JP2009229221A - Optical device defect inspection method and optical device defect inspecting apparatus - Google Patents

Optical device defect inspection method and optical device defect inspecting apparatus Download PDF

Info

Publication number
JP2009229221A
JP2009229221A JP2008074398A JP2008074398A JP2009229221A JP 2009229221 A JP2009229221 A JP 2009229221A JP 2008074398 A JP2008074398 A JP 2008074398A JP 2008074398 A JP2008074398 A JP 2008074398A JP 2009229221 A JP2009229221 A JP 2009229221A
Authority
JP
Japan
Prior art keywords
optical device
light
image
imaging
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008074398A
Other languages
Japanese (ja)
Other versions
JP5281815B2 (en
Inventor
Tomohisa Ozawa
知久 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008074398A priority Critical patent/JP5281815B2/en
Publication of JP2009229221A publication Critical patent/JP2009229221A/en
Application granted granted Critical
Publication of JP5281815B2 publication Critical patent/JP5281815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical device defect inspection method and an optical device defect inspecting apparatus which is not affected by the difference in curvature or the position of an optical device, and which is high-speed and is low cost. <P>SOLUTION: The focus of a photographic means 3 is aligned with a lens under inspection 2, and a light source 5 is moved away from the lens under inspection 2, to a position at which a density difference in a dot pattern 8 within an image of the lens under inspection 2 photographed by the photographic means 3 disappears, thereby defects in the lens under inspection 2 are detected, through image distortion 11 produced inside the image which does not have density difference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は光学デバイスの欠陥部分を検出する光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置に関する。   The present invention relates to an optical device defect inspection method and an optical device defect inspection apparatus for detecting a defective portion of an optical device.

カメラ等の光学機器は様々な電子部品やレンズ等の光学デバイスにより構成される。光学デバイスとしてのレンズは、入射した光がレンズの各部で正しく屈折して進行するように精度良く加工されている必要があり、製造過程において表面の凹凸や内部組成の不良による光学歪みの有無が検査される。従来このような検査においては、基準となる参照レンズと検査が行われる被検査レンズとに同等の条件で光を透過させ、それぞれの光束を重ね合わせて干渉させることにより生じる干渉縞から欠陥の有無を検出する干渉式レンズ検査装置及び方法が用いられていた(例えば、特許文献1参照。)。   Optical devices such as cameras are composed of various electronic components and optical devices such as lenses. A lens as an optical device must be processed with high precision so that incident light is correctly refracted and travels at each part of the lens, and there is no optical distortion due to surface irregularities or poor internal composition during the manufacturing process. Inspected. Conventionally, in such inspection, the presence or absence of defects from interference fringes caused by transmitting light under the same conditions to the reference lens as a standard and the inspected lens to be inspected and superimposing the respective light beams to interfere with each other An interferometric lens inspection apparatus and method for detecting the above have been used (for example, see Patent Document 1).

しかし、このような検査装置及び方法では、被検査レンズの曲率に合わせた参照レンズを必要とするため、多品種生産においては生産するレンズの種類が変わる毎に参照レンズを用意する必要がある。更に、それぞれのレンズを正確に位置決めする必要があるため設定に時間がかかり、干渉縞の正常部と欠陥部との見え方の差を認識するには熟練を要していた。   However, since such an inspection apparatus and method require a reference lens that matches the curvature of the lens to be inspected, it is necessary to prepare a reference lens every time the type of lens to be produced changes in multi-product production. Further, since it is necessary to accurately position each lens, it takes time to set, and skill is required to recognize the difference in appearance between the normal part and the defective part of the interference fringes.

このような問題に対応するため、干渉縞を用いずに光学デバイスを検査する方法として、光源装置の白黒パターンの濃淡が無くなるまで撮像手段のピントをずらして光学デバイスの欠陥の有無を検出する欠陥検出方法が提案されている(例えば、特許文献2参照。)。   In order to cope with such a problem, as a method for inspecting an optical device without using interference fringes, a defect is detected by detecting the presence or absence of a defect in the optical device by shifting the focus of the imaging means until the black and white pattern of the light source device disappears. A detection method has been proposed (see, for example, Patent Document 2).

