JP2013044577A - Substrate inspection method and device - Google Patents

Substrate inspection method and device Download PDF

Info

Publication number
JP2013044577A
JP2013044577A JP2011181025A JP2011181025A JP2013044577A JP 2013044577 A JP2013044577 A JP 2013044577A JP 2011181025 A JP2011181025 A JP 2011181025A JP 2011181025 A JP2011181025 A JP 2011181025A JP 2013044577 A JP2013044577 A JP 2013044577A
Authority
JP
Japan
Prior art keywords
substrate
light
scattered
scattered light
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011181025A
Other languages
Japanese (ja)
Inventor
Yuichi Shimoda
勇一 下田
Takashi Ishii
隆嗣 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2011181025A priority Critical patent/JP2013044577A/en
Publication of JP2013044577A publication Critical patent/JP2013044577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect, with high accuracy, a pin hole defect of a chromium film or the like of a mask substrate that is likely to warp greatly on a stage.SOLUTION: If there is a mask pattern such as a chromium film on a surface of a substrate, a light beam radiated on the surface of the substrate is scattered due to a shape or a defect of the mask pattern, scattered light is generated only around a surface side of the substrate, and therefore, there is no light beam transmitting to a rear surface of the substrate. Meanwhile, if there is a pin hole on the mask pattern, a portion of light scattered at an edge of the pin hole is generated as scattered light around the surface side of the substrate, is transmitted into the inside of the substrate via the pin hole, and therefore, is generated as scattered light around the rear surface of the substrate. By respectively receiving the scattered light detected on the surface and the rear surface of the substrate at scattered light receiving means arranged on the surface side and rear surface side of the substrate, a pin hole of a chromium film of a mask substrate that is likely to warp greatly on a stage is detected with high accuracy.

Description

本発明は、露光用マスク等に用いられるガラスや石英等の透明な基板の欠陥を検出する基板検査方法及び装置に係り、特にマスクのピンホール欠陥を検査するのに好適な基板検査方法及び装置に関する。   The present invention relates to a substrate inspection method and apparatus for detecting a defect of a transparent substrate such as glass or quartz used for an exposure mask or the like, and more particularly to a substrate inspection method and apparatus suitable for inspecting a pinhole defect of a mask. About.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(ThinFilmTransistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electro Luminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトマスクのパターンをガラス基板やプラスチック基板等のパネル基板に転写して行われる。フォトマスクは、ガラス基板や石英基板等のマスク基板の表面に、パターンの部分以外の光を遮断するクロム膜等を形成して製造される。マスク基板に傷や異物等の欠陥が存在すると、クロム膜等の形成やパターンの転写が良好に行われず、不良の原因となる。このため、基板検査装置を用いて、マスク基板の欠陥の検査が行われている。   The manufacture of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electro Luminescence) display panel substrates, etc. for liquid crystal display devices used as display panels uses photomasks. The pattern is transferred to a panel substrate such as a glass substrate or a plastic substrate. A photomask is manufactured by forming a chromium film or the like that blocks light other than a pattern portion on the surface of a mask substrate such as a glass substrate or a quartz substrate. If a defect such as a scratch or a foreign substance exists on the mask substrate, the formation of the chromium film or the like and the transfer of the pattern are not performed satisfactorily, causing a defect. For this reason, a defect inspection of a mask substrate is performed using a substrate inspection apparatus.

従来の基板検査装置によるマスク基板の検査では、できるだけマスク基板に接触しない様にするため、四角形のマスク基板の四辺又は四隅を支持しながら検査を行っていた。しかしながら、従来の様に基板の四辺又は四隅を支持する場合、基板の裏面を一切支持しないと、基板がその自重によってすり鉢状にたわみ、特に基板が大型になる程たわみ量が大きくなる。このため、従来の基板検査装置で光学系の焦点位置を基板に合わせるためには、複雑な計算を行って基板のたわみを解析するか、あるいはオートフォーカス機構等を用いて基板の表面の高さを実際に測定し、基板の複雑なたわみに応じて基板又は光学系を上下に移動する必要があった。これに対し、特許文献1には、基板をその向かい合う二辺だけで支持し、支持された基板のたわみに応じて、基板支持手段又は光学系を上下へ移動して、光学系の焦点位置の調整を簡単に行う技術が開示されている。   In the inspection of the mask substrate by the conventional substrate inspection apparatus, the inspection is performed while supporting the four sides or the four corners of the rectangular mask substrate so as not to contact the mask substrate as much as possible. However, when supporting the four sides or the four corners of the substrate as in the conventional case, if the back surface of the substrate is not supported at all, the substrate bends in a mortar shape due to its own weight, and the amount of deflection increases especially as the substrate becomes larger. For this reason, in order to adjust the focal position of the optical system to the substrate with a conventional substrate inspection apparatus, a complicated calculation is performed to analyze the deflection of the substrate, or the height of the surface of the substrate using an autofocus mechanism or the like. It was necessary to actually move the substrate or the optical system up and down according to the complicated deflection of the substrate. On the other hand, in Patent Document 1, the substrate is supported by only two sides facing each other, and the substrate support means or the optical system is moved up and down in accordance with the deflection of the supported substrate, so that the focal position of the optical system is determined. A technique for easily performing the adjustment is disclosed.

特開2007−107884号公報JP 2007-107884 A

特許文献1に記載の基板検査装置は、クロム膜等によってマスクパターンが形成された膜付きのマスク基板について、異物やクロム膜のピンホール等の欠陥が無いか検査するものであった。マスク基板のクロム膜の部分へ照射された検査光は、クロム膜で反射され、クロム膜にピンホールが存在すると、ピンホールのところだけ検査光が透過する。従って、マスク基板のクロム膜で覆われた周辺部では、クロム膜にピンホールが存在しない限り、検査光がマスク基板の内部へ透過することはなかった。   The substrate inspection apparatus described in Patent Document 1 inspects a mask substrate with a film on which a mask pattern is formed by a chromium film or the like for defects such as foreign matter and chromium film pinholes. The inspection light applied to the chromium film portion of the mask substrate is reflected by the chromium film, and if there is a pinhole in the chromium film, the inspection light is transmitted only at the pinhole. Therefore, in the peripheral portion of the mask substrate covered with the chromium film, the inspection light did not pass through the inside of the mask substrate unless there was a pinhole in the chromium film.

図1は、従来の検査テーブルに搭載された基板の状態を示す斜視図である。検査対象となる基板1は検査テーブルの基板支持部5a,5b上に載置されている。検査テーブルは、図面奥行き方向に2つ、それぞれ平行となるように配置された図面横方向に伸びる基板支持部5a,5bから構成される。基板支持部5a,5bは、その長手方向の長さに渡って、マスク基板1に接触する傾斜面5c,5dを有する。略四角形状のマスク基板1がこの検査テーブルの基板支持部5a,5b上に搭載されると、基板支持部5a,5bの傾斜面5c,5dがマスク基板1の向かい合う二辺の底面側にそれぞれ接触して保持されるようになっている。従って、検査テーブルは略四角形状の基板1をその向かい合う二辺だけで支持することとなる。   FIG. 1 is a perspective view showing a state of a substrate mounted on a conventional inspection table. The substrate 1 to be inspected is placed on the substrate support portions 5a and 5b of the inspection table. The inspection table includes two substrate support portions 5a and 5b extending in the horizontal direction of the drawing and arranged in parallel with each other in the drawing depth direction. The substrate support portions 5a and 5b have inclined surfaces 5c and 5d that contact the mask substrate 1 over the length in the longitudinal direction. When the substantially square mask substrate 1 is mounted on the substrate support portions 5a and 5b of the inspection table, the inclined surfaces 5c and 5d of the substrate support portions 5a and 5b are respectively located on the bottom sides of the two opposite sides of the mask substrate 1. It is designed to be held in contact. Therefore, the inspection table supports the substantially rectangular substrate 1 only on its two opposite sides.

図2は、従来の基板検査装置の光学系ユニットの概略を示す図である。光学系ユニット40は、検査光照射部41、散乱光受光部42、散乱ミラー部43、透過光受光部44及びトラップ部45を含んで構成されている。検査光照射部41は、一例として、レーザー光源及びポリゴンミラーを含んで構成されている。検査光照射部41は、レーザー光源からのレーザー光を回転するポリゴンミラーで反射することにより、Y方向(図面奥行き方向)に所定の幅を有する検査光41aを、検査テーブルに搭載されたマスク基板1へ照射する。検査光照射部41から基板1に照射される検査光41aのY方向(図面奥行き方向)の幅は約200[mm]である。   FIG. 2 is a diagram showing an outline of an optical system unit of a conventional substrate inspection apparatus. The optical system unit 40 includes an inspection light irradiation unit 41, a scattered light receiving unit 42, a scattering mirror unit 43, a transmitted light receiving unit 44, and a trap unit 45. As an example, the inspection light irradiation unit 41 includes a laser light source and a polygon mirror. The inspection light irradiation unit 41 reflects the laser light from the laser light source with a rotating polygon mirror, thereby inspecting the inspection light 41a having a predetermined width in the Y direction (the depth direction in the drawing) with a mask substrate mounted on the inspection table. 1 is irradiated. The width in the Y direction (the depth direction of the drawing) of the inspection light 41a irradiated onto the substrate 1 from the inspection light irradiation unit 41 is about 200 [mm].

マスク基板1のマスクパターン部となるクロム膜10へ照射された検査光41aは、そのクロム膜10でほとんどが反射光41bとして反射されるが、仮にクロム膜10にピンホール(図示せず)が存在すると、このピンホールを通過した検査光41aは、透過光41dとしてマスク基板1の裏面側に透過する。また、マスク基板1のクロム膜10の表面に異物40aが存在すると、検査光41aの一部はその異物40aによって散乱され、散乱光41cとなる。散乱光受光部42は、Y方向(図面奥行き方向)に所定の検出幅を有するセンサーを含んで構成され、マスク基板1(異物40aなど)からの散乱光41cを受光する。散乱ミラー部43は、マスク基板1を透過した透過光41dを透過光受光部44に反射する。透過光受光部44は、Y方向(図面奥行き方向)に所定の検出幅を有するセンサーを含んで構成され、マスク基板1を透過し、散乱ミラー部43で反射した反射光41eを受光する。トラップ部45は透過光41dが検査装置外や反射して他の部品に当たり散乱した光が散乱受光部42や透過受光部44に入射するのを遮蔽するものである。   Most of the inspection light 41a irradiated to the chromium film 10 serving as the mask pattern portion of the mask substrate 1 is reflected as reflected light 41b by the chromium film 10, but a pinhole (not shown) is temporarily provided in the chromium film 10. When present, the inspection light 41a that has passed through the pinhole is transmitted to the back side of the mask substrate 1 as transmitted light 41d. Moreover, when the foreign material 40a exists on the surface of the chromium film 10 of the mask substrate 1, a part of the inspection light 41a is scattered by the foreign material 40a and becomes scattered light 41c. The scattered light receiving unit 42 includes a sensor having a predetermined detection width in the Y direction (the depth direction in the drawing), and receives the scattered light 41c from the mask substrate 1 (foreign matter 40a and the like). The scattering mirror unit 43 reflects the transmitted light 41 d transmitted through the mask substrate 1 to the transmitted light receiving unit 44. The transmitted light receiving unit 44 includes a sensor having a predetermined detection width in the Y direction (the depth direction in the drawing), and receives the reflected light 41 e that is transmitted through the mask substrate 1 and reflected by the scattering mirror unit 43. The trap unit 45 shields the transmitted light 41d from the inspection apparatus or reflected from the inspection apparatus and scattered light hitting other parts and entering the scattered light receiving unit 42 and the transmitted light receiving unit 44.

上述のように従来はクロム膜10のピンホールを検査する場合は、散乱ミラー部43及び透過光受光部44を用いていた。しかし、マスク基板1の大型化に伴い基板の厚さも大きくなってきた。このようなマスク基板を検査テーブルにて二辺だけで支持すると、マスク基板1自重によって撓み量が大きくなる。マスク基板1の撓みを考慮した場合、図2に示すようにマスク基板1はあたかも点線で示すような厚さの基板となる。そのため、点線で示すような大きさの基板を想定し、この点線で示すマスク基板に接触しないようにピンホール検査用の散乱ミラー部43及び透過光受光部44を検査テーブルの下方に十分に移動させなければならず、これによってピンホール検査時の光路長も長くなり、マスク基板1が厚いことによって透過光の屈折も大きくなり、透過光41dを散乱ミラー部43にて効率的に反射することが困難となり、ピンホールの検査を高精度に行うことが困難となってきた。   As described above, when the pinhole of the chromium film 10 is inspected conventionally, the scattering mirror unit 43 and the transmitted light receiving unit 44 are used. However, as the mask substrate 1 increases in size, the thickness of the substrate also increases. When such a mask substrate is supported by only two sides on the inspection table, the amount of deflection is increased by the weight of the mask substrate 1 itself. When the bending of the mask substrate 1 is taken into consideration, as shown in FIG. 2, the mask substrate 1 has a thickness as if indicated by a dotted line. Therefore, assuming a substrate having a size as shown by the dotted line, the scattering mirror unit 43 for pinhole inspection and the transmitted light receiving unit 44 are sufficiently moved below the inspection table so as not to contact the mask substrate shown by the dotted line. As a result, the optical path length at the time of pinhole inspection also becomes longer, the refraction of the transmitted light increases due to the thick mask substrate 1, and the transmitted light 41d is efficiently reflected by the scattering mirror 43. It has become difficult to conduct pinhole inspection with high accuracy.

本発明は、上述の点に鑑みてなされたものであり、ステージ上で大きく撓むようなマスク基板のクロム膜等のピンホール欠陥を高精度に検出することのできる基板検査方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described points, and provides a substrate inspection method and apparatus capable of detecting pinhole defects such as a chromium film of a mask substrate that is greatly bent on a stage with high accuracy. For the purpose.

本発明に係る基板検査方法の第1の特徴は、光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ前記光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行い、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第1の散乱光受光手段にて受光し、前記基板の裏面側に配置され、前記光線が前記基板表面に形成されたマスクパターンのピンホールエッジによって散乱された散乱光を第2の散乱光受光手段にて受光し、前記第1及び第2の散乱光受光手段が受光した散乱光に基づいた信号から前記基板の欠陥を検出することにある。
基板の表面へ照射された光線のうち一部が基板の表面で反射され、その残りが基板の内部へ透過するような角度で基板の表面へ斜めに照射しながら、光線を移動させることによって基板に対して走査(検査)を行う。このときに基板の表面にクロム膜によるマスクパターンが存在する場合、基板の表面へ照射された光線はそのマスクパターンの形状やマスクパターン上の欠陥によって散乱され、基板の表面側の周囲に散乱光が発生するようになり、基板の裏面側に透過する光線は存在しない。一方、クロム膜によるマスクパターンにピンホールが存在する場合、そのピンホールのエッジ付近にて散乱した光の一部は基板の表面側に周囲に散乱光として発生すると共に基板の内部へピンホールを介して透過し、基板裏面側の周囲に散乱光として発生することになる。これらの基板の表面及び裏面で検出された散乱光は、基板の表面側に配置された第1の散乱光受光手段及び基板の裏面側に配置された第2の散乱光受光手段でそれぞれ受光されるようになるので、それぞれ受光された散乱光信号に基づいてステージ上で大きく撓むようなマスク基板のクロム膜のピンホール欠陥を高精度に検出することができる。
A first feature of the substrate inspection method according to the present invention is that the light beam is reflected on the surface of the substrate at an angle such that a part of the light beam is reflected on the surface of the substrate and the remaining light beam is transmitted into the substrate. The substrate is scanned while moving the light beam while irradiating obliquely, and the scattered light, which is disposed on the surface side of the substrate and is scattered by the defect of the substrate, is used as the first scattered light receiving means. The second scattered light receiving means receives the scattered light, which is disposed on the back side of the substrate, and the light beam is scattered by the pinhole edge of the mask pattern formed on the substrate surface. The defect of the substrate is detected from a signal based on the scattered light received by the first and second scattered light receiving means.
By moving the light beam while obliquely irradiating the surface of the substrate at an angle such that a part of the light beam irradiated to the surface of the substrate is reflected by the surface of the substrate and the rest is transmitted to the inside of the substrate Scan (inspect). At this time, if a mask pattern made of a chromium film exists on the surface of the substrate, the light beam irradiated to the surface of the substrate is scattered by the shape of the mask pattern and defects on the mask pattern, and scattered light around the surface side of the substrate Is generated, and there is no light beam transmitted to the back side of the substrate. On the other hand, if there is a pinhole in the mask pattern made of a chromium film, part of the light scattered near the edge of the pinhole is generated as scattered light around the surface of the substrate and the pinhole is formed inside the substrate. And is generated as scattered light around the back side of the substrate. The scattered light detected on the front surface and the back surface of the substrate is received by the first scattered light receiving device disposed on the front surface side of the substrate and the second scattered light receiving device disposed on the back surface side of the substrate, respectively. As a result, pinhole defects in the chromium film of the mask substrate that are greatly bent on the stage based on the received scattered light signals can be detected with high accuracy.

