JP2002296197A - Surface inspection instrument - Google Patents

Surface inspection instrument

Info

Publication number
JP2002296197A
JP2002296197A JP2001101880A JP2001101880A JP2002296197A JP 2002296197 A JP2002296197 A JP 2002296197A JP 2001101880 A JP2001101880 A JP 2001101880A JP 2001101880 A JP2001101880 A JP 2001101880A JP 2002296197 A JP2002296197 A JP 2002296197A
Authority
JP
Japan
Prior art keywords
light
defect
substrate surface
detection
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001101880A
Other languages
Japanese (ja)
Other versions
JP4490598B2 (en
Inventor
Shinichi Suzuki
新一 鈴木
Koichi Asami
浩一 浅見
Yuichiro Kato
祐一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP2001101880A priority Critical patent/JP4490598B2/en
Publication of JP2002296197A publication Critical patent/JP2002296197A/en
Application granted granted Critical
Publication of JP4490598B2 publication Critical patent/JP4490598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface inspection instrument for identifying, with high accuracy, the category of a defect in a light penetrating substrate having a semi transparent film on the surface thereof when the surface inspection is done. SOLUTION: In this surface inspection instrument, a first detection means 2a, 2b outputs a detective signal by finding the reflected light of a light-beam corresponding to the defect on the surface of the frontal side of the light- penetrating substrate having the semi-transparent film. A second detection means 3a, 3b outputs a detective signal by finding a transmission light of the beam corresponding to the defect on the surface of the opposite side of the above substrate. In an identifying means 8 thereof, a reference function is established to define the correlation between a level of each detective signal obtained by the first and the second means, respectively, such a level of which (each detective signal) is compared by using the reference function as a comparison standard, and, then, the identifying means identifies which of all the plurality of categories the from category to category varying defect present in the substrate's surface falls under, based upon the comparison results.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被検査物表面に
存在する欠陥を光学的に検出して欠陥種類の判別を行う
表面検査装置に関し、特に、表面に半透明膜を有してな
る光透過性基板の基板表面に存在する欠陥種類の判別を
行う表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for optically detecting a defect present on a surface of an inspection object to determine the type of the defect, and more particularly, to a light having a translucent film on the surface. The present invention relates to a surface inspection apparatus that determines a type of a defect existing on a substrate surface of a transparent substrate.

【0002】[0002]

【従来の技術】半導体デバイスの製造工程では、半導体
ウェハ上に回路パターンを転写するとき、パターン原版
としてフォトマスクが使用される。フォトマスクは、マ
スクブランクス上のフォトレジストを露光して作られ
る。フォトレジストは、マスクブランクスの表面上に電
子線レジストをスピンコートし、電子線描画装置によっ
てパターニングして作られる。このように、マスクブラ
ンクスは、フォトマスクの製作素材であり、通常、高精
度に研磨された合成石英基板(ガラス基板)の表面上に
スパッタリングでクロム膜をコーティングして作られ
る。マスクブランクスにおいて、クロム膜に微小なピン
ホールや異物(パーティクル)などの欠陥が存在する
と、その欠陥が回路パターンの転写時に転写されて半導
体デバイスの品質に影響を及ぼすため、表面検査装置を
用いて欠陥有無の検査が行われる。
2. Description of the Related Art In a semiconductor device manufacturing process, a photomask is used as a pattern master when a circuit pattern is transferred onto a semiconductor wafer. A photomask is made by exposing a photoresist on a mask blank. The photoresist is produced by spin-coating an electron beam resist on the surface of a mask blank and patterning it by an electron beam lithography apparatus. As described above, the mask blank is a material for manufacturing a photomask, and is usually formed by coating a chromium film on a surface of a synthetic quartz substrate (glass substrate) polished with high precision by sputtering. In the mask blanks, if defects such as minute pinholes or foreign matter (particles) are present in the chromium film, the defects are transferred during the transfer of the circuit pattern and affect the quality of the semiconductor device. An inspection for the presence or absence of a defect is performed.

【0003】これらの各種欠陥の効果的な検出方法とし
て、従来の表面検査装置は、クロム膜の遮光性(可視光
域での光透過率が0.1%以下)を利用して、欠陥の種
類を判別する方法を用いている。すなわち、レーザビー
ムとマスクブランクスとを異なる方向(例えば、X方向
及びY方向)に相対的に移動させ、マスクブランクスの
基板表面側(クロム膜側)に配置した後方受光器で異物
からのレーザビームの散乱光(反射光)を検出し、該後
方受光器でピンホールからのレーザビームの回折光(ガ
ラス基板に反射して得られる反射光)を検出すると共
に、マスクブランクスの基板表面とは反対側(ガラス基
板側)に配置した前方受光器でピンホールからのレーザ
ビームの回折光(ピンホールを透過して得られる透過
光)を検出する。このように、後方受光器と前方受光器
とで異物とピンホールの散乱光および回折光をそれぞれ
検出し、後方受光器でのみ散乱光を検出した場合に、該
散乱光の検出信号に基づき異物と判定し、後方受光器お
よび前方受光器で回折光を検出した場合に、該回折光の
検出信号に基づきピンホールと判定するようになってい
る。
As an effective method for detecting these various defects, a conventional surface inspection apparatus utilizes the light-shielding property of a chromium film (light transmittance in the visible light region is 0.1% or less) to detect defects. The method of determining the type is used. That is, the laser beam and the mask blank are relatively moved in different directions (for example, the X direction and the Y direction), and the laser beam from the foreign material is detected by a rear light receiver disposed on the substrate surface side (chrome film side) of the mask blank. Scattered light (reflected light), and the rear photodetector detects the diffracted light of the laser beam from the pinhole (reflected light obtained by reflection on the glass substrate), and detects the light opposite to the substrate surface of the mask blank. The diffracted light of the laser beam from the pinhole (transmitted light obtained by passing through the pinhole) is detected by a front light receiver disposed on the side (glass substrate side). As described above, when the scattered light and the diffracted light of the foreign matter and the pinhole are respectively detected by the rear light receiver and the front light receiver, and the scattered light is detected only by the rear light receiver, the foreign matter is detected based on the detection signal of the scattered light. When a diffracted light is detected by the rear photodetector and the front photodetector, a pinhole is determined based on the detection signal of the diffracted light.