また、光源装置に備えられた遮光部材に焦点が合わせられたレンズを撮像手段で撮像することにより光学デバイスの欠陥の有無を検出する欠陥検出装置も提案されている(例えば、特許文献3参照。)。
特開2002−357505号公報 特開平8−220021号公報 特開平9−61291号公報
There has also been proposed a defect detection apparatus that detects the presence or absence of a defect in an optical device by imaging a lens focused on a light shielding member provided in a light source device with an imaging unit (see, for example, Patent Document 3). ).
JP 2002-357505 A JP-A-8-220021 JP 9-61291 A

しかし、特許文献2に記載されるような発明は、連続した板状光学デバイスの検査用であって、レンズのような大きな曲率を有する光学デバイスでは位置による見え方が異なるため、特許文献2に記載されるような発明ではレンズの検査には適さない。   However, the invention as described in Patent Document 2 is for inspection of a continuous plate-like optical device, and an optical device having a large curvature such as a lens has a different appearance depending on the position. The invention as described is not suitable for lens inspection.

また、特許文献3に記載されるような発明では、被検査レンズの位置を精度良く合わせなければならず、多品種かつ大量に検査が必要な場合には再調整に時間がかかり非常に効率の悪いものであった。   Further, in the invention as described in Patent Document 3, the position of the lens to be inspected must be accurately aligned, and it takes time for readjustment when a lot of inspections are required for a wide variety and a large amount. It was bad.

本発明はこのような問題に対して成されたものであり、光学デバイスの欠陥を容易に検出し、曲率の違いや光学デバイスの位置に影響されない高速かつ安価な光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置を提供することを目的としている。   The present invention has been made for such a problem, and it is possible to easily detect a defect in an optical device, and to detect a defect in an optical device at a high speed and at a low cost which is not affected by a difference in curvature or the position of the optical device. The object is to provide a defect inspection apparatus.

本発明は前記目的を達成するために、遮光部と透光部とにより形成されるパターンを備えた光源装置より前記パターンを透過させて光学デバイスの一方の面へ光を照射し、前記光学デバイスの光が照射される面の反対側の面より前記光学デバイスを撮像手段で撮像することにより前記光学デバイスの欠陥を検査する光学デバイス欠陥検査方法において、前記撮像手段の焦点を前記光学デバイスに合わせ、該撮像手段により撮像される前記光学デバイスの画像内の前記遮光部と前記透光部との濃度差が無くなる位置まで前記光源装置を移動させ、濃度差の無い前記画像内に生じる該画像の歪みにより該光学デバイスの欠陥を検出することを特徴としている。   In order to achieve the above-mentioned object, the present invention transmits the pattern from a light source device having a pattern formed by a light-shielding portion and a light-transmitting portion, and irradiates one surface of the optical device with light. In an optical device defect inspection method for inspecting a defect of the optical device by imaging the optical device with an imaging unit from a surface opposite to a surface irradiated with light of the optical device, the imaging unit is focused on the optical device The light source device is moved to a position where there is no density difference between the light-shielding part and the light-transmitting part in the image of the optical device imaged by the imaging unit, and the image generated in the image without density difference It is characterized by detecting a defect of the optical device by distortion.

また、本発明は前記発明において、前記光学デバイスは単一の非球面凸レンズであること、前記パターンはドットパターンであることも特徴としている。   In the invention, the optical device is a single aspherical convex lens, and the pattern is a dot pattern.

更に、本発明は前記発明において、前記撮像手段は前記光学デバイスに焦点を合わせた後、該光学デバイスの軸方向又は軸方向に対して直交する方向であって該光学デバイスの近傍に焦点位置を移動させてから該光学デバイスを撮像することも特徴としている。   Further, in the present invention according to the above invention, after the imaging means focuses on the optical device, the focus position is in the axial direction of the optical device or a direction orthogonal to the axial direction and in the vicinity of the optical device. It is also characterized in that the optical device is imaged after being moved.

本発明によれば、光学デバイスとしての単一の非球面凸レンズの表面の凹凸や内部組成の不良による光学歪みの有無を検査する光学デバイス欠陥検査装置は、光学デバイスを一方から撮像するCCDカメラ等の撮像手段と、遮光部と透光部とにより形成されたドットパターンからなるパターン備え撮像手段が光学デバイスを撮像する面の反対側の面からパターンを透過させて光学デバイスへ光を照射する光源装置と、撮像手段と光源装置との間に位置し複数の光学デバイスを載置して移動可能に設けられたトレイと、光源装置を移動させる移動手段と、撮像手段により撮像された画像を表示する表示手段が設けられた制御手段と、を備えている。   According to the present invention, an optical device defect inspection apparatus that inspects the presence or absence of optical distortion due to surface irregularities or internal composition defects of a single aspherical convex lens as an optical device is a CCD camera or the like that images an optical device from one side. A light source that irradiates light to the optical device by transmitting the pattern from the surface opposite to the surface on which the image pickup device picks up the optical device with the pattern comprising the dot pattern formed by the image pickup device, the light shielding portion, and the light transmitting portion The apparatus, the tray positioned between the image pickup means and the light source device and movably provided with a plurality of optical devices, the moving means for moving the light source device, and the image taken by the image pickup means are displayed. And a control means provided with a display means.

このような光学デバイス欠陥検査装置により光学デバイスの検査を行う際には、まず撮像手段の焦点を光学デバイスに合わせる。続いて、撮像手段により撮像されて表示手段に表示された光学デバイスの画像内のパターンによる遮光部と透光部との濃度差が無くなり、全体に均一な濃淡となる位置まで光源装置を光学デバイスより遠ざけるまたは近づける方向に移動させる。このように光源装置を移動させた状態で画像内に歪みが生じているかを確認し、歪みが生じている場合は歪み部分に欠陥が生じていると認識される。   When an optical device is inspected by such an optical device defect inspection apparatus, first, the imaging means is focused on the optical device. Subsequently, the optical device is moved to a position where there is no density difference between the light-shielding part and the light-transmitting part due to the pattern in the image of the optical device that is picked up by the image pickup means and displayed on the display means, so that the entire device has a uniform shading. Move it further away or closer. In this way, it is confirmed whether or not distortion has occurred in the image with the light source device moved. If distortion has occurred, it is recognized that a defect has occurred in the distortion portion.

これにより、撮像手段、光学デバイス、光源装置がそれぞれ粗い位置決めであって、光学デバイスの曲率が異なっても検査領域全体に遮光部と透光部との濃度差が無い全体に均一な灰色状態が即座に作られ、欠陥を容易に検出し、高速かつ安価な光学デバイス欠陥検査が可能となる。   As a result, the imaging means, the optical device, and the light source device are each roughly positioned, and even if the curvature of the optical device is different, there is no density difference between the light-shielding part and the light-transmitting part in the entire inspection area, and the entire gray state is uniform. Immediately created, defects can be easily detected, and optical device defect inspection can be performed at high speed and at low cost.

また、本発明においては、撮像手段は光学デバイスに焦点を合わせた後、光学デバイスの軸方向又は軸方向に対して直交する方向であって光学デバイスの近傍に焦点位置を移動させてから光学デバイスを撮像するので、欠陥部分が見え難い場合であっても撮像手段の焦点がより見えやすい位置に移動するので欠陥の検出が容易になる。   In the present invention, the imaging means focuses the optical device, moves the focal position to the vicinity of the optical device in the axial direction of the optical device or a direction orthogonal to the axial direction, and then the optical device. Therefore, even if it is difficult to see the defective portion, the focus of the imaging means moves to a position where it can be seen more easily, so that the defect can be easily detected.

以上説明したように、光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置によれば、遮光部と透光部とにより形成されるパターンを備えた光源装置を光学デバイスから所定の位置まで移動させた状態で一方の面へパターンを透過させて光を照射すると共に、光が照射された面とは反対側の面から光学デバイスを撮像することより光学デバイスの欠陥を検出するので、欠陥を容易に検出することが可能となる。   As described above, according to the optical device defect inspection method and the optical device defect inspection apparatus, the light source device including the pattern formed by the light shielding portion and the light transmitting portion is moved from the optical device to a predetermined position. In addition to irradiating light with the pattern transmitted through one surface, the defect of the optical device is detected by imaging the optical device from the surface opposite to the surface irradiated with light. It becomes possible to do.

以下添付図面に従って本発明に係る光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置の好ましい実施の形態について詳説する。   Preferred embodiments of an optical device defect inspection method and an optical device defect inspection apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

まず、本発明に係わる光学デバイス欠陥検査装置の構成を説明する。図1は欠陥検査装置の構成を示した斜視図、図2は光学デバイスを撮像して検査を行う様子を模式的に示した側面図である。   First, the configuration of the optical device defect inspection apparatus according to the present invention will be described. FIG. 1 is a perspective view illustrating a configuration of a defect inspection apparatus, and FIG. 2 is a side view schematically illustrating a state in which an inspection is performed by imaging an optical device.

欠陥検査装置1は、図1に示すように、カメラ等に使用される光学デバイスである非球面凸レンズの被検査レンズ2を一方から撮像する撮像手段3と、移動手段4によりZ方向に移動可能な光源装置5と、撮像手段3と光源装置5との間に設けられ複数の被検査レンズ2を載置して不図示の移動手段によりX及びY方向に移動するトレイ6を備えている。   As