本発明に係る基板検査方法の第2の特徴は、前記第1の特徴に記載の基板検査方法において、前記基板の表面へ所定の偏光成分を多く含む光線を照射し、前記偏光成分の光のみを通過させる偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前記第1及び第2の散乱光受光手段の前面に備えたことにある。
これは、基板の表面へ照射する光線として所定の偏光成分を多く含むものを用い、前記偏光成分の光のみを通過させる偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を散乱光受光手段の前面に備えることによって、各散乱光も所定の偏光成分を多く含むものとなる。また、所定の偏光成分を多く含む散乱光のみが偏光手段及びバンドパスフィルタ手段を通過して散乱光受光手段に取り込まれるようになる。これにより、基板の周辺環境から検出光学系に入り込もうとする外乱光ノイズの影響は極力低減され、欠陥の検出精度を向上させることができるようになる。
A second feature of the substrate inspection method according to the present invention is that in the substrate inspection method according to the first feature, the surface of the substrate is irradiated with a light beam containing a large amount of a predetermined polarization component, and only the light of the polarization component is irradiated. And a band-pass filter unit that allows only light in the vicinity of the frequency component of the light beam to pass through the front surface of the first and second scattered light receiving units.
This uses a polarizing plate means for passing only light of the polarized light component and a band pass filter for passing only light in the vicinity of the frequency component of the light, using a light containing a large amount of a predetermined polarized light component as a light beam irradiating the surface of the substrate By providing the means on the front surface of the scattered light receiving means, each scattered light also contains a lot of predetermined polarization components. Further, only scattered light containing a large amount of a predetermined polarization component passes through the polarizing means and the bandpass filter means and is taken into the scattered light receiving means. As a result, the influence of ambient light noise entering the detection optical system from the environment around the substrate is reduced as much as possible, and the defect detection accuracy can be improved.

本発明に係る基板検査装置の第1の特徴は、光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ前記光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行う投光系手段と、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を受光する第1の散乱光受光手段と、前記基板の裏面側に配置され、前記光線が前記基板表面に形成されたマスクパターンのピンホールエッジによって散乱された散乱光を受光する第2の散乱光受光手段と、前記第1及び第2の散乱光受光手段が受光した散乱光に基づいた信号から前記基板の欠陥を検出する欠陥検出手段とを備えたことにある。これは、前記基板検査方法の第1の特徴を実現するための基板検査装置の発明である。   A first feature of the substrate inspection apparatus according to the present invention is that the light beam is reflected to the surface of the substrate at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted into the substrate. A light projecting system means for scanning the substrate while moving the light beam while irradiating obliquely, and a light receiving system arranged on the surface side of the substrate to receive the scattered light scattered by the defect of the substrate. A first scattered light receiving means, and a second scattered light receiving means arranged on the back side of the substrate for receiving the scattered light scattered by the pinhole edge of the mask pattern formed on the substrate surface. And a defect detecting means for detecting a defect of the substrate from a signal based on the scattered light received by the first and second scattered light receiving means. This is an invention of a substrate inspection apparatus for realizing the first feature of the substrate inspection method.

本発明に係る基板検査装置の第2の特徴は、前記第1の特徴に記載の基板検査装置において、前記基板の表面へ所定の偏光成分を多く含む光線を照射し、前記偏光成分の光のみを通過させる偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前記第1及び第2の散乱光受光手段の前面に備えたことにある。これは、前記基板検査方法の第2の特徴を実現するための基板検査装置の発明である。   A second feature of the substrate inspection apparatus according to the present invention is that, in the substrate inspection device according to the first feature, the surface of the substrate is irradiated with a light beam containing a large amount of a predetermined polarization component, and only the light of the polarization component is irradiated. And a band-pass filter unit that allows only light in the vicinity of the frequency component of the light beam to pass through the front surface of the first and second scattered light receiving units. This is an invention of a substrate inspection apparatus for realizing the second feature of the substrate inspection method.

本発明によれば、ステージ上で大きく撓むようなマスク基板のクロム膜等のピンホール欠陥を高精度に検出することができるという効果がある。   According to the present invention, there is an effect that pinhole defects such as a chromium film of a mask substrate that is greatly bent on the stage can be detected with high accuracy.

従来の検査テーブルに搭載された基板の状態を示す斜視図である。It is a perspective view which shows the state of the board | substrate mounted in the conventional test | inspection table. 従来の基板検査装置の光学系ユニットの概略を示す図である。It is a figure which shows the outline of the optical system unit of the conventional board | substrate inspection apparatus. 本発明の一実施の形態による基板検査装置の光学系ユニットの概略構成を示す図である。It is a figure which shows schematic structure of the optical system unit of the board | substrate inspection apparatus by one embodiment of this invention. 図3の検査光照射部の詳細構成を示す図である。It is a figure which shows the detailed structure of the test | inspection light irradiation part of FIG. マスク基板の表面にクロム膜のマスクパターンが形成されており、そこに欠陥及びピンホールが存在する場合の検査装置の動作例を示す図である。It is a figure which shows the operation example of an inspection apparatus in case the mask pattern of the chromium film | membrane is formed in the surface of a mask board | substrate, and a defect and a pinhole exist there. マスク基板1の表面のクロム膜のマスクパターンに欠陥のみが存在する場合の検査装置の動作例を示す図である。It is a figure which shows the operation example of an inspection apparatus in case only a defect exists in the mask pattern of the chromium film | membrane of the surface of the mask board | substrate 1. FIG. マスクパターンに存在するピンホールの検出動作の一例を示す図である。It is a figure which shows an example of the detection operation of the pinhole which exists in a mask pattern.

図3は、本発明の一実施の形態による基板検査装置の光学系ユニットの概略構成を示す図である。本発明の基板検査装置の光学系ユニット400は、検査光照射部41、散乱光受光部42、トラップ部45及びピンホール用散乱光受光部46を含んで構成されている。本発明の基板検査装置が図2のものと異なる点は、マスク基板1の裏面側にクロム膜などのマスクパターンに存在するピンホールのエッジ部から反射する光を受光するピンホール用散乱光受光部46が設けられている点である。ピンホール用散乱光受光部46は、マスク基板1の裏面側、すなわち検査光照射部41の存在する位置と反対側であって、ピンホールのエッジ部からの散乱光41fを直接受光可能な角度に配置されている。また、ピンホール用散乱光受光部46は、板厚や屈折率により検出位置のズレを計算し、図中の両端矢印線のように移動させる機構を有する。   FIG. 3 is a diagram showing a schematic configuration of the optical system unit of the substrate inspection apparatus according to the embodiment of the present invention. The optical system unit 400 of the substrate inspection apparatus according to the present invention includes an inspection light irradiation unit 41, a scattered light receiving unit 42, a trap unit 45, and a pinhole scattered light receiving unit 46. The substrate inspection apparatus of the present invention is different from that shown in FIG. 2 in that it receives light reflected from the edge portion of the pinhole existing in the mask pattern such as a chromium film on the back surface side of the mask substrate 1. The point 46 is provided. The pinhole scattered light receiving unit 46 is on the back side of the mask substrate 1, that is, on the side opposite to the position where the inspection light irradiation unit 41 is present, and is capable of directly receiving the scattered light 41f from the edge of the pinhole. Is arranged. Further, the pinhole scattered light receiving unit 46 has a mechanism for calculating the shift of the detection position based on the plate thickness and the refractive index and moving it as indicated by the double-ended arrows in the figure.