【0004】[0004]

【発明が解決しようとする課題】フォトマスクにあって
は、今後、パターンの解像度を向上できる位相シフトマ
スクが主流となる傾向にあり、該位相シフトマスクの一
例として、ハーフトーン位相マスクがある。このハーフ
トーン位相マスクは、ガラス基板の表面に従来のクロム
膜に代えて透光性を有するハーフトーン膜がコーティン
グされており、マスク作成が容易であるという利点があ
る。ハーフトーン位相マスクの製作素材であるマスクブ
ランクスのハーフトーン膜は、可視光域での光透過率が
約10〜50%であり、クロム膜に比べて光透過率が格
段に高い。このため、上記マスクブランクスを従来の表
面検査装置を用いてハーフトーン膜に存在するピンホー
ルや異物などの欠陥を判別しようとした場合、異物から
のレーザビームの散乱光がハーフトーン膜を透過して前
方受光器で検出されてしまう。その結果、前方受光器と
後方受光器とで欠陥の種類に関係無くレーザビームの散
乱光及び回折光を検出することとなり、ピンホールと異
物の判別処理を行うことができないという問題があっ
た。
In the photomask, a phase shift mask capable of improving the resolution of a pattern tends to become mainstream in the future, and there is a halftone phase mask as an example of the phase shift mask. This halftone phase mask has an advantage in that the surface of the glass substrate is coated with a translucent halftone film instead of the conventional chromium film, and the mask can be easily formed. The halftone film of the mask blank, which is a material for manufacturing a halftone phase mask, has a light transmittance in the visible light region of about 10 to 50%, and has a much higher light transmittance than the chrome film. Therefore, when trying to determine defects such as pinholes and foreign matter present in the halftone film using the conventional surface inspection apparatus, the scattered light of the laser beam from the foreign matter passes through the halftone film. And it is detected by the front receiver. As a result, the scattered light and the diffracted light of the laser beam are detected by the front light receiving device and the rear light receiving device irrespective of the type of defect, and there is a problem that the pinhole and the foreign matter cannot be discriminated.

【0005】本発明は、上記の点に鑑みて為されたもの
であり、表面に半透明膜を有してなる光透過性基板の表
面検査にあたって欠陥種類を高精度に判別することので
きる表面検査装置を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has been made in consideration of the above circumstances, and has been made in consideration of the above circumstances. It is intended to provide an inspection device.

【0006】[0006]

【課題を解決するための手段】本発明に係る表面検査装
置は、表面に半透明膜を有してなる透光性基板の基板表
面に光ビームを照射する照射手段と、前記基板表面側で
該基板表面の欠陥に応じた前記光ビームの反射光を検出
し、検出信号を出力する第1の検出手段と、前記基板表
面とは反対側で該基板表面の欠陥に応じた前記光ビーム
の透過光を検出し、検出信号を出力する第2の検出手段
と、前記第1および第2の検出手段のそれぞれの検出信
号のレベルの相関関係を定義する基準関数を設定し、該
基準関数を比較基準として該第1および第2の検出手段
のそれぞれの検出信号のレベルを比較し、この比較結果
に基づき前記基板表面に存在する欠陥が複数の種類の異
なる欠陥のいずれかに該当するかを判別する判別手段と
を具えたものである。これによれば、第1および第2の
検出手段のそれぞれの検出信号のレベルの相関関係を定
義する基準関数を比較基準として、第1および第2の検
出手段のそれぞれの検出信号のレベルを比較することに
より、基板表面に存在する欠陥が複数の種類の異なる欠
陥のいずれかに該当するかの判別を行うので、基板表面
に存在する欠陥種類を高精度に判別することができる。
A surface inspection apparatus according to the present invention comprises: an irradiating means for irradiating a light beam to a substrate surface of a translucent substrate having a translucent film on the surface; First detecting means for detecting reflected light of the light beam corresponding to the defect on the substrate surface and outputting a detection signal; and detecting the reflected light of the light beam corresponding to the defect on the substrate surface on the side opposite to the substrate surface. A second detection means for detecting the transmitted light and outputting a detection signal, and a reference function defining the correlation between the levels of the detection signals of the first and second detection means are set. As a comparison standard, the levels of the respective detection signals of the first and second detection means are compared, and based on the comparison result, it is determined whether the defect existing on the substrate surface corresponds to one of a plurality of different types of defects. Discriminating means for discriminating. . According to this, the levels of the respective detection signals of the first and second detection means are compared using the reference function defining the correlation between the levels of the respective detection signals of the first and second detection means as a comparison reference. By doing so, it is determined whether the defect existing on the substrate surface corresponds to any of a plurality of different types of defects, so that the defect type existing on the substrate surface can be determined with high accuracy.

【0007】[0007]

【発明の実施の形態】以下、添付図面を参照して、本発
明に係る表面検査装置の一実施例を説明する。図1は表
面検査装置の概要構成を示す斜視図、図2は同装置のハ
ード構成を示すブロック図である。図1において、表面
検査装置Aは、透光性のガラス基板M1の表面に半透明
膜であるハーフトーン膜(可視光域での光透過率が約1
0〜50%)M2をコーティングしてなるマスクブラン
クスMの表面検査に適用したものである。検査対象のマ
スクブランクスMには、基板表面側(ハーフトーン膜M
2側)から投光装置1によってレーザビームが照射され
る。投光装置1は、例えば、光源としてアルゴンレーザ
発振器1aを具備する。アルゴンレーザ発振器1aから
出射したレーザビームLは、ミラー1bでビームエキス
パンダ1cに導入され、該ビームエキスパンダ1cで適
当なビーム径に拡大された後、ポリゴンミラー1d、ス
キャンレンズ1eおよびミラー1fなどを介してマスク
ブランクスMの基板表面上に照射されてスポット状に収
束されると共に、該ポリゴンミラー1dの回転によって
X方向に走査される。マスクブランクスMは、レーザビ
ームLの走査方向に対応する両側面が図示しない一対の
アーム(図示せず)によって保持され、該一対のアーム
によってレーザビームLの走査と同期してY方向にステ
ップ移動される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a surface inspection apparatus according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view showing a schematic configuration of a surface inspection apparatus, and FIG. 2 is a block diagram showing a hardware configuration of the apparatus. In FIG. 1, a surface inspection apparatus A includes a halftone film (a light transmittance in a visible light region of about 1) which is a translucent film on a surface of a light transmitting glass substrate M1.
(0-50%) This is applied to the surface inspection of a mask blank M coated with M2. The mask blank M to be inspected has a substrate surface side (halftone film M
The laser beam is emitted from the light projecting device 1 from the second side). The light projecting device 1 includes, for example, an argon laser oscillator 1a as a light source. The laser beam L emitted from the argon laser oscillator 1a is introduced into a beam expander 1c by a mirror 1b, expanded to an appropriate beam diameter by the beam expander 1c, and then expanded into a polygon mirror 1d, a scan lens 1e, a mirror 1f, and the like. Is irradiated onto the surface of the substrate of the mask blank M via the light source and converged in a spot shape, and is scanned in the X direction by the rotation of the polygon mirror 1d. The mask blank M is held on both sides corresponding to the scanning direction of the laser beam L by a pair of arms (not shown) (not shown), and is step-moved in the Y direction by the pair of arms in synchronization with the scanning of the laser beam L. Is done.

【0008】マスクブランクスMの基板表面側には、マ
スクブランクスMから反射するレーザビームLの反射光
を該マスクブランクスMの後方側(レーザビームLの照
射側)で受光する一対の後方受光器2a及び2bが設け
られている。後方受光器2a及び2bは、図3に示され
るように、レーザビームLに対して20°〜70°の角
度をもって配置されている。マスクブランクスMの基板
表面とは反対側には、マスクブランクスMを透過するレ
ーザビームLの透過光を該マスクブランクスMの前方側
(レーザビームLの照射側とは反対側)で受光する一対
の前方受光器3a及び3bが設けられている。前方受光
器3a及び3bは、同図に示されるように、レーザビー
ムLの照射方向に対して20°〜70°の角度をもって
配置されている。図4(a)に示されるように、レーザ
ビームLの走査中において、マスクブランクスMのハー
フトーン膜M2に存在するピンホールHにレーザビーム
Lが照射されると、その照射ビームは大半がピンホール
Hを通り、ガラス基板M1の開口露出面M11から周囲
に広がる回折光となってガラス基板M1を透過するが、
一部の照射ビームはガラス基板M1の開口露出面M11
で反射してピンホールHの開口から周囲に広がる回折光
L2となる。従って、ハーフトーン膜M2にピンホール
Hが存在する場合、マスクブランクスMの基板表面側の
回折光L2の回折光量は基板表面とは反対側の回折光L
1の回折光量よりも少なくなるので、マスクブランクス
Mの基板表面側の回折光L2の強度は大きくなり、マス
クブランクスMの基板表面とは反対側の回折光L1の強
度は小さくなる。これにより、図3に示されるように、
マスクブランクスMの基板表面側の後方受光器2a及び
2bが強度の小さい回折光L2を受光し、マスクブラン
クスMの基板表面とは反対側の前方受光器3a及び3b
が強度の大きい回折光L1を受光する。一方、図4
(b)に示されるように、マスクブランクスMのハーフ
トーン膜M2に存在する異物PにレーザビームLが照射
されると、その照射ビームは特定の方向に強調されるこ
とのない無指向性のランダムな方向に散乱する散乱光と
なる。この散乱光のうち、マスクブランクスMの基板表
面とは反対側に散乱する散乱光L1は、ハーフトーン膜
M2を透過するので、散乱光量が減少して強度が小さく
なるが、マスクブランクスMの基板表面側に散乱する散
乱光L2は、ハーフトーン膜M2を透過しないので、散
乱光量が減少することがなく、よって、その強度は散乱
光L1の強度よりも大きくなる。従って、ハーフトーン
膜M2に異物Pが存在する場合、図3に示されるよう
に、マスクブランクスMの基板表面側の後方受光器2a
及び2bが強度の大きい散乱光L3を受光し、マスクブ
ランクスMの基板表面とは反対側の前方受光器3a及び
3bが強度の小さい散乱光L4を受光する。
On the substrate surface side of the mask blank M, a pair of rear light receivers 2a for receiving the reflected light of the laser beam L reflected from the mask blank M on the rear side (irradiation side of the laser beam L) of the mask blank M And 2b. The rear light receivers 2a and 2b are arranged at an angle of 20 ° to 70 ° with respect to the laser beam L as shown in FIG. On a side opposite to the substrate surface of the mask blank M, a pair of light receiving the transmitted light of the laser beam L passing through the mask blank M on the front side of the mask blank M (the side opposite to the irradiation side of the laser beam L). Front light receivers 3a and 3b are provided. The front light receivers 3a and 3b are arranged at an angle of 20 ° to 70 ° with respect to the irradiation direction of the laser beam L, as shown in FIG. As shown in FIG. 4A, during the scanning of the laser beam L, when the laser beam L irradiates the pinhole H existing in the halftone film M2 of the mask blank M, the irradiation beam is mostly pinned. The diffracted light passes through the hole H and spreads from the opening exposed surface M11 of the glass substrate M1 to the periphery, and transmits through the glass substrate M1.
Part of the irradiation beam is applied to the opening exposed surface M11 of the glass substrate M1.
And diffracted light L2 that spreads from the opening of the pinhole H to the periphery. Therefore, when the pinhole H exists in the halftone film M2, the amount of diffraction light of the diffracted light L2 on the substrate surface side of the mask blank M is equal to the diffracted light L on the opposite side to the substrate surface.
1, the intensity of the diffracted light L2 on the substrate surface side of the mask blank M increases, and the intensity of the diffracted light L1 on the side opposite to the substrate surface of the mask blank M decreases. Thereby, as shown in FIG.
The rear photodetectors 2a and 2b on the substrate surface side of the mask blank M receive the diffracted light L2 with low intensity, and the front photodetectors 3a and 3b on the opposite side of the mask blank M from the substrate surface.
Receive the diffracted light L1 having a large intensity. On the other hand, FIG.
As shown in (b), when the foreign matter P existing in the halftone film M2 of the mask blank M is irradiated with the laser beam L, the irradiated beam is omnidirectional without being emphasized in a specific direction. It becomes scattered light scattered in random directions. Of the scattered light, the scattered light L1 scattered to the side opposite to the substrate surface of the mask blank M passes through the halftone film M2, so that the amount of scattered light is reduced and the intensity is reduced. Since the scattered light L2 scattered to the front side does not pass through the halftone film M2, the amount of scattered light does not decrease, and therefore, the intensity is larger than the intensity of the scattered light L1. Therefore, when the foreign matter P exists in the halftone film M2, as shown in FIG.
And 2b receive the scattered light L3 having a large intensity, and the front light receivers 3a and 3b on the opposite side of the substrate surface of the mask blank M receive the scattered light L4 having a small intensity.

【0009】後方受光器2a及び2bは、レーザビーム
Lの走査中において、ピンホールHからの回折光L2若
しくは異物Pからの散乱光L3(以下、回折光L2およ
び散乱光L3を反射光L2,L3と記載する。)を受光
すると、その反射光L2,L3を図2に示される光ファ
イバー4a及び4bを介してフォトマルチプライヤ5に
出力する。フォトマルチプライヤ5では、上記反射光L
2,L3を光電変換して、該反射光L2,L3の受光レ
ベル(輝度レベル)に応じた検出信号(輝度レベルに応
じた電流値)iFをデータ処理回路8に出力する。前方
受光器3a及び3bは、レーザビームLの走査中におい
て、ピンホールHからの回折光L1若しくは異物Pから
の散乱光L4(以下、回折光L1および散乱光L4を透
過光L1,L4と記載する。)を受光すると、その透過
光L1,L4を図2に示される光ファイバー6a及び6
bを介してフォトマルチプライヤ7に出力する。フォト
マルチプライヤ7では、上記透過光L1,L4を光電変
換して、該透過光L1,L4の受光レベル(輝度レベ
ル)に応じた検出信号(輝度レベルに応じた電流値)i
Bをデータ処理回路8に出力する。
During the scanning of the laser beam L, the rear light receivers 2a and 2b convert the diffracted light L2 from the pinhole H or the scattered light L3 from the foreign matter P (hereinafter, the diffracted light L2 and the scattered light L3 into the reflected light L2, L3), the reflected light L2, L3 is output to the photomultiplier 5 via the optical fibers 4a and 4b shown in FIG. In the photomultiplier 5, the reflected light L
2 and L3 are photoelectrically converted, and a detection signal (current value according to the luminance level) iF corresponding to the light receiving level (luminance level) of the reflected lights L2 and L3 is output to the data processing circuit 8. The front light receivers 3a and 3b transmit the diffracted light L1 from the pinhole H or the scattered light L4 from the foreign matter P (hereinafter, the diffracted light L1 and the scattered light L4 are referred to as transmitted light L1 and L4 during the scanning of the laser beam L. 2), the transmitted light L1 and L4 are transmitted to the optical fibers 6a and 6a shown in FIG.
The signal is output to the photomultiplier 7 via b. The photomultiplier 7 photoelectrically converts the transmitted lights L1 and L4, and generates a detection signal (current value corresponding to the luminance level) i according to the light receiving level (luminance level) of the transmitted light L1 and L4.
B is output to the data processing circuit 8.

【0010】図5を参照して、データ処理回路8でのピ
ンホールと異物との判別処理を説明する。データ処理回
路8は、図示しないインタフェイス8a、MPU8b及
びメモリ8cなどを含んで構成されている。データ処理
回路8では、MPU8bがメモリ8cに格納されている
プログラムを実行し、各フォトマルチプライヤ5及び7
から得られるそれぞれの検出信号iF及びiBをインタ
フェイス8aで信号処理して、該各検出信号iF及びi
Bの検出レベルに応じた所定の検出データ(電圧デー
タ)vF及びvBに変換した後、その検出データvF及
びvBを取り込んで(ステップS1)、次のステップS
2に進む。
Referring to FIG. 5, a process of discriminating a pinhole from a foreign substance in data processing circuit 8 will be described. The data processing circuit 8 includes an interface 8a, an MPU 8b, and a memory 8c (not shown). In the data processing circuit 8, the MPU 8b executes a program stored in the memory 8c, and
Are processed by the interface 8a, and the detection signals iF and iB obtained from
After conversion into predetermined detection data (voltage data) vF and vB according to the detection level of B, the detection data vF and vB are fetched (step S1), and the next step S
Proceed to 2.

【0011】ステップS2では、MPU8bが図6に示
される欠陥判定テーブルTを用いてピンホールと異物と
を判別する判別処理を行う。上述したように、前方受光
によるピンホールの透過光の検出レベルは、後方受光に
よる該ピンホールの反射光の検出レベルよりも大きく、
また、後方受光による異物の反射光の検出レベルは、前
方受光による該異物の透過光の検出レベルよりも小さ
い。ところが、後方受光による異物の反射光の検出レベ
ルと後方受光によるピンホールの反射光の検出レベルと
を比較した場合、ピンホールの反射光の検出レベルに比
べて異物の反射光の検出レベルが大きくなるという傾向
がある。また、前方受光による異物の透過光の検出レベ
ルと前方受光によるピンホールの透過光の検出レベルと
を比較した場合、異物の透過光の検出レベルに比べてピ
ンホールの透過光の検出レベルが大きくなるという傾向
がある。従って、後方受光の検出データvBに対する前
方受光の検出データvFの割合(比率)からピンホール
と異物とをある程度判別することができる。MPU8b
では、上記透過光の検出レベルと反射光の検出レベルと
の相関関係を定義する基準関数を設定した欠陥判定テー
ブルTを用いてピンホールと異物とを判別する。欠陥判
定テーブルTにおいて、横軸(X軸)は前方受光の検出
レベルに、縦軸(Y軸)は後方受光の検出レベルにそれ
ぞれ対応しており、基準関数として、例えば、一次関数
の弁別線Sが設定されている。弁別線Sは、一般式 y=ax で表される。ここに、「a」は傾きである。この傾きa
は次のような方法を用いて求められる。すなわち、異物
評価用のマスクブランクスのハーフトーン膜に大きさの
異なる複数種類の標準粒子を付着させ、この標準粒子に
ついて前方受光の透過光による検出データと後方受光に
よる反射光の検出データとを得て、後方受光の検出デー
タに対する前方受光の検出データの割合(比率)から求
めたものである。なお、傾きaは、同図に示される破線
の傾き(=1)よりも小さいが、これは異物サイズが大
きくなるに従って後方受光による反射光に比べ前方受光
による透過光の割合が大きくなっていくためである。M
PU8bは、弁別線Sを比較基準として、後方受光の検
出データvBおよび前方受光の検出データvFのそれぞ
れの検出レベルを比較し、各検出データvB及びvFが
弁別線Sの下領域となる場合にピンホールと判定し(ス
テップS3)し、該各検出データvF及びvBが弁別線
Sの上領域となる場合に異物と判定する(ステップS
4)。
In step S2, the MPU 8b performs a discriminating process for discriminating between pinholes and foreign matters using the defect determination table T shown in FIG. As described above, the detection level of the transmitted light of the pinhole by the front light reception is larger than the detection level of the reflected light of the pinhole by the rear light reception,
Further, the detection level of the reflected light of the foreign substance by the rear light reception is smaller than the detection level of the transmitted light of the foreign substance by the front light reception. However, when comparing the detection level of the reflected light of the foreign matter by the rear light reception and the detection level of the reflected light of the pinhole by the rear light reception, the detection level of the reflected light of the foreign matter is larger than the detection level of the reflected light of the pinhole. Tend to be. Further, when the detection level of the transmitted light of the foreign substance by the front light reception is compared with the detection level of the transmitted light of the pinhole by the front light reception, the detection level of the transmitted light of the pinhole is larger than the detection level of the transmitted light of the foreign substance. Tend to be. Therefore, pinholes and foreign matter can be determined to some extent from the ratio (ratio) of the detection data vF of the front light reception to the detection data vB of the rear light reception. MPU8b
Then, the pinhole and the foreign matter are determined using the defect determination table T in which a reference function defining the correlation between the detection level of the transmitted light and the detection level of the reflected light is set. In the defect determination table T, the horizontal axis (X-axis) corresponds to the detection level of the front light reception, and the vertical axis (Y-axis) corresponds to the detection level of the rear light reception. S is set. The discrimination line S is represented by the general formula y = ax. Here, “a” is a slope. This inclination a
Is determined using the following method. That is, a plurality of types of standard particles having different sizes are adhered to the halftone film of the mask blank for foreign substance evaluation, and detection data of transmitted light of front light reception and detection data of reflected light of rear light reception are obtained for the standard particles. It is obtained from the ratio (ratio) of the detection data of the front light reception to the detection data of the rear light reception. Although the inclination a is smaller than the inclination (= 1) of the broken line shown in the figure, as the size of the foreign matter increases, the ratio of the transmitted light by the front light reception becomes larger than the reflection light by the rear light reception. That's why. M
The PU 8b compares the respective detection levels of the detection data vB of the rear light reception and the detection data vF of the front light reception with the discrimination line S as a comparison standard, and when each of the detection data vB and vF is in an area below the discrimination line S It is determined as a pinhole (step S3), and when the respective detection data vF and vB fall in the area above the discrimination line S, it is determined as a foreign substance (step S3).
4).

【0012】ステップS5では、ステップS3及びS4
で判定したピンホール及び異物のサイズと位置の判定処
理を行う。MPU8bは、メモリ8cに格納されている
欠陥サイズ判定プログラムを実行し、上記検出データv
F及びvBの検出レベルに基づいてピンホール及び異物
のサイズを判定する。また、MPU8bは、メモリ8c
に格納されている欠陥位置判定プログラムを実行し、図
2に示される同期信号発生回路9からレーザビームLの
走査とマスクブランスクスMの移動に同期して供給され
る同期信号に基づきピンホール及び異物の位置を判定し
て、ステップS6に進む。
In step S5, steps S3 and S4
The size and the position of the pinhole and the foreign matter determined in the above are determined. The MPU 8b executes the defect size determination program stored in the memory 8c, and executes the detection data v
The sizes of the pinhole and the foreign matter are determined based on the detection levels of F and vB. The MPU 8b has a memory 8c
Is executed based on a synchronization signal supplied in synchronization with the scanning of the laser beam L and the movement of the mask blanks M from the synchronization signal generation circuit 9 shown in FIG. The position of the foreign matter is determined, and the process proceeds to step S6.

【0013】ステップS6では、ステップS5で判定し
たピンホール及び異物のサイズと位置の表示処理を行
う。MPU8bは、メモリ8cに格納されている欠陥表
示プログラムを実行し、ピンホールと異物のサイズ及び
位置を表示するための表示指令信号をインタフェイス8
aを介して図2に示される液晶ディスプレイやCRTな
どの表示装置10に出力する。これによって、表示装置
10には、ピンホール及び異物のサイズと位置が表示さ
れる。
In step S6, display processing of the size and position of the pinhole and foreign matter determined in step S5 is performed. The MPU 8b executes a defect display program stored in the memory 8c, and outputs a display command signal for displaying the size and position of the pinhole and the foreign matter to the interface 8.
a to a display device 10 such as a liquid crystal display or a CRT shown in FIG. Thereby, the size and position of the pinhole and the foreign matter are displayed on the display device 10.

【0014】本例に示す表面検査装置において、欠陥判
定テーブルTに設定される弁別線Sは一次関数に限られ
るものでなく、一次関数以外にも曲線を含む関数を弁別
線として適宜設定してよい。また、マスクブランクスM
に照射されるレーザビームはこれに限られるものでな
く、このレーザビームに代えて、白色光や紫外線照射光
を用いてもよい。また、前方受光器及び後方受光器は、
2対以上用いてもよい。
In the surface inspection apparatus shown in the present embodiment, the discrimination line S set in the defect determination table T is not limited to a linear function, and a function including a curve other than the linear function is appropriately set as a discrimination line. Good. Also, Mask Blanks M
Is not limited to this, and white light or ultraviolet irradiation light may be used instead of this laser beam. Also, the front receiver and the rear receiver are
Two or more pairs may be used.

【0015】[0015]

【発明の効果】以上、説明したように、本発明に係る表
面検査装置によれば、第1および第2の検出手段のそれ
ぞれの検出信号のレベルの相関関係を定義する基準関数
を比較基準として、第1および第2の検出手段のそれぞ
れの検出信号のレベルを比較するようにしたので、基板
表面に存在する欠陥が複数の種類の異なる欠陥のいずれ
かに該当するかの判別を行うことができ、よって、基板
表面に存在する欠陥種類を高精度に判別することができ
る。
As described above, according to the surface inspection apparatus of the present invention, the reference function defining the correlation between the levels of the detection signals of the first and second detection means is used as a comparison reference. Since the levels of the detection signals of the first and second detection means are compared, it is possible to determine whether a defect existing on the substrate surface corresponds to one of a plurality of different types of defects. Therefore, the type of defect existing on the substrate surface can be determined with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る表面検査装置の一実施例を示す
概要構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a surface inspection apparatus according to the present invention.

【図2】 同装置のハード構成を示すブロック図。FIG. 2 is a block diagram showing a hardware configuration of the device.

【図3】 前方受光器による透過光の受光状態及び後方
受光器による反射光の受光状態を示す説明図。
FIG. 3 is an explanatory diagram showing a light receiving state of transmitted light by a front light receiver and a light receiving state of reflected light by a rear light receiver.

【図4】 前方受光器による透過光及び後方受光器によ
る反射光の強度原理を説明する説明図。
FIG. 4 is an explanatory diagram illustrating the principle of intensity of transmitted light by a front light receiver and reflected light by a rear light receiver.

【図5】 データ処理回路でのピンホールと異物との判
別処理を示すフロー図。
FIG. 5 is a flowchart showing a discrimination process between a pinhole and a foreign matter in the data processing circuit.

【図6】 データ処理回路の欠陥判定テーブルの説明
図。
FIG. 6 is an explanatory diagram of a defect determination table of the data processing circuit.

【符号の説明】[Explanation of symbols]

1 投光装置 2a,2b 後方受光器 3a,3b 前方受光器 4a,4b、6a,6b 光ファイバー 5,7 フォトマルチプライヤ 8 データ処理回路 9 同期信号発生器 10 表示装置 M マスクブランクス M1 ガラス基板 M2 ハーフトーン膜 L レーザビーム DESCRIPTION OF SYMBOLS 1 Projector 2a, 2b Rear light receiver 3a, 3b Front light receiver 4a, 4b, 6a, 6b Optical fiber 5, 7 Photomultiplier 8 Data processing circuit 9 Synchronous signal generator 10 Display device M Mask blanks M1 Glass substrate M2 Half Tone film L Laser beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 祐一郎 東京都渋谷区東3丁目16番3号 日立電子 エンジニアリング株式会社内 Fターム(参考) 2G051 AA56 AB04 AB07 BA10 BB11 BC06 CA02 CB03 2H095 BD04 BD13 BD15 BD27  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuichiro Kato 3-16-3 Higashi, Shibuya-ku, Tokyo F-term in Hitachi Electronics Engineering Co., Ltd. 2G051 AA56 AB04 AB07 BA10 BB11 BC06 CA02 CB03 2H095 BD04 BD13 BD15 BD27

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に半透明膜を有してなる透光性基板
の基板表面に光ビームを照射する照射手段と、 前記基板表面側で該基板表面の欠陥に応じた前記光ビー
ムの反射光を検出し、検出信号を出力する第1の検出手
段と、 前記基板表面とは反対側で該基板表面の欠陥に応じた前
記光ビームの透過光を検出し、検出信号を出力する第2
の検出手段と、 前記第1および第2の検出手段のそれぞれの検出信号の
レベルの相関関係を定義する基準関数を設定し、該基準
関数を比較基準として該第1および第2の検出手段のそ
れぞれの検出信号のレベルを比較し、この比較結果に基
づき前記基板表面に存在する欠陥が複数の種類の異なる
欠陥のいずれかに該当するかを判別する判別手段とを具
えた表面検査装置。
An irradiating means for irradiating a light beam to a substrate surface of a translucent substrate having a translucent film on a surface thereof; and a reflection of the light beam according to a defect on the substrate surface on the substrate surface side. First detecting means for detecting light and outputting a detection signal; and second detecting means for detecting a transmitted light of the light beam corresponding to a defect on the substrate surface on a side opposite to the substrate surface and outputting a detection signal.
And a reference function that defines the correlation between the levels of the respective detection signals of the first and second detection means, and the reference function is used as a comparison criterion for the first and second detection means. A surface inspection apparatus comprising: a comparing unit that compares levels of respective detection signals and determines whether a defect existing on the substrate surface corresponds to one of a plurality of types of different defects based on the comparison result.
JP2001101880A 2001-03-30 2001-03-30 Surface inspection device Expired - Fee Related JP4490598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001101880A JP4490598B2 (en) 2001-03-30 2001-03-30 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001101880A JP4490598B2 (en) 2001-03-30 2001-03-30 Surface inspection device

Publications (2)

Publication Number Publication Date
JP2002296197A true JP2002296197A (en) 2002-10-09
JP4490598B2 JP4490598B2 (en) 2010-06-30

Family

ID=18955140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001101880A Expired - Fee Related JP4490598B2 (en) 2001-03-30 2001-03-30 Surface inspection device

Country Status (1)

Country Link
JP (1) JP4490598B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085951A1 (en) * 2004-03-09 2005-09-15 Hoya Corporation Method for supporting mask manufacture, method for providing mask blank and mask blank dealing system
JP2007333783A (en) * 2006-06-12 2007-12-27 Fujitsu Ltd Inspection device, inspection method and production method of exposure mask, and exposure mask
JP2008175653A (en) * 2007-01-17 2008-07-31 Hitachi High-Technologies Corp Substrate inspecting device and method
JP2013044577A (en) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp Substrate inspection method and device
JPWO2013118296A1 (en) * 2012-02-10 2015-05-11 株式会社島津製作所 Solar cell inspection device and solar cell processing device
CN108279237A (en) * 2018-01-02 2018-07-13 京东方科技集团股份有限公司 A kind of Systems for optical inspection and detection method
CN108489988A (en) * 2018-03-22 2018-09-04 凌云光技术集团有限责任公司 A kind of Jiao Lu detection imaging systems and method based on color camera narrow-band-filter
US11940391B2 (en) 2021-04-05 2024-03-26 Shin-Etsu Chemical Co., Ltd. Defect inspection apparatus, method for inspecting defect, and method for manufacturing photomask blank
WO2024090109A1 (en) * 2022-10-25 2024-05-02 株式会社堀場製作所 Inspection device, inspection method, and inspection program

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162038A (en) * 1982-03-23 1983-09-26 Canon Inc Pattern defect detection apparatus
JPS62124447A (en) * 1985-11-25 1987-06-05 Canon Inc Surface state measuring instrument
JPH01138447A (en) * 1987-11-25 1989-05-31 Nec Corp Foreign matter detecting method
JPH01174948A (en) * 1987-12-29 1989-07-11 Hoya Corp Surface inspection device
JPH023946A (en) * 1988-06-21 1990-01-09 Nec Corp Foreign matter detecting equipment
JPH06148085A (en) * 1992-11-12 1994-05-27 Sony Corp Method and device for detecting foreign matter on wafer
JPH06174655A (en) * 1992-12-08 1994-06-24 Hitachi Electron Eng Co Ltd Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance
JPH0876359A (en) * 1994-07-13 1996-03-22 Kla Instr Corp Equipment and method for automatic photomask inspection
JPH08184956A (en) * 1994-12-28 1996-07-16 Nec Corp Method for inspecting reticle
JPH08247955A (en) * 1995-03-10 1996-09-27 Toshiba Corp Corpuscle detector
JPH0961371A (en) * 1995-08-25 1997-03-07 Nikon Corp Defect inspecting device
JPH09145630A (en) * 1995-11-27 1997-06-06 Toshiba Corp Method and device for detecting foreign matter
JPH1069064A (en) * 1997-07-07 1998-03-10 Hoya Corp Production of halftone phase shift mask
JPH1115127A (en) * 1997-06-19 1999-01-22 Nec Corp Halftone phase shift mask, its mask blank, production and defect correction method of halftone phase shift mask
JPH11327119A (en) * 1998-05-07 1999-11-26 Dainippon Printing Co Ltd Method and equipment for measuring amount of phase shift for phase shift mask substrate
JP2001027611A (en) * 1999-07-13 2001-01-30 Lasertec Corp Flow inspecting apparatus
JP2001083687A (en) * 1999-09-09 2001-03-30 Dainippon Printing Co Ltd Halftone phase shift photomask and blank for halftone phase shift photomask for producing same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162038A (en) * 1982-03-23 1983-09-26 Canon Inc Pattern defect detection apparatus
JPS62124447A (en) * 1985-11-25 1987-06-05 Canon Inc Surface state measuring instrument
JPH01138447A (en) * 1987-11-25 1989-05-31 Nec Corp Foreign matter detecting method
JPH01174948A (en) * 1987-12-29 1989-07-11 Hoya Corp Surface inspection device
JPH023946A (en) * 1988-06-21 1990-01-09 Nec Corp Foreign matter detecting equipment
JPH06148085A (en) * 1992-11-12 1994-05-27 Sony Corp Method and device for detecting foreign matter on wafer
JPH06174655A (en) * 1992-12-08 1994-06-24 Hitachi Electron Eng Co Ltd Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance
JPH0876359A (en) * 1994-07-13 1996-03-22 Kla Instr Corp Equipment and method for automatic photomask inspection
JPH08184956A (en) * 1994-12-28 1996-07-16 Nec Corp Method for inspecting reticle
JPH08247955A (en) * 1995-03-10 1996-09-27 Toshiba Corp Corpuscle detector
JPH0961371A (en) * 1995-08-25 1997-03-07 Nikon Corp Defect inspecting device
JPH09145630A (en) * 1995-11-27 1997-06-06 Toshiba Corp Method and device for detecting foreign matter
JPH1115127A (en) * 1997-06-19 1999-01-22 Nec Corp Halftone phase shift mask, its mask blank, production and defect correction method of halftone phase shift mask
JPH1069064A (en) * 1997-07-07 1998-03-10 Hoya Corp Production of halftone phase shift mask
JPH11327119A (en) * 1998-05-07 1999-11-26 Dainippon Printing Co Ltd Method and equipment for measuring amount of phase shift for phase shift mask substrate
JP2001027611A (en) * 1999-07-13 2001-01-30 Lasertec Corp Flow inspecting apparatus
JP2001083687A (en) * 1999-09-09 2001-03-30 Dainippon Printing Co Ltd Halftone phase shift photomask and blank for halftone phase shift photomask for producing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8196070B2 (en) 2004-03-09 2012-06-05 Hoya Corporation Mask fabrication supporting method, mask blank providing method, and mask blank dealing system
JP4503015B2 (en) * 2004-03-09 2010-07-14 Hoya株式会社 Mask blank information acquisition method and system, mask blank information providing method, transfer mask manufacturing support and manufacturing method, and mask blank manufacturing and providing method
US8627239B2 (en) 2004-03-09 2014-01-07 Hoya Corporation Mask fabrication supporting method, mask blank providing method, and mask blank dealing system
JP2009122708A (en) * 2004-03-09 2009-06-04 Hoya Corp Method and system for acquiring mask blank information, method for providing mask blank information, method for assisting and manufacturing transfer mask, and method for manufacturing and providing mask blank
WO2005085951A1 (en) * 2004-03-09 2005-09-15 Hoya Corporation Method for supporting mask manufacture, method for providing mask blank and mask blank dealing system
US7660456B2 (en) 2004-03-09 2010-02-09 Hoya Corporation Mask fabrication supporting method, mask blank providing method, and mask blank dealing system
JPWO2005085951A1 (en) * 2004-03-09 2007-08-09 Hoya株式会社 Mask manufacturing support method, mask blank providing method, mask blank transaction system
KR101100003B1 (en) 2004-03-09 2011-12-28 호야 가부시키가이샤 System for manufacturing mask blank
JP2007333783A (en) * 2006-06-12 2007-12-27 Fujitsu Ltd Inspection device, inspection method and production method of exposure mask, and exposure mask
JP2008175653A (en) * 2007-01-17 2008-07-31 Hitachi High-Technologies Corp Substrate inspecting device and method
JP2013044577A (en) * 2011-08-22 2013-03-04 Hitachi High-Technologies Corp Substrate inspection method and device
JPWO2013118296A1 (en) * 2012-02-10 2015-05-11 株式会社島津製作所 Solar cell inspection device and solar cell processing device
CN108279237A (en) * 2018-01-02 2018-07-13 京东方科技集团股份有限公司 A kind of Systems for optical inspection and detection method
CN108489988A (en) * 2018-03-22 2018-09-04 凌云光技术集团有限责任公司 A kind of Jiao Lu detection imaging systems and method based on color camera narrow-band-filter
US11940391B2 (en) 2021-04-05 2024-03-26 Shin-Etsu Chemical Co., Ltd. Defect inspection apparatus, method for inspecting defect, and method for manufacturing photomask blank
WO2024090109A1 (en) * 2022-10-25 2024-05-02 株式会社堀場製作所 Inspection device, inspection method, and inspection program

Also Published As

Publication number Publication date
JP4490598B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US7436507B2 (en) Method and apparatus for inspecting a pattern
JP4668401B2 (en) Reticle inspection method and system by photolithography simulation
US7463350B2 (en) Method and apparatus for detecting defects of a sample using a dark field signal and a bright field signal
US5767974A (en) Apparatus and method for identifying photomask pattern defects
US4922308A (en) Method of and apparatus for detecting foreign substance
JPH0915163A (en) Method and equipment for inspecting foreign substance
US5162867A (en) Surface condition inspection method and apparatus using image transfer
JP2003215059A (en) Pattern inspection apparatus and method for the same
JP2002296197A (en) Surface inspection instrument
JPH06175353A (en) Method for inspecting pattern and device therefor
JP3053097B2 (en) Photomask defect detection method and apparatus
JPH10206335A (en) Surface defect inspecting device and inspecting method
KR100273835B1 (en) Method and apparatus for inspecting slight defects in a photomask pattern
JP3282790B2 (en) Defect inspection system for phase shift mask
JPH10282007A (en) Defect inspection method of foreign matter and apparatus therefor
JP2002287327A (en) Defect inspection apparatus of phase shift mask
JP3280742B2 (en) Defect inspection equipment for glass substrates
JPH07218234A (en) Size measuring method for fine pattern
JPH11174657A (en) Visual inspection device and method for mask pattern
WO2022201910A1 (en) Foreign matter inspection device and foreign matter inspection method
JPH10115592A (en) Method and apparatus for inspection of flaw as well as production control system
JPH10170240A (en) Method and device for inspection of pattern flaw
JPH0921761A (en) Surface fault inspecting apparatus
JPH09281401A (en) Object inspecting instrument
JP2004170111A (en) Foreign object inspecting apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees