JP2008108632A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008108632A
JP2008108632A JP2006291623A JP2006291623A JP2008108632A JP 2008108632 A JP2008108632 A JP 2008108632A JP 2006291623 A JP2006291623 A JP 2006291623A JP 2006291623 A JP2006291623 A JP 2006291623A JP 2008108632 A JP2008108632 A JP 2008108632A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
secondary battery
electrode mixture
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006291623A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shibuya
佳宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006291623A priority Critical patent/JP2008108632A/en
Publication of JP2008108632A publication Critical patent/JP2008108632A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having excellent charge and discharge characteristics in which a carbon material such as graphite is used as a negative electrode active material and then in which calboxymethylcellulose (CMC) is used as a thickening agent. <P>SOLUTION: In the nonaqueous electrolyte secondary battery 10 which has a negative electrode plate 12 in which negative electrode mixture layers containing CMC are formed on both side surfaces of a negative electrode core, and a positive electrode plate 11 in which positive electrode mixture layers are formed on both side surfaces of a positive electrode core, and which is equipped with a wound electrode body 14 around which the negative electrode plate 12 and the positive electrode plate 11 are wound through a separator 13, the negative electrode mixture layers formed on both the side surfaces of the negative electrode core have the same compositions and the same thicknesses except that physical properties of CMC are different from each other, and when a negative electrode mixture coated on the inner surface of the negative electrode core is set as A and the negative electrode mixture coated on the outer surface thereof is set as B, and then when the hardnesses of the negative electrode plates prepared by independently using the A and the B are set as F<SB>A</SB>and F<SB>B</SB>, respectively, CMC having such a property that F<SB>A</SB>becomes smaller than F<SB>B</SB>is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、充放電特性に優れた非水電解質二次電池に関し、特に負極活物質として黒鉛等の炭素材料を用い、増粘剤としてカルボキシメチルセルロース(CMC)を用いた充放電特性に優れた非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics, and in particular, a non-aqueous electrolyte excellent in charge / discharge characteristics using a carbon material such as graphite as a negative electrode active material and carboxymethyl cellulose (CMC) as a thickener. The present invention relates to a water electrolyte secondary battery.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム系非水電解質二次電池が注目され、このリチウム系非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium-based non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention. The proportion of lithium-based non-aqueous electrolyte secondary batteries accounts for a significant increase in the secondary battery market. Is shown.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(扁平な箱形)であることが多いことから、発電要素を角形外装缶に収容して形成した角形の非水電解質二次電池が使用されることが多い。このような角形の非水電解質二次電池は以下のようにして作製されるのが一般的である。   By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for accommodating the battery is often a square (flat box shape), so the power generation element is accommodated in a rectangular outer can. The formed rectangular non-aqueous electrolyte secondary battery is often used. Such a rectangular nonaqueous electrolyte secondary battery is generally manufactured as follows.

すなわち、細長いシート状の銅箔等からなる負極芯体(集電体)の両面に負極活物質を含有する負極合剤を塗布した負極板と、細長いシート状のアルミニウム箔等からなる正極芯体の両面に正極活物質を含有する正極合剤を塗布した正極板との間に、微多孔性ポリエチレンフィルム等からなるセパレータを配置し、負極板及び正極板をセパレータにより互いに絶縁した状態で円柱状の巻き芯に渦巻状に巻回して、円筒形の巻回電極体を作製する。この円筒状電極体をプレス機で押し潰し、角形の電池外装缶に挿入できるような形に成型した後、これを角形外装缶に収容し、電解液を注液して角形の非水電解質二次電池としている。   That is, a negative electrode plate in which a negative electrode mixture containing a negative electrode active material is applied on both sides of a negative electrode core (current collector) made of a long sheet-like copper foil and the like, and a positive electrode core made of a long and thin sheet-like aluminum foil A separator made of a microporous polyethylene film or the like is disposed between a positive electrode plate coated with a positive electrode mixture containing a positive electrode active material on both sides, and the negative electrode plate and the positive electrode plate are insulated from each other by a separator. A cylindrical wound electrode body is produced by spirally winding it on the winding core. The cylindrical electrode body is crushed with a press machine and molded into a shape that can be inserted into a rectangular battery outer can. Then, the cylindrical electrode body is accommodated in the rectangular outer can, and an electrolyte is injected to inject the rectangular nonaqueous electrolyte. Next battery.

このような従来の角形の非水電解質二次電池の構成を図面を用いて説明する。図1は下記特許文献1に開示されている角形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極板11と負極板12とがセパレータ13を介して巻回された扁平状の巻回電極体14を、角形の電池外装缶15の内部に収容し、封口板16によって電池外装缶15を密閉したものである。   The configuration of such a conventional rectangular nonaqueous electrolyte secondary battery will be described with reference to the drawings. FIG. 1 is a perspective view showing a rectangular nonaqueous electrolyte secondary battery disclosed in Patent Document 1 below, cut in the vertical direction. This non-aqueous electrolyte secondary battery 10 accommodates a flat wound electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound via a separator 13 in a rectangular battery outer can 15, The battery outer can 15 is sealed with a sealing plate 16.

巻回電極体14は、正極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極板11は、正極端子を兼ねる電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板12は、封口板16の中央に形成され、絶縁体17を介して取り付けられた負極端子18に対して集電体19を介して電気的に接続されている。   The wound electrode body 14 is wound so that the positive electrode plate 11 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 11 directly contacts the inner surface of the battery outer can 15 that also serves as a positive electrode terminal. And are electrically connected. The negative electrode plate 12 is formed in the center of the sealing plate 16 and is electrically connected to a negative electrode terminal 18 attached via an insulator 17 via a current collector 19.