検査対象となるマスク基板1は、図1に示すように検査テーブルの基板支持部5a,5b上に載置されている。図3において基板支持部5a,5bの図示は省略してある。マスク基板1の上方には、検査光照射部41が配置されている。図4は、図3の検査光照射部の詳細構成を示す図である。図4に示すように、検査光照射部41は、レーザー光発生部11、レンズ12a、fθレンズ12c及びポリゴンミラー13を含んで構成されている。レーザー光発生部11は、レーザー光線であり、主にS偏光成分の検査光を発生する。レーザー光発生部11から出射されるレーザー光線は、主にS偏光成分から構成されるが、若干のP偏光成分を含むこともあり、その割合は、S偏光成分の方がP偏光成分よりも十分に大きいものとする。なお、レーザー光発生部11がS偏光成分のみを出射するようにしてもよい。レンズ12aは、レーザー光発生部11から発生されたレーザー光線を集光し、基板1の表面に焦点が合う様に収束する。レンズ12aで集光されたレーザー光線は、ポリゴンミラー13で反射され、fθレンズ12cへ入射する。fθレンズ12cは、ポリゴンミラー13の回転によって振られるレーザー光線の焦点面を基板1の平面位置に合わせる。fθレンズ12cを透過したレーザー光線は、検査光41aとしてマスク基板1の表面へ斜めに照射される。このとき、ポリゴンミラー13が図2の矢印方向へ回転することによって、検査光41aは図3の図面奥行き方向へ交互移動して、検査光41aによるマスク基板1の表面走査が行われる。本実施の形態では、一例として、この走査範囲を約200[mm]としている。   As shown in FIG. 1, the mask substrate 1 to be inspected is placed on the substrate support portions 5a and 5b of the inspection table. In FIG. 3, the substrate support portions 5a and 5b are not shown. An inspection light irradiation unit 41 is disposed above the mask substrate 1. FIG. 4 is a diagram illustrating a detailed configuration of the inspection light irradiation unit in FIG. 3. As shown in FIG. 4, the inspection light irradiation unit 41 includes a laser light generation unit 11, a lens 12 a, an fθ lens 12 c, and a polygon mirror 13. The laser light generation unit 11 is a laser beam and mainly generates inspection light of an S-polarized component. The laser beam emitted from the laser beam generator 11 is mainly composed of an S-polarized component, but may contain some P-polarized component, and the proportion of the S-polarized component is more sufficient than that of the P-polarized component. To be large. Note that the laser light generator 11 may emit only the S-polarized component. The lens 12 a condenses the laser beam generated from the laser beam generator 11 and converges so that the surface of the substrate 1 is focused. The laser beam condensed by the lens 12a is reflected by the polygon mirror 13 and enters the fθ lens 12c. The fθ lens 12 c matches the focal plane of the laser beam shaken by the rotation of the polygon mirror 13 with the planar position of the substrate 1. The laser beam transmitted through the fθ lens 12c is irradiated obliquely onto the surface of the mask substrate 1 as inspection light 41a. At this time, when the polygon mirror 13 rotates in the direction of the arrow in FIG. 2, the inspection light 41a alternately moves in the depth direction of FIG. 3, and the surface of the mask substrate 1 is scanned with the inspection light 41a. In the present embodiment, as an example, this scanning range is about 200 [mm].

図3においては、マスク基板1の検査範囲を決定して、マスク基板1の移動範囲を制御する基板移動制御装置が搭載されている。基板移動制御装置は、例えば直動モータなどを含んで構成され、検査テーブルの基板支持部5a,5bを図3の横方向へ移動するものであるが、図3ではその詳細構成は省略してある。基板移動制御装置が検査テーブルの基板支持部5a,5bを横方向に移動することによって、基板支持部5a,5bに搭載されたマスク基板1が基板移動方向へ移動され、検査光照射部41からの検査光41aがマスク基板1の図面横方向に渡って照射される。従って、検査テーブルの基板支持部5a,5bの一回の移動によって、図面奥行き方向に走査範囲の幅だけ基板1の検査が行われることとなる。   In FIG. 3, a substrate movement control device that determines the inspection range of the mask substrate 1 and controls the movement range of the mask substrate 1 is mounted. The substrate movement control device is configured to include, for example, a linear motion motor and moves the substrate support portions 5a and 5b of the inspection table in the lateral direction of FIG. 3, but the detailed configuration is omitted in FIG. is there. When the substrate movement control device moves the substrate support portions 5a and 5b of the inspection table in the horizontal direction, the mask substrate 1 mounted on the substrate support portions 5a and 5b is moved in the substrate movement direction. The inspection light 41a is irradiated in the horizontal direction of the mask substrate 1 in the drawing. Accordingly, the substrate 1 is inspected by the width of the scanning range in the drawing depth direction by one movement of the substrate support portions 5a and 5b of the inspection table.

検査光照射部41は、投光系制御装置によって駆動制御される。投光系制御装置は、例えば直動モータを含んで構成され、検査光照射部41を図面奥行き方向へ移動制御するものであるが、図3ではその詳細構成は省略してある。投光系制御装置が検査光照射部41を移動制御することによって、検査光照射部41から照射される検査光41aによるマスク基板1の走査範囲が図面奥行き方向へ変更制御される。そして、検査光41aによるマスク基板1の走査及び検査テーブルの基板支持部5a,5bの移動と、走査範囲の変更とを順番に繰り返すことによって、マスク基板1の検査範囲全体の検査を行なうことができるようになっている。   The inspection light irradiation unit 41 is driven and controlled by a projection system control device. The light projection system control device is configured to include, for example, a linear motor, and controls the movement of the inspection light irradiation unit 41 in the depth direction of the drawing, but its detailed configuration is omitted in FIG. When the light projection system control device controls the movement of the inspection light irradiation unit 41, the scanning range of the mask substrate 1 by the inspection light 41a irradiated from the inspection light irradiation unit 41 is changed and controlled in the drawing depth direction. Then, the entire inspection range of the mask substrate 1 can be inspected by sequentially repeating the scanning of the mask substrate 1 by the inspection light 41a, the movement of the substrate support portions 5a and 5b of the inspection table, and the change of the scanning range. It can be done.

検査光照射部41を移動制御する場合は、散乱光受光部42、トラップ部45及びピンホール用散乱光受光部46を含めたものを全体的に、検査光照射部41の移動に同期させて移動制御する。受光系制御装置は、例えば直動モータを含んで構成され、散乱光受光部42、トラップ部45及びピンホール用散乱光受光部46を検査光照射部41の移動に同期させてそれぞれ移動制御する。   When the inspection light irradiation unit 41 is controlled to move, the entire unit including the scattered light receiving unit 42, the trap unit 45, and the pinhole scattered light receiving unit 46 is synchronized with the movement of the inspection light irradiation unit 41. Move control. The light receiving system control device includes, for example, a linear motion motor, and controls movement of the scattered light receiving unit 42, the trap unit 45, and the pinhole scattered light receiving unit 46 in synchronization with the movement of the inspection light irradiation unit 41. .

なお、検査テーブルの基板支持部5a,5bを移動する代わりに、検査光照射部41、散乱光受光部42、トラップ部45及びピンホール用散乱光受光部46を図面横方向へ移動することによって、マスク基板1を検査光41aの走査方向と直交する方向(図面横方向)へ相対的に移動するようにしてもよい。また、検査テーブルの基板支持部5a,5bを図面奥行き方向及び図面横方向へ移動することによって、マスク基板1の全面を走査するようにしてもよい。すなわち、投光系及び受光系の移動方向と、マスク基板1の移動方向とは相対的に移動可能な構成であればどのような構成でもよい。   Instead of moving the substrate support portions 5a and 5b of the inspection table, the inspection light irradiation portion 41, the scattered light receiving portion 42, the trap portion 45, and the pinhole scattered light receiving portion 46 are moved in the horizontal direction of the drawing. The mask substrate 1 may be relatively moved in a direction (horizontal direction in the drawing) orthogonal to the scanning direction of the inspection light 41a. Further, the entire surface of the mask substrate 1 may be scanned by moving the substrate support portions 5a and 5b of the inspection table in the drawing depth direction and the drawing horizontal direction. That is, any configuration may be used as long as the moving direction of the light projecting system and the light receiving system and the moving direction of the mask substrate 1 are relatively movable.

検査光照射部41からマスク基板1へ斜めに照射された検査光41aの一部はマスク基板1の表面で反射され、残りはマスク基板1の内部へ透過する。マスク基板1の内部へ透過した検査光41aは、マスク基板1の表面から離れるに従って広がり、その一部はマスク基板1の裏面で反射され、残りはマスク基板1の裏面からマスク基板1の外へ透過する。なお、これはマスク基板1が理想的な平坦形状の透明基板の場合である。   A part of the inspection light 41 a irradiated obliquely from the inspection light irradiation unit 41 to the mask substrate 1 is reflected by the surface of the mask substrate 1, and the rest is transmitted to the inside of the mask substrate 1. The inspection light 41 a transmitted to the inside of the mask substrate 1 spreads away from the surface of the mask substrate 1, a part of which is reflected on the back surface of the mask substrate 1, and the rest is out of the mask substrate 1 from the back surface of the mask substrate 1. To Penetrate. This is a case where the mask substrate 1 is an ideal flat transparent substrate.

マスク基板1の表面側において、マスク基板1の表面で反射された検査光41aの反射光41bの光軸から外れた位置には、散乱光受光部42が配置されている。散乱光受光部42は、S偏光板、バンドパスフィルタ、レンズ、受光部及び光電子倍増管などから構成されている。検査光41aは、図3に示すように走査方向(図面奥行き方向)に走査制御され、ほとんどがS偏光成分で構成されており、マスク基板1の表面、内部、裏面、ピンホールエッジなどで散乱したものが散乱光受光部42へ向かうように配置してある。S偏光板は、S偏光成分の光のみを通過させるものであり、マスク基板1の表面、内部、裏面、ピンホールエッジで散乱した検査光41aの散乱光41cのS偏光成分のみを通過させる。バンドパスフィルタは、検査光照射部41から出射される検査光41aの周波数成分付近の光、すなわち検査光41aの波長成分付近の光のみを通過させ、それ以外の周波数成分(波長成分)の光を除去するものである。レンズは、マスク基板1からの散乱光であって、S偏光板及びバンドパスフィルタを通過した光のみを集光し、受光部へ導入する。レンズの焦点位置は、マスク基板1の表面に合致している。受光部は、複数の光ファイバーを束ねて構成され、レンズで集光した散乱光を受光して光電子倍増管の受光面へ導く。光電子倍増管は、受光面で受光した散乱光の強度に応じた検出信号を出力する。光電子倍増管の検出信号は、図示していないアンプで増幅され、図示していない欠陥検出装置などへ入力される。このように、レンズの前面にS偏光板及びバンドパスフィルタを設けることによって、装置の周辺環境からの外乱光であって、前述の周波数成分(波長成分)以外の光及びP偏光成分の光を有効に除去し、投光系からマスク基板1へ斜めに照射された検査光41aであって、マスク基板1の表面、内部、裏面、ピンホールエッジなどで散乱したS偏光成分の光のみを散乱光受光部42へ有効に導入することができる。なお、十分に外乱光が信号より小さい場合、又は検出欠陥サイズが大きい低感度の場合、S偏光板及びバンドパスフィルタは省略してもよい。   On the surface side of the mask substrate 1, a scattered light receiving unit 42 is disposed at a position off the optical axis of the reflected light 41 b of the inspection light 41 a reflected by the surface of the mask substrate 1. The scattered light receiving unit 42 includes an S polarizing plate, a band pass filter, a lens, a light receiving unit, a photomultiplier tube, and the like. As shown in FIG. 3, the inspection light 41a is controlled to be scanned in the scanning direction (the depth direction of the drawing), and is mostly composed of S-polarized light components. Is arranged so as to be directed to the scattered light receiver 42. The S-polarizing plate allows only the S-polarized light component to pass therethrough, and allows only the S-polarized light component of the scattered light 41c of the inspection light 41a scattered at the front surface, inside, back surface, and pinhole edge of the mask substrate 1 to pass therethrough. The band pass filter passes only light in the vicinity of the frequency component of the inspection light 41a emitted from the inspection light irradiation unit 41, that is, light in the vicinity of the wavelength component of the inspection light 41a, and light of other frequency components (wavelength components). Is to be removed. The lens collects only the light that has been scattered from the mask substrate 1 and has passed through the S-polarizing plate and the bandpass filter, and introduces it to the light receiving unit. The focal position of the lens matches the surface of the mask substrate 1. The light receiving unit is configured by bundling a plurality of optical fibers, receives the scattered light collected by the lens, and guides it to the light receiving surface of the photomultiplier tube. The photomultiplier tube outputs a detection signal corresponding to the intensity of scattered light received by the light receiving surface. The detection signal of the photomultiplier tube is amplified by an amplifier (not shown) and input to a defect detection device (not shown). In this way, by providing the S-polarizing plate and the bandpass filter on the front surface of the lens, it is the disturbance light from the surrounding environment of the apparatus, and the light other than the above-mentioned frequency component (wavelength component) and the light of the P polarization component Inspection light 41a effectively removed and obliquely irradiated from the light projecting system to the mask substrate 1 and only the S-polarized component light scattered at the front surface, inside, back surface, pinhole edge, etc. of the mask substrate 1 is scattered. It can be effectively introduced into the light receiving unit 42. If the disturbance light is sufficiently smaller than the signal, or if the detection defect size is large and the sensitivity is low, the S polarizing plate and the band pass filter may be omitted.

マスク基板1の表面にクロム膜などのマスクパターン等が存在しない場合、マスク基板1は透明なガラス基板と同等なので、マスク基板1の表面に欠陥が存在する場合、マスク基板1の表面へ照射された検査光41aが欠陥によって散乱されて、そこで散乱光41cが発生する。また、マスク基板1の内部へ透過してマスク基板1の裏面で反射され、再びマスク基板1の表面へ到達した検査光41aが欠陥によって散乱されて、そこで散乱光が発生する。これらの散乱光が、マスク基板1の表面側に配置された散乱光受光部42で受光される。さらに、マスク基板1の内部に欠陥が存在する場合、マスク基板1の内部へ透過した検査光41aが欠陥によって散乱されて、そこで散乱光が発生し、同じくマスク基板1の内部へ透過してマスク基板1の裏面で反射された検査光41aがマスク基板1の内部の欠陥によって散乱されて、そこで散乱光が発生する。これらの散乱光が、マスク基板1の表面側に配置された散乱光受光部42で受光される。マスク基板1の表面の欠陥によって発生した散乱光41cは、マスク基板1の内部の欠陥によって発生した他の散乱光よりも、散乱光受光部42で受光される強度が大きいので、マスク基板1の表面の欠陥を容易に検出することができる。   When there is no mask pattern such as a chrome film on the surface of the mask substrate 1, the mask substrate 1 is equivalent to a transparent glass substrate. Therefore, when there is a defect on the surface of the mask substrate 1, the surface of the mask substrate 1 is irradiated. The inspection light 41a is scattered by the defect, and scattered light 41c is generated there. In addition, the inspection light 41a that is transmitted into the mask substrate 1 and reflected by the back surface of the mask substrate 1 and reaches the surface of the mask substrate 1 again is scattered by the defect, and scattered light is generated there. These scattered lights are received by the scattered light receiving unit 42 disposed on the surface side of the mask substrate 1. Further, when a defect exists in the mask substrate 1, the inspection light 41a transmitted to the inside of the mask substrate 1 is scattered by the defect, and scattered light is generated there, which is also transmitted to the inside of the mask substrate 1 to be masked. The inspection light 41a reflected from the back surface of the substrate 1 is scattered by defects inside the mask substrate 1, and scattered light is generated there. These scattered lights are received by the scattered light receiving unit 42 disposed on the surface side of the mask substrate 1. Since the scattered light 41c generated by the defect on the surface of the mask substrate 1 is received by the scattered light receiving unit 42 higher than the other scattered light generated by the defect inside the mask substrate 1, Surface defects can be easily detected.

一方、マスク基板1の裏面側において、マスク基板1の裏面に透過した透過光41dの光軸から外れた位置に、ピンホール用散乱光受光部46が配置されている。ピンホール用散乱光受光部46は、S偏光板、バンドパスフィルタ、レンズ、受光部及び光電子倍増管などから構成される。ピンホール用散乱光受光部46は、マスク基板1の表面、内部、裏面、ピンホールエッジなどに存在する欠陥によって散乱した散乱光、及びマスク基板1の表面にクロム膜などのマスクパターンが存在する場合にはそのマスクパターンのピンホールのエッジで散乱した散乱光を入射可能なように配置してある。S偏光板は、S偏光成分の光のみを通過させるものであり、マスク基板1の表面、内部、裏面、ピンホールエッジなどで散乱したもので、マスク基板1を通過した散乱光41fのS偏光成分のみを通過させる。バンドパスフィルタは、検査光照射部41から出射される検査光41aの周波数成分付近の光、すなわち出射検査光41aの波長成分付近の光のみを通過させ、それ以外の周波数成分(波長成分)の光を除去するものである。レンズは、マスク基板1の表面、内部、裏面、ピンホールエッジなどからの散乱光であって、S偏光板及びバンドパスフィルタを通過した光のみを集光し、ピンホール用散乱光受光部46へ導入する。レンズの焦点位置は、マスク基板1の表面付近に合致している。   On the other hand, on the back surface side of the mask substrate 1, the pinhole scattered light receiving unit 46 is disposed at a position off the optical axis of the transmitted light 41 d transmitted through the back surface of the mask substrate 1. The pinhole scattered light receiving unit 46 includes an S polarizing plate, a bandpass filter, a lens, a light receiving unit, a photomultiplier tube, and the like. The scattered light receiving unit 46 for pinhole has scattered light scattered by defects existing on the front surface, inside, back surface, pinhole edge and the like of the mask substrate 1 and a mask pattern such as a chromium film on the surface of the mask substrate 1. In some cases, the scattered light scattered at the edge of the pinhole of the mask pattern is arranged to be incident. The S-polarizing plate transmits only the light of the S-polarized component and is scattered by the front surface, the inside, the back surface, the pinhole edge, etc. of the mask substrate 1, and the S-polarized light of the scattered light 41f that has passed through the mask substrate 1 Pass only ingredients. The band-pass filter passes only light in the vicinity of the frequency component of the inspection light 41a emitted from the inspection light irradiation unit 41, that is, light in the vicinity of the wavelength component of the outgoing inspection light 41a, and other frequency components (wavelength components). It removes light. The lens collects only light that has been scattered from the front surface, inside, back surface, pinhole edge, etc. of the mask substrate 1 and has passed through the S-polarizing plate and the bandpass filter, and the scattered light receiving unit 46 for pinholes. To introduce. The focal position of the lens coincides with the vicinity of the surface of the mask substrate 1.

ピンホール用散乱光受光部46の受光部は、複数の光ファイバーを束ねて構成され、レンズで集光した散乱光を受光して光電子倍増管の受光面へ導く。光電子倍増管は、受光面で受光した散乱光の強度に応じた検出信号を出力する。光電子倍増管の検出信号は、図示していないアンプで増幅され、欠陥検出装置などへ入力される。このように、レンズの前面にS偏光板及びバンドパスフィルタを設けることによって、装置の周辺環境からの外乱光であって、前述の周波数成分(波長成分)以外の光及びP偏光成分光を有効に除去し、マスク基板1の表面、内部、裏面、ピンホールエッジなどで散乱したS偏光成分の散乱光のみをピンホール用散乱光受光部46へ導入することができる。   The light receiving unit of the pinhole scattered light receiving unit 46 is configured by bundling a plurality of optical fibers, receives the scattered light collected by the lens, and guides it to the light receiving surface of the photomultiplier tube. The photomultiplier tube outputs a detection signal corresponding to the intensity of scattered light received by the light receiving surface. The detection signal of the photomultiplier tube is amplified by an amplifier (not shown) and input to a defect detection device or the like. In this way, by providing an S-polarizing plate and a band-pass filter on the front surface of the lens, light other than the above-mentioned frequency component (wavelength component) and P-polarized component light that are disturbance light from the surrounding environment of the device are effective. Thus, only the scattered light of the S-polarized component scattered at the front surface, inside, back surface, pinhole edge, etc. of the mask substrate 1 can be introduced into the pinhole scattered light receiving unit 46.

図5は、マスク基板1の表面にクロム膜のマスクパターンが形成されており、そこに欠陥及びピンホールが存在する場合の検査装置の動作例を示す図である。図5に示すように、マスク基板1の表面にクロム膜10のマスクパターンが形成されており、そこに欠陥となる異物40a及びピンホール40bが存在する。この場合、マスク基板1の表面へ照射された検査光41aは、欠陥となる異物40a及びピンホール40bによって散乱されるので、散乱光41c,41f及び透過光41dがそれぞれ発生することとなる。マスク基板1の表面の欠陥となる異物40aによる散乱光41cは散乱光受光部42で受光される。マスク基板1の表面のクロム膜10のマスクパターンのピンホール40bのエッジにおける散乱光41fは、マスク基板1を透過して、マスク基板1の裏面側に配置されたピンホール用散乱光受光部46で受光される。マスク基板1の表面のクロム膜10のマスクパターンのピンホールを通過した透過光41dはトラップ部45にトラップされる。   FIG. 5 is a diagram showing an operation example of the inspection apparatus when a mask pattern of a chromium film is formed on the surface of the mask substrate 1 and defects and pinholes are present there. As shown in FIG. 5, the mask pattern of the chromium film 10 is formed on the surface of the mask substrate 1, and there are foreign matter 40a and pinholes 40b that are defective. In this case, since the inspection light 41a irradiated on the surface of the mask substrate 1 is scattered by the foreign matter 40a and the pinhole 40b which become defects, scattered light 41c and 41f and transmitted light 41d are generated. Scattered light 41 c due to the foreign matter 40 a that becomes a defect on the surface of the mask substrate 1 is received by the scattered light receiving unit 42. The scattered light 41 f at the edge of the pin hole 40 b of the mask pattern of the chromium film 10 on the surface of the mask substrate 1 is transmitted through the mask substrate 1 and is disposed on the back side of the mask substrate 1 for the scattered light receiving unit 46 for pinholes. Is received. The transmitted light 41 d that has passed through the pinhole of the mask pattern of the chromium film 10 on the surface of the mask substrate 1 is trapped in the trap portion 45.

散乱光41c,41fは、散乱光受光部42及びピンホール用散乱光受光部46を構成する複数の光ファイバーを束ねた受光部で受光され、図5(B),(C)のように、表面の欠陥となる異物40aによる散乱信号S41c及びピンホール40bのエッジによる散乱信号S41fとして検出される。すなわち、マスク基板1の表面に形成されたマスクパターン部となるクロム膜10にピンホール40bが存在する場合、マスク基板1上のクロム膜へ照射された検査光41aは、このピンホール40bを通過して透過光41dとしてマスク基板1の下側のトラップ部45にトラップされる。このときに、ピンホール用散乱光受光部46は、Y方向(図面奥行き方向)に所定の検出幅を有するセンサーを含んで構成され、クロム膜10のピンホールのエッジ付近で反射した検査光41aの一部、すなわち散乱光41fを受光する。従って、図5のような散乱信号S41c,S41fを検出することによって、マスク基板1の表面に欠陥(異物40a)が存在し、さらに、マスク基板1のクロム膜10によるマスクパターンにピンホール40bが存在するということを検出することができる。   The scattered light 41c and 41f are received by a light receiving unit in which a plurality of optical fibers constituting the scattered light receiving unit 42 and the pinhole scattered light receiving unit 46 are bundled, and as shown in FIGS. Are detected as a scattered signal S41c due to the foreign matter 40a which becomes the defect of FIG. 5 and a scattered signal S41f due to the edge of the pinhole 40b. That is, when the pinhole 40b exists in the chromium film 10 that is the mask pattern portion formed on the surface of the mask substrate 1, the inspection light 41a irradiated to the chromium film on the mask substrate 1 passes through the pinhole 40b. Then, the transmitted light 41d is trapped in the trap portion 45 on the lower side of the mask substrate 1. At this time, the scattered light receiving unit for pinhole 46 includes a sensor having a predetermined detection width in the Y direction (the depth direction in the drawing), and the inspection light 41a reflected near the edge of the pinhole in the chrome film 10. Of the light, that is, the scattered light 41f is received. Therefore, by detecting the scattered signals S41c and S41f as shown in FIG. 5, a defect (foreign matter 40a) exists on the surface of the mask substrate 1, and further, a pinhole 40b is formed in the mask pattern of the chromium film 10 on the mask substrate 1. It can be detected that it exists.

図6は、マスク基板1の表面のクロム膜のマスクパターンに欠陥のみが存在する場合の検査装置の動作例を示す図である。図5では、欠陥となる異物40aと共にクロム膜のマスクパターンにピンホール40bが存在しているが、図6ではクロム膜のマスクパターンにはピンホール40bは存在せず、欠陥となる異物40aのみが存在する場合を示す。このような場合、マスク基板1の表面の欠陥となる異物40aによる散乱光41cは散乱光受光部42で受光されるようになるが、マスク基板1の表面には、クロム膜10のマスクパターンが形成されているのでマスク基板1の膜下方向の光はこのクロム膜で遮光され、マスク基板1の裏面側に配置されたピンホール用散乱光受光部46には散乱光が到達することはない。   FIG. 6 is a diagram illustrating an operation example of the inspection apparatus when only a defect exists in the mask pattern of the chromium film on the surface of the mask substrate 1. In FIG. 5, the pinhole 40b exists in the mask pattern of the chromium film together with the foreign matter 40a that becomes a defect, but in FIG. 6, the pinhole 40b does not exist in the mask pattern of the chromium film, and only the foreign matter 40a that becomes a defect exists. Indicates the presence of. In such a case, the scattered light 41c due to the foreign matter 40a that becomes a defect on the surface of the mask substrate 1 is received by the scattered light receiving unit 42, but the mask pattern of the chromium film 10 is formed on the surface of the mask substrate 1. Since it is formed, the light below the mask substrate 1 is shielded by this chromium film, and the scattered light does not reach the pinhole scattered light receiving portion 46 disposed on the back side of the mask substrate 1. .

図6の場合、マスク基板1上のクロム膜へ照射された検査光41aは、そのクロム膜でほとんどが反射光41bとして反射されるが、クロム膜表面の欠陥となる異物40aが存在するので、検査光41aの一部はその異物40aによって散乱され、散乱光41cとし散乱光受光部42に受光される。図6において、散乱光41cは、散乱光受光部42を構成する複数の光ファイバーを束ねた受光部で受光され、図6(B)のように、表面の欠陥となる異物40aによる散乱信号S41cとして検出される。一方、マスク基板1の表面には、マスクパターン部となるクロム膜10にピンホール40bが存在しないので、図6(C)のように信号強度の変化はない。従って、図6の場合は、マスク基板1の表面にのみ欠陥となる異物40aが存在するということを検出することができる。   In the case of FIG. 6, the inspection light 41a irradiated to the chromium film on the mask substrate 1 is mostly reflected as reflected light 41b by the chromium film, but there is a foreign matter 40a that becomes a defect on the surface of the chromium film. A part of the inspection light 41a is scattered by the foreign matter 40a and is received by the scattered light receiving unit 42 as scattered light 41c. In FIG. 6, the scattered light 41c is received by a light receiving unit in which a plurality of optical fibers constituting the scattered light receiving unit 42 are bundled, and as shown in FIG. Detected. On the other hand, since the pinhole 40b does not exist in the chromium film 10 serving as the mask pattern portion on the surface of the mask substrate 1, the signal intensity does not change as shown in FIG. Therefore, in the case of FIG. 6, it can be detected that the foreign material 40 a that becomes a defect exists only on the surface of the mask substrate 1.

図7は、クロム膜のマスクパターンに存在するピンホールの検出動作の一例を示す図である。図7(A)は、検査光41aを用いてマスク基板1上をラスタスキャン中のある瞬間における検査光41aとピンホール40bとの位置関係を模式的に示し、図7(B)は、図7(A)の瞬間におけるピンホール40bに対応したピンホール用散乱光受光部46の散乱信号S41fを示す。図7(A)に示すように、ピンホール40bのエッジ付近を円形状に示している。検査光41aがこのピンホール40bのエッジ付近(円形の周縁上)に位置する場合は、散乱光41fがピンホール用散乱光受光部46によって検出されるが、それ以外の場所(ピンホール40bの円周上以外)では散乱光41fは検出されない。従って、基板検査装置のラスタスキャン位置に対応した図7(A)のメッシュ上にピンホールエッジの検出された位置をマッピングする。図7(A)では、ピンホールエッジの検出されたラスタスキャン位置を灰色にマッピングして示している。これによってピンホール40bの欠陥サイズをラスタスキャン位置のマッピングされた形状に基づいてピンホール40bの大きさを認識することが可能となる。なお、検査光41aのビーム径よりも小さなピンホールについては信号強度及び欠陥検出座標によってピンホールのサイズを弁別することができる。   FIG. 7 is a diagram illustrating an example of an operation for detecting a pinhole existing in the mask pattern of the chromium film. FIG. 7A schematically shows the positional relationship between the inspection light 41a and the pinhole 40b at a certain moment during raster scanning on the mask substrate 1 using the inspection light 41a, and FIG. The scattered signal S41f of the pinhole scattered light receiving unit 46 corresponding to the pinhole 40b at the moment 7 (A) is shown. As shown in FIG. 7A, the vicinity of the edge of the pinhole 40b is shown in a circular shape. When the inspection light 41a is positioned near the edge of the pinhole 40b (on the circular periphery), the scattered light 41f is detected by the pinhole scattered light receiving unit 46, but other locations (in the pinhole 40b) Scattered light 41f is not detected except on the circumference. Accordingly, the position where the pinhole edge is detected is mapped on the mesh of FIG. 7A corresponding to the raster scan position of the substrate inspection apparatus. In FIG. 7A, the raster scan position where the pinhole edge is detected is shown in gray. This makes it possible to recognize the size of the pinhole 40b based on the mapped shape of the raster scan position of the defect size of the pinhole 40b. For pinholes smaller than the beam diameter of the inspection light 41a, the pinhole size can be discriminated based on signal intensity and defect detection coordinates.

なお、上述の実施の形態では、S偏光板及びバンドパスフィルタを散乱光受光部42及びピンホール用散乱光受光部46に設けることによって、基板の周辺環境から検出光学系に入り込む外乱光すなわちレーザー光源から照射された光線の周波数成分(波長成分)以外の光及びP偏光成分光を有効に除去し、投光系からマスク基板1へ斜めに照射された検査光41aであって、マスク基板1の表面、内部、裏面及びピンホールエッジなどで散乱したS偏光成分の光のみを受光することができ、ノイズなどの影響を無くし、欠陥の検出精度を向上させることができる。   In the above-described embodiment, by providing the S polarizing plate and the bandpass filter in the scattered light receiving unit 42 and the pinhole scattered light receiving unit 46, the disturbance light that enters the detection optical system from the surrounding environment of the substrate, that is, the laser This is inspection light 41a that effectively removes light other than the frequency component (wavelength component) of the light beam irradiated from the light source and P-polarized component light, and is irradiated obliquely onto the mask substrate 1 from the light projecting system. Only the S-polarized component light scattered at the front surface, inside, back surface, pinhole edge, etc. can be received, the influence of noise and the like can be eliminated, and the defect detection accuracy can be improved.

1…マスク基板、
10…クロム膜、
11…レーザー光発生部、
12a,12c…レンズ、
13…ポリゴンミラー、
40,400…光学系ユニット、
40a…異物、
40b…ピンホール、
41…検査光照射部、
41a…検査光、
41b…反射光、
41c…散乱光、
41d…透過光、
41e…反射光、
41f…散乱光、
42…散乱光受光部、
43…散乱ミラー部、
44…透過光受光部、
45…トラップ部、
46…ピンホール用散乱光受光部、
S41c,S41f…散乱信号、
5a,5b…基板支持部、
5c,5d…傾斜面
1 ... Mask substrate,
10 ... chrome film,
11 ... Laser light generator,
12a, 12c ... lenses,
13 ... Polygon mirror,
40, 400 ... optical system unit,
40a ... foreign matter,
40b ... pinhole,
41 ... inspection light irradiation unit,
41a ... Inspection light,
41b ... reflected light,
41c ... scattered light,
41d ... transmitted light,
41e ... reflected light,
41f ... scattered light,
42 ... scattered light receiving part,
43. Scattering mirror part,
44 ... transmitted light receiving part,
45 ... Trap part,
46: scattered light receiving part for pinhole,
S41c, S41f ... scattered signal,
5a, 5b ... substrate support part,
5c, 5d ... inclined surface

Claims (4)

光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ前記光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行い、
前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第1の散乱光受光手段にて受光し、
前記基板の裏面側に配置され、前記光線が前記基板表面に形成されたマスクパターンのピンホールエッジによって散乱された散乱光を第2の散乱光受光手段にて受光し、
前記第1及び第2の散乱光受光手段が受光した散乱光に基づいた信号から前記基板の欠陥を検出することを特徴とする基板検査方法。
The substrate is moved while moving the light beam while obliquely irradiating the light beam to the surface of the substrate at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted into the substrate. Scan
The scattered light, which is disposed on the surface side of the substrate and the light beam is scattered by the defect of the substrate, is received by the first scattered light receiving means,
The second scattered light receiving means receives the scattered light that is disposed on the back side of the substrate and the light beam is scattered by the pinhole edge of the mask pattern formed on the substrate surface,
A substrate inspection method, comprising: detecting defects on the substrate from signals based on scattered light received by the first and second scattered light receiving means.
請求項1に記載の基板検査方法において、
前記基板の表面へ所定の偏光成分を多く含む光線を照射し、
前記偏光成分の光のみを通過させる偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前記第1及び第2の散乱光受光手段の前面に備えたことを特徴とする基板検査方法。
The substrate inspection method according to claim 1,
Irradiating the surface of the substrate with a light beam containing a large amount of a predetermined polarized component
A polarizing plate means for passing only the light of the polarization component and a band pass filter means for passing only light in the vicinity of the frequency component of the light beam are provided on the front surface of the first and second scattered light receiving means. Substrate inspection method.
光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ前記光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行う投光系手段と、
前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を受光する第1の散乱光受光手段と、
前記基板の裏面側に配置され、前記光線が前記基板表面に形成されたマスクパターンのピンホールエッジによって散乱された散乱光を受光する第2の散乱光受光手段と、
前記第1及び第2の散乱光受光手段が受光した散乱光に基づいた信号から前記基板の欠陥を検出する欠陥検出手段と
を備えたことを特徴とする基板検査装置。
The substrate is moved while moving the light beam while obliquely irradiating the light beam to the surface of the substrate at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted into the substrate. A light projection system means for scanning
A first scattered light receiving means arranged on the surface side of the substrate and receiving the scattered light scattered by the defect of the substrate;
A second scattered light receiving means disposed on the back side of the substrate and receiving the scattered light scattered by the pinhole edge of the mask pattern formed on the substrate surface;
A substrate inspection apparatus comprising: defect detection means for detecting defects on the substrate from signals based on scattered light received by the first and second scattered light receiving means.
請求項2に記載の基板検査装置において、
前記基板の表面へ所定の偏光成分を多く含む光線を照射し、
前記偏光成分の光のみを通過させる偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前記第1及び第2の散乱光受光手段の前面に備えたことを特徴とする基板検査装置。
The substrate inspection apparatus according to claim 2,
Irradiating the surface of the substrate with a light beam containing a large amount of a predetermined polarized component
A polarizing plate means for passing only the light of the polarization component and a band pass filter means for passing only light in the vicinity of the frequency component of the light beam are provided on the front surface of the first and second scattered light receiving means. Substrate inspection device.
JP2011181025A 2011-08-22 2011-08-22 Substrate inspection method and device Pending JP2013044577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011181025A JP2013044577A (en) 2011-08-22 2011-08-22 Substrate inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011181025A JP2013044577A (en) 2011-08-22 2011-08-22 Substrate inspection method and device

Publications (1)

Publication Number Publication Date
JP2013044577A true JP2013044577A (en) 2013-03-04

Family

ID=48008606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011181025A Pending JP2013044577A (en) 2011-08-22 2011-08-22 Substrate inspection method and device

Country Status (1)

Country Link
JP (1) JP2013044577A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190954A (en) * 1993-12-27 1995-07-28 Ricoh Co Ltd Method and apparatus for inspecting pinhole
JP2002296197A (en) * 2001-03-30 2002-10-09 Hitachi Electronics Eng Co Ltd Surface inspection instrument
JP2009244091A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Substrate inspection apparatus and method
JP2010002406A (en) * 2008-05-23 2010-01-07 Hitachi High-Technologies Corp Inspecting method and inspecting apparatus for substrate surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190954A (en) * 1993-12-27 1995-07-28 Ricoh Co Ltd Method and apparatus for inspecting pinhole
JP2002296197A (en) * 2001-03-30 2002-10-09 Hitachi Electronics Eng Co Ltd Surface inspection instrument
JP2009244091A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Substrate inspection apparatus and method
JP2010002406A (en) * 2008-05-23 2010-01-07 Hitachi High-Technologies Corp Inspecting method and inspecting apparatus for substrate surface

Similar Documents

Publication Publication Date Title
KR100710721B1 (en) An apparatus and method for inspecting mark defects and method for manufacturing a photomask
WO2016088623A1 (en) Substrate examination device
JP2008502929A (en) Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light
KR20110088706A (en) Detection apparatus for particle on the glass
JP5268061B2 (en) Board inspection equipment
JP4362335B2 (en) Inspection device
JP2010169453A (en) Device and method for inspecting foreign matter
KR20120031835A (en) Apparatus for inspecting defects
JP2013044578A (en) Substrate inspection method and device
JP2006071284A (en) Inside and outside discrimination method of flaw of glass substrate
JP2011226939A (en) Method and device for inspecting substrate
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
EP3413037B1 (en) Inspection device for sheet-like objects, and inspection method for sheet-like objects
JP4994053B2 (en) Substrate inspection apparatus and substrate inspection method
TWI817991B (en) Optical system, illumination module and automated optical inspection system
KR102037395B1 (en) Transmissive optical inspection device and method of detecting film defect using the same
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP2007024733A (en) Substrate inspection device and substrate inspection method
JP2005274173A (en) Surface inspection method of contamination on surface of object to be inspected such as wafer substrate transparent glass for liquid crystal display or the like and surface inspection device
KR20080019395A (en) A defect detecting apparatus for flat panel display
JP2008216150A (en) Inspection device and method of transparent object
JP2013044577A (en) Substrate inspection method and device
JP5938981B2 (en) Projection system
JP2011257304A (en) Substrate inspection method and device
JP4808162B2 (en) Substrate inspection apparatus and substrate inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150324