member 6 is provided, the non-application portions 22a and 25a are connected via the conductive member 6. When the electrolyte is an electrolytic solution, the sealing material 7 is provided so as to cover the connection part between the non-application parts 22a and 25a. Thus, even if the electrode laminate is considered to be a laminate of a positive electrode group having a plurality of positive electrodes 21 and a negative electrode group having a plurality of negative electrodes 24 via an electrolyte, the effects thereof are the same as those described above. The form is the same.
[0085] 上述した実施形態では電気デバイスとして化学電池を例に挙げて説明したが、本 発明は、電気二重層キャパシタといったキャパシタゃ電解コンデンサなどに例示され る、電気工ネルギを内部に蓄積する電極積層体を外装材で封止した種々の電気デ バイスに適用可能である。  In the above-described embodiment, the chemical battery is described as an example of the electric device. However, the present invention is an electrode that accumulates electric energy inside, such as a capacitor such as an electric double layer capacitor or an electrolytic capacitor. The present invention can be applied to various electric devices in which the laminate is sealed with an exterior material.

Claims

請求の範囲 The scope of the claims
[1] 電気工ネルギを内部に蓄積する電極積層体であって、  [1] An electrode laminate for accumulating electrician energy,
それぞれ複数の正極および複数の負極が電解質を介して交互に積層された複数 のセルを有し、  Each has a plurality of cells in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via an electrolyte,
前記正極および負極は、一端部が非塗布部となるように電極材料が塗布されたシ ート状金属部材を有し、前記正極の非塗布部と前記負極の非塗布部とを互いに反対 側に向けて突出させて積層され、  The positive electrode and the negative electrode have a sheet-like metal member coated with an electrode material so that one end thereof is a non-coated portion, and the non-coated portion of the positive electrode and the non-coated portion of the negative electrode are opposite to each other. It is laminated to protrude toward
前記複数のセルは、前記正極の非塗布部と前記負極の非塗布部とを向カ 、合わ せて配列され、  The plurality of cells are arranged such that the non-coated portion of the positive electrode and the non-coated portion of the negative electrode face each other,
前記複数のセルのうち互いに隣り合ったセルの間で、一方のセルの正極の非塗布 部の一部と他方のセルの負極の非塗布部の一部と力 前記正極と負極との積層方 向に交互に重なり合って電気的に接続されて 、る電極積層体。  Between the cells adjacent to each other among the plurality of cells, a part of the non-coated part of the positive electrode of one cell and a part of the non-coated part of the negative electrode of the other cell are stacked. An electrode stack that is alternately connected in the direction and electrically connected.
[2] 前記電解質は電解液であり、積層された前記正極と負極との間に配された、前記 電解液を含浸したセパレータと、互いに隣り合う前記セルの間で、一方のセルの前記 電解液が他方のセルに属する電池作用部材と接触しな 、ようにするシール材とをさ らに有する、請求項 1に記載の電極積層体。  [2] The electrolyte is an electrolytic solution, and is disposed between the stacked positive electrode and negative electrode, the separator impregnated with the electrolytic solution, and the electrolysis of one cell between the cells adjacent to each other. 2. The electrode laminate according to claim 1, further comprising a sealing material that prevents the liquid from contacting a battery acting member belonging to the other cell.
[3] 前記シール材は金属接着性榭脂からなる、請求項 2に記載の電極積層体。 [3] The electrode laminate according to claim 2, wherein the sealing material is made of a metal adhesive resin.
[4] 前記電解質は固体電解質またはポリマー電解質である、請求項 1に記載の電極積 層体。 [4] The electrode stack according to claim 1, wherein the electrolyte is a solid electrolyte or a polymer electrolyte.
[5] 互いに隣り合った前記セルの間で、前記正極の非塗布部と前記負極の非塗布部と の重なり合った部分の間に導電部材を有し、前記導電部材によって前記正極と前記 負極とが電気的に接続されて ヽる、請求項 1に記載の電極積層体。  [5] Between the cells adjacent to each other, a conductive member is provided between overlapping portions of the non-coated portion of the positive electrode and the non-coated portion of the negative electrode, and the positive electrode and the negative electrode are formed by the conductive member. 2. The electrode laminate according to claim 1, wherein are electrically connected.
[6] 前記導電部材は、前記電解質を間にお 、て対向する前記正極および負極の前記 シート状金属部材間の間隔に等し 、厚さを有する部材である、請求項 5に記載の電 極積層体。  [6] The electric conductor according to claim 5, wherein the conductive member is a member having a thickness equivalent to a distance between the sheet-like metal members of the positive electrode and the negative electrode facing each other with the electrolyte interposed therebetween. Polar laminate.
[7] 前記導電部材は、波状に曲げられて前記正極と前記負極との積層方向に延びる 金属シートであり、前記正極の非塗布部および前記負極の非塗布部は、前記金属シ ートが波状に曲げられることによって形成された凹部内に進入して前記導電部材と接 続されている、請求項 5に記載の電極積層体。 [7] The conductive member is a metal sheet that is bent in a wave shape and extends in the stacking direction of the positive electrode and the negative electrode. The non-coated portion of the positive electrode and the non-coated portion of the negative electrode are formed of the metal sheet. It enters into the recess formed by being bent into a wave shape and contacts the conductive member. The electrode laminate according to claim 5, which is continued.
[8] 前記金属シートは、互いに異なる金属力もなる第 1および第 2の金属層が積層され た複合金属シートであり、 [8] The metal sheet is a composite metal sheet in which first and second metal layers having different metal forces are laminated,
前記一方のセルの正極の非塗布部の一部は前記第 1の金属層と電気的に接続さ れ、  A part of the non-coated portion of the positive electrode of the one cell is electrically connected to the first metal layer,
前記他方のセルの負極の非塗布部の一部は前記第 2の金属層と電気的に接続さ れ、  A part of the non-coated portion of the negative electrode of the other cell is electrically connected to the second metal layer,
前記電解質は電解液であり、かつ  The electrolyte is an electrolyte solution; and
互いに隣り合う前記セルの間で、前記複合金属シートの外周を取り囲んで配された 、一方のセルの前記電解液が他方のセルに属する電池作用部材と接触しな!、ように するシール材をさらに有する、請求項 7に記載の電極積層体。  A sealing material disposed between the cells adjacent to each other so as to surround the outer periphery of the composite metal sheet so that the electrolyte solution of one cell does not come into contact with the battery action member belonging to the other cell! The electrode laminate according to claim 7, further comprising:
[9] 電気工ネルギを内部に蓄積する電極積層体であって、 [9] An electrode laminate for accumulating electric energy,
それぞれ一端部が非塗布部となるように正極材料が塗布されたシート状の金属部 材を有する複数の正極を、前記正極材料の非塗布部を同じ側に向けて、前記非塗 布部が向く面内方向に 1列に並べた複数の正極群と、  A plurality of positive electrodes each having a sheet-like metal member coated with a positive electrode material so that one end portion thereof becomes a non-coated portion, and the non-coated portion of the positive electrode material facing the same side, A plurality of positive electrode groups arranged in a row in the in-plane direction,
それぞれ一端部が非塗布部となるように負極材料が塗布されたシート状の金属部 材を有する複数の負極を、前記負極材料の非塗布部を同じ側に向けて、前記非塗 布部が向く面内方向に 1列に並べた複数の負極群と、  A plurality of negative electrodes each having a sheet-like metal member coated with a negative electrode material so that one end thereof is a non-coated portion, and the non-coated portion of the negative electrode material facing the same side. A plurality of negative electrode groups arranged in a line in the in-plane direction facing,
を有し、  Have
前記正極群と前記負極群とは、前記正極材料と前記負極材料とが電解質を介して 対向し、かつ、前記正極と前記負極とで前記非塗布部が互いに反対側を向くように 交互に積層され、  The positive electrode group and the negative electrode group are alternately stacked such that the positive electrode material and the negative electrode material face each other through an electrolyte, and the non-coated portion faces the opposite side between the positive electrode and the negative electrode. And
前記正極および負極の非塗布部は、前記電解質を介して対向する極の対極の非 塗布部と重なり得る長さを有し、前記正極の非塗布部の一部と前記負極の非塗布部 の一部とが、積層方向に交互に重なり合って電気的に接続されている電極積層体。  The non-coated portion of the positive electrode and the negative electrode has a length that can overlap with the non-coated portion of the counter electrode opposite to the electrode, and a part of the non-coated portion of the positive electrode and the non-coated portion of the negative electrode An electrode laminate in which a part of the electrode laminate is electrically connected in an overlapping manner in the stacking direction.
[10] 前記電解質は電解液であり、前記正極の非塗布部と前記負極の非塗布部との接 続部を覆ってシール材が設けられて ヽる、請求項 9に記載の電極積層体。  10. The electrode laminate according to claim 9, wherein the electrolyte is an electrolytic solution, and a sealing material is provided so as to cover a connection portion between the non-coated portion of the positive electrode and the non-coated portion of the negative electrode. .
[11] 積層方向に隣接する前記正極の非塗布部と前記負極の非塗布部とは、導電部材 を介して接続されて!、る、請求項 9に記載の電極積層体。 [11] The non-coated portion of the positive electrode and the non-coated portion of the negative electrode adjacent to each other in the stacking direction are a conductive member The electrode laminate according to claim 9, wherein the electrode laminate is connected via a!
[12] 請求項 1または 9に記載の電極積層体と、 [12] The electrode laminate according to claim 1 or 9,
前記電極積層体の、前記複数のセルの配列方向での両端の前記正極の非塗布部 および前記負極の非塗布部にそれぞれ電気的に接続された、正極用および負極用 のタブと、  A positive electrode and a negative electrode tab electrically connected to the non-applied part of the positive electrode and the non-applied part of the negative electrode, respectively, at both ends of the electrode stack in the arrangement direction of the plurality of cells;
前記タブを延出させて前記電極積層体を封止する外装材と、  An exterior material that extends the tab and seals the electrode stack;
を有する電気デバイス。  Having an electrical device.
[13] 互いに隣り合った前記セル同士の接続部に電気的に接続され、かつ前記外装材 の外側に突出して設けられた端子を有する、請求項 12に記載の電気デバイス。 13. The electric device according to claim 12, further comprising a terminal that is electrically connected to a connection portion between the cells adjacent to each other and that protrudes to the outside of the exterior material.
[14] 前記外装材はフィルムである、請求項 12に記載の電気デバイス。 14. The electric device according to claim 12, wherein the exterior material is a film.
PCT/JP2006/307099 2005-04-22 2006-04-04 Electrode laminate and electric device WO2006114993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514523A JP5228482B2 (en) 2005-04-22 2006-04-04 Electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005125393 2005-04-22
JP2005-125393 2005-04-22

Publications (1)

Publication Number Publication Date
WO2006114993A1 true WO2006114993A1 (en) 2006-11-02

Family

ID=37214621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307099 WO2006114993A1 (en) 2005-04-22 2006-04-04 Electrode laminate and electric device

Country Status (2)

Country Link
JP (1) JP5228482B2 (en)
WO (1) WO2006114993A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031858A2 (en) * 2008-09-18 2010-03-25 Magna Steyr Fahrzeugtechnik Ag & Co Kg Connecting bar for accumulator cells and use thereof
WO2011114421A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Battery and process for production thereof
CN102668175A (en) * 2009-11-26 2012-09-12 丰田自动车株式会社 Solid state battery module
KR101237237B1 (en) 2010-06-07 2013-02-26 주식회사 엘지화학 Battery module and methods for bonding a cell terminal of a battery to an interconnect member
CN102956868A (en) * 2011-08-24 2013-03-06 通用汽车环球科技运作有限责任公司 Battery design
JP2013098135A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Battery
JP2015056234A (en) * 2013-09-10 2015-03-23 積水化学工業株式会社 Electric module and manufacturing method therefor
JP2016184525A (en) * 2015-03-26 2016-10-20 セイコーインスツル株式会社 Electrochemical cell
US9673479B2 (en) 2008-09-30 2017-06-06 Samsung Sdi Co., Ltd. Energy accumulator module
JP2017123306A (en) * 2016-01-08 2017-07-13 トヨタ自動車株式会社 Laminate battery
CN110085776A (en) * 2018-01-26 2019-08-02 微宏动力系统(湖州)有限公司 A kind of battery
CN112259776A (en) * 2019-07-02 2021-01-22 邱瑞光 Electricity storage unit, electricity storage module, and battery
CN114628762A (en) * 2020-12-08 2022-06-14 本田技研工业株式会社 Solid-state battery
CN116544626A (en) * 2023-07-03 2023-08-04 上海瑞浦青创新能源有限公司 Energy storage device
JP7379279B2 (en) 2020-06-18 2023-11-14 愛三工業株式会社 battery module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101809142B1 (en) 2015-05-12 2017-12-14 주식회사 엘지화학 Electrode Assembly Including Electrodes Being Interconnected

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051335A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Rectangular sealed battery
JP2003187781A (en) * 2001-12-21 2003-07-04 Sony Corp Battery and its manufacturing method, and battery module and its manufacturing method
JP2004047239A (en) * 2002-07-10 2004-02-12 Nissan Motor Co Ltd Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP2004055348A (en) * 2002-07-19 2004-02-19 Nissan Motor Co Ltd Battery pack, composite battery pack, and vehicle
JP2006066083A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051335A (en) * 2001-08-06 2003-02-21 Matsushita Electric Ind Co Ltd Rectangular sealed battery
JP2003187781A (en) * 2001-12-21 2003-07-04 Sony Corp Battery and its manufacturing method, and battery module and its manufacturing method
JP2004047239A (en) * 2002-07-10 2004-02-12 Nissan Motor Co Ltd Thin battery, battery pack, modular battery pack and vehicle installed therewith
JP2004055348A (en) * 2002-07-19 2004-02-19 Nissan Motor Co Ltd Battery pack, composite battery pack, and vehicle
JP2006066083A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Battery pack

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010031858A3 (en) * 2008-09-18 2010-12-16 Magna Steyr Fahrzeugtechnik Ag & Co Kg Connecting bar for accumulator cells and use thereof
WO2010031858A2 (en) * 2008-09-18 2010-03-25 Magna Steyr Fahrzeugtechnik Ag & Co Kg Connecting bar for accumulator cells and use thereof
US9673479B2 (en) 2008-09-30 2017-06-06 Samsung Sdi Co., Ltd. Energy accumulator module
JP5429304B2 (en) * 2009-11-26 2014-02-26 トヨタ自動車株式会社 Solid battery module
CN102668175A (en) * 2009-11-26 2012-09-12 丰田自动车株式会社 Solid state battery module
KR101379838B1 (en) * 2010-03-15 2014-04-01 도요타 지도샤(주) Battery and manufacturing method thereof
CN102792488A (en) * 2010-03-15 2012-11-21 丰田自动车株式会社 Battery and process for production thereof
JP5500244B2 (en) * 2010-03-15 2014-05-21 トヨタ自動車株式会社 Battery and manufacturing method thereof
WO2011114421A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Battery and process for production thereof
KR101237237B1 (en) 2010-06-07 2013-02-26 주식회사 엘지화학 Battery module and methods for bonding a cell terminal of a battery to an interconnect member
CN102956868A (en) * 2011-08-24 2013-03-06 通用汽车环球科技运作有限责任公司 Battery design
US8951661B2 (en) 2011-08-24 2015-02-10 GM Globabl Technology Operations LLC Battery design
CN102956868B (en) * 2011-08-24 2016-08-03 通用汽车环球科技运作有限责任公司 Battery design
DE102012214839B4 (en) 2011-08-24 2018-07-05 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) BATTERY ASSEMBLY WITH A MULTIPLE OF COMPOUNDS
JP2013098135A (en) * 2011-11-04 2013-05-20 Toyota Motor Corp Battery
JP2015056234A (en) * 2013-09-10 2015-03-23 積水化学工業株式会社 Electric module and manufacturing method therefor
JP2016184525A (en) * 2015-03-26 2016-10-20 セイコーインスツル株式会社 Electrochemical cell
JP2017123306A (en) * 2016-01-08 2017-07-13 トヨタ自動車株式会社 Laminate battery
CN110085776A (en) * 2018-01-26 2019-08-02 微宏动力系统(湖州)有限公司 A kind of battery
CN110085776B (en) * 2018-01-26 2022-05-24 微宏动力系统(湖州)有限公司 Battery with improved battery capacity
CN112259776A (en) * 2019-07-02 2021-01-22 邱瑞光 Electricity storage unit, electricity storage module, and battery
JP7379279B2 (en) 2020-06-18 2023-11-14 愛三工業株式会社 battery module
CN114628762A (en) * 2020-12-08 2022-06-14 本田技研工业株式会社 Solid-state battery
CN116544626A (en) * 2023-07-03 2023-08-04 上海瑞浦青创新能源有限公司 Energy storage device
CN116544626B (en) * 2023-07-03 2023-10-20 上海瑞浦青创新能源有限公司 energy storage device

Also Published As

Publication number Publication date
JPWO2006114993A1 (en) 2008-12-18
JP5228482B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5228482B2 (en) Electrical device
EP2500972B1 (en) Lithium secondary battery having multi-directional lead-tab structure
KR102401809B1 (en) Method for manufacturing an electrode unit for a battery cell, and an electrode unit
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
JP6859059B2 (en) Lithium-ion secondary battery and its manufacturing method
CN107851852B (en) Electricity storage device
US20080070111A1 (en) Sheet-type secondary battery and manufacturing method therefor
JP3972205B2 (en) Stacked battery
JP5070703B2 (en) Bipolar battery
TWI389368B (en) Laminated secondary battery
KR101797338B1 (en) Secondary battery
US8703342B2 (en) Electrode assembly, rechargeable battery including the same, and method of manufacturing an electrode thereof
KR100910624B1 (en) Double-Typed Secondary Battery
KR20160134331A (en) Pouch type secondary battery and method for fabricating the same
KR20170050999A (en) Secondary battery
KR20170058047A (en) Pouch-typed Battery Case Having Disposable Gas Gathering Member Attached Thereto and Method for Manufacturing Battery Cell Using the same
JP2009181899A (en) Laminated battery
WO2022085682A1 (en) Secondary battery
CN111247659B (en) Laminated battery and battery module
KR20120038075A (en) Fixing apparatus for pouch type supercapacitor
KR20220002540A (en) cell battery
KR20190112582A (en) Battery cell cartridge having uniformity surface pressure
JP7145396B2 (en) laminated battery
KR20190055994A (en) Secondary battery
JP7194331B2 (en) laminated battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514523

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731047

Country of ref document: EP

Kind code of ref document: A1