そして、電池外装缶15は、正極板11と電気的に接続されているので、負極板12と電池外装缶15との短絡を防止するために、巻回電極体14の上端と封口板16との間に絶縁スペーサ20を挿入することにより、負極板12と電池外装缶15とを電気的に絶縁状態にしている。   Since the battery outer can 15 is electrically connected to the positive electrode plate 11, in order to prevent a short circuit between the negative electrode plate 12 and the battery outer can 15, the upper end of the wound electrode body 14 and the sealing plate 16 The insulating spacer 20 is inserted between the negative electrode plate 12 and the battery outer can 15 so as to be electrically insulated.

この角形の非水電解質二次電池は、巻回電極体14を電池外装缶15内に挿入した後、封口板16を電池外装缶15の開口部にレーザ溶接し、その後電解液注液孔21から非水電解液を注液して、この電解液注液孔21を密閉することにより作製される。このような角形の非水電解質二次電池は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   In this rectangular nonaqueous electrolyte secondary battery, after the wound electrode body 14 is inserted into the battery outer can 15, the sealing plate 16 is laser welded to the opening of the battery outer can 15, and then the electrolyte injection hole 21. The nonaqueous electrolytic solution is injected from the above, and the electrolytic solution injection hole 21 is sealed. Such a rectangular non-aqueous electrolyte secondary battery has an excellent effect that there is little wasted space during use, and the battery performance and battery reliability are high.

この非水電解質二次電池に使用される負極活物質としては、黒鉛、非晶質炭素などの炭素質材料がリチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることから広く用いられている。   As the negative electrode active material used in this non-aqueous electrolyte secondary battery, carbonaceous materials such as graphite and amorphous carbon have a discharge potential comparable to that of lithium metal or lithium alloy, but dendrite grows. Therefore, it is widely used because it has excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density.

そして、この非水電解質二次電池における正極活物質としてしては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)、LiFePOなどが一種単独もしくは複数種を混合して用いられている。
特開2001−273931号公報(特許請求の範囲、段落[0003]〜[0004]、図1) 特開平 8−130035号公報(特許請求の範囲、段落[0058]〜[0081])
As a positive electrode active material in this nonaqueous electrolyte secondary battery, Li x MO 2 capable of reversibly inserting and extracting lithium ions (where M is at least one of Co, Ni, and Mn) A lithium transition metal composite oxide represented by: LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mn y Ni z O 2 (x + y + z = 1), LiFePO 4 or the like is used singly or in combination.
JP-A-2001-273931 (Claims, paragraphs [0003] to [0004], FIG. 1) JP-A-8-130035 (Claims, paragraphs [0058] to [0081])

上述のような非水電解質二次電池は高容量化及び高エネルギー密度化を達成することができるために、携帯電話機、ノート型パーソナルコンピュータ、PDA、携帯型デジタルメディアプレイヤー等にも使用されているが、これらの機器の高機能化、小型化及び軽量化の要請から更なる高容量化が望まれている。   Since the non-aqueous electrolyte secondary battery as described above can achieve high capacity and high energy density, it is also used in cellular phones, notebook personal computers, PDAs, portable digital media players and the like. However, a further increase in capacity is desired because of the demand for higher functionality, smaller size, and lighter weight of these devices.

非水電解質二次電池の高容量化の手法としては、合剤質量の増大化、芯体の薄膜化が考えられるが、副作用として合剤の塗布厚さが厚くなったことによる電極体の巻回適性の悪化や充放電の繰り返しによる電極体の膨化が起こりやすくなり、充放電特性の低下に繋がるという問題点が存在していた。このような充放電の繰り返しによる電極体の膨化は密度が低くかつ厚さが厚い負極板の場合に大きく現れる。   As a method for increasing the capacity of the non-aqueous electrolyte secondary battery, an increase in the mass of the mixture and a reduction in the thickness of the core may be considered, but as a side effect, the winding of the electrode body due to the increase in the thickness of the mixture applied. There has been a problem that the electrode body is liable to be swollen due to deterioration of repetitiveness and repeated charge / discharge, leading to deterioration of charge / discharge characteristics. Such swelling of the electrode body due to repeated charge and discharge appears greatly in the case of a negative electrode plate having a low density and a large thickness.

一方、上記特許文献2には、円筒形の非水電解質二次電池用電極体の巻回適性を向上させる目的で、芯体の両側に塗布される正極活物質合剤の塗布厚さを巻回時に内側面となる方を外側面となる方よりも薄くすることが示されている。しかしながら、このような構成を採用すると、従来から使用されている正極の製造手段の構成を変える必要が生じるとともに、負極用芯体の両面には同じ厚さの負極合剤が塗布されているから、正極側及び負極側のそれぞれで活物質含有割合が理論的に必要な量よりも過剰になる面及び不足となる面が生じるため、電池容量は正極活物質及び負極活物質の使用量から得られる理論電池容量よりも大幅に低下してしまう。加えて、上記特許文献2には、ここに記載されている発明を偏平形の非水電解質二次電池に適用し得ることを示唆する記載はない。   On the other hand, in Patent Document 2, the coating thickness of the positive electrode active material mixture applied on both sides of the core body is wound for the purpose of improving the winding suitability of the cylindrical electrode body for a nonaqueous electrolyte secondary battery. It is shown that the inner surface during rotation is thinner than the outer surface. However, when such a configuration is adopted, it is necessary to change the configuration of the positive electrode manufacturing means used conventionally, and the negative electrode mixture having the same thickness is applied to both surfaces of the negative electrode core. Since the active material content ratio on each of the positive electrode side and the negative electrode side becomes excessive and insufficient, the battery capacity is obtained from the usage amount of the positive electrode active material and the negative electrode active material. It will be significantly lower than the theoretical battery capacity. In addition, Patent Document 2 does not include a description suggesting that the invention described herein can be applied to a flat type non-aqueous electrolyte secondary battery.

発明者は、負極芯体の両側に設けられている負極合剤層のそれぞれの厚さを同一に維持しながらも電極体の巻回特性を良好にできれば、負極板の膨化を抑制することができ、非水電解質二次電池の充放電特性の向上を達成できるものと考えて鋭意研究を重ねた結果、負極用芯体の両側に塗布されている負極合剤において増粘剤として使用されているカルボキシメチルセルロース(CMC)の物性をそれぞれの側で異ならせるだけで、各成分の含有量を負極芯体の両側面において同様としても、巻回適性を良好にすることができるとともに充放電の繰り返しによる膨化を抑制できるため、充放電特性が改善された非水電解質二次電池が得られることを見出し、本発明を完成するに至ったのである。   The inventor can suppress the swelling of the negative electrode plate if the winding characteristics of the electrode body can be improved while maintaining the same thickness of each of the negative electrode mixture layers provided on both sides of the negative electrode core. As a result of intensive research on the idea that the charge / discharge characteristics of the non-aqueous electrolyte secondary battery can be improved, it has been used as a thickener in the negative electrode mixture applied to both sides of the negative electrode core. Even if the content of each component is the same on both sides of the negative electrode core, only by changing the physical properties of the carboxymethyl cellulose (CMC) on each side, it is possible to improve winding suitability and repeat charge and discharge. Therefore, the present inventors have found that a nonaqueous electrolyte secondary battery having improved charge / discharge characteristics can be obtained and the present invention has been completed.

すなわち、本発明は、負極活物質として黒鉛等の炭素材料を用い、増粘剤としてCMCを用いた充放電特性に優れた非水電解質二次電池を提供することを目的とする。   That is, an object of the present invention is to provide a nonaqueous electrolyte secondary battery excellent in charge and discharge characteristics using a carbon material such as graphite as a negative electrode active material and using CMC as a thickener.

本発明の上記目的は以下の構成により達成し得る。すなわち、本発明の非水電解質二次電池は、CMCを含有する負極合剤層が負極芯体の両側面に設けられた負極板と、正極合剤層が正極芯体の両側面に設けられた正極板とを有し、前記負極板及び正極板とがそれぞれセパレータを介して巻回された巻回電極体を備えた非水電解質二次電池において、前記負極芯体の両側面に設けられた負極合剤層は、それぞれCMCの物性が異なる以外は同一組成かつ同一厚さであり、前記負極芯体の内側面に塗布された負極合剤をA、外側面に塗布された負極合剤をBとし、前記A及びBをそれぞれ単独で同量用いて負極板を作製したときの負極板の硬さをそれぞれF及びFとしたとき、F<Fとなるような性質のカルボキシメチルセルロースを使用したことを特徴とする。 The above object of the present invention can be achieved by the following configurations. That is, the non-aqueous electrolyte secondary battery of the present invention includes a negative electrode plate in which a negative electrode mixture layer containing CMC is provided on both sides of the negative electrode core, and a positive electrode mixture layer on both sides of the positive electrode core. In a non-aqueous electrolyte secondary battery comprising a wound electrode body in which each of the negative electrode plate and the positive electrode plate is wound via a separator, the positive electrode plate is provided on both side surfaces of the negative electrode core. The negative electrode mixture layers have the same composition and the same thickness except that the physical properties of CMC are different from each other. The negative electrode mixture applied to the inner surface of the negative electrode core is A, and the negative electrode mixture is applied to the outer surface. And B and A and B are each independently used in the same amount, and when the negative electrode plate has a hardness of F A and F B , respectively, F A <F B It is characterized by using carboxymethylcellulose.

本発明の非水電解質二次電池においては、正極活物質として、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1−y(y=0.01〜0.99)、LiMnO、LiMn、LiCoMnNi(x+y+z=1)、又はLiFePOなどの一種単独もしくは複数種を混合して使用することができる。 In the nonaqueous electrolyte secondary battery of the present invention, Li x MO 2 capable of reversibly occluding and releasing lithium ions as a positive electrode active material (where M is at least one of Co, Ni, and Mn). A lithium transition metal composite oxide represented by the following: LiCoO 2 , LiNiO 2 , LiNi y Co 1-y O 2 (y = 0.01 to 0.99), LiMnO 2 , LiMn 2 O 4 , LiCo x Mny y Ni z O 2 (x + y + z = 1), LiFePO 4 or the like can be used alone or in combination.

また、本発明の非水電解質二次電池においては、非水溶媒系電解質を構成する非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、エステル類などを使用することができ、これら溶媒の2種類以上を混合して用いることもできる。これらの中ではカーボネート類、ラクトン類、エーテル類、ケトン類、エステル類などが好ましく、カーボネート類がさらに好適に用いられる。   In the nonaqueous electrolyte secondary battery of the present invention, carbonates, lactones, ethers, esters, etc. can be used as the nonaqueous solvent (organic solvent) constituting the nonaqueous solvent electrolyte. Two or more of these solvents can be mixed and used. Among these, carbonates, lactones, ethers, ketones, esters and the like are preferable, and carbonates are more preferably used.

具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3オキサゾリジン−2−オン、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート、エチルブチルカーボネート、ジプロピルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、1,4−ジオキサンなどを挙げることができる。   Specific examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl. -1,3-oxazolidine-2-one, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate, methyl butyl carbonate, ethyl propyl carbonate, ethyl butyl carbonate, dipropyl carbonate, γ -Butyrolactone, γ-valerolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, 1,4-dio Xanthan can be mentioned.

なお、本発明における非水電解質の溶質としては、非水電解質二次電池において一般に溶質として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が好ましく用いられる。前記非水溶媒に対する溶質の溶解量は、0.5〜2.0mol/Lとするのが好ましい。 In addition, as a solute of the nonaqueous electrolyte in the present invention, a lithium salt generally used as a solute in a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is preferably used. The amount of solute dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.

また、本発明は、上記非水電解質二次電池において、前記負極合剤A中のカルボキシメチルセルロースのエーテル化度は、前記負極合剤B中のカルボキシメチルセルロースのエーテル化度よりも大きいことを特徴とする。   The present invention provides the nonaqueous electrolyte secondary battery, wherein the degree of etherification of carboxymethyl cellulose in the negative electrode mixture A is greater than the degree of etherification of carboxymethyl cellulose in the negative electrode mixture B. To do.

また、本発明は、上記非水電解質二次電池において、前記巻回電極体は偏平形であることを特徴とする。   In the non-aqueous electrolyte secondary battery according to the present invention, the wound electrode body is a flat shape.

また、本発明は、上記非水電解質二次電池において、前記負極合剤中の負極活物質は、炭素質材料からなることを特徴とする。   In the non-aqueous electrolyte secondary battery according to the present invention, the negative electrode active material in the negative electrode mixture is made of a carbonaceous material.

本発明は上記の構成を備えることにより以下に述べるような優れた効果を奏する。すなわち、本発明によれば、負極芯体の両側面にそれぞれ設けられた負極合剤層は、それぞれに含有されているCMCの物理特性は異なっているが組成は同一であり、かつ厚さも同一であるため、電気化学反応に関与する活物質量も相違はない。したがって、従来例のような芯体の両側面に設けられた合剤層の厚さが異なることに起因する電池容量の低下は生じない。   By providing the above configuration, the present invention has the following excellent effects. That is, according to the present invention, the negative electrode mixture layers provided on both side surfaces of the negative electrode core have the same composition and the same thickness although the physical properties of the CMCs contained therein are different. Therefore, there is no difference in the amount of active material involved in the electrochemical reaction. Therefore, the battery capacity is not lowered due to the difference in the thickness of the mixture layer provided on both side surfaces of the core as in the conventional example.

加えて、負極芯体の内側面に塗布された負極合剤をA、外側面に塗布された負極合剤をBとし、前記A及びBをそれぞれ単独で同量用いて負極板を作製したときの負極板の硬さをそれぞれF及びFとしたとき、F<Fとなるような性質のカルボキシメチルセルロースを使用したため、巻回電極体を形成した際に外側面の負極合剤層の硬さは内側面の負極合剤層の硬さよりも硬くなる。そのため、負極板と正極板とをそれぞれセパレータを介して巻回することによって巻回電極体を形成した際に各負極合剤層に歪みが生じ難く、しかも密に巻回することができるため、充放電サイクルを繰り返しても負極合剤層が膨化し難くなり、充放電特性に優れた非水電解質二次電池が得られる。 In addition, when the negative electrode mixture applied to the inner surface of the negative electrode core is A, the negative electrode mixture applied to the outer surface is B, and the same amount of A and B is used alone to produce a negative electrode plate When the hardness of the negative electrode plate is F A and F B , since carboxymethyl cellulose having a property of F A <F B is used, the negative electrode mixture layer on the outer surface is formed when the wound electrode body is formed. Is harder than the hardness of the negative electrode mixture layer on the inner surface. Therefore, when the wound electrode body is formed by winding each of the negative electrode plate and the positive electrode plate through a separator, each negative electrode mixture layer is less likely to be distorted, and can be wound densely. Even when the charge / discharge cycle is repeated, the negative electrode mixture layer is difficult to expand, and a nonaqueous electrolyte secondary battery excellent in charge / discharge characteristics is obtained.

また、本発明の非水電解質二次電池によれば、CMCのエーテル化度を大きくすると粘度が小さくなって得られた負極合剤層の硬さは小さく(柔らかく)なり、CMCのエーテル化度を小さくすると粘度が大きくなって得られた負極合剤層の硬さは大きく(硬く)なるから、このCMCのエーテル化度を適宜選択することにより所望の硬さの負極合剤層を得ることができるようになる。なお、このようなエーテル化度を変えたCMCは各種のものが市販されており、適宜選択して採用し得る。   In addition, according to the nonaqueous electrolyte secondary battery of the present invention, when the degree of etherification of CMC is increased, the viscosity of the negative electrode mixture layer obtained is decreased (softened), and the degree of etherification of CMC is reduced. Since the hardness of the negative electrode mixture layer obtained by increasing the viscosity increases (hardens), the negative electrode mixture layer having a desired hardness can be obtained by appropriately selecting the degree of etherification of CMC. Will be able to. In addition, various types of CMC having such a different degree of etherification are commercially available, and can be appropriately selected and employed.

また、本発明の非水電解質二次電池によれば、巻回電極体を形成した際に各負極合剤層に歪みが生じ難く、しかも密に巻回することができるため、円筒状ないし楕円筒状に巻回した後に押し潰して偏平状の巻回電極体としても、隙間が生じ難く、しかも残量歪みも少ないため、充放電サイクルを繰り返しても負極合剤層が膨化することが少なくなり、充放電特性に優れた偏平形の非水電解質二次電池が得られる。   Further, according to the non-aqueous electrolyte secondary battery of the present invention, when the wound electrode body is formed, each negative electrode mixture layer is hardly distorted and can be wound tightly. Even when the flat wound electrode body is crushed after being wound into a cylindrical shape, there is little gap, and there is little residual strain, so the negative electrode mixture layer is less likely to expand even after repeated charge / discharge cycles. Thus, a flat non-aqueous electrolyte secondary battery having excellent charge / discharge characteristics can be obtained.

また、本発明の非水電解質二次電池によれば、負極活物質としての黒鉛、非晶質炭素などの炭素質材料は、リチウム金属やリチウム合金に匹敵する放電電位を有しながらも、デンドライトが成長することがないために安全性が高く、更に初期効率に優れ、電位平坦性も良好であり、また、密度も高いという優れた性質を有していることが知られているものであるが、負極活物質としてこのような炭素質材料を用いた場合には、上記本発明の効果が顕著に表れる。   In addition, according to the nonaqueous electrolyte secondary battery of the present invention, the carbonaceous material such as graphite and amorphous carbon as the negative electrode active material has a discharge potential comparable to that of lithium metal or lithium alloy, but dendrite. Is known to have excellent properties such as high safety, excellent initial efficiency, good potential flatness, and high density. However, when such a carbonaceous material is used as the negative electrode active material, the effect of the present invention is remarkably exhibited.

以下、本願発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the following examples illustrate non-aqueous electrolyte secondary batteries for embodying the technical idea of the present invention, and are not intended to specify the present invention to these examples. The present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.

まず、実施例及び比較例に共通する正極の作製方法、負極合剤A及びBの調製方法、負極板強度の測定方法、非水電解液の調製方法、充放電特性の測定方法及び電池厚みの測定方法について説明する。   First, a method for producing a positive electrode common to Examples and Comparative Examples, a method for preparing negative electrode mixtures A and B, a method for measuring negative electrode plate strength, a method for preparing a non-aqueous electrolyte, a method for measuring charge / discharge characteristics, and a battery thickness A measurement method will be described.

[正極の作製]
正極活物質としてのコバルト酸リチウム(LiCoO)は、出発原料としてリチウム源には炭酸リチウム(LiCO)を用い、コバルト源には四酸化三コバルト(Co)を用い、これらを所定量秤量して混合した後、空気雰囲気下において850℃で24時間焼成し、コバルト酸リチウムを得た。これを乳鉢で平均粒径14μmまで粉砕し、正極活物質とした。
[Production of positive electrode]
Lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material uses lithium carbonate (Li 2 CO 3 ) as a lithium source as a starting material, and tricobalt tetroxide (Co 3 O 4 ) as a cobalt source. Were weighed and mixed in a predetermined amount, and then calcined at 850 ° C. for 24 hours in an air atmosphere to obtain lithium cobalt oxide. This was ground to an average particle size of 14 μm with a mortar to obtain a positive electrode active material.

このようにして作製された正極活物質を95質量部と導電剤としての黒鉛粉末を5質量部とを混合した。この混合物を95質量%と、結着剤としてのポリビニリデンフルオライド(PVdF)粉末を5質量部とを、N−メチルピロリドン(NMP)溶液中に分散させて正極活物質スラリーを作製した。次に、厚み20μmのアルミニウム箔からなる正極芯体の両面にドクターブレード法により塗布した。この正極板を乾燥機内に通してスラリー作製時に必要であったNMPを除去し、次いで、ロールプレス機を用いて厚みが125μmとなるように圧延して正極板を作製した。   95 parts by mass of the positive electrode active material thus produced and 5 parts by mass of graphite powder as a conductive agent were mixed. A positive electrode active material slurry was prepared by dispersing 95% by mass of this mixture and 5 parts by mass of polyvinylidene fluoride (PVdF) powder as a binder in an N-methylpyrrolidone (NMP) solution. Next, it apply | coated to both surfaces of the positive electrode core body which consists of an aluminum foil with a thickness of 20 micrometers by the doctor blade method. This positive electrode plate was passed through a drier to remove NMP that was necessary when the slurry was produced, and then rolled to a thickness of 125 μm using a roll press to produce a positive electrode plate.

[負極合剤Aの作製]
負極活物質としての人造黒鉛96質量部と、第1の増粘剤としてのエーテル化度が1.20のCMC2質量部と、スチレンブタジエンゴム(SBR)ラテックスの2質量部とを水に分散させて負極活物質スラリーを調製した。これを負極合剤Aとした。
[Preparation of negative electrode mixture A]
96 parts by mass of artificial graphite as a negative electrode active material, 2 parts by mass of CMC having a degree of etherification of 1.20 as a first thickener, and 2 parts by mass of styrene butadiene rubber (SBR) latex are dispersed in water. Thus, a negative electrode active material slurry was prepared. This was designated as negative electrode mixture A.

[負極合剤Bの作製]
負極活物質としての人造黒鉛96質量部と、第2の増粘剤としてのエーテル化度が0.65のCMC2質量部と、スチレンブタジエンゴム(SBR)ラテックスの2質量部とを水に分散させて負極活物質スラリーを調製した。これを負極合剤Bとした。
[Preparation of negative electrode mixture B]
96 parts by mass of artificial graphite as a negative electrode active material, 2 parts by mass of CMC having a degree of etherification of 0.65 as a second thickener, and 2 parts by mass of styrene butadiene rubber (SBR) latex are dispersed in water. Thus, a negative electrode active material slurry was prepared. This was designated as negative electrode mixture B.

[極板の硬さF及びFの測定]
負極合剤Aを用いた負極板の硬さF及び負極合剤Bを用いた負極板の硬さFは次のようにして測定した。まず、厚み8μmの銅箔からなる負極芯体の両側に負極合剤A又は負極合剤Bを均一な厚さで塗布した。この負極板を乾燥機内を通して水分を除去した後、ロールプレス機を用いて充填密度が1.60/mLとなるように圧延して両側が負極合剤Aからなる負極試料a及び両側が負極合剤Bからなる負極試料bを得た。これらの負極試料a及びbから、それぞれ2cm×5cmの大きさとなるように切り出し、強度測定に供した。
[Measurement of hardness F A and F B of electrode plate]
Hardness F B of the negative electrode plate with a hardness F A and the negative electrode mixture B of the negative electrode plate using a negative electrode mixture A were measured as follows. First, the negative electrode mixture A or the negative electrode mixture B was applied to both sides of a negative electrode core made of a copper foil having a thickness of 8 μm with a uniform thickness. This negative electrode plate was passed through a dryer to remove moisture, and then rolled using a roll press so that the packing density was 1.60 / mL. A negative electrode sample b composed of the agent B was obtained. These negative electrode samples a and b were cut out to have a size of 2 cm × 5 cm, respectively, and subjected to strength measurement.

負極板の強度は、図2に示すように、幅3cmの板にそれぞれの負極試料a又はbをアーチ状に立てかけ、この負極試料a又はbの中央部上方から縦25mm×横6mm×高さ60mmのSUS製の試験板を速度20mm/minで推進させたときに掛かる力をロードセルで測定し、最初に表示された数値をそれぞれの負極試料a、bの硬さF、Fとして求めた。結果を表1に示した。 As shown in FIG. 2, the strength of the negative electrode plate is such that each negative electrode sample a or b is arched against a plate having a width of 3 cm, and the negative electrode sample a or b has a height of 25 mm × 6 mm × height from the upper center. The force applied when a 60 mm SUS test plate was propelled at a speed of 20 mm / min was measured with a load cell, and the numerical values displayed first were obtained as the hardnesses F A and F B of the respective negative electrode samples a and b. It was. The results are shown in Table 1.

Figure 2008108632
Figure 2008108632

[電池厚みの測定]
電池厚みは、300サイクルの充放電を繰り返した後、電池厚みをマイクロメータによって測定することにより求めた。
[Measurement of battery thickness]
The battery thickness was determined by measuring the battery thickness with a micrometer after repeating 300 cycles of charge and discharge.

[非水電解液の調製]
ECとEMCとDECとを体積比20:50:30の割合(1気圧、25℃換算)で混合した非水溶媒に、電解質塩としてのLiPFを1.0mol/Lの割合で溶解したものを非水電解質とした。
[Preparation of non-aqueous electrolyte]
A solution in which LiPF 6 as an electrolyte salt is dissolved at a rate of 1.0 mol / L in a non-aqueous solvent in which EC, EMC, and DEC are mixed at a volume ratio of 20:50:30 (1 atm, converted to 25 ° C.) Was a non-aqueous electrolyte.

[充放電特性の測定]
25℃において、850mAの定電流で電池電圧が4.20Vとなるまで充電し、その後4.20Vの定電圧で電流が42.5mAとなるまで充電し、次いで、25℃で850mAの定電流で電池電圧が2.75Vとなるまで放電した。このときの放電容量を1サイクル目の放電容量として求めた。次いで、上述のような充放電サイクルを300回繰り返し、300回目の放電容量を300サイクル目の放電容量として求めた。そして、以下の計算式により容量維持率を求めた。
容量維持率(%)
=(300サイクル目の放電容量/1サイクル目の放電容量)×100
[Measurement of charge / discharge characteristics]
At 25 ° C., the battery is charged at a constant current of 850 mA until the battery voltage reaches 4.20 V, then charged at a constant voltage of 4.20 V until the current reaches 42.5 mA, and then at a constant current of 850 mA at 25 ° C. The battery was discharged until the battery voltage reached 2.75V. The discharge capacity at this time was determined as the discharge capacity of the first cycle. Next, the above charge / discharge cycle was repeated 300 times, and the discharge capacity at the 300th time was determined as the discharge capacity at the 300th cycle. And the capacity | capacitance maintenance factor was calculated | required with the following formulas.
Capacity maintenance rate (%)
= (Discharge capacity at 300th cycle / Discharge capacity at 1st cycle) × 100

[負極の作製]
厚み8μmの銅箔からなる負極芯体に、巻回電極体を作製する際に内側となる面に上記負極合剤Aを、外側となる面に上記負極合剤Bをそれぞれ均一な厚さで塗布した。この負極板を乾燥機内を通して水分を除去した後、ロールプレス機を用いて充填密度が1.60/mLとなるように圧延した。なお、正極と負極との充填容量比は、電池電圧を4.2Vとした場合に、(負極充電容量)/(正極充電容量)=1.1となるようにした。
[Production of negative electrode]
When preparing a wound electrode body, a negative electrode core made of copper foil having a thickness of 8 μm is coated with the negative electrode mixture A on the inner surface and the negative electrode mixture B on the outer surface with a uniform thickness. Applied. The negative electrode plate was passed through a dryer to remove moisture, and then rolled using a roll press so that the packing density was 1.60 / mL. The charging capacity ratio between the positive electrode and the negative electrode was such that (negative electrode charging capacity) / (positive electrode charging capacity) = 1.1 when the battery voltage was 4.2V.

[巻回電極体の作製]
上記正極と負極とオレフィン系樹脂からなる微多孔膜からなるセパレータとを、巻き取り機により巻回し、絶縁性の巻き止めテープを取り付け、プレスすることにより偏平形巻回電極体を完成させた。
[Production of wound electrode body]
The flat electrode body was completed by winding the positive electrode, the negative electrode, and a separator made of a microporous film made of an olefin resin with a winder, attaching an insulating winding tape, and pressing.

[電池の作製]
上記偏平形巻回電極体を図1に示したような角形電池外装缶内に挿入し、角形電池外装缶の開口に封口体を嵌め合わせてレーザ溶接した後、電解液注入孔より上記非水電解質を所定量注入し、電解液注入孔を封口することにより実施例の非水電解質二次電池を作製した。得られた実施例にかかる角形の非水電解質二次電池の大きさは、高さ50mm、幅34mm、厚み46mmである。
[Production of battery]
The flat wound electrode body is inserted into a rectangular battery outer can as shown in FIG. 1, and a sealing body is fitted into the opening of the rectangular battery outer can and laser welded. A predetermined amount of electrolyte was injected, and the electrolyte solution injection hole was sealed to produce the nonaqueous electrolyte secondary battery of the example. The size of the prismatic nonaqueous electrolyte secondary battery according to the obtained example is 50 mm high, 34 mm wide, and 46 mm thick.

このようにして作製された実施例の非水電解質二次電池に対して上述のような300サイクルの充放電試験を行い、300サイクル目の容量維持率を求めるとともに電池厚さを測定した。結果を表1に示した。   The charge / discharge test of 300 cycles as described above was performed on the non-aqueous electrolyte secondary battery of the example manufactured in this way, and the capacity retention rate at the 300th cycle was obtained and the thickness of the battery was measured. The results are shown in Table 1.

[比較例1〜3]
厚み8μmの銅箔からなる負極芯体に、巻回電極体を作製する際に内側となる面に上記負極合剤Bを、外側となる面に上記負極合剤Aをそれぞれ均一な厚さで塗布した以外は全て実施例1の場合と同様にして比較例1の非水電解質二次電池を作製した。同じく、厚み8μmの銅箔からなる負極芯体に、巻回電極体を作製する際に内側となる面に上記負極合剤Bを、外側となる面に上記負極合剤Bをそれぞれ均一な厚さで塗布した以外は全て実施例1の場合と同様にして比較例2の非水電解質二次電池を作製した。同じく、厚み8μmの銅箔からなる負極芯体に、巻回電極体を作製する際に内側となる面に上記負極合剤Aを、外側となる面に上記負極合剤Aをそれぞれ均一な厚さで塗布した以外は全て実施例1の場合と同様にして比較例3の非水電解質二次電池を作製した。このようにして得られた比較例1〜3の非水電解質二次電池のそれぞれに対して上述のような300サイクルの充放電試験を行い、300サイクル目の容量維持率を求めた。結果を実施例1の結果とまとめて表2に示した。
[Comparative Examples 1-3]
When preparing a wound electrode body, a negative electrode core made of copper foil having a thickness of 8 μm is coated with the negative electrode mixture B on the inner surface and the negative electrode mixture A on the outer surface with a uniform thickness. A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the coating was performed. Similarly, the negative electrode mixture B is formed on the inner surface of the negative electrode core made of copper foil having a thickness of 8 μm, and the negative electrode mixture B is formed on the outer surface with a uniform thickness. A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the coating was performed in this manner. Similarly, the negative electrode mixture A is formed on the inner surface of the negative electrode core made of copper foil having a thickness of 8 μm, and the negative electrode mixture A is uniformly formed on the outer surface. A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the coating was performed in the same manner. The 300 cycles of charge / discharge tests as described above were performed on each of the nonaqueous electrolyte secondary batteries of Comparative Examples 1 to 3 thus obtained, and the capacity retention rate at the 300th cycle was determined. The results are shown in Table 2 together with the results of Example 1.

Figure 2008108632
Figure 2008108632

表2に示した結果から以下のことが分かる。すなわち、比較例2のように両面に塗布された負極合剤がエーテル化度0.65のCMCを含有する負極合剤Bであるとき、充放電を繰り返すと電池厚みが実施例1のものと比すると増加しているため、巻回電極体にゆがみが生じ、その結果としてサイクル特性が低下したものと認められる。また、比較例3のように両面に塗布された負極合剤がエーテル化度1.25のCMCを含有する負極合剤Aであるとき、充放電を繰り返すと電池厚みが比較例2のものよりもさらに増加していることから、巻回電極体にゆがみが大きく生じており、その結果サイクル特性が特に低下したものと認められる。   From the results shown in Table 2, the following can be understood. That is, when the negative electrode mixture applied to both surfaces as in Comparative Example 2 is a negative electrode mixture B containing CMC having a degree of etherification of 0.65, the battery thickness is that of Example 1 when charge and discharge are repeated. Compared to this, it is recognized that the wound electrode body is distorted, and as a result, the cycle characteristics are deteriorated. Moreover, when the negative electrode mixture applied to both surfaces as in Comparative Example 3 is a negative electrode mixture A containing CMC having a degree of etherification of 1.25, the battery thickness is more than that of Comparative Example 2 when charging and discharging are repeated. Further, since the increase is further increased, the wound electrode body is greatly distorted, and as a result, it is recognized that the cycle characteristics are particularly deteriorated.

一方、上記表1の記載を参照すると、比較例2の負極板は負極試料bに該当し、比較例3の負極板は負極試料aに該当し、F<Fの関係となっている。したがって、負極合剤層の硬さが小さくなる(柔らかくなる)と、硬さが大きい(硬い)ものに比すると充放電サイクルの繰り返しによって膨化が大きく生じ、これが電池厚みの増加及び容量維持率の低下に繋がっていることが分かる。 On the other hand, referring to the description in Table 1 above, the negative electrode plate of Comparative Example 2 corresponds to the negative electrode sample b, the negative electrode plate of Comparative Example 3 corresponds to the negative electrode sample a, and has a relationship of F A <F B. . Therefore, when the hardness of the negative electrode mixture layer is reduced (softened), the expansion is greatly caused by repetition of the charge / discharge cycle as compared with the hardened material (hard), which increases the battery thickness and the capacity retention rate. It can be seen that this has led to a decline.

また、実施例1の負極板と比較例1の負極板とは、芯体の両側の負極合剤層の配置関係が互いに逆になっているものであるが、巻回電極体形成時に外側となる方をエーテル化度が0.65のCMCを含む負極合剤Bとし、内側となる方をエーテル化度が1.20のCMCを含む負極合剤Aとした実施例1の方が容量維持率が大きく、電池厚みも小さくなっている。このことから、巻回電極体形成時に外側となる方の負極合剤層としてある程度の硬さを有するものとすることで、充放電サイクルの繰り返しによる膨化が抑制されて巻回電極体のゆがみが減少し、また、巻回電極体形成時に内側となる方を外側よりも柔らかいものとすることにより、巻回電極体の形成の際に巻回電極体に掛かる力が小さくて済むようになるためにセパレータ等への負荷を抑制することができ、サイクル特性の向上に繋がったものと認められる。   Further, the negative electrode plate of Example 1 and the negative electrode plate of Comparative Example 1 are those in which the arrangement relationship of the negative electrode mixture layers on both sides of the core is opposite to each other. The capacity of Example 1 was maintained as negative electrode mixture B containing CMC having a degree of etherification of 0.65 and negative electrode mixture A containing CMC having a degree of etherification of 1.20. The rate is large and the battery thickness is also small. From this, by having a certain degree of hardness as the negative electrode mixture layer on the outer side at the time of forming the wound electrode body, swelling due to repeated charge / discharge cycles is suppressed, and the wound electrode body is distorted. In addition, since the inner side when forming the wound electrode body is made softer than the outer side, the force applied to the wound electrode body when forming the wound electrode body can be reduced. It is recognized that the load on the separator or the like can be suppressed and the cycle characteristics are improved.

なお、上記実施例1では、CMCとしてエーテル化度が0.65及び1.20のものを用いたが、これに限らず、巻回電極体形成時に外側となる方をエーテル化度の小さいCMCを使用し、内側となる方をエーテル化度の大きいCMCを使用すれば同様の効果を奏する。すなわち、市販のCMCはエーテル化度が0.4〜1.6程度のものが容易に入手可能であるが、エーテル化度の小さい方のCMCとしてはエーテル化度0.4〜0.8程度のもの、エーテル化度の高い方のCMCとしては0.9〜1.6程度のものを適宜選択して使用すればよい。   In Example 1, CMCs having a degree of etherification of 0.65 and 1.20 were used. However, the CMC having a lower degree of etherification is not limited to this. If CMC with a higher degree of etherification is used on the inner side, the same effect can be obtained. That is, a commercially available CMC having a degree of etherification of about 0.4 to 1.6 is readily available, but a CMC having a smaller degree of etherification has a degree of etherification of about 0.4 to 0.8. CMC having a higher degree of etherification may be appropriately selected from about 0.9 to 1.6.

従来の角形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cut | disconnects and shows the conventional square nonaqueous electrolyte secondary battery to the vertical direction. 負極板の強度測定方法を示す図である。It is a figure which shows the intensity | strength measuring method of a negative electrode plate.

符号の説明Explanation of symbols

10 非水電解質二次電池
11 正極板
12 負極板
13 セパレータ
14 (扁平状の)巻回電極体
15 (角形の)電池外装缶
16 封口板
17 絶縁体
18 負極端子
19 集電体
20 絶縁スペーサ
21 電解液注液孔
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 (Flat shape) Winding electrode body 15 (Square shape) Battery outer can 16 Sealing plate 17 Insulator 18 Negative electrode terminal 19 Current collector 20 Insulating spacer 21 Electrolyte injection hole

Claims (4)

カルボキシメチルセルロースを含有する負極合剤層が負極芯体の両側面に設けられた負極板と、正極合剤層が正極芯体の両側面に設けられた正極板とを有し、前記負極板及び正極板とがそれぞれセパレータを介して巻回された巻回電極体を備えた非水電解質二次電池において、
前記負極芯体の両側面に設けられた負極合剤層は、それぞれカルボキシメチルセルロースの物性が異なる以外は同一組成かつ同一厚さであり、
前記負極芯体の内側面に塗布された負極合剤をA、外側面に塗布された負極合剤をBとし、前記A及びBをそれぞれ単独で用いて負極板を作製したときの負極板の硬さをそれぞれF及びFとしたとき、F<Fとなるような性質のカルボキシメチルセルロースを使用したことを特徴とする非水電解質二次電池。
A negative electrode plate having a negative electrode mixture layer containing carboxymethyl cellulose provided on both sides of the negative electrode core; and a positive electrode plate having a positive electrode mixture layer provided on both sides of the positive electrode core; In the non-aqueous electrolyte secondary battery provided with a wound electrode body in which the positive electrode plate is wound through a separator,
The negative electrode mixture layers provided on both side surfaces of the negative electrode core have the same composition and the same thickness except that the physical properties of carboxymethyl cellulose are different from each other.
A negative electrode mixture applied to the inner surface of the negative electrode core is A, a negative electrode mixture applied to the outer surface is B, and the negative electrode plate when the negative electrode plate is prepared using A and B independently. A non-aqueous electrolyte secondary battery using carboxymethyl cellulose having such a property that F A <F B when the hardness is F A and F B , respectively.
前記負極合剤A中のカルボキシメチルセルロースのエーテル化度は、前記負極合剤B中のカルボキシメチルセルロースのエーテル化度よりも大きいことを特徴とする請求項1に記載の非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the degree of etherification of carboxymethyl cellulose in the negative electrode mixture A is greater than the degree of etherification of carboxymethyl cellulose in the negative electrode mixture B. 3. 前記巻回電極体は偏平形であることを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the wound electrode body has a flat shape. 前記負極合剤中の負極活物質は、炭素質材料からなることを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material in the negative electrode mixture is made of a carbonaceous material.
JP2006291623A 2006-10-26 2006-10-26 Nonaqueous electrolyte secondary battery Pending JP2008108632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291623A JP2008108632A (en) 2006-10-26 2006-10-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291623A JP2008108632A (en) 2006-10-26 2006-10-26 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008108632A true JP2008108632A (en) 2008-05-08

Family

ID=39441796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291623A Pending JP2008108632A (en) 2006-10-26 2006-10-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008108632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956867A (en) * 2011-08-23 2013-03-06 日产自动车株式会社 Electrode and electric equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956867A (en) * 2011-08-23 2013-03-06 日产自动车株式会社 Electrode and electric equipment

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
US20180342758A1 (en) Secondary battery and preparation method therefor
US7745057B2 (en) Nonaqueous electrolyte secondary battery
JP5910627B2 (en) Secondary battery
KR102362887B1 (en) Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2006310311A (en) Positive electrode for lithium secondary battery and lithium secondary battery including the same
US20100248022A1 (en) Nonaqueous electrolyte secondary battery
US20110159172A1 (en) Method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
JP2009129721A (en) Non-aqueous secondary battery
CN102361095A (en) Lithium ion battery with high specific power and preparation method for same
JP2010182626A (en) Negative electrode for nonaqueous secondary battery
JP2007179956A (en) Negative electrode and battery using same
JP2006202529A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2009105017A (en) Nonaqueous electrolyte secondary battery
JP2009158335A (en) Negative pole plate for non-aqueous electrolyte secondary cell, manufacturing method therefor, and non-aqueous electrolyte secondary cell
JP2009081067A (en) Non-aqueous secondary battery
JP5078330B2 (en) Negative electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this negative electrode plate
JP2010140737A (en) Nonaqueous electrolyte secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2006066298A (en) Lithium secondary battery
JP2010186716A (en) Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP6709991B2 (en) Lithium ion secondary battery
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same