JP2011257304A - Substrate inspection method and device - Google Patents

Substrate inspection method and device Download PDF

Info

Publication number
JP2011257304A
JP2011257304A JP2010133137A JP2010133137A JP2011257304A JP 2011257304 A JP2011257304 A JP 2011257304A JP 2010133137 A JP2010133137 A JP 2010133137A JP 2010133137 A JP2010133137 A JP 2010133137A JP 2011257304 A JP2011257304 A JP 2011257304A
Authority
JP
Japan
Prior art keywords
substrate
light
defect
scattered
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010133137A
Other languages
Japanese (ja)
Inventor
Takashi Ishii
隆嗣 石井
Yuichi Shimoda
勇一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010133137A priority Critical patent/JP2011257304A/en
Publication of JP2011257304A publication Critical patent/JP2011257304A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily determine whether a defect left on a mask substrate after cleaning processing is carried out on the mask substrate is caused by the cleaning processing process or an internal defect of the mask substrate itself.SOLUTION: Since defects present on both surfaces (a top and a reverse surface) of the substrate can be detected based upon scattered light received by first and second light reception means, presence positions of the defects on both the surfaces before and after the cleaning processing on the substrate are compared with each other respectively to easily determine whether the defects present on both the surfaces of the substrate are removed through the cleaning processing. Namely, when a predetermined number of defects are not removed from the substrate through the cleaning processing on the substrate, the possibility that a defect is present in the mask substrate is high, so detection processing for the defect in the substrate is carried out. Based upon a result thereof, it can easily be determined whether a defect which cannot be removed through the cleaning processing is the defect in the substrate or caused owing to a problem of the cleaning processing process.

Description

本発明は、露光用マスク等に用いられるガラス基板や石英基板等の板厚の大きな基板の欠陥を検出する基板検査方法及び装置に係り、特に透明な基板を検査するのに好適な基板検査方法及び装置に関する。   The present invention relates to a substrate inspection method and apparatus for detecting a defect in a substrate having a large thickness such as a glass substrate or a quartz substrate used for an exposure mask or the like, and particularly suitable for inspecting a transparent substrate. And an apparatus.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトマスクのパターンをガラス基板やプラスチック基板等のパネル基板に転写して行われる。フォトマスクは、ガラス基板や石英基板等のマスク基板の表面に、パターンの部分以外の光を遮断するクロム膜等を形成して製造される。マスク基板に傷や異物等の欠陥が存在すると、クロム膜等の形成やパターンの転写が良好に行われず、不良の原因となる。このため、基板検査装置を用いて、マスク基板の欠陥の検査が行われている。この様な基板検査装置として、例えば、特許文献1及び特許文献2に記載のものが知られている。   Manufacturing of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electroluminescence) display panel substrates, etc. of liquid crystal display devices used as display panels is performed by using an exposure apparatus and a photomask. This pattern is transferred to a panel substrate such as a glass substrate or a plastic substrate. A photomask is manufactured by forming a chromium film or the like that blocks light other than a pattern portion on the surface of a mask substrate such as a glass substrate or a quartz substrate. If a defect such as a scratch or a foreign substance exists on the mask substrate, the formation of the chromium film or the like and the transfer of the pattern are not performed well, causing a defect. For this reason, a defect inspection of a mask substrate is performed using a substrate inspection apparatus. As such a substrate inspection apparatus, the thing of patent document 1 and patent document 2 is known, for example.

特開平11−52552号公報Japanese Patent Laid-Open No. 11-52552 特開2005−156924号公報JP 2005-156924 A

近年、基板検査装置によるマスク基板の検査においては、検出した欠陥の画像をカメラ等の画像取得装置により取得して、欠陥を詳細に観察したいという要求がある。これを実行するために、検査で検出した欠陥の位置の座標に基づいて、カメラ等の画像取得装置を含む観察系を正確に欠陥の上方へ移動させて観察している。また、マスク基板の表面等に欠陥が観察された場合でも、マスク基板を洗浄加工することによってそれらの欠陥を除去することが可能である。しかしながらマスク基板の洗浄加工プロセスに問題がある場合には、欠陥を除去することが困難であった。さらに、マスク基板の内部に欠陥が存在する場合にも、マスク基板の表面及び裏面を洗浄加工しただけではその欠陥を除去することは困難であった。従来は、このようにマスク基板を洗浄加工した場合に、洗浄加工プロセスに問題があって欠陥を除去できなかったのか、又はマスク基板の内部に欠陥が存在するために欠陥を除去しきれなかったのか、いずれに問題があって欠陥を除去することができないのかを判定することができなかった。   In recent years, in the inspection of a mask substrate by a substrate inspection apparatus, there is a demand for acquiring an image of a detected defect by an image acquisition apparatus such as a camera and observing the defect in detail. In order to execute this, an observation system including an image acquisition device such as a camera is accurately moved above the defect based on the coordinates of the position of the defect detected by inspection. Even when defects are observed on the surface of the mask substrate or the like, the defects can be removed by cleaning the mask substrate. However, when there is a problem in the cleaning process of the mask substrate, it has been difficult to remove the defect. Furthermore, even when a defect exists inside the mask substrate, it is difficult to remove the defect only by cleaning the front and back surfaces of the mask substrate. Conventionally, when the mask substrate was cleaned in this way, the defect could not be removed due to a problem in the cleaning process, or the defect could not be removed because there was a defect inside the mask substrate. It was not possible to determine which of the problems caused the defect to be removed.

本発明は、上述の点に鑑みてなされたものであり、マスク基板に対して洗浄加工を行なった場合の洗浄加工後にマスク基板に残る欠陥が洗浄加工プロセスによるものなのか、マスク基板自体の内部欠陥によるものなのか又は傷などの加工プロセスによるものなのかを容易に判定することのできる基板検査方法及び装置を提供することを目的とする。   The present invention has been made in view of the above points, and whether the defect remaining in the mask substrate after the cleaning process when the mask substrate is cleaned is caused by the cleaning process, or the inside of the mask substrate itself. It is an object of the present invention to provide a substrate inspection method and apparatus that can easily determine whether it is due to a defect or a processing process such as a scratch.

本発明に係る基板検査方法の第1の特徴は、光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行い、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第1のレンズ手段で集光して第1の受光手段にて受光し、前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第2のレンズ手段で集光して第2の受光手段にて受光し、前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出し、検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定することにある。
基板の表面へ照射された光線のうち一部が基板の表面で反射され、その残りが基板の内部へ透過するような角度で基板の表面へ斜めに照射しながら、光線を移動させることによって基板に対して走査検査を行う。基板の表面に欠陥が存在する場合、基板の表面へ照射された光線がその基板表面の欠陥によって散乱され、その周囲に散乱光が発生する。また、基板の内部に欠陥が存在する場合、基板の内部へ透過した光線が基板内部の欠陥によって散乱され、その周囲に散乱光が発生する。さらに、基板の裏面に欠陥が存在する場合、基板の内部へ透過して基板の裏面から射出された光線が基板裏面の欠陥により散乱され、その周囲に散乱光が発生する。これらの散乱光は、基板の表面側に配置された第1の受光手段及び基板の裏面側に配置された第2の受光手段でそれぞれ受光される。
第1及び第2の受光手段に受光された散乱光に基づいて基板の両面(表面及び裏面)に存在する欠陥を検出することができるので、基板の洗浄加工の前後で両面の欠陥の存在位置をそれぞれ比較することによって、洗浄加工によって基板両面に存在していた欠陥が除去されたか否かを容易に判定することができる。すなわち、基板の洗浄加工処理によって基板から所定数の欠陥が除去されなかった場合には、マスク基板の内部に欠陥が存在する可能性が高いので、基板内部の欠陥の検出処理行い。その結果に基づいて洗浄加工によって除去できなかった欠陥が基板内部の欠陥であるのか、洗浄加工プロセスの問題によるものかを容易に判定することができるようになる。
A first feature of the substrate inspection method according to the present invention is that the light beam is obliquely incident on the surface of the substrate at an angle such that a part of the light beam is reflected on the surface of the substrate and the remaining light beam is transmitted into the substrate. The substrate is scanned while moving the light beam, and the scattered light, which is disposed on the surface side of the substrate and is scattered by the defect of the substrate, is collected by the first lens means. Received by the first light receiving means, arranged on the back side of the substrate, and the scattered light scattered by the defect of the substrate is condensed by the second lens means to the second light receiving means. And detecting the position of the defect on the substrate from the signal based on the scattered light received by the first and second light receiving systems, and detecting the detected position of the defect in the cleaning process of the substrate. Compare the board before and after, and recycle the board according to the comparison result. It is to determine whether to Kiyoshi processing.
By moving the light beam while obliquely irradiating the surface of the substrate at an angle such that a part of the light beam irradiated to the surface of the substrate is reflected by the surface of the substrate and the rest is transmitted to the inside of the substrate A scanning inspection is performed. When there is a defect on the surface of the substrate, the light beam irradiated on the surface of the substrate is scattered by the defect on the surface of the substrate, and scattered light is generated around it. In addition, when a defect exists inside the substrate, the light beam transmitted to the inside of the substrate is scattered by the defect inside the substrate, and scattered light is generated around it. Further, when there is a defect on the back surface of the substrate, light rays that are transmitted into the substrate and emitted from the back surface of the substrate are scattered by the defects on the back surface of the substrate, and scattered light is generated around the light. These scattered lights are respectively received by the first light receiving means arranged on the front surface side of the substrate and the second light receiving means arranged on the back surface side of the substrate.
Since defects existing on both surfaces (front and back surfaces) of the substrate can be detected based on the scattered light received by the first and second light receiving means, the presence positions of the defects on both surfaces before and after the substrate cleaning process. By comparing each of these, it is possible to easily determine whether or not the defects existing on both surfaces of the substrate have been removed by the cleaning process. That is, when a predetermined number of defects are not removed from the substrate by the substrate cleaning process, there is a high possibility that a defect exists in the mask substrate. Based on the result, it is possible to easily determine whether the defect that could not be removed by the cleaning process is a defect inside the substrate or a problem of the cleaning process.

