JP6159516B2 - Terminal adhesive tape and method of manufacturing the tape - Google Patents

Terminal adhesive tape and method of manufacturing the tape Download PDF

Info

Publication number
JP6159516B2
JP6159516B2 JP2012209044A JP2012209044A JP6159516B2 JP 6159516 B2 JP6159516 B2 JP 6159516B2 JP 2012209044 A JP2012209044 A JP 2012209044A JP 2012209044 A JP2012209044 A JP 2012209044A JP 6159516 B2 JP6159516 B2 JP 6159516B2
Authority
JP
Japan
Prior art keywords
propylene
adhesive tape
terminal
layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012209044A
Other languages
Japanese (ja)
Other versions
JP2014063679A (en
Inventor
折原 正直
正直 折原
賢三 竹林
賢三 竹林
達宏 合田
達宏 合田
貴雄 尾▲崎▼
貴雄 尾▲崎▼
尚志 織田
尚志 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Priority to JP2012209044A priority Critical patent/JP6159516B2/en
Publication of JP2014063679A publication Critical patent/JP2014063679A/en
Application granted granted Critical
Publication of JP6159516B2 publication Critical patent/JP6159516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、ラミネートフィルムによって外包された電池(キャパシタを含む)において、ラミネートフィルムと端子とを接着させる目的で、これらの間に介在させる端子接着用テープ及びその製造方法に関する。   The present invention relates to a terminal bonding tape interposed between a laminated film and a terminal in a battery (including a capacitor) encased by the laminated film, and a method for manufacturing the same.

電子機器の小型化、軽量化の要求が高まると共に、その電源として用いられる電池にも小型化、軽量化が求められている。同時に、電池には高いエネルギー密度、大きいエネルギー容量も求められる。これらの要求を満たす為、近年、ラミネートフィルムの内部に、正極、負極、セパレータ及び非水電解質が封入された非水電解質電池(例えば薄型リチウムイオン電池)の開発が目覚ましい。   As electronic devices become smaller and lighter in demand, batteries used as power sources are also required to be smaller and lighter. At the same time, the battery is required to have a high energy density and a large energy capacity. In order to satisfy these requirements, in recent years, development of a nonaqueous electrolyte battery (for example, a thin lithium ion battery) in which a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte are enclosed in a laminate film is remarkable.

図2は非水電解質電池の一例を示す模式的縦断面図(A)及びa−a’断面の拡大図(B)である。非水電解質電池20は、ラミネートフィルム22内に正極25、負極26、セパレータ27、非水電解質(図示せず)等の発電要素が収納され、ラミネートフィルム22の周縁部がヒートシールされ、製造される。尚、このとき正極25に接続された正極端子23及び負極26に接続された負極端子(以下、端子と略称する)24は、それぞれラミネートフィルム周縁部のヒートシール部において端子接着用テープ(以下、接着用テープと略称する)21を介してラミネートフィルム22に接着され、密閉状態で電池内部から外部に導出される。   FIG. 2 is a schematic longitudinal sectional view (A) showing an example of the nonaqueous electrolyte battery and an enlarged view (B) of the a-a ′ section. The nonaqueous electrolyte battery 20 is manufactured by storing power generation elements such as a positive electrode 25, a negative electrode 26, a separator 27, and a nonaqueous electrolyte (not shown) in a laminate film 22 and heat-sealing the peripheral portion of the laminate film 22. The At this time, a positive electrode terminal 23 connected to the positive electrode 25 and a negative electrode terminal (hereinafter abbreviated as a terminal) 24 connected to the negative electrode 26 are respectively connected to a terminal adhesive tape (hereinafter referred to as a “terminal adhesive tape”) at the heat seal portion at the periphery of the laminate film. It is bonded to the laminate film 22 via the adhesive tape 21 and is led out from the inside of the battery in a sealed state.

ラミネートフィルム22と端子23、24との間に接着用テープ21を用いる主たる目的は、該ラミネートフィルム22と端子23、24とを接着させることであるが、短絡防止の目的もある。
一般的なラミネートフィルム22は、表層/バリア層/ヒートシール層の層構成をとるが、バリア層はアルミニウム箔等の金属箔から成る為、ラミネートフィルム22の周縁部をヒートシールする際に、ヒートシール層が溶け出し、バリア層と端子23、24とが近接し、短絡する恐れがある。そこでラミネートフィルム22と端子23、24との間に接着用テープ21を介在させ、ラミネートフィルム22のバリア層と端子23、24との間隔を保持し、近接に起因する短絡を防止するのである。
The main purpose of using the adhesive tape 21 between the laminate film 22 and the terminals 23 and 24 is to adhere the laminate film 22 and the terminals 23 and 24, but it also has the purpose of preventing a short circuit.
The general laminate film 22 has a layer structure of surface layer / barrier layer / heat seal layer. Since the barrier layer is made of a metal foil such as an aluminum foil, when the peripheral portion of the laminate film 22 is heat sealed, The seal layer may melt and the barrier layer and the terminals 23 and 24 may be close to each other, causing a short circuit. Therefore, the adhesive tape 21 is interposed between the laminate film 22 and the terminals 23 and 24 to maintain the distance between the barrier layer of the laminate film 22 and the terminals 23 and 24, thereby preventing a short circuit due to proximity.

特許文献1では、架橋ポリオレフィン樹脂からなる架橋層を含む接着用テープが提案されている。架橋された層はヒートシール時の熱によって溶融し難いため、接着用テープに架橋層を設けると、バリア層と端子との近接に起因する短絡を、より確実に防止することができる。
また特許文献1では、該架橋層を形成する樹脂として、低密度ポリエチレン(実施例1乃至5)、ランダムタイプポリプロピレンに架橋助剤(トリメチロールプロパントリメタクリレート)を添加したもの(実施例6)、無水マレイン酸変性ポリプロピレンに架橋助剤(トリメチロールプロパントリメタクリレート)を添加したもの(実施例7)が例示されている。低密度ポリエチレンを用いた端子接着用テープ(実施例1乃至5)は、ヒートシール層がエチレン系樹脂から成るラミネートフィルム(以下、PE系外包材と略称する)と端子とを接着するにあたって好適に用いられ、プロピレン系樹脂を用いた端子接着用テープ(実施例6、7)は、ヒートシール層がプロピレン系樹脂から成るラミネートフィルム(以下、PP系外包材と略称する)と端子とを接着するにあたって好適に用いられる。
Patent Document 1 proposes an adhesive tape including a crosslinked layer made of a crosslinked polyolefin resin. Since the crosslinked layer is hardly melted by heat at the time of heat sealing, if a crosslinked layer is provided on the adhesive tape, a short circuit due to the proximity of the barrier layer and the terminal can be prevented more reliably.
Moreover, in patent document 1, as resin which forms this bridge | crosslinking layer, what added the crosslinking adjuvant (trimethylol propane trimethacrylate) to low density polyethylene (Example 1 thru | or 5) and random type polypropylene (Example 6), An example is shown in which maleic anhydride-modified polypropylene is added with a crosslinking aid (trimethylolpropane trimethacrylate) (Example 7). The terminal bonding tapes using low density polyethylene (Examples 1 to 5) are suitable for bonding a laminate film (hereinafter abbreviated as PE-based outer packaging material) whose heat seal layer is made of an ethylene resin and terminals. The terminal bonding tape using propylene resin (Examples 6 and 7) is used to bond a laminate film (hereinafter abbreviated as PP-based outer packaging material) whose heat seal layer is made of propylene resin and a terminal. It is preferably used for this.

ところでエチレン系の樹脂は電子線照射による架橋が容易であるが、プロピレン系樹脂は電子線照射による架橋が困難であることが知られている。プロピレン系の樹脂に電子線を照射すると、分子同士が結合する架橋反応よりも、分子鎖が切断する分解反応が起こりやすい。その為、上述した実施例6、実施例7では架橋助剤を併用し、架橋反応を促進している。しかしながら架橋助剤を配合した樹脂組成物は、製膜時の熱により架橋が進行する恐れがある。製膜時に架橋が進行すると、溶融樹脂中にゲル状物が混在するため、安定して製膜することが難しくなる。   By the way, it is known that ethylene-based resins are easily cross-linked by electron beam irradiation, but propylene-based resins are difficult to cross-link by electron beam irradiation. When a propylene-based resin is irradiated with an electron beam, a decomposition reaction in which molecular chains are broken is more likely to occur than a crosslinking reaction in which molecules are bonded to each other. Therefore, in Example 6 and Example 7 described above, a crosslinking assistant is used in combination to promote the crosslinking reaction. However, a resin composition containing a crosslinking aid may be crosslinked by heat during film formation. When crosslinking proceeds during film formation, gelled materials are mixed in the molten resin, making it difficult to stably form a film.

特許文献2には、接着用テープの架橋層を形成する樹脂組成物として、ポリプロピレンに、エチレン系重合体、ブテン系重合体、エチレンとブテンとプロピレンの3成分共重合体、密度が900kg/mの低結晶のエチレンとブテンの共重合体、非晶性のエチレンとプロピレンの共重合体、プロピレンα・オレフィン共重合体等より選ばれる副成分を、5%以上添加した組成物が例示されている。架橋助剤に代えて、上述した副成分を配合することにより、ポリプロピレンの電子線照射による架橋を可能とし、尚且つ製膜時の熱架橋を抑えるのである。 In Patent Document 2, as a resin composition for forming a cross-linked layer of an adhesive tape, polypropylene, an ethylene polymer, a butene polymer, a three-component copolymer of ethylene, butene, and propylene, and a density of 900 kg / m. No. 3 low crystalline ethylene / butene copolymer, amorphous ethylene / propylene copolymer, propylene α / olefin copolymer, etc. ing. By blending the above-mentioned subcomponents in place of the crosslinking aid, crosslinking by electron beam irradiation of polypropylene is possible, and thermal crosslinking during film formation is suppressed.

特開2001−102016JP2001-102016 特開2002−289157JP 2002-289157 A

本発明に先立ち、ポリプロピレンに副成分としてポリエチレンが配合された樹脂組成物からフィルムを製膜し、これに電子線を照射して接着用テープを製造し、該テープの短絡防止性能を検討した。具体的には接着用テープにプローブを押し当て、接着用テープの表面温度を250℃まで昇温して、接着用テープがどの程度変形するか測定した。変形量が大きいと、バリア層と端子との近接を抑制する効果に乏しく、短絡防止効果は期待できない。一方、変形量が小さいと、バリア層と端子との近接を抑制する効果に富み、短絡防止効果が期待できる。
測定の結果、ポリプロピレンにポリエチレンを配合した組成物よりなる接着テープは、変形量が比較的大きかった。これはポリプロピレンとエチレン成分との相溶性が良好でないためと思われる。ポリプロピレンにエチレン成分が均一に分散していないため、接着テープにおいて架橋構造が構築されていない部分があったと推察される。
Prior to the present invention, a film was formed from a resin composition in which polyethylene was added as an accessory component to polypropylene, and an adhesive tape was produced by irradiating the film with an electron beam, and the short-circuit prevention performance of the tape was examined. Specifically, the probe was pressed against the adhesive tape, the surface temperature of the adhesive tape was raised to 250 ° C., and how much the adhesive tape was deformed was measured. If the amount of deformation is large, the effect of suppressing the proximity between the barrier layer and the terminal is poor, and a short-circuit prevention effect cannot be expected. On the other hand, when the deformation amount is small, the effect of suppressing the proximity between the barrier layer and the terminal is rich, and an effect of preventing a short circuit can be expected.
As a result of the measurement, the amount of deformation of the adhesive tape made of a composition in which polyethylene was blended with polypropylene was relatively large. This seems to be because the compatibility between the polypropylene and the ethylene component is not good. Since the ethylene component is not uniformly dispersed in polypropylene, it is presumed that there was a portion where a crosslinked structure was not built in the adhesive tape.

本発明は、プロピレン系樹脂を主成分とする接着用テープに、短絡防止効果を奏する架橋構造を、活性エネルギー線を用いて構築することを課題とし、PP系外包材に対する接着性が良好で、尚且つ外包材のバリア層と端子との近接に起因する短絡を確実に防止できる接着用テープの提供を目的とする。   The present invention aims to build a cross-linking structure that exhibits a short-circuit prevention effect on an adhesive tape containing a propylene-based resin as a main component using an active energy ray, and has good adhesion to a PP-based outer packaging material, It is another object of the present invention to provide an adhesive tape that can reliably prevent a short circuit caused by the proximity of the barrier layer of the outer packaging material and the terminal.

本発明によると上記課題を解決するための手段として、
(1)ラミネートフィルムによって外包された電池において、前記ラミネートフィルムと端子とを接着する端子接着用テープであって、プロピレン系樹脂にプロピレン系熱可塑性エラストマーが配合された樹脂組成物から成り、架橋構造を有しており、前記プロピレン系熱可塑性エラストマーが、ポリプロピレンのハードセグメントと、ソフトセグメントからなり、前記ハードセグメントに対して前記ソフトセグメントがナノオーダで分散するナノ分散型エラストマーであることを特徴とする端子接着用テープが提供され、
前記プロピレン系樹脂に前記プロピレン系熱可塑性エラストマーが配合された樹脂組成物をフィルム状に成形した後、活性エネルギー線を照射することを特徴とする前記接着用テープの製造方法が提供される。
According to the present invention, as means for solving the above problems,
(1) A terminal-adhesive tape for adhering the laminate film and terminals in a battery encased by a laminate film, comprising a resin composition in which a propylene-based thermoplastic elastomer is blended with a propylene-based resin, and a crosslinked structure and have a, the propylene-based thermoplastic elastomer, a hard segment of polypropylene, consists of a soft segment, it said soft segment to said hard segment is characterized by a nano-dispersed elastomer dispersed in nano order Terminal adhesive tape is provided,
(2) After the propylene-based thermoplastic elastomer to the propylene resin is by molding a resin composition formulated into a film, the production method of the adhesive tape is provided, which comprises an active energy ray The

本発明では、プロピレン系樹脂に架橋を促進させる目的で配合させる副成分を、ポリプロピレン系熱可塑性エラストマー(以下、PP系TPOと略称する)とする。PP系TPOは、ハードセグメントがポリプロピレンからなるためプロピレン系樹脂との相溶性が良好であり、プロピレン系樹脂に配合すると均一に微分散する。該プロピレン系樹脂にPP系TPOを配合した組成物に、活性エネルギー線を照射すると、微分散したPP系TPOのソフトセグメントが優先的に架橋されるため、組成物中に緻密で均一な架橋構造が構築されるのである。   In the present invention, the auxiliary component added to the propylene-based resin for the purpose of promoting cross-linking is a polypropylene-based thermoplastic elastomer (hereinafter abbreviated as PP-based TPO). PP-based TPO has a good compatibility with a propylene-based resin because the hard segment is made of polypropylene, and is uniformly finely dispersed when blended with the propylene-based resin. When an active energy ray is irradiated to a composition in which PP-based TPO is blended with the propylene-based resin, the finely dispersed PP-based TPO soft segments are preferentially crosslinked, so that a dense and uniform crosslinked structure is contained in the composition. Is built.

本発明の接着用テープは緻密で均一な架橋構造を有しているので、外包材と端子とを接着する為にヒートシールする際に、完全に溶け出すことがなく、ある程度の厚さを保持できる。よって外包材のバリア層と端子との近接に起因する短絡を防止することができる。また樹脂組成物中のプロピレン由来成分の割合が高いため、PP系外包材に対する接着性も担保される。   Since the adhesive tape of the present invention has a dense and uniform cross-linking structure, it does not melt completely and keeps a certain thickness when heat-sealed to bond the outer packaging material and the terminal. it can. Therefore, a short circuit due to the proximity of the barrier layer of the outer packaging material and the terminal can be prevented. Moreover, since the ratio of the propylene origin component in a resin composition is high, the adhesiveness with respect to PP type | system | group outer packaging material is also ensured.

本発明の接着用テープの一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the adhesive tape of this invention. 非水電解質電池の一例の模式的断面図(A)及びa−a’断面の部分拡大図(B)である。It is typical sectional drawing (A) of an example of a nonaqueous electrolyte battery, and the elements on larger scale of the a-a 'cross section (B).

本発明の接着用テープは、プロピレン系樹脂にPP系TPOが配合された樹脂組成物から形成される。
<プロピレン系樹脂について>
本発明に用いられるプロピレン系樹脂は、プロピレン由来成分が50mol%以上である重合体であり、メタロセン触媒やチーグラー・ナッタ触媒等により製造された、プロピレン単独重合体、プロピレンとα−オレフィンの共重合体等を例示することができる。また、プロピレンとα−オレフィンの共重合体としては、プロピレン−エチレン、プロピレン−ブテン共重合体、プロピレン−エチレン−ブテン3元共重合体等を例示することができる。
The adhesive tape of the present invention is formed from a resin composition in which a PP-based TPO is blended with a propylene-based resin.
<Propylene resin>
The propylene-based resin used in the present invention is a polymer having a propylene-derived component of 50 mol% or more, and produced by a metallocene catalyst, a Ziegler-Natta catalyst, or the like, a propylene homopolymer, a copolymer of propylene and an α-olefin. A coalescence etc. can be illustrated. Examples of the copolymer of propylene and α-olefin include propylene-ethylene, propylene-butene copolymer, propylene-ethylene-butene terpolymer.

<プロピレン系熱可塑性エラストマー(PP系TPO)>
本発明に用いられるプロピレン系熱可塑性エラストマーは、ポリプロピレンをハードセグメントとし、エチレン−プロピレン−ジエンゴム、エチレン−プロピレンゴム、ブチルゴム等をソフトセグメントとするエラストマーであり、ソフトセグメントの端部がハードセグメントにより結束された構造を有する。室温ではハードセグメントが物理的な架橋点として作用する為、ゴムと同様の性質を持つが、昇温されるとハードセグメントが溶融し、架橋点としての機能を失うため、熱可塑性を示す。
PP系TPOには、(1)プロピレン系樹脂に配合した際に、プロピレン成分に対して1μm以上の島構造をとって分散する従来型エラストマーと、(2)プロピレン成分に対してナノオーダで分散するナノ分散型エラストマーとがあるが、本発明に用いられるPP系TPOとしては、特にナノ分散型エラストマーが好ましい。ナノ分散型エラストマーを用いることで接着用テープにおける架橋構造をより緻密なものとすることができる。ナノ分散型エラストマーとしては、住友化学(株)社製のタフセレン(商標)、三井化学(株)社製のタフマー(商標)(PNシリーズ)、ザ・ダウ・ケミカル・カンパニー製のバーシファイ(商標)、エクソンモービル・ケミカル・カンパニー製のビスタマックス(商標)を例示する。
<Propylene-based thermoplastic elastomer (PP-based TPO)>
The propylene-based thermoplastic elastomer used in the present invention is an elastomer having polypropylene as a hard segment and ethylene-propylene-diene rubber, ethylene-propylene rubber, butyl rubber or the like as a soft segment, and the end of the soft segment is bound by the hard segment. Has a structured. Since the hard segment acts as a physical cross-linking point at room temperature, it has the same properties as rubber. However, when the temperature is raised, the hard segment melts and loses its function as a cross-linking point, and thus exhibits thermoplasticity.
PP-based TPO has (1) a conventional elastomer that disperses in an island structure of 1 μm or more with respect to the propylene component when blended with the propylene-based resin, and (2) is dispersed in nano-order with respect to the propylene component. Although there are nano-dispersed elastomers, the PP-based TPO used in the present invention is particularly preferably a nano-dispersed elastomer. By using the nano-dispersed elastomer, the cross-linked structure in the adhesive tape can be made denser. Nano-dispersed elastomers include Tough Selenium (trademark) manufactured by Sumitomo Chemical Co., Ltd., Toughmer (trademark) (PN series) manufactured by Mitsui Chemicals, Inc., and Versify (trademark) manufactured by The Dow Chemical Company. An example is Vistamax (trademark) manufactured by ExxonMobil Chemical Company.

プロピレン系樹脂とPP系TPOの配合割合は特に限定しないが、プロピレン系樹脂:PP系TPO=90〜50:10〜50(重量比)が好ましい。PP系TPOの配合割合が上記範囲より小さいと、架橋しても十分な短絡防止効果を得られない恐れがあり、逆に上記範囲より大きいと、PP系外包材に対する接着性が低下する恐れがある。   The blending ratio of the propylene-based resin and PP-based TPO is not particularly limited, but propylene-based resin: PP-based TPO = 90 to 50:10 to 50 (weight ratio) is preferable. If the blending ratio of PP-based TPO is smaller than the above range, there is a possibility that sufficient short-circuit prevention effect may not be obtained even if it is cross-linked, and conversely if larger than the above range, adhesion to PP-based outer packaging material may be reduced. is there.

<製造方法>
本発明の端子接着用テープは、上述した(1)プロピレン系樹脂とPP系TPOからなる樹脂組成物をフィルム状に成形し、次いで(2)活性エネルギー線を照射し、更に(3)スリット加工することによって製造することができる。
(1)プロピレン系樹脂とPP系TPOからなる樹脂組成物をフィルム状に成形する具体的な方法として、プロピレン系樹脂とPP系TPOとを押出機に供給し、該押出機にて溶融混練した後、フラット状(或いは環状)のダイスからフィルム状に押し出し製膜するTダイ(或いはインフレーション)押出成形法を例示する。該方法を用いると、プロピレン系樹脂とPP系TPOの混練から製膜まで、一貫して行うことができる。
次に得られたフィルム状の成形品に(2)活性エネルギー線を照射する。活性エネルギー線は、被照射体の電子軌道に影響を与えるエネルギー線であれば特に限定なく用いることができ、例えば電子線、γ線、紫外線、赤外線等を用いることができる。しかしながら、架橋の効率を考えると、上述した活性エネルギー線の中でも電子線を照射することが最も好ましい。電子線を50〜100kVで、50〜300kGy照射することにより、フィルム状の成形物に均一で緻密な架橋構造を付与することができる。
最後に(3)スリット加工を行う。接着用テープの幅は端子や電池の形状に併せ適宜決定すればよいが、5〜50mmが一般的である。
尚、本発明の接着用テープの製造方法は、上述した方法に限定されるものではない。
<Manufacturing method>
The tape for terminal bonding of the present invention is obtained by forming the above-mentioned (1) resin composition comprising a propylene-based resin and PP-based TPO into a film shape, then (2) irradiating with active energy rays, and (3) slit processing. Can be manufactured.
(1) As a specific method for forming a resin composition comprising a propylene-based resin and PP-based TPO into a film, the propylene-based resin and PP-based TPO are supplied to an extruder and melt-kneaded by the extruder. Thereafter, a T-die (or inflation) extrusion method for forming a film from a flat (or annular) die will be exemplified. If this method is used, it can be performed consistently from kneading of propylene-based resin and PP-based TPO to film formation.
Next, (2) active energy rays are irradiated to the obtained film-like molded product. The active energy ray can be used without particular limitation as long as it is an energy ray that affects the electron trajectory of the irradiated object. For example, an electron beam, γ-ray, ultraviolet ray, infrared ray, or the like can be used. However, in view of the efficiency of crosslinking, it is most preferable to irradiate an electron beam among the above-described active energy rays. By irradiating the electron beam at 50 to 100 kV and 50 to 300 kGy, a uniform and dense cross-linked structure can be imparted to the film-like molded product.
Finally, (3) slitting is performed. The width of the adhesive tape may be appropriately determined according to the shape of the terminal or battery, but is generally 5 to 50 mm.
In addition, the manufacturing method of the adhesive tape of this invention is not limited to the method mentioned above.

<多層の接着テープ>
以上、本発明の接着用テープが単層の場合について説明したが、本発明はこれに限定されるものではない。本発明の接着テープは図1に示すように、上述した活性エネルギー線架橋された層(以下、架橋層)11のみからなる接着テープ101、架橋層11の片側にヒートシール層12を有する2層の接着テープ102、架橋層11の両側にヒートシール層12、13を有する3層のテープ103であってもよい。ヒートシール層12、13を形成する樹脂は特に限定されないが、架橋層11との接着性を考慮すると該架橋層11と同じプロピレン系樹脂を主成分とすることが望ましい。
ヒートシール層12/架橋層11からなる2層のタブテープ102は、共押出法等を用い、ヒートシール層/プロピレン系樹脂とPP系TPOからなる架橋用層の2層フィルムを製膜した後、活性エネルギー線を架橋用層側から照射し、該架橋用層にのみ架橋構造を付与した後、スリット加工を行うことによって製造することができる。
<Multilayer adhesive tape>
Although the case where the adhesive tape of the present invention is a single layer has been described above, the present invention is not limited to this. As shown in FIG. 1, the adhesive tape of the present invention has two layers having an adhesive tape 101 composed only of the above-described active energy ray-crosslinked layer (hereinafter, crosslinked layer) 11 and a heat seal layer 12 on one side of the crosslinked layer 11. The adhesive tape 102 may be a three-layer tape 103 having heat seal layers 12 and 13 on both sides of the cross-linked layer 11. The resin forming the heat seal layers 12 and 13 is not particularly limited, but it is desirable that the same propylene-based resin as that of the crosslinked layer 11 is a main component in consideration of adhesiveness with the crosslinked layer 11.
The two-layer tab tape 102 composed of the heat seal layer 12 / cross-linked layer 11 is formed by using a coextrusion method or the like, after forming a two-layer film of the heat seal layer / cross-link layer composed of propylene-based resin and PP-based TPO, It can be manufactured by irradiating an active energy ray from the cross-linking layer side to give a cross-linking structure only to the cross-linking layer and then performing slit processing.

またヒートシール層12/架橋層11/ヒートシール層13の3層構成である接着テープ103は、プロピレン系樹脂とPP系TPOからなる架橋用フィルムと、ヒートシール用フィルムとを、別々に製膜した後、架橋用フィルムにのみ活性エネルギー線を照射し、その後これらを貼り合せ、スリット加工することにより製造することができる。
また共押出法を用いてヒートシール層/プロピレン系樹脂とPP系TPOからなる架橋用層/ヒートシール層の三層フィルムを製膜した後、活性エネルギー線を照射し、スリット加工することによっても製造することができる。但し、この場合はヒートシール層12およびヒートシール層13が変質(架橋あるいは分解)しない程度に、活性エネルギー線の照射量を低く抑えることが望ましい。活性エネルギー線の照射量を低く抑えながらも、ラミネートフィルムのバリア層と端子とが近接することを架橋層11により防止するためには、PP系TPOとしてナノ分散型エラストマーを用いることが望ましい。PP系TPOとしてナノ分散型エラストマーを用いると、得られる架橋構造が緻密である為、架橋度合が低くてもバリア層と端子との近接を抑制することができる。
In addition, the adhesive tape 103 having a three-layer structure of heat seal layer 12 / cross-linked layer 11 / heat seal layer 13 is formed by separately forming a cross-linking film made of propylene-based resin and PP-based TPO and a heat-sealing film. Then, only the film for crosslinking is irradiated with active energy rays, and these are then bonded and slit processed.
Moreover, after forming a three-layer film of a cross-linking layer / heat-sealing layer composed of a heat-sealing layer / propylene resin and PP-based TPO using a co-extrusion method, the active energy ray is irradiated and slit processing is performed. Can be manufactured. However, in this case, it is desirable to keep the irradiation amount of active energy rays low to such an extent that the heat seal layer 12 and the heat seal layer 13 do not deteriorate (crosslink or decompose). It is desirable to use a nano-dispersed elastomer as the PP-based TPO in order to prevent the cross-linked layer 11 from approaching the barrier layer and the terminal of the laminate film while keeping the irradiation amount of the active energy ray low. When a nano-dispersed elastomer is used as the PP-based TPO, since the resulting crosslinked structure is dense, the proximity between the barrier layer and the terminal can be suppressed even if the degree of crosslinking is low.

以下、実施例、比較例に基づき、本発明をさらに詳細に説明する。尚、実施例及び比較例の性能は以下の方法にて評価した。
<短絡防止性能>
各接着用テープをプローブにて加圧し、接着用テープの形状保持率を測定した。尚、プローブには0.5MPaの圧力をかけ、接着用テープの表面温度を25℃から10℃/minにて250℃まで昇温させた。形状保持率は、プローブにて加圧する前の接着用テープの厚さをa、250℃まで昇温して加圧した後の厚さをbとした場合の(b/a)×100で評価した。形状保持率が大きい程、ヒートシール時の熱変形が小さいため、ラミネートフィルムのバリア層と端子との近接を防止でき、短絡防止性能に優れる。
<剥離強度>
ラミネートフィルムとして、基材がポリエチレンテレフタレート/ナイロン積層体からなり、バリア層がアルミニウムから成り、ヒートシール層が酸変性ポリプロピレン/ポリプロピレンからなる五層のPP系外包材を用意し、端子としてアルミニウム片を用意する。次いで、該端子を上下から接着用テープで挟み、更に上下からラミネートフィルムを宛がい、上下から190℃に加熱されたシールバーを充て、シール圧力1.0MPaにて3秒間ヒートシールを行う。その後、得られたサンプルを15mm幅に切断(ヒートシール方向に垂直な方向に切断)し、上下のラミネートフィルムを180°方向に引っ張り、引張試験機(オートグラフ/(株)島津製作所製)にて剥離強度を測定した。該剥離強度が大きい程、PP系外包材に対する接着性は良好である。
Hereinafter, the present invention will be described in more detail based on examples and comparative examples. The performance of the examples and comparative examples was evaluated by the following methods.
<Short-circuit prevention performance>
Each adhesive tape was pressurized with a probe, and the shape retention of the adhesive tape was measured. A pressure of 0.5 MPa was applied to the probe, and the surface temperature of the adhesive tape was raised from 25 ° C. to 250 ° C. at 10 ° C./min. The shape retention rate is evaluated as (b / a) × 100 when the thickness of the adhesive tape before pressing with the probe is a, and the thickness after pressurizing by heating up to 250 ° C. is (b / a) × 100. did. The larger the shape retention rate, the smaller the thermal deformation at the time of heat sealing, so that the proximity between the barrier layer of the laminate film and the terminal can be prevented, and the short circuit prevention performance is excellent.
<Peel strength>
As a laminate film, prepare a 5-layer PP-based outer packaging material consisting of a polyethylene terephthalate / nylon laminate, a barrier layer made of aluminum, and a heat seal layer made of acid-modified polypropylene / polypropylene. prepare. Next, the terminals are sandwiched from above and below with an adhesive tape, and a laminate film is further applied from above and below, a seal bar heated to 190 ° C. from above and below is filled, and heat sealing is performed at a sealing pressure of 1.0 MPa for 3 seconds. Thereafter, the obtained sample was cut to a width of 15 mm (cut in a direction perpendicular to the heat seal direction), and the upper and lower laminated films were pulled in the 180 ° direction, and the tensile tester (manufactured by Shimadzu Corp., Autograph) was used. The peel strength was measured. The greater the peel strength, the better the adhesion to the PP-based outer packaging material.

[実施例1]
プロピレン成分にエチレン成分をブロック共重合させたプロピレン系樹脂(以下、b−PPと称す)70重量%と、ナノ分散型エラストマーであるPP系TPO30重量%とを、単軸押出機に供給し、Tダイ押出成形法にてフィルム状に製膜し、70kV、100kGy)にて電子線照射を行った。得られたフィルム状の成形物を幅15mmにスリット加工し、本発明の接着用テープを得た。該接着用テープの短絡防止性能、剥離強度の結果を表1に記す。
[Example 1]
70% by weight of a propylene resin (hereinafter referred to as b-PP) obtained by block copolymerization of an ethylene component with a propylene component and 30% by weight of PP-based TPO which is a nano-dispersed elastomer are supplied to a single screw extruder, A film was formed by a T-die extrusion method, and electron beam irradiation was performed at 70 kV and 100 kGy). The obtained film-like molded product was slit to a width of 15 mm to obtain the adhesive tape of the present invention. The results of the short-circuit prevention performance and peel strength of the adhesive tape are shown in Table 1.

[比較例1]
b−PPのみを用い、実施例1と同様にして、接着用テープを得た。該接着用テープの形状保持性、接着性の評価結果を表1に記す。
[Comparative Example 1]
An adhesive tape was obtained in the same manner as in Example 1 using only b-PP. Table 1 shows the results of evaluating the shape retention and adhesion of the adhesive tape.

[比較例2]
ナノ分散型エラストマーであるPP系TPOに代えて、ポリエチレンをハードセグメントとするエチレン系熱可塑性エラストマー(以下、PE系TPOと称す)を30重量%添加した以外は、実施例1と同様にして、接着用テープを得た。該接着用テープの形状保持性能、剥離強度の評価結果を表1に記す。
[Comparative Example 2]
Instead of PP-based TPO that is a nano-dispersed elastomer, the same procedure as in Example 1 was performed except that 30 wt% of an ethylene-based thermoplastic elastomer having polyethylene as a hard segment (hereinafter referred to as PE-based TPO) was added. An adhesive tape was obtained. Table 1 shows the evaluation results of the shape retention performance and peel strength of the adhesive tape.

[比較例3]
ナノ分散型エラストマーであるPP系TPOに代えて、直鎖状超低密度ポリエチレン(以下、V−LDPE)を30重量%添加した以外は、実施例1と同様にして、接着用テープを得た。該接着用テープの形状保持性能、剥離強度の評価結果を表1に記す。
[Comparative Example 3]
An adhesive tape was obtained in the same manner as in Example 1 except that 30% by weight of linear ultra-low density polyethylene (hereinafter referred to as V-LDPE) was added instead of PP-based TPO which is a nano-dispersed elastomer. . Table 1 shows the evaluation results of the shape retention performance and peel strength of the adhesive tape.

b−PPにPP系TPOを配合した樹脂組成物からフィルムを製膜し、これに電子線を照射した接着用テープは、厚み残存率が高く、短絡防止性能に優れていることが分かる。また剥離強度も高く、接着用テープの第一の目的(端子とラミネートフィルムとの接着性)も果たす。
b−PPのみからなる接着用テープ(比較例1)は、短絡防止性能が極めて悪かった。これはプロピレン系樹脂層中に架橋構造がほとんど構築されていなかったためと思われる。
b−PPにPE系TPOを配合した樹脂組成物からなる接着用テープ(比較例2)も、短絡防止性能が極めて悪かった。これはb−PPのエチレン成分にPE系TPOのエチレン成分が引き寄せられ、PE系TPOが均一に分散しなかったためと思われる。局所的に存在するPE系TPOが優先的に架橋された結果、PP樹脂中に局所的な架橋構造のみが構築され、短絡防止性能が発揮されなかったものと推察する。また、当該組成物は、エチレン由来成分の割合が高くなるため、剥離強度も低かった。
b−PPにV−LDPEを配合した樹脂組成物から成る接着用テープ(比較例3)は、比較例1、2よりは短絡防止効果に優れるが、実施例1ほどではなかった。これはb−PPに対するV−LDPEの分散性が、比較例1、2よりも優れるものの実施例1ほどではなかったためと思われる。また、当該組成物は、エチレン由来成分の割合が高くなるため、剥離強度が低かった。
It can be seen that the adhesive tape obtained by forming a film from a resin composition in which PP-based TPO is blended with b-PP and irradiating it with an electron beam has a high thickness residual ratio and is excellent in short-circuit prevention performance. Also, the peel strength is high and the first purpose of the adhesive tape (adhesiveness between the terminal and the laminate film) is also achieved.
The adhesive tape (Comparative Example 1) made only of b-PP had extremely poor short-circuit prevention performance. This seems to be because a crosslinked structure was hardly constructed in the propylene-based resin layer.
The adhesive tape (Comparative Example 2) made of a resin composition in which PE-based TPO was blended with b-PP also had extremely poor short-circuit prevention performance. This is probably because the ethylene component of PE-based TPO was attracted to the ethylene component of b-PP, and PE-based TPO was not uniformly dispersed. As a result of preferentially cross-linking PE-based TPO present locally, it is presumed that only a local cross-linked structure was constructed in the PP resin, and the short-circuit preventing performance was not exhibited. Moreover, since the ratio of the ethylene-derived component was high, the composition had low peel strength.
The adhesive tape (Comparative Example 3) made of a resin composition in which V-LDPE is blended with b-PP is superior to Comparative Examples 1 and 2, but is not as effective as Example 1. This seems to be because the dispersibility of V-LDPE with respect to b-PP was superior to that of Comparative Examples 1 and 2, but was not as high as that of Example 1. Moreover, since the ratio of the ethylene-derived component was high, the composition had low peel strength.

本発明の接着用テープは、ラミネートフィルムによって外包されるリチウムイオン電池、リチウムイオンキャパシタ、全固体電池、ナトリウム電池等の各種電池において、外包材であるラミネートフィルムと端子とを接着する目的で利用することができる。   The adhesive tape of the present invention is used for the purpose of bonding a laminate film, which is an outer packaging material, and a terminal in various batteries such as a lithium ion battery, a lithium ion capacitor, an all-solid battery, and a sodium battery that are enclosed by a laminate film. be able to.

101、102、103 端子接着用テープ
11 架橋層
12、13 ヒートシール層
20 非水電解質電池
21 端子接着用テープ
22 ラミネートフィルム
23 正極端子
24 負極端子
25 正極
26 負極
27 セパレータ
101, 102, 103 Terminal adhesive tape 11 Cross-linked layer 12, 13 Heat seal layer 20 Nonaqueous electrolyte battery 21 Terminal adhesive tape 22 Laminate film 23 Positive electrode terminal 24 Negative electrode terminal 25 Positive electrode 26 Negative electrode 27 Separator

Claims (2)

ラミネートフィルムによって外包された電池において、前記ラミネートフィルムと端子とを接着する端子接着用テープであって、
プロピレン系樹脂にプロピレン系熱可塑性エラストマーが配合された樹脂組成物から成り、架橋構造を有しており、前記プロピレン系熱可塑性エラストマーが、ポリプロピレンのハードセグメントと、ソフトセグメントからなり、前記ハードセグメントに対して前記ソフトセグメントがナノオーダで分散するナノ分散型エラストマーであることを特徴とする端子接着用テープ。
In a battery encased by a laminate film, a terminal bonding tape for bonding the laminate film and a terminal,
Propylene resin consists of propylene-based thermoplastic elastomer resin composition formulated, and have a crosslinked structure, wherein the propylene-based thermoplastic elastomer, a hard segment of polypropylene, consists of a soft segment, the hard segment On the other hand, a tape for terminal bonding, wherein the soft segment is a nano-dispersed elastomer in which the soft segment is dispersed in nano-order .
前記プロピレン系樹脂に前記プロピレン系熱可塑性エラストマーが配合された樹脂組成物をフィルム状に成形した後、活性エネルギー線を照射することを特徴とする請求項1に記載の端子接着用テープの製造方法。 After molding the resin composition of the propylene-based thermoplastic elastomer to the propylene resin is blended into a film, the manufacturing method of the terminal adhesive tape according to claim 1, characterized in that an active energy ray is applied .
JP2012209044A 2012-09-24 2012-09-24 Terminal adhesive tape and method of manufacturing the tape Active JP6159516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209044A JP6159516B2 (en) 2012-09-24 2012-09-24 Terminal adhesive tape and method of manufacturing the tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209044A JP6159516B2 (en) 2012-09-24 2012-09-24 Terminal adhesive tape and method of manufacturing the tape

Publications (2)

Publication Number Publication Date
JP2014063679A JP2014063679A (en) 2014-04-10
JP6159516B2 true JP6159516B2 (en) 2017-07-05

Family

ID=50618731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209044A Active JP6159516B2 (en) 2012-09-24 2012-09-24 Terminal adhesive tape and method of manufacturing the tape

Country Status (1)

Country Link
JP (1) JP6159516B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044409B1 (en) * 2015-05-14 2019-11-13 주식회사 엘지화학 Battery pack including cartridge for secondary battery
KR102631758B1 (en) * 2016-12-16 2024-02-01 다이니폰 인사츠 가부시키가이샤 Adhesive films and batteries for metal terminals
JP7292852B2 (en) * 2018-10-31 2023-06-19 アキレス株式会社 delamination film
EP4183851A4 (en) * 2020-07-16 2024-08-14 Dainippon Printing Co Ltd Adhesive film for metal terminals, metal terminal with adhesive film for metal terminals, power storage device using said adhesive film for metal terminals, and method for manufacturing power storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011969A (en) * 1998-06-19 2000-01-14 Mitsubishi Cable Ind Ltd Sheet battery
JP3114174B1 (en) * 1999-07-27 2000-12-04 住友電気工業株式会社 Lead wires for non-aqueous electrolyte batteries
JP2002216718A (en) * 2001-01-18 2002-08-02 Dainippon Printing Co Ltd Adhesive film used at tab part of lithium battery
JP3711962B2 (en) * 2002-06-28 2005-11-02 日産自動車株式会社 Thin battery
JP5347411B2 (en) * 2008-09-30 2013-11-20 大日本印刷株式会社 Packaging materials for electrochemical cells
JP5644157B2 (en) * 2010-04-01 2014-12-24 凸版印刷株式会社 Exterior materials for lithium-ion batteries

Also Published As

Publication number Publication date
JP2014063679A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5934646B2 (en) Manufacturing method of terminal bonding tape and terminal bonding tape
JP5114260B2 (en) Packaging material for flat electrochemical cells
US20200010730A1 (en) Dielectric heating adhesive film and adhesion method using dielectric heating adhesive film
JP6381234B2 (en) Insulating film for sealing tab and electrochemical device
US9252412B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2011108539A1 (en) Porous polypropylene resin film, cell separator, and cell
JP7058465B2 (en) Adhesive film for sealing metal terminals of power storage device
JP6159516B2 (en) Terminal adhesive tape and method of manufacturing the tape
JP2013101778A (en) Outer package for battery, manufacturing method therefor and lithium secondary battery
EP2626380A1 (en) Porous polyolefin resin film
KR102583507B1 (en) Sealant film for exterior power storage device and power storage device for exterior and power storage device
JP2016081705A (en) Laminate film for battery outer packaging and battery
JP2011104993A (en) Porous film for heat sealable bag constituent member, heat sealable bag constituent member and disposable body warmer
JP2018079583A (en) Polypropylene-based stretched sealant film and film laminate using the same
JP2014120390A (en) Lead terminal bonding tape preventing deterioration of adhesive strength by hydrogen fluoride
JP2010111833A (en) Porous film, separator for lithium battery using the same, and battery
KR102518096B1 (en) Sealant film for exterior material of electricity storage device, exterior material for electricity storage device, and electricity storage device
CN111129192B (en) Polyolefin film, preparation method thereof, solar cell back plate and solar cell
JP6881320B2 (en) Lead wire for non-aqueous electrolyte battery and non-aqueous electrolyte battery including it
JP7104269B2 (en) Lead wire for non-aqueous electrolyte battery and non-aqueous electrolyte battery including it
JP5885104B2 (en) Multilayer porous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012012032A (en) Cover tape
JP5603410B2 (en) Polypropylene resin porous film, battery separator and battery
JP2015020750A (en) Cover tape and electronic component packing body
JP6038600B2 (en) Sealant film for battery wrapping material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250