本発明に係る基板検査方法の第2の特徴は、光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ第1の偏光成分を多く含む光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行い、第1の偏光成分の光のみを通過させる第1の偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前面に備え、前記第1の偏光板手段及び前記バンドパスフィルタ手段を通過した光をレンズ手段で集光して第1の受光手段にて受光する受光系手段であって、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第1の偏光板手段、前記第1のバンドパスフィルタ手段及び前記第1のレンズ手段を介して前記第1の受光手段にて受光し、前記第1の偏光成分の光のみを通過させる第2の偏光板手段及び前記光線の周波数成分付近の光のみを通過させる第2のバンドパスフィルタ手段を前面に備え、前記第2の偏光板手段及び前記第2のバンドパスフィルタ手段を通過した光を第2のレンズ手段で集光して第2の受光手段にて受光する受光系手段であって、前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第2の偏光板手段、前記第2のバンドパスフィルタ手段及び前記第2のレンズ手段を介して前記第2の受光手段にて受光し、前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出し、検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定することにある。本発明では、基板の表面へ照射する光線として第1の偏光成分を多く含むものを用い、それぞれの受光手段の前に第1の偏光成分のみを通過させる偏光手段及びこの光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段が設けられている。照射光線が第1の偏光成分を多く含むものなので、各散乱光も第1の偏光成分を多く含むものとなる。また、第1の偏光成分を多く含む散乱光のみが偏光手段及びバンドパスフィルタ手段を通過して受光手段に取り込まれるようになる。これにより、基板の周辺環境から検出光学系に入り込もうとする外乱光ノイズの影響は極力低減され、欠陥の検出精度を向上させることができる。   A second feature of the substrate inspection method according to the present invention is that the first light beam is reflected on the surface of the substrate at an angle such that a part of the light beam is reflected on the surface of the substrate and the remaining light beam is transmitted into the substrate. The first polarizing plate means that scans the substrate while moving the light beam while obliquely irradiating the light beam containing a large amount of the polarization component, and passes only the light of the first polarization component, and the vicinity of the frequency component of the light beam A band-pass filter means for allowing only the first light to pass therethrough, and receiving light received by the first light-receiving means by condensing the light that has passed through the first polarizing plate means and the band-pass filter means by the lens means. System means, which is disposed on the surface side of the substrate, and the scattered light is scattered by a defect of the substrate, the first polarizing means, the first bandpass filter means and the first Through the lens means Second polarizing plate means for receiving only light of the first polarization component and second band-pass filter means for passing only light in the vicinity of the frequency component of the light beam received by the first light receiving means; A light receiving system means that is provided on the front surface and that condenses light that has passed through the second polarizing plate means and the second bandpass filter means by the second lens means and is received by the second light receiving means; The scattered light, which is disposed on the back surface side of the substrate and is scattered by the defect of the substrate, passes through the second polarizing plate means, the second bandpass filter means, and the second lens means. The defect position of the substrate is detected from a signal based on the scattered light received by the first and second light-receiving units and received by the first and second light-receiving units, and the detected defect position is detected. Compare before and after cleaning of the substrate Is to determine whether to re-cleaning process of the substrate according to the comparison result. In the present invention, a light beam that includes a large amount of the first polarization component is used as a light beam that irradiates the surface of the substrate. A polarization device that allows only the first polarization component to pass therethrough before each light receiving device and a frequency component of the light beam. Bandpass filter means for passing only light is provided. Since the irradiation light includes a large amount of the first polarization component, each scattered light also includes a large amount of the first polarization component. Further, only the scattered light containing a large amount of the first polarization component passes through the polarization means and the bandpass filter means and is taken into the light receiving means. As a result, the influence of ambient light noise that attempts to enter the detection optical system from the environment around the substrate is reduced as much as possible, and the defect detection accuracy can be improved.

本発明に係る基板検査方法の第3の特徴は、前記第1又は第2の特徴に記載の基板検査方法において、前記再洗浄加工後に、前記洗浄加工前後における前記欠陥の存在位置及び前記再洗浄加工後における前記欠陥の存在位置をそれぞれ比較し、その比較結果に応じて前記基板の内部の欠陥の検出を行なうか否かを決定することにある。洗浄加工後に欠陥の除去が不十分な場合に、再洗浄加工を行なうことがある。この場合、最初の洗浄加工前における基板の欠陥の存在位置を示す洗浄前データと、洗浄加工後データ(再洗浄前データ)と、再洗浄加工後データとの3種類のデータに基づいて、すなわち、洗浄前データと再洗浄加工後データとの比較結果、洗浄加工後データ(再洗浄前データ)と再洗浄加工後データとの比較結果、又は両比較結果のいずれか一つに基づいて、基板内部の欠陥の検出を行なうか否かの判定を行なうようにしたものである。   A third feature of the substrate inspection method according to the present invention is the substrate inspection method according to the first or second feature, wherein after the re-cleaning process, the position of the defect and the re-cleaning before and after the cleaning process. It is to compare the existence positions of the defects after processing and determine whether or not to detect defects inside the substrate according to the comparison result. If removal of defects is insufficient after the cleaning process, a re-cleaning process may be performed. In this case, based on three types of data, that is, pre-cleaning data indicating the position of the substrate defect before the first cleaning process, post-cleaning data (pre-cleaning data), and post-cleaning data, that is, Based on one of the comparison results between the data before cleaning and the data after re-cleaning processing, the comparison result between the data after cleaning processing (data before re-cleaning) and the data after re-cleaning processing, or both comparison results It is determined whether or not to detect internal defects.

本発明に係る基板検査方法の第4の特徴は、前記第1、第2又は第3の特徴に記載の基板検査方法において、前記欠陥の存在位置を検出する際の測定条件を前記基板に付与してあるバーコード等から読み取ることにある。マスク基板には、そのマスク基板を特定するためのバーコードやQRコード等が付与されているので、この発明では、そのバーコードやQRコード等を読み取って、欠陥検査の測定条件を決定している。これによって、マニュアル入力によって誤検査するおそれもなく、マスク基板に対応した測定条件で速やかに欠陥検査を行なうことができる。   According to a fourth aspect of the substrate inspection method of the present invention, in the substrate inspection method according to the first, second, or third feature, a measurement condition for detecting the presence position of the defect is given to the substrate. It is to read from a barcode or the like. The mask substrate is provided with a barcode, QR code, etc. for specifying the mask substrate. In this invention, the barcode, QR code, etc. are read to determine measurement conditions for defect inspection. Yes. As a result, there is no risk of erroneous inspection by manual input, and defect inspection can be quickly performed under measurement conditions corresponding to the mask substrate.

本発明に係る基板検査方法の第5の特徴は、前記第1、第2、第3又は第4の特徴に記載の基板検査方法において、前記第1及び第2の受光手段の焦点位置を前記基板の内部に合わせ、前記第1及び第2の受光手段が受光した散乱光の形状的特徴に基づいて前記基板の内部の欠陥を検出することにある。基板の内部に欠陥が存在する場合、光線を移動して光線による基板の走査を行うと、基板の内部へ透過した光線が欠陥により散乱されて、散乱光が発生する。また、基板の内部へ透過して基板の裏面で反射された光線が欠陥により散乱されて、散乱光が発生する。これらの散乱光が、基板を透過して、基板の裏面側に配置された受光系で受光される。複数の光ファイバーを束ねた受光部で受光された散乱光は、欠陥の形状に関わらず、縦横に広がった十字形状となる。本発明では、この散乱光の形状的特徴から、基板の内部の欠陥を検出する。基板の裏面側に配置された受光系により、基板を透過した散乱光を受光するので、基板の表面付近の欠陥だけでなく、基板の表面から離れた深い位置にある欠陥も検出される。   According to a fifth aspect of the substrate inspection method of the present invention, in the substrate inspection method according to the first, second, third, or fourth feature, the focal positions of the first and second light receiving units are set as the focus positions. In accordance with the inside of the substrate, a defect inside the substrate is detected based on the shape characteristic of the scattered light received by the first and second light receiving means. When a defect exists in the substrate, when the light beam is moved and the substrate is scanned by the light beam, the light beam transmitted to the inside of the substrate is scattered by the defect, and scattered light is generated. Further, the light beam that has been transmitted into the substrate and reflected by the back surface of the substrate is scattered by the defect, and scattered light is generated. These scattered lights are transmitted through the substrate and received by a light receiving system disposed on the back side of the substrate. Scattered light received by a light receiving unit in which a plurality of optical fibers are bundled has a cross shape that spreads vertically and horizontally regardless of the shape of the defect. In the present invention, defects inside the substrate are detected from the shape characteristics of the scattered light. Since the scattered light transmitted through the substrate is received by the light receiving system arranged on the back side of the substrate, not only the defects near the surface of the substrate but also the defects at a deep position away from the surface of the substrate are detected.

本発明に係る基板検査装置の第1の特徴は、光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行う投光系手段と、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第1のレンズ手段で集光して第1の受光手段にて受光するように構成された第1の受光系手段と、前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第2のレンズ手段で集光して第2の受光手段にて受光するように構成された第2の受光系手段と、前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出する欠陥検出手段と、前記欠陥検出手段によって検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定する制御手段とを備えたことにある。これは、前記第1の特徴に記載の基板検査方法を実現するための基板検査装置の発明である。   A first feature of the substrate inspection apparatus according to the present invention is that the light beam is obliquely incident on the surface of the substrate at an angle such that a part of the light beam is reflected on the surface of the substrate and the remaining light beam is transmitted into the substrate. A projection system means for scanning the substrate while moving the light beam while irradiating the light beam, and a first lens that is disposed on the surface side of the substrate, and the scattered light is scattered by the defect of the substrate. A first light receiving system configured to collect light by the first light receiving unit and receive light by the first light receiving unit; and scattered light that is disposed on the back side of the substrate and in which the light beam is scattered by a defect in the substrate On the basis of the second light receiving system means configured to collect the light by the second lens means and receive the light by the second light receiving means, and the scattered light received by the first and second light receiving system means Defect detection means for detecting the position of the defect on the substrate from the detected signal A control means for comparing the presence position of the defect detected by the defect detection means before and after the cleaning process of the substrate and determining whether or not to re-clean the substrate according to the comparison result; Be prepared. This is an invention of a substrate inspection apparatus for realizing the substrate inspection method described in the first feature.

本発明に係る基板検査装置の第2の特徴は、光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ第1の偏光成分を多く含む光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行う投光系手段と、第1の偏光成分の光のみを通過させる第1の偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前面に備え、前記第1の偏光板手段及び前記バンドパスフィルタ手段を通過した光をレンズ手段で集光して第1の受光手段にて受光する受光系手段であって、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第1の偏光板手段、前記第1のバンドパスフィルタ手段及び前記第1のレンズ手段を介して前記第1の受光手段にて受光するように構成された第1の受光系手段と、前記第1の偏光成分の光のみを通過させる第2の偏光板手段及び前記光線の周波数成分付近の光のみを通過させる第2のバンドパスフィルタ手段を前面に備え、前記第2の偏光板手段及び前記第2のバンドパスフィルタ手段を通過した光を第2のレンズ手段で集光して第2の受光手段にて受光する受光系手段であって、前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第2の偏光板手段、前記第2のバンドパスフィルタ手段及び前記第2のレンズ手段を介して前記第2の受光手段にて受光するように構成された第2の受光系手段と、前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出する欠陥検出手段と、前記欠陥検出手段によって検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定する制御手段とを備えたことにある。これは、前記第2の特徴に記載の基板検査方法を実現するための基板検査装置の発明である。   A second feature of the substrate inspection apparatus according to the present invention is that the first part of the light beam is reflected to the surface of the substrate at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted into the substrate. A light projection system means for scanning the substrate while moving the light beam obliquely while irradiating a light beam containing a large amount of a polarization component, a first polarizing plate means for passing only the light of the first polarization component, and the Band pass filter means for allowing only light in the vicinity of the frequency component of the light beam to pass therethrough is provided on the front surface, and light passing through the first polarizing plate means and the band pass filter means is condensed by the lens means, and the first light receiving means. A light receiving system means for receiving light scattered by the first polarizing plate means and the first band-pass filter means arranged on the surface side of the substrate, and the scattered light scattered by the defects of the substrate. And the first lens A first light receiving system configured to receive light by the first light receiving unit through a stage, a second polarizing plate unit that passes only light of the first polarization component, and a frequency of the light beam Second band-pass filter means for allowing only light in the vicinity of the component to pass therethrough is provided on the front surface, and light passing through the second polarizing plate means and the second band-pass filter means is condensed by the second lens means. A light receiving system means for receiving light by the second light receiving means, and disposed on the back side of the substrate, and the scattered light scattered by the defect of the substrate by the second polarizing plate means, A second light receiving system means configured to receive light by the second light receiving means via two band pass filter means and the second lens means, and the first and second light receiving system means, From the signal based on the received scattered light, the substrate The defect detection means for detecting the presence position of the defect and the presence position of the defect detected by the defect detection means are compared before and after the substrate cleaning process, and the substrate is re-cleaned according to the comparison result. And a control means for determining whether or not to perform. This is an invention of a substrate inspection apparatus for realizing the substrate inspection method described in the second feature.

本発明に係る基板検査装置の第3の特徴は、前記第1又は第2の特徴に記載の基板検査装置において、前記制御手段が、前記再洗浄加工後に、前記洗浄加工前後における前記欠陥の存在位置及び前記再洗浄加工後における前記欠陥の存在位置をそれぞれ比較し、その比較結果に応じて前記基板の内部の欠陥の検出を行なうか否かを決定することにある。これは、前記第3の特徴に記載の基板検査方法を実現するための基板検査装置の発明である。   According to a third aspect of the substrate inspection apparatus of the present invention, in the substrate inspection apparatus according to the first or second aspect, the control means includes the presence of the defect before and after the cleaning process after the re-cleaning process. The position and the existence position of the defect after the re-cleaning process are respectively compared, and it is determined whether or not to detect the defect inside the substrate according to the comparison result. This is an invention of a substrate inspection apparatus for realizing the substrate inspection method described in the third feature.

本発明に係る基板検査装置の第4の特徴は、前記第1、第2又は第3の特徴に記載の基板検査装置において、前記欠陥検出手段が、前記欠陥の存在位置を検出する際の測定条件を前記基板に付与してあるバーコード等から読み取ることにある。これは、前記第4の特徴に記載の基板検査方法を実現するための基板検査装置の発明である。   According to a fourth aspect of the substrate inspection apparatus of the present invention, in the substrate inspection apparatus according to the first, second, or third feature, the measurement is performed when the defect detection unit detects the position of the defect. The condition is to read from a barcode or the like given to the substrate. This is an invention of a substrate inspection apparatus for realizing the substrate inspection method according to the fourth feature.

本発明に係る基板検査装置の第5の特徴は、前記第1、第2、第3又は第4の特徴に記載の基板検査装置において、前記欠陥検出手段が、前記第1及び第2の受光手段の焦点位置を前記基板の内部に合わせ、前記第1及び第2の受光手段が受光した散乱光の形状的特徴に基づいて前記基板の内部の欠陥を検出することにある。これは、前記第5の特徴に記載の基板検査方法を実現するための基板検査装置の発明である。   According to a fifth aspect of the substrate inspection apparatus of the present invention, in the substrate inspection apparatus according to the first, second, third, or fourth feature, the defect detection unit includes the first and second light receiving elements. The focus position of the means is adjusted to the inside of the substrate, and a defect inside the substrate is detected based on the shape characteristic of the scattered light received by the first and second light receiving means. This is an invention of a substrate inspection apparatus for realizing the substrate inspection method according to the fifth feature.

本発明によれば、マスク基板に対して洗浄加工を行なった場合の洗浄加工後にマスク基板に残る欠陥が洗浄加工プロセスによるものなのか、マスク基板自体の内部欠陥によるものなのか又は傷などの加工プロセスによるものなのかを容易に判定することができる。   According to the present invention, whether the defect remaining on the mask substrate after the cleaning process when the mask substrate is cleaned is due to the cleaning process, the internal defect of the mask substrate itself, or a process such as a scratch It can be easily determined whether it is due to the process.

本発明の一実施の形態に係る基板検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the board | substrate inspection apparatus which concerns on one embodiment of this invention. 図1の検査テーブルに搭載された基板1の状態を示す斜視図である。It is a perspective view which shows the state of the board | substrate 1 mounted in the test | inspection table of FIG. 図1の走査部の詳細を示す図である。It is a figure which shows the detail of the scanning part of FIG. 図1の上受光系の概略構成を示す図であり、投光系側から見た上面図である。It is a figure which shows schematic structure of the upper light reception system of FIG. 1, and is the top view seen from the light projection system side. 図1の下受光系の概略構成を示す図であり、図1の左側から見た側面図である。It is a figure which shows schematic structure of the lower light-receiving system of FIG. 1, and is the side view seen from the left side of FIG. 本発明の基板検査方法の検査結果の一例を示す図である。It is a figure which shows an example of the test result of the board | substrate test | inspection method of this invention. 基板検査方法の第1の検査処理の一例を示す図である。It is a figure which shows an example of the 1st test | inspection process of a board | substrate test | inspection method. 基板検査方法の第2の検査処理となるマスク基板洗浄加工後処理の一例を示す図である。It is a figure which shows an example of the process after mask substrate cleaning process used as the 2nd test | inspection process of a board | substrate inspection method. 基板検査方法の第3の検査処理となるマスク基板再洗浄加工後処理の一例を示す図である。It is a figure which shows an example of the process after a mask substrate re-cleaning process used as the 3rd test | inspection process of a board | substrate inspection method. 基板検査方法の第4の検査処理となるマスク基板の内部欠陥検査処理の一例を示す図である。It is a figure which shows an example of the internal defect inspection process of the mask board | substrate used as the 4th inspection process of a board | substrate inspection method.

図1は、本発明の一実施の形態に係る基板検査装置の概略構成を示す図である。基板検査装置は、検査テーブル5、投光系、角度検出器15、上受光系20、下受光系30、アンプ27,37、欠陥検出回路28,38、焦点調節機構40、焦点調節制御回路41、基板移動機構50、基板移動制御回路51、投光系移動機構52、投光系移動制御回路53、上受光系移動機構54、上受光系移動制御回路55、下受光系移動機構56、下受光系移動制御回路57、制御部(CPU)60、及びメモリ70を含んで構成されている。   FIG. 1 is a diagram showing a schematic configuration of a substrate inspection apparatus according to an embodiment of the present invention. The substrate inspection apparatus includes an inspection table 5, a light projecting system, an angle detector 15, an upper light receiving system 20, a lower light receiving system 30, amplifiers 27 and 37, defect detection circuits 28 and 38, a focus adjustment mechanism 40, and a focus adjustment control circuit 41. , Substrate movement mechanism 50, substrate movement control circuit 51, light projection system movement mechanism 52, light projection system movement control circuit 53, upper light reception system movement mechanism 54, upper light reception system movement control circuit 55, lower light reception system movement mechanism 56, lower A light receiving system movement control circuit 57, a control unit (CPU) 60, and a memory 70 are included.

図2は、検査テーブル5に搭載された基板1の状態を示す斜視図である。検査対象となるマスク基板1は検査テーブル5の上に載置されている。検査テーブル5には、図面横方向に伸びる基板支持部5aが、図面奥行き方向に2つ、それぞれ平行となるように配置されている。各基板支持部5aのそれぞれ対向辺側には、その長手方向に渡って、基板1に接触するような傾斜面5bが形成されている。略四角形状の基板1はこの検査テーブル5上(傾斜面5b上)に搭載される。これによって、基板支持部5aの傾斜面5bに対して、基板1の向かい合う二辺の底面側がそれぞれ接触するようにして基板1は保持されることになる。すなわち、検査テーブル5は四角形の基板1をその向かい合う二辺だけで支持することとなる。   FIG. 2 is a perspective view showing a state of the substrate 1 mounted on the inspection table 5. A mask substrate 1 to be inspected is placed on an inspection table 5. On the inspection table 5, two substrate support portions 5a extending in the horizontal direction of the drawing are arranged in parallel to each other in the depth direction of the drawing. On each opposing side of each substrate support 5a, an inclined surface 5b that contacts the substrate 1 is formed in the longitudinal direction. The substantially rectangular substrate 1 is mounted on the inspection table 5 (on the inclined surface 5b). As a result, the substrate 1 is held such that the bottom surfaces of the two opposite sides of the substrate 1 are in contact with the inclined surface 5b of the substrate support portion 5a. In other words, the inspection table 5 supports the rectangular substrate 1 only on its two opposite sides.

図1において、検査テーブル5に搭載された基板1の上方には、走査部10、角度検出器15及びミラー14を含んで構成される投光系が配置されている。図3は、走査部10の詳細を示す図である。走査部10は、レーザー光源11、レンズ12a、fθレンズ12c、及びポリゴンミラー13を含んで構成されている。レーザー光源11は、レーザー光線であり、主にS偏光成分の検査光を発生する。レーザー光源11から出射されるレーザー光線は、主にS偏光成分から構成されるが、若干のP偏光成分を含むこともあり、その割合は、S偏光成分の方がP偏光成分よりも十分に大きいものとする。なお、レーザー光源11がS偏光成分のみを出射するようにしてもよい。レンズ12aは、レーザー光源11から発生されたレーザー光線を集光し、基板1の表面に焦点が合う様に収束する。レンズ12aで集光されたレーザー光線は、ポリゴンミラー13で反射され、fθレンズ12cへ入射する。fθレンズ12cは、ポリゴンミラー13の回転によって振られるレーザー光線の焦点面を基板1の平面位置に合わせる。fθレンズ12cを透過したレーザー光線は、図1のミラー14へ照射される。ミラー14は、走査部10から照射されたレーザー光線を、基板1の表面へ斜めに照射する。このとき、ポリゴンミラー13が図2の矢印方向へ回転することによって、ミラー14から基板1の表面へ照射されるレーザー光線が図1の図面奥行き方向へ交互移動して、レーザー光線による基板1の走査が行われる。本実施の形態では、一例として、この走査範囲を約200[mm]としている。   In FIG. 1, a light projecting system including a scanning unit 10, an angle detector 15, and a mirror 14 is disposed above the substrate 1 mounted on the inspection table 5. FIG. 3 is a diagram illustrating details of the scanning unit 10. The scanning unit 10 includes a laser light source 11, a lens 12a, an fθ lens 12c, and a polygon mirror 13. The laser light source 11 is a laser beam and mainly generates inspection light having an S-polarized component. The laser beam emitted from the laser light source 11 is mainly composed of an S-polarized component, but may contain some P-polarized component, and the proportion of the S-polarized component is sufficiently larger than that of the P-polarized component. Shall. The laser light source 11 may emit only the S-polarized component. The lens 12 a condenses the laser beam generated from the laser light source 11 and converges so as to be focused on the surface of the substrate 1. The laser beam condensed by the lens 12a is reflected by the polygon mirror 13 and enters the fθ lens 12c. The fθ lens 12 c matches the focal plane of the laser beam shaken by the rotation of the polygon mirror 13 with the planar position of the substrate 1. The laser beam transmitted through the fθ lens 12c is applied to the mirror 14 in FIG. The mirror 14 obliquely irradiates the surface of the substrate 1 with the laser beam emitted from the scanning unit 10. At this time, when the polygon mirror 13 rotates in the direction of the arrow in FIG. 2, the laser beam irradiated from the mirror 14 to the surface of the substrate 1 alternately moves in the depth direction of FIG. Done. In the present embodiment, as an example, this scanning range is about 200 [mm].

図1において、制御部となるCPU60は、後述する様に基板1の検査範囲を決定して、基板移動制御回路51へ基板1の移動を指示する。基板移動制御回路51は、CPU60の指示に応じて基板移動機構50を駆動制御する。基板移動機構50は、例えば直動モータを含んで構成され、検査テーブル5を図面横方向へ移動するものであるが、図1ではその詳細構成は省略してある。基板移動機構50が検査テーブル5全体を横方向に移動することによって、検査テーブル5に搭載された基板1が矢印に示す基板移動方向へ移動され、投光系からのレーザー光線が基板1の図面横方向の長さに渡って照射される。従って、検査テーブル5の一回の移動によって、図面奥行き方向に走査範囲の幅だけ基板1の検査が行われることとなる。   In FIG. 1, the CPU 60 serving as the control unit determines the inspection range of the substrate 1 as will be described later, and instructs the substrate movement control circuit 51 to move the substrate 1. The substrate movement control circuit 51 drives and controls the substrate movement mechanism 50 in accordance with an instruction from the CPU 60. The substrate moving mechanism 50 includes, for example, a linear motion motor and moves the inspection table 5 in the horizontal direction of the drawing, but its detailed configuration is omitted in FIG. When the substrate moving mechanism 50 moves the entire inspection table 5 in the horizontal direction, the substrate 1 mounted on the inspection table 5 is moved in the substrate moving direction indicated by the arrow, and the laser beam from the light projecting system is lateral to the drawing of the substrate 1. Irradiate over the length of the direction. Accordingly, the substrate 1 is inspected by the width of the scanning range in the drawing depth direction by one movement of the inspection table 5.

続いて、CPU60は、投光系移動制御回路53へ走査範囲の変更を指示する。投光系移動制御回路53は、CPU60の指示によって、投光系移動機構52を駆動制御する。投光系移動機構52は、例えば直動モータを含んで構成され、投光系を図面奥行き方向へ移動するものであるが、図1ではその詳細構成は省略してある。投光系移動機構52が投光系全体を移動することによって、投光系から照射されるレーザー光線による基板1の走査範囲が図面奥行き方向へ変更制御される。そして、レーザー光線による基板1の走査及び検査テーブル5の移動と、走査範囲の変更とを順番に繰り返すことによって、基板1の検査範囲全体の検査を行なうことができるようになっている。   Subsequently, the CPU 60 instructs the projection system movement control circuit 53 to change the scanning range. The light projection system movement control circuit 53 drives and controls the light projection system movement mechanism 52 in accordance with an instruction from the CPU 60. The light projecting system moving mechanism 52 includes, for example, a linear motion motor and moves the light projecting system in the depth direction of the drawing, but the detailed configuration is omitted in FIG. When the light projecting system moving mechanism 52 moves the entire light projecting system, the scanning range of the substrate 1 by the laser beam irradiated from the light projecting system is controlled to be changed in the drawing depth direction. The entire inspection range of the substrate 1 can be inspected by sequentially repeating the scanning of the substrate 1 by the laser beam, the movement of the inspection table 5 and the change of the scanning range.

上述のように投光系を移動制御する場合は、CPU60は、上受光系20及び下受光系30を含めたものを全体的に、投光系の移動に同期させて移動制御している。すなわち、CPU60は、上受光系移動制御回路55及び下受光系移動制御回路57へも移動を指示して制御する。上受光系移動制御回路55及び下受光系移動制御回路57は、CPU60からの移動指示に応じて、上受光系移動機構54及び下受光系移動機構56をそれぞれ駆動制御する。上受光系移動機構54及び下受光系移動機構56は、例えば直動モータを含んで構成され、上受光系20及び下受光系30を投光系に同期させてそれぞれ移動制御する。   In the case where movement control of the light projecting system is performed as described above, the CPU 60 controls movement of the entire system including the upper light receiving system 20 and the lower light receiving system 30 in synchronization with the movement of the light projecting system. That is, the CPU 60 instructs the upper light receiving system movement control circuit 55 and the lower light receiving system movement control circuit 57 to control the movement. The upper light receiving system movement control circuit 55 and the lower light receiving system movement control circuit 57 respectively drive and control the upper light receiving system moving mechanism 54 and the lower light receiving system moving mechanism 56 in accordance with a movement instruction from the CPU 60. The upper light receiving system moving mechanism 54 and the lower light receiving system moving mechanism 56 are configured to include, for example, a linear motor, and move and control the upper light receiving system 20 and the lower light receiving system 30 in synchronization with the light projecting system.

なお、検査テーブル5を移動する代わりに、投光系を図面横方向へ移動することによって、基板1と投光系とをレーザー光線の走査方向と直交する方向へ相対的に移動してもよい。この場合は、上受光系及び下受光系を、投光系と一緒に移動する。また、投光系を移動する代わりに、検査テーブル5を図面奥行き方向へ移動することによって、基板1と投光系とをレーザー光線の走査方向へ相対的に移動して、レーザー光線による基板の走査範囲を変更してもよい。すなわち、投光系及び受光系と、基板1は相対的に移動可能な構成であればよい。   Instead of moving the inspection table 5, the substrate 1 and the light projecting system may be relatively moved in a direction perpendicular to the scanning direction of the laser beam by moving the light projecting system in the horizontal direction of the drawing. In this case, the upper light receiving system and the lower light receiving system are moved together with the light projecting system. Further, instead of moving the light projecting system, the inspection table 5 is moved in the drawing depth direction, so that the substrate 1 and the light projecting system are relatively moved in the laser beam scanning direction, thereby scanning the substrate by the laser beam. May be changed. That is, the light projecting system and the light receiving system and the substrate 1 may be configured to be relatively movable.

投光系から基板1へ斜めに照射されたレーザー光線の一部は基板1の表面で反射され、残りは基板1の内部へ透過する。基板1の内部へ透過したレーザー光線は、基板1の表面から離れるに従って広がり、その一部は基板1の裏面で反射され、残りは基板1の裏面から基板1の外へ透過する。なお、これは基板1が理想的な平坦形状の透明基板の場合である。   A part of the laser beam irradiated obliquely from the light projecting system to the substrate 1 is reflected by the surface of the substrate 1 and the rest is transmitted to the inside of the substrate 1. The laser beam transmitted to the inside of the substrate 1 spreads away from the surface of the substrate 1, a part of which is reflected by the back surface of the substrate 1, and the rest is transmitted from the back surface of the substrate 1 to the outside of the substrate 1. This is the case where the substrate 1 is an ideal flat transparent substrate.

基板1の表面側において、基板1の表面で反射されたレーザー光線の光軸から外れた位置には、上受光系20が配置されている。上受光系20は、上受光子21及び光電子倍増管26から構成されている。上受光子21は、S偏光板22、バンドパスフィルタ23、レンズ24、受光部25を含んで構成されている。図4は、上受光系20の概略構成を示す図であり、投光系側から見た上面図である。図4では、レーザー光源11から出射されるレーザー光線として、ミラー14から反射したものを示している。このレーザー光線は、図示のように走査方向に走査制御され、ほとんどがS偏光成分で構成されており、基板1の表面、内部、裏面などで散乱したものが上受光子21の受光部25へ向かうように配置してある。S偏光板22は、S偏光成分の光のみを通過させるものであり、基板1の表面、内部、裏面で散乱したレーザー光線(散乱光)のS偏光成分のみを通過させる。バンドパスフィルタ23は、レーザー光源11から出射されるレーザー光線の周波数成分付近の光、すなわち出射レーザー光線の波長成分付近の光のみを通過させ、それ以外の周波数成分(波長成分)の光を除去するものである。レンズ24は、基板1からの散乱光であって、S偏光板22及びバンドパスフィルタ23を通過した光のみを集光し、受光部25へ導入する。レンズ24の焦点位置は、基板1の表面に合っている。受光部25は、複数の光ファイバー25aを束ねて構成され、レンズ24で集光した散乱光を受光して光電子倍増管26の受光面へ導く。光電子倍増管26は、受光面で受光した散乱光の強度に応じた検出信号を出力する。図1において、光電子倍増管26の検出信号は、アンプ27で増幅され、欠陥検出回路28へ入力される。このように、レンズ24の前面にS偏光板22及びバンドパスフィルタ23を設けることによって、装置の周辺環境からの外乱光であって、前述の周波数成分(波長成分)以外の光及びP偏光成分の光を有効に除去し、投光系から基板1へ斜めに照射されたレーザー光線であって、基板1の表面、内部、裏面などで散乱したS偏光成分の光のみをレンズ24及び受光部25へ有効に導入することができる。   On the surface side of the substrate 1, an upper light receiving system 20 is disposed at a position off the optical axis of the laser beam reflected by the surface of the substrate 1. The upper light receiving system 20 includes an upper light receiver 21 and a photomultiplier tube 26. The upper light receiving element 21 includes an S polarizing plate 22, a band pass filter 23, a lens 24, and a light receiving unit 25. FIG. 4 is a diagram showing a schematic configuration of the upper light receiving system 20, and is a top view seen from the light projecting system side. In FIG. 4, the laser beam emitted from the laser light source 11 is reflected from the mirror 14. This laser beam is scan-controlled in the scanning direction as shown in the figure, and is mostly composed of an S-polarized component. What is scattered on the front surface, inside, back surface, etc. of the substrate 1 is directed to the light receiving portion 25 of the upper light receiving element 21. It is arranged as follows. The S-polarizing plate 22 allows only the S-polarized light component to pass through, and allows only the S-polarized light component of the laser beam (scattered light) scattered on the front surface, inside, and back surface of the substrate 1 to pass therethrough. The bandpass filter 23 passes only light in the vicinity of the frequency component of the laser beam emitted from the laser light source 11, that is, passes light in the vicinity of the wavelength component of the emitted laser beam, and removes light of other frequency components (wavelength components). It is. The lens 24 collects only the light scattered from the substrate 1 and passed through the S-polarizing plate 22 and the bandpass filter 23 and introduces it to the light receiving unit 25. The focal position of the lens 24 matches the surface of the substrate 1. The light receiving unit 25 is configured by bundling a plurality of optical fibers 25 a, receives the scattered light collected by the lens 24, and guides it to the light receiving surface of the photomultiplier tube 26. The photomultiplier tube 26 outputs a detection signal corresponding to the intensity of scattered light received by the light receiving surface. In FIG. 1, the detection signal of the photomultiplier tube 26 is amplified by an amplifier 27 and input to the defect detection circuit 28. As described above, by providing the S polarizing plate 22 and the band pass filter 23 on the front surface of the lens 24, the light is disturbing light from the surrounding environment of the apparatus and includes light other than the above-described frequency component (wavelength component) and P-polarized light component. The lens 24 and the light receiving unit 25 are the laser beams that are effectively removed from the light projecting system and obliquely applied to the substrate 1 from the light projecting system, and only the S-polarized component light scattered on the front surface, inside, back surface, etc. Can be introduced effectively.

基板1の表面に欠陥が存在する場合、基板1の表面へ照射されたレーザー光線が欠陥によって散乱されて、散乱光が発生する。また、基板1の内部へ透過して基板1の裏面で反射され、再び基板1の表面へ到達したレーザー光線が欠陥によって散乱されて、散乱光が発生する。これらの散乱光が、基板1の表面側に配置された上受光系20で受光される。基板1の内部に欠陥が存在する場合、基板1の内部へ透過したレーザー光線が欠陥によって散乱されて、散乱光が発生する。また、基板1の内部へ透過して基板1の裏面で反射されたレーザー光線が欠陥によって散乱されて、散乱光が発生する。これらの散乱光が、基板1を透過して、基板1の表面側に配置された上受光系20で受光される。基板1の表面の欠陥によって発生した散乱光は、基板1の内部の欠陥によって発生した散乱光よりも、上受光系20の受光部25で受光される強度が大きい。欠陥検出回路28は、アンプ27で増幅された検出信号の強度から、基板1の表面の欠陥を検出する。   When a defect exists on the surface of the substrate 1, the laser beam irradiated on the surface of the substrate 1 is scattered by the defect, and scattered light is generated. Further, the laser beam that has been transmitted into the substrate 1 and reflected by the back surface of the substrate 1 and has reached the surface of the substrate 1 again is scattered by defects, and scattered light is generated. These scattered lights are received by the upper light receiving system 20 disposed on the surface side of the substrate 1. When a defect exists inside the substrate 1, the laser beam transmitted to the inside of the substrate 1 is scattered by the defect to generate scattered light. Further, the laser beam that has been transmitted into the substrate 1 and reflected by the back surface of the substrate 1 is scattered by the defect, and scattered light is generated. These scattered lights pass through the substrate 1 and are received by the upper light receiving system 20 disposed on the surface side of the substrate 1. Scattered light generated by defects on the surface of the substrate 1 has a higher intensity received by the light receiving unit 25 of the upper light receiving system 20 than scattered light generated by defects inside the substrate 1. The defect detection circuit 28 detects a defect on the surface of the substrate 1 from the intensity of the detection signal amplified by the amplifier 27.

基板1の裏面側において、基板1の裏面から透過されたレーザー光線の光軸から外れた位置に、下受光系30が配置されている。下受光系30は、下受光子31及び光電子倍増管36から構成されている。下受光子31は、S偏光板32、バンドパスフィルタ33、レンズ34、受光部35から構成される。図5は、下受光系30の概略構成を示す図であり、図1の左側から見た側面図である。図5では、レーザー光源11から出射されるレーザー光線として、ミラー14から反射したものを示している。このレーザー光線は、図示のように走査方向に走査制御され、ほとんどがS偏光成分の光で構成されており、基板1の表面、内部、裏面などで散乱したもので、基板1を通過したものが下受光子31の受光部35へ向かうように配置してある。S偏光板32は、S偏光成分の光のみを通過させるものであり、基板1の表面、内部、裏面などで散乱したもので、基板1を通過したレーザー光線のS偏光成分のみを通過させる。バンドパスフィルタ33は、レーザー光源11から出射されるレーザー光線の周波数成分付近の光、すなわち出射レーザー光線の波長成分付近の光のみを通過させ、それ以外の周波数成分(波長成分)の光を除去するものである。レンズ34は、基板1の表面、内部、裏面からの散乱光であって、S偏光板32及びバンドパスフィルタ33を通過した光のみを集光し、受光部35へ導入する。レンズ34の焦点位置は、基板1の裏面に合っている。受光部35は、複数の光ファイバー35aを束ねて構成され、レンズ34で集光した散乱光を受光して光電子倍増管36の受光面へ導く。光電子倍増管36は、受光面で受光した散乱光の強度に応じた検出信号を出力する。図1において、光電子倍増管36の検出信号は、アンプ37で増幅され、欠陥検出回路38へ入力される。このように、レンズ34の前面にS偏光板32及びバンドパスフィルタ33を設けることによって、装置の周辺環境からの外乱光であって、前述の周波数成分(波長成分)以外の光及びP偏光成分光を有効に除去し、投光系から基板1へ斜めに照射されたレーザー光線であって、基板1の表面、内部、裏面などで散乱したS偏光成分の光のみをレンズ34及び受光部35へ導入することができる。   On the back surface side of the substrate 1, a lower light receiving system 30 is disposed at a position off the optical axis of the laser beam transmitted from the back surface of the substrate 1. The lower light receiving system 30 includes a lower light receiver 31 and a photomultiplier tube 36. The lower light receiving element 31 includes an S polarizing plate 32, a band pass filter 33, a lens 34, and a light receiving unit 35. 5 is a diagram showing a schematic configuration of the lower light receiving system 30, and is a side view seen from the left side of FIG. In FIG. 5, the laser beam emitted from the laser light source 11 is reflected from the mirror 14. This laser beam is scan-controlled in the scanning direction as shown in the figure, and is mostly composed of S-polarized light, which is scattered on the surface, inside, back surface, etc. of the substrate 1 It arrange | positions so that it may go to the light-receiving part 35 of the lower light receiving element 31. FIG. The S-polarizing plate 32 allows only the S-polarized light component to pass through, is scattered on the front surface, inside, back surface, and the like of the substrate 1 and passes only the S-polarized light component of the laser beam that has passed through the substrate 1. The band-pass filter 33 passes only light in the vicinity of the frequency component of the laser beam emitted from the laser light source 11, that is, light in the vicinity of the wavelength component of the emitted laser beam, and removes light of other frequency components (wavelength components). It is. The lens 34 collects only light that has been scattered from the front surface, inside, and back surface of the substrate 1 and has passed through the S-polarizing plate 32 and the band-pass filter 33, and introduces it to the light receiving unit 35. The focal position of the lens 34 matches the back surface of the substrate 1. The light receiving unit 35 is configured by bundling a plurality of optical fibers 35 a, receives the scattered light collected by the lens 34, and guides it to the light receiving surface of the photomultiplier tube 36. The photomultiplier tube 36 outputs a detection signal corresponding to the intensity of scattered light received by the light receiving surface. In FIG. 1, the detection signal of the photomultiplier tube 36 is amplified by an amplifier 37 and input to a defect detection circuit 38. As described above, by providing the S polarizing plate 32 and the band pass filter 33 on the front surface of the lens 34, the light is a disturbance light from the surrounding environment of the apparatus, and the light other than the frequency component (wavelength component) and the P polarization component. The lens 34 and the light receiving unit 35 receive only the light of the S-polarized component, which is a laser beam that is effectively removed from the light emitting system and is obliquely irradiated to the substrate 1 from the light projecting system and scattered on the front surface, inside, and back surface of the substrate 1. Can be introduced.

基板1の表面に欠陥が存在する場合、基板1の表面へ照射されたレーザー光線が欠陥によって散乱されて、散乱光が発生する。この散乱光が、基板1を透過して、基板1の裏面側に配置された下受光系30で受光される。複数の光ファイバー35aを束ねた受光部35で受光された散乱光は、欠陥の形状をほぼそのまま表した形状となる。また、基板1の内部へ透過して基板1の裏面で反射され、再び基板1の表面へ到達したレーザー光線が欠陥によって散乱されて、散乱光が発生する。基板1の板厚が大きいとき、この散乱光は、レーザー光線が基板1の表面へ照射された位置からかなり離れた位置で発生する。下受光系30のレンズ34による受光領域を最適位置にすると、この散乱光は下受光系30で受光されない。   When a defect exists on the surface of the substrate 1, the laser beam irradiated on the surface of the substrate 1 is scattered by the defect, and scattered light is generated. The scattered light passes through the substrate 1 and is received by the lower light receiving system 30 disposed on the back side of the substrate 1. Scattered light received by the light receiving unit 35 in which a plurality of optical fibers 35a are bundled has a shape that directly represents the shape of the defect. Further, the laser beam that has been transmitted into the substrate 1 and reflected by the back surface of the substrate 1 and has reached the surface of the substrate 1 again is scattered by defects, and scattered light is generated. When the thickness of the substrate 1 is large, this scattered light is generated at a position far from the position where the surface of the substrate 1 is irradiated with the laser beam. When the light receiving area by the lens 34 of the lower light receiving system 30 is set to the optimum position, the scattered light is not received by the lower light receiving system 30.

基板1の内部に欠陥が存在する場合、基板1の内部へ透過したレーザー光線が欠陥によって散乱されて、散乱光が発生する。また、基板1の内部へ透過して基板1の裏面で反射されたレーザー光線が欠陥によって散乱されて、散乱光が発生する。これらの散乱光が、基板1を透過して、基板1の裏面側に配置された下受光系30で受光される。複数の光ファイバー35aを束ねた受光部35で受光された散乱光をZ方向(基板厚さ方向)にスキャンしたマップと重ね合わせると、欠陥の形状に関わらず、レーザスキャン方向により縦横に広がった十字形状となる。欠陥検出回路38は、この散乱光の形状的特徴から、基板1の内部の欠陥を選択検出する。基板1の裏面側に配置された下受光系30によって、基板1を透過した散乱光を受光するので、基板1の表面付近の欠陥だけでなく、基板1の表面から離れた深い位置にある欠陥も検出される。   When a defect exists inside the substrate 1, the laser beam transmitted to the inside of the substrate 1 is scattered by the defect to generate scattered light. Further, the laser beam that has been transmitted into the substrate 1 and reflected by the back surface of the substrate 1 is scattered by the defect, and scattered light is generated. These scattered lights pass through the substrate 1 and are received by the lower light receiving system 30 disposed on the back side of the substrate 1. When the scattered light received by the light receiving unit 35 in which a plurality of optical fibers 35a are bundled is superimposed on a map scanned in the Z direction (substrate thickness direction), a cross spreads vertically and horizontally depending on the laser scanning direction regardless of the shape of the defect. It becomes a shape. The defect detection circuit 38 selectively detects a defect inside the substrate 1 from the shape characteristic of the scattered light. The scattered light transmitted through the substrate 1 is received by the lower light receiving system 30 disposed on the back side of the substrate 1, so that not only the defect near the surface of the substrate 1 but also the defect located at a deep position away from the surface of the substrate 1 Is also detected.

CPU60は、焦点調節制御回路41へ下受光系30の焦点位置の調節を指示する。焦点調節制御回路41は、CPU60の指示によって、焦点調節機構40を駆動する。焦点調節機構40は、例えばパルスモータを含んで構成され、下受光子31を上下に移動する。焦点調節機構40が下受光子31を上下に移動することによって、下受光系30の焦点位置が基板1の内部に合う様に調節される。   The CPU 60 instructs the focus adjustment control circuit 41 to adjust the focus position of the lower light receiving system 30. The focus adjustment control circuit 41 drives the focus adjustment mechanism 40 according to an instruction from the CPU 60. The focus adjustment mechanism 40 includes, for example, a pulse motor, and moves the lower light receiving element 31 up and down. When the focus adjusting mechanism 40 moves the lower light receiving element 31 up and down, the focus position of the lower light receiving system 30 is adjusted so as to be matched with the inside of the substrate 1.

以上説明した実施の形態によれば、板厚の大きい透明な基板の欠陥の検査において、基板の周辺環境から検出光学系に入り込む外乱光すなわちレーザー光源から照射された光線の周波数成分(波長成分)以外の光及びP偏光成分光を有効に除去し、投光系から基板1へ斜めに照射されたレーザー光線であって、基板1の表面、内部、裏面などで散乱したS偏光成分の光のみをレンズ34及び受光部35へ導入することができ、ノイズなどの影響を無くし、欠陥の検出精度を向上させることができる。   According to the embodiment described above, in the inspection of a defect on a transparent substrate having a large thickness, the disturbance light entering the detection optical system from the surrounding environment of the substrate, that is, the frequency component (wavelength component) of the light emitted from the laser light source. The light other than the light and the P-polarized component light is effectively removed, and only the S-polarized component light scattered obliquely from the projection system to the substrate 1 and scattered on the front surface, inside, back surface, etc. of the substrate 1 is obtained. It can be introduced into the lens 34 and the light receiving unit 35, and the influence of noise or the like can be eliminated, and the defect detection accuracy can be improved.

図6は、本発明の基板検査方法の検査結果の一例を示す図である。図6は、マスク基板の表面及び裏面における傷や異物等の欠陥の分布状況を示すものであり、図6(A)はマスク基板の洗浄加工処理前の検査結果である欠陥分布状況を示し、図6(B)はマスク基板の洗浄加工処理後の検査結果である欠陥分布状況を示し、図6(C)は図6(A)の洗浄加工処理前の欠陥分布から図6(B)の洗浄加工処理後の欠陥分布を減算したもの、すなわち洗浄加工処理によって除去された欠陥及び傷などの分布状況を示すものである。図6(C)の分布状況を観察することで、洗浄加工処理によってどれだけの傷や異物等の欠陥が除去され、マスク基板の表面及び裏面が綺麗に洗浄されたことを理解することができる。もし、この図6(C)に示すような、洗浄加工処理によって除去された傷や異物等の欠陥の分布状況が極端に少ない場合には、洗浄加工処理のプロセスに問題があると理解することができる。この発明では、この図6(C)の分布状況を用いてそのプロセス良否の判定を行なっている。   FIG. 6 is a diagram showing an example of the inspection result of the substrate inspection method of the present invention. FIG. 6 shows the distribution of defects such as scratches and foreign matter on the front and back surfaces of the mask substrate, and FIG. 6 (A) shows the defect distribution as the inspection result before the mask substrate cleaning process, FIG. 6B shows a defect distribution state as an inspection result after the cleaning process of the mask substrate, and FIG. 6C shows the defect distribution before the cleaning process in FIG. This is a subtraction of the defect distribution after the cleaning process, that is, the distribution of defects and scratches removed by the cleaning process. By observing the distribution state of FIG. 6C, it can be understood that how many scratches and foreign matters are removed by the cleaning process, and the front and back surfaces of the mask substrate are cleaned cleanly. . If the distribution of defects such as scratches and foreign matter removed by the cleaning process is extremely small as shown in FIG. 6C, understand that there is a problem with the cleaning process. Can do. In the present invention, the quality of the process is judged using the distribution state of FIG.

図7は、基板検査方法の第1の検査処理の一例を示す図である。本発明の基板検査方法の処理の一例をこのフローチャート図に従って説明する。この検査処理では、第1にマスク基板1に対して図1の基板検査装置を用いて所定の検査行なう。最初のステップS71では、マスク基板1のレシピ番号(測定条件等)及びワーク番号をマスク基板1に付与してあるバーコードやQRコード等から読み取る。ステップS72では、マスク基板1に対して洗浄加工前基板検査Aを先に読み取ったレシピ番号に従って実行する。ステップS73では、基板検査Aが終了したので、マスク基板1の排出を行い、処理を終了し、次のマスク基板に対して検査準備を行なう。基板検査Aの結果は、図6(A)に示すような検査結果A(欠陥分布)となり、メモリ70に格納される。   FIG. 7 is a diagram illustrating an example of a first inspection process of the substrate inspection method. An example of processing of the substrate inspection method of the present invention will be described with reference to this flowchart. In this inspection process, first, a predetermined inspection is performed on the mask substrate 1 using the substrate inspection apparatus shown in FIG. In the first step S71, the recipe number (measurement conditions and the like) and the work number of the mask substrate 1 are read from the barcode, QR code or the like given to the mask substrate 1. In step S72, the pre-cleaning substrate inspection A is performed on the mask substrate 1 according to the recipe number read first. In step S73, since the substrate inspection A is completed, the mask substrate 1 is discharged, the processing is ended, and the preparation for the next mask substrate is prepared. The result of the substrate inspection A is an inspection result A (defect distribution) as shown in FIG.

図8は、基板検査方法の第2の検査処理となるマスク基板洗浄加工後処理の一例を示す図である。図7の洗浄加工前基板検査Aの結果に従って、マスク基板に対して、傷や異物等の欠陥を除去するための洗浄加工処理が行なわれる。図8では、この洗浄加工処理後のマスク基板に対して図1の基板検査装置を用いて上述と同様の検査を行なう。まず、ステップS81では、マスク基板1のレシピ番号(測定条件等)及びワーク番号をマスク基板1に付与してあるバーコードやQRコード等から読み取る。ステップS82では、マスク基板1に対して洗浄加工後基板検査Bをレシピ番号に従って実行する。ステップS83では、基板検査Bが終了したので、そのマスク基板1の排出を行なう。基板検査Bの結果は、図6(B)に示すような検査結果B(欠陥分布)となり、メモリ70に格納される。ステップS84では、検査結果Bから検査結果Aを減算する。すなわち、洗浄加工処理後のマスク基板の欠陥分布(図6(B))から洗浄加工処理前のマスク基板の欠陥分布(図6(A))を減算する。この減算結果は、図6(C)に示すように、図6(A)の欠陥分布から図6(B)の欠陥分布を差し引いたものとなる。   FIG. 8 is a diagram illustrating an example of a post-mask substrate cleaning process that is a second inspection process of the substrate inspection method. In accordance with the result of the pre-cleaning substrate inspection A in FIG. 7, the mask substrate is subjected to a cleaning processing for removing defects such as scratches and foreign matters. In FIG. 8, the same inspection as described above is performed on the mask substrate after the cleaning process using the substrate inspection apparatus of FIG. First, in step S81, the recipe number (measurement conditions, etc.) and the work number of the mask substrate 1 and the work number are read from the bar code, QR code, etc. given to the mask substrate 1. In step S82, the post-cleaning substrate inspection B is performed on the mask substrate 1 according to the recipe number. In step S83, since the substrate inspection B is completed, the mask substrate 1 is discharged. The result of the substrate inspection B becomes an inspection result B (defect distribution) as shown in FIG. 6B and is stored in the memory 70. In step S84, the inspection result A is subtracted from the inspection result B. That is, the defect distribution (FIG. 6A) of the mask substrate before the cleaning processing is subtracted from the defect distribution (FIG. 6B) of the mask substrate after the cleaning processing. As shown in FIG. 6C, the subtraction result is obtained by subtracting the defect distribution of FIG. 6B from the defect distribution of FIG. 6A.

図6(C)の欠陥分布は、マスク基板の洗浄加工処理によって除去された欠陥分布を示すものである。従って、次のステップS85では、この減算結果を示す値(減算値)が所定値よりも大きいか否かの判定を行い、所定値よりも大きい(yes)場合はステップS86に進み、所定値以下(no)の場合はステップS87に進む。ステップS86では、減算値が所定値よりも大きいということは、マスク基板の洗浄加工処理によってマスク基板から傷や異物等の欠陥が除去されたことを意味するので、ここでは、洗浄加工完了(再洗浄加工不要)を管理者などに指示して処理を終了する。一方、ステップS87では、減算値が所定値以下ということは、マスク基板の洗浄加工処理によってマスク基板から所定数の欠陥が除去されなかったことを意味するので、ここでは、マスク基板の再洗浄加工を管理者などに指示して処理を終了する。   The defect distribution in FIG. 6C indicates the defect distribution removed by the cleaning process of the mask substrate. Therefore, in the next step S85, it is determined whether or not the value indicating the subtraction result (subtraction value) is larger than the predetermined value. If the value is larger than the predetermined value (yes), the process proceeds to step S86, and the predetermined value or less. In the case of (no), the process proceeds to step S87. In step S86, the fact that the subtracted value is larger than the predetermined value means that defects such as scratches and foreign matter have been removed from the mask substrate by the cleaning processing of the mask substrate. Instruct the administrator or the like to finish the process. On the other hand, in step S87, the subtraction value being equal to or less than the predetermined value means that the predetermined number of defects have not been removed from the mask substrate by the cleaning processing of the mask substrate. Is instructed to the administrator or the like to end the process.

図9は、基板検査方法の第3の検査処理となるマスク基板再洗浄加工後処理の一例を示す図である。図8のステップS85の判定の結果に従って、マスク基板に対して、傷や異物等の欠陥を除去するために2度目の洗浄加工処理(再洗浄加工処理)が行なわれる。図9では、この再洗浄加工処理後のマスク基板に対して図1の基板検査装置を用いて図8と同様の検査を行なう。まず、ステップS91では、マスク基板1のレシピ番号(測定条件等)及びワーク番号をマスク基板1に付与してあるバーコードやQRコード等から読み取る。ステップS92では、マスク基板1に対して再洗浄加工後基板検査Cをレシピ番号に従って実行する。ステップS93では、基板検査Cが終了したので、そのマスク基板1の排出を行なう。ステップS94では、今回の検査結果Cから図8の検査結果Bを減算する。すなわち、再洗浄加工処理後のマスク基板の欠陥分布(図示せず)から再洗浄加工処理前(1回目の洗浄加工処理後)のマスク基板の欠陥分布(図6(B))を減算する。この減算処理の結果は、マスク基板の再洗浄加工処理によって除去された欠陥分布を示すものであり、メモリ70に格納される。従って、次のステップS95では、この減算結果を示す値(減算値)が所定値よりも大きいか否かの判定を行い、所定値よりも大きい(yes)場合はステップS96に進み、所定値以下(no)の場合はステップS97に進む。ステップS96では、減算値が所定値よりも大きいということは、マスク基板の再洗浄加工処理によってマスク基板から所定量の傷や異物等の欠陥が除去されたことを意味するので、ここでは、洗浄加工完了(再々洗浄加工不要)を管理者などに指示して処理を終了する。一方、ステップS97では、減算値が所定値以下ということは、マスク基板の再洗浄加工処理によってマスク基板から所定数の傷や異物等の欠陥が除去されなかったことを意味するので、ここでは、マスク基板の内部に傷や異物等の欠陥が存在する可能性が高いので、管理者などに内部欠陥検査を行なうように指示を出して処理を終了する。   FIG. 9 is a diagram illustrating an example of a post-mask substrate re-cleaning process that is a third inspection process of the substrate inspection method. In accordance with the determination result in step S85 in FIG. 8, a second cleaning process (recleaning process) is performed on the mask substrate in order to remove defects such as scratches and foreign matters. In FIG. 9, the same inspection as in FIG. 8 is performed on the mask substrate after the re-cleaning processing using the substrate inspection apparatus in FIG. First, in step S91, the recipe number (measurement conditions, etc.) and the work number of the mask substrate 1 and the work number are read from the barcode, QR code, or the like given to the mask substrate 1. In step S92, the substrate inspection C after the re-cleaning process is performed on the mask substrate 1 according to the recipe number. In step S93, since the substrate inspection C is completed, the mask substrate 1 is discharged. In step S94, the inspection result B of FIG. 8 is subtracted from the current inspection result C. That is, the defect distribution (FIG. 6B) of the mask substrate before the recleaning process (after the first cleaning process) is subtracted from the defect distribution (not shown) of the mask substrate after the recleaning process. The result of this subtraction processing indicates the defect distribution removed by the re-cleaning processing of the mask substrate, and is stored in the memory 70. Therefore, in the next step S95, it is determined whether or not the value indicating the subtraction result (subtraction value) is larger than the predetermined value. If the value is larger than the predetermined value (yes), the process proceeds to step S96, and the value is equal to or smaller than the predetermined value. In the case of (no), the process proceeds to step S97. In step S96, the fact that the subtraction value is larger than the predetermined value means that a predetermined amount of defects such as scratches and foreign matter has been removed from the mask substrate by the re-cleaning processing of the mask substrate. The process is terminated by instructing the administrator or the like to complete the process (re-cleaning unnecessary). On the other hand, in step S97, the subtraction value being equal to or less than the predetermined value means that the predetermined number of defects such as scratches and foreign matters have not been removed from the mask substrate by the re-cleaning processing of the mask substrate. Since there is a high possibility that a defect such as a scratch or a foreign substance exists inside the mask substrate, an instruction is given to the administrator or the like to perform an internal defect inspection, and the process is terminated.

図10は、基板検査方法の第4の検査処理となるマスク基板の内部欠陥検査処理の一例を示す図である。図9のステップS95の判定の結果に従って、マスク基板の内部に対する欠陥検査処理が行なわれる。図10では、散乱光の形状的特徴から、マスク基板1の内部の傷や異物等の欠陥を選択的に検出する処理を行なう。まず、ステップS101では、マスク基板1のレシピ番号(測定条件等)及びワーク番号をマスク基板1に付与してあるバーコードやQRコード等から読み取る。ステップS102では、マスク基板1に対して内部欠陥検査Dをレシピ番号に従って実行する。ステップS103では、内部欠陥検査Dが終了したので、そのマスク基板1の排出を行なう。ステップS104では、今回の内部欠陥検査の結果Dに基づいてプロセス判定を行って、処理を終了する。   FIG. 10 is a diagram illustrating an example of the internal defect inspection process of the mask substrate which is the fourth inspection process of the substrate inspection method. According to the result of the determination in step S95 in FIG. 9, a defect inspection process is performed on the inside of the mask substrate. In FIG. 10, processing for selectively detecting defects such as scratches and foreign matters inside the mask substrate 1 is performed based on the shape characteristics of the scattered light. First, in step S101, the recipe number (measurement conditions, etc.) and the work number of the mask substrate 1 and the work number are read from a barcode, QR code, or the like given to the mask substrate 1. In step S102, the internal defect inspection D is performed on the mask substrate 1 according to the recipe number. In step S103, since the internal defect inspection D is completed, the mask substrate 1 is discharged. In step S104, process determination is performed based on the result D of the current internal defect inspection, and the process ends.

なお、上述の実施の形態では、ステップS94で、検査結果Cから検査結果Bを減算する場合について説明したが、検査結果Cから検査結果Aを減算してもよい。また、上述の実施の形態では、減算値に基づいて再洗浄加工又は再々洗浄加工を判定しているが、検査結果B又はCの値が所定値以下か否かに基づいて判断してもよいし、これと減算値との組み合わせに基づいて判断するようにしてもよい。
また、上述の実施の形態では、検査テーブル5に基板1をアライメントする方法として、図2に示すように基板1を載置した状態で基板1のY軸方向の端部を位置決めピンなどに突き当て位置決めする。この場合、位置決めピンは、基板1のY軸方向の端部に少なくとも2箇所設ければよい。
In the above-described embodiment, the case where the inspection result B is subtracted from the inspection result C in step S94 has been described. However, the inspection result A may be subtracted from the inspection result C. Further, in the above-described embodiment, the re-cleaning process or the re-cleaning process is determined based on the subtraction value, but may be determined based on whether the value of the inspection result B or C is equal to or less than a predetermined value. However, the determination may be made based on a combination of this and the subtraction value.
In the above-described embodiment, as a method of aligning the substrate 1 on the inspection table 5, the end of the substrate 1 in the Y-axis direction is pushed to a positioning pin or the like while the substrate 1 is placed as shown in FIG. Position the contact. In this case, at least two positioning pins may be provided at the end of the substrate 1 in the Y-axis direction.

1…マスク基板
10…走査部
11…レーザー光源
12a…レンズ
12c…fθレンズ
13…ポリゴンミラー
14…ミラー
15…角度検出器
20…上受光系
21…上受光子
22,32…S偏光板
23,33…バンドパスフィルタ
24,34…レンズ
25,35…受光部
25a,35a…光ファイバー
26,36…光電子倍増管
27,37…アンプ
28,38…欠陥検出回路
30…下受光系
31…下受光子
40…焦点調節機構
41…焦点調節制御回路
5…検査テーブル
50…基板移動機構
51…基板移動制御回路
52…投光系移動機構
53…投光系移動制御回路
54…上受光系移動機構
55…上受光系移動制御回路
56…下受光系移動機構
57…下受光系移動制御回路
5a…基板支持部
5b…傾斜面
60…制御部(CPU)
70…メモリ
DESCRIPTION OF SYMBOLS 1 ... Mask board | substrate 10 ... Scanning part 11 ... Laser light source 12a ... Lens 12c ... f (theta) lens 13 ... Polygon mirror 14 ... Mirror 15 ... Angle detector 20 ... Upper light receiving system 21 ... Upper light receiver 22, 32 ... S polarizing plate 23, 33 ... Band-pass filters 24, 34 ... Lenses 25, 35 ... Light receivers 25a, 35a ... Optical fibers 26, 36 ... Photomultiplier tubes 27, 37 ... Amplifiers 28, 38 ... Defect detection circuit 30 ... Lower light receiving system 31 ... Lower light receiver 40 ... Focus adjustment mechanism 41 ... Focus adjustment control circuit 5 ... Inspection table 50 ... Substrate movement mechanism 51 ... Substrate movement control circuit 52 ... Light projection system movement mechanism 53 ... Light projection system movement control circuit 54 ... Upper light reception system movement mechanism 55 ... Upper light receiving system movement control circuit 56 ... Lower light receiving system moving mechanism 57 ... Lower light receiving system movement control circuit 5a ... Substrate support part 5b ... Inclined surface 60 ... Control part (CPU)
70: Memory

Claims (10)

光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行い、
前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第1のレンズ手段で集光して第1の受光手段にて受光し、
前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第2のレンズ手段で集光して第2の受光手段にて受光し、
前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出し、
検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定することを特徴とする基板検査方法。
While irradiating the surface of the substrate obliquely at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted to the inside of the substrate, the light beam is moved while moving the light beam. Scan,
The first lens unit condenses the scattered light, which is disposed on the surface side of the substrate, and the light beam is scattered by the defect of the substrate, and is received by the first light receiving unit,
Disposed on the back side of the substrate, and the scattered light scattered by the defects of the substrate is collected by the second lens means and received by the second light receiving means,
Detecting the presence position of the defect on the substrate from the signal based on the scattered light received by the first and second light receiving system means;
A substrate inspection method comprising: comparing the detected positions of the detected defects before and after cleaning the substrate; and determining whether or not to reclean the substrate according to the comparison result.
光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ第1の偏光成分を多く含む光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行い、
第1の偏光成分の光のみを通過させる第1の偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前面に備え、前記第1の偏光板手段及び前記バンドパスフィルタ手段を通過した光をレンズ手段で集光して第1の受光手段にて受光する受光系手段であって、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第1の偏光板手段、前記第1のバンドパスフィルタ手段及び前記第1のレンズ手段を介して前記第1の受光手段にて受光し、
前記第1の偏光成分の光のみを通過させる第2の偏光板手段及び前記光線の周波数成分付近の光のみを通過させる第2のバンドパスフィルタ手段を前面に備え、前記第2の偏光板手段及び前記第2のバンドパスフィルタ手段を通過した光を第2のレンズ手段で集光して第2の受光手段にて受光する受光系手段であって、前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第2の偏光板手段、前記第2のバンドパスフィルタ手段及び前記第2のレンズ手段を介して前記第2の受光手段にて受光し、
前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出し、
検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定することを特徴とする基板検査方法。
While obliquely irradiating the surface of the substrate with a large amount of the first polarization component at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted to the inside of the substrate, Scanning the substrate while moving the light beam,
A first polarizing plate means that allows only light of the first polarization component to pass through and a band-pass filter means that passes only light in the vicinity of the frequency component of the light beam are provided on the front surface, and the first polarizing plate means and the band pass are provided. Light receiving system means for condensing the light that has passed through the filter means by the lens means and receiving the light by the first light receiving means, which is disposed on the surface side of the substrate, and the light beam is scattered by the defect of the substrate Scattered light is received by the first light receiving means via the first polarizing plate means, the first band pass filter means and the first lens means,
The second polarizing plate means includes a second polarizing plate means for allowing only light of the first polarization component to pass therethrough and a second band pass filter means for allowing only light in the vicinity of the frequency component of the light ray to pass therethrough, and the second polarizing plate means. And light receiving system means for condensing the light that has passed through the second bandpass filter means by the second lens means and receiving the light by the second light receiving means, disposed on the back side of the substrate, Light scattered by the defect of the substrate is received by the second light receiving means through the second polarizing plate means, the second bandpass filter means and the second lens means,
Detecting the presence position of the defect on the substrate from the signal based on the scattered light received by the first and second light receiving system means;
A substrate inspection method comprising: comparing the detected positions of the detected defects before and after cleaning the substrate; and determining whether or not to reclean the substrate according to the comparison result.
請求項1又は2に記載の基板検査方法において、
前記再洗浄加工後に、前記洗浄加工前後における前記欠陥の存在位置及び前記再洗浄加工後における前記欠陥の存在位置をそれぞれ比較し、その比較結果に応じて前記基板の内部の欠陥の検出を行なうか否かを決定することを特徴とする基板検査方法。
The substrate inspection method according to claim 1 or 2,
Whether the defect existing position before and after the cleaning process and the defect existing position after the re-cleaning process are compared after the re-cleaning process, and the defect inside the substrate is detected according to the comparison result. A substrate inspection method characterized by determining whether or not.
請求項1、2又は3に記載の基板検査方法において、
前記欠陥の存在位置を検出する際の測定条件を前記基板に付与してあるバーコード等から読み取ることを特徴とする基板検査方法。
In the board | substrate inspection method of Claim 1, 2, or 3,
A substrate inspection method, wherein a measurement condition for detecting the presence position of the defect is read from a barcode or the like given to the substrate.
請求項1、2、3又は4に記載の基板検査方法において、
前記第1及び第2の受光手段の焦点位置を前記基板の内部に合わせ、前記第1及び第2の受光手段が受光した散乱光の形状的特徴に基づいて前記基板の内部の欠陥を検出することを特徴とする基板検査方法。
In the board | substrate inspection method of Claim 1, 2, 3 or 4,
The focal positions of the first and second light receiving means are aligned with the inside of the substrate, and a defect inside the substrate is detected based on the shape characteristics of the scattered light received by the first and second light receiving means. A method for inspecting a substrate.
光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行う投光系手段と、
前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第1のレンズ手段で集光して第1の受光手段にて受光するように構成された第1の受光系手段と、
前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を第2のレンズ手段で集光して第2の受光手段にて受光するように構成された第2の受光系手段と、
前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出する欠陥検出手段と、
前記欠陥検出手段によって検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定する制御手段と
を備えたことを特徴とする基板検査装置。
While irradiating the surface of the substrate obliquely at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted to the inside of the substrate, the light beam is moved while moving the light beam. A light projection system means for scanning;
A first lens arranged on the surface side of the substrate and configured to collect the scattered light scattered by the defect of the substrate by the first lens means and receive the light by the first light receiving means; Light receiving means;
A second arrangement is arranged on the back side of the substrate, and is configured to collect the scattered light, which is scattered by the defect of the substrate, by the second lens means and receive it by the second light receiving means. Light receiving means;
A defect detection means for detecting a position of a defect on the substrate from a signal based on scattered light received by the first and second light receiving system means;
Control means for comparing the presence positions of the defects detected by the defect detection means before and after cleaning the substrate, and determining whether or not to re-clean the substrate according to the comparison result. A board inspection apparatus characterized by that.
光線の一部が基板の表面で反射され、その残りの光線が前記基板の内部へ透過するような角度で前記基板の表面へ第1の偏光成分を多く含む光線を斜めに照射しながら、前記光線を移動させながら前記基板の走査を行う投光系手段と、
第1の偏光成分の光のみを通過させる第1の偏光板手段及び前記光線の周波数成分付近の光のみを通過させるバンドパスフィルタ手段を前面に備え、前記第1の偏光板手段及び前記バンドパスフィルタ手段を通過した光をレンズ手段で集光して第1の受光手段にて受光する受光系手段であって、前記基板の表面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第1の偏光板手段、前記第1のバンドパスフィルタ手段及び前記第1のレンズ手段を介して前記第1の受光手段にて受光するように構成された第1の受光系手段と、
前記第1の偏光成分の光のみを通過させる第2の偏光板手段及び前記光線の周波数成分付近の光のみを通過させる第2のバンドパスフィルタ手段を前面に備え、前記第2の偏光板手段及び前記第2のバンドパスフィルタ手段を通過した光を第2のレンズ手段で集光して第2の受光手段にて受光する受光系手段であって、前記基板の裏面側に配置され、前記光線が前記基板の欠陥によって散乱された散乱光を前記第2の偏光板手段、前記第2のバンドパスフィルタ手段及び前記第2のレンズ手段を介して前記第2の受光手段にて受光するように構成された第2の受光系手段と、
前記第1及び第2の受光系手段が受光した散乱光に基づいた信号から前記基板の欠陥の存在位置を検出する欠陥検出手段と、
前記欠陥検出手段によって検出された前記欠陥の存在位置を前記基板の洗浄加工の前後で比較し、その比較結果に応じて前記基板の再洗浄加工を行なうか否かを決定する制御手段と
を備えたことを特徴とする基板検査装置。
While obliquely irradiating the surface of the substrate with a large amount of the first polarization component at an angle such that a part of the light beam is reflected by the surface of the substrate and the remaining light beam is transmitted to the inside of the substrate, Projection system means for scanning the substrate while moving the light beam;
A first polarizing plate means that allows only light of the first polarization component to pass through and a band-pass filter means that passes only light in the vicinity of the frequency component of the light beam are provided on the front surface, and the first polarizing plate means and the band pass are provided. Light receiving system means for condensing the light that has passed through the filter means by the lens means and receiving the light by the first light receiving means, which is disposed on the surface side of the substrate, and the light beam is scattered by the defect of the substrate First light-receiving system means configured to receive the scattered light at the first light-receiving means via the first polarizing plate means, the first band-pass filter means, and the first lens means. When,
The second polarizing plate means includes a second polarizing plate means for allowing only light of the first polarization component to pass therethrough and a second band pass filter means for allowing only light in the vicinity of the frequency component of the light ray to pass therethrough, and the second polarizing plate means. And light receiving system means for condensing the light that has passed through the second bandpass filter means by the second lens means and receiving the light by the second light receiving means, disposed on the back side of the substrate, The second light receiving means receives the scattered light, which is scattered by the defect of the substrate, through the second polarizing plate means, the second bandpass filter means, and the second lens means. A second light receiving system configured in
A defect detection means for detecting a position of a defect on the substrate from a signal based on scattered light received by the first and second light receiving system means;
Control means for comparing the presence positions of the defects detected by the defect detection means before and after cleaning the substrate, and determining whether or not to re-clean the substrate according to the comparison result. A board inspection apparatus characterized by that.
請求項6又は7に記載の基板検査装置において、
前記制御手段は、前記再洗浄加工後に、前記洗浄加工前後における前記欠陥の存在位置及び前記再洗浄加工後における前記欠陥の存在位置をそれぞれ比較し、その比較結果に応じて前記基板の内部の欠陥の検出を行なうか否かを決定することを特徴とする基板検査装置。
In the board | substrate inspection apparatus of Claim 6 or 7,
The control means, after the re-cleaning process, compares the position of the defect before and after the cleaning process and the position of the defect after the re-cleaning process, respectively, and according to the comparison result, the defect inside the substrate A substrate inspection apparatus that determines whether or not to perform detection.
請求項6、7又は8に記載の基板検査装置において、
前記欠陥検出手段は、前記欠陥の存在位置を検出する際の測定条件を前記基板に付与してあるバーコード等から読み取ることを特徴とする基板検査装置。
The board inspection apparatus according to claim 6, 7 or 8,
The substrate inspection apparatus, wherein the defect detection means reads a measurement condition for detecting the presence position of the defect from a barcode or the like given to the substrate.
請求項6、7、8又は9に記載の基板検査装置において、
前記欠陥検出手段は、前記第1及び第2の受光手段の焦点位置を前記基板の内部に合わせ、前記第1及び第2の受光手段が受光した散乱光の形状的特徴に基づいて前記基板の内部の欠陥を検出することを特徴とする基板検査装置。
The substrate inspection apparatus according to claim 6, 7, 8 or 9,
The defect detecting means adjusts the focal positions of the first and second light receiving means to the inside of the substrate, and based on the geometric characteristics of the scattered light received by the first and second light receiving means. A substrate inspection apparatus for detecting an internal defect.
JP2010133137A 2010-06-10 2010-06-10 Substrate inspection method and device Ceased JP2011257304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133137A JP2011257304A (en) 2010-06-10 2010-06-10 Substrate inspection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133137A JP2011257304A (en) 2010-06-10 2010-06-10 Substrate inspection method and device

Publications (1)

Publication Number Publication Date
JP2011257304A true JP2011257304A (en) 2011-12-22

Family

ID=45473623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133137A Ceased JP2011257304A (en) 2010-06-10 2010-06-10 Substrate inspection method and device

Country Status (1)

Country Link
JP (1) JP2011257304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430808B1 (en) 2012-07-04 2014-08-18 (주)엘지하우시스 Defect detection apparatus for vacuum insulation panel
JP2015509199A (en) * 2012-01-27 2015-03-26 ファロ テクノロジーズ インコーポレーテッド Inspection method by barcode identification

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045979B2 (en) * 1983-04-21 1992-02-04 Nippon Electric Co
JPH0473775B2 (en) * 1983-11-18 1992-11-24
JPH052152U (en) * 1991-06-21 1993-01-14 山形日本電気株式会社 Reticle cleaning device with foreign matter inspection device
JPH05291225A (en) * 1992-04-15 1993-11-05 Mitsubishi Electric Corp Evaluation method of cleaning ability
JPH09106065A (en) * 1995-10-09 1997-04-22 Nikon Corp Substrate cleaning device and method
JPH10123028A (en) * 1996-10-22 1998-05-15 Fujitsu Ltd Method for detecting contamination in vacuum apparatus
JP2003185592A (en) * 2001-12-21 2003-07-03 Sony Corp Flaw determination method
JP2007163137A (en) * 2005-12-09 2007-06-28 Hitachi High-Technologies Corp Foreign matter inspection device and foreign matter inspection method
JP2008032929A (en) * 2006-07-27 2008-02-14 Toppan Printing Co Ltd Color filter inspection method
JP2008076071A (en) * 2006-09-19 2008-04-03 Hitachi High-Technologies Corp Substrate inspecting device and substrate inspection method
JP2008191020A (en) * 2007-02-06 2008-08-21 Hitachi High-Technologies Corp Substrate inspection apparatus and substrate inspection method
JP2009204607A (en) * 2008-01-28 2009-09-10 Nitto Denko Corp Method and apparatus for inspecting optical display unit
JP2010002406A (en) * 2008-05-23 2010-01-07 Hitachi High-Technologies Corp Inspecting method and inspecting apparatus for substrate surface

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH045979B2 (en) * 1983-04-21 1992-02-04 Nippon Electric Co
JPH0473775B2 (en) * 1983-11-18 1992-11-24
JPH052152U (en) * 1991-06-21 1993-01-14 山形日本電気株式会社 Reticle cleaning device with foreign matter inspection device
JPH05291225A (en) * 1992-04-15 1993-11-05 Mitsubishi Electric Corp Evaluation method of cleaning ability
JPH09106065A (en) * 1995-10-09 1997-04-22 Nikon Corp Substrate cleaning device and method
JPH10123028A (en) * 1996-10-22 1998-05-15 Fujitsu Ltd Method for detecting contamination in vacuum apparatus
JP2003185592A (en) * 2001-12-21 2003-07-03 Sony Corp Flaw determination method
JP2007163137A (en) * 2005-12-09 2007-06-28 Hitachi High-Technologies Corp Foreign matter inspection device and foreign matter inspection method
JP2008032929A (en) * 2006-07-27 2008-02-14 Toppan Printing Co Ltd Color filter inspection method
JP2008076071A (en) * 2006-09-19 2008-04-03 Hitachi High-Technologies Corp Substrate inspecting device and substrate inspection method
JP2008191020A (en) * 2007-02-06 2008-08-21 Hitachi High-Technologies Corp Substrate inspection apparatus and substrate inspection method
JP2009204607A (en) * 2008-01-28 2009-09-10 Nitto Denko Corp Method and apparatus for inspecting optical display unit
JP2010002406A (en) * 2008-05-23 2010-01-07 Hitachi High-Technologies Corp Inspecting method and inspecting apparatus for substrate surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509199A (en) * 2012-01-27 2015-03-26 ファロ テクノロジーズ インコーポレーテッド Inspection method by barcode identification
KR101430808B1 (en) 2012-07-04 2014-08-18 (주)엘지하우시스 Defect detection apparatus for vacuum insulation panel

Similar Documents

Publication Publication Date Title
KR100710721B1 (en) An apparatus and method for inspecting mark defects and method for manufacturing a photomask
US8629979B2 (en) Inspection system, inspection method, and program
JP5444053B2 (en) Polycrystalline silicon thin film inspection method and apparatus
US20060158643A1 (en) Method and system of inspecting mura-defect and method of fabricating photomask
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP4704793B2 (en) Appearance inspection device
WO2015174114A1 (en) Substrate inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
JP5134603B2 (en) Light beam adjusting method and light beam adjusting apparatus
JP2013044578A (en) Substrate inspection method and device
JP2011257304A (en) Substrate inspection method and device
JP4793851B2 (en) Color filter substrate stage device and inspection device
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
JP2011226939A (en) Method and device for inspecting substrate
JP5250395B2 (en) Inspection device
JP4994053B2 (en) Substrate inspection apparatus and substrate inspection method
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP2007024733A (en) Substrate inspection device and substrate inspection method
JP2009229221A (en) Optical device defect inspection method and optical device defect inspecting apparatus
KR100965409B1 (en) Apparatus for inspecting glass substrate
CN114799575A (en) Observation device and observation method
JP4654408B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP2011069676A (en) Inspection system, and inspection method
JP2012068321A (en) Mask defect inspection device and mask defect inspection method
JP4808162B2 (en) Substrate inspection apparatus and substrate inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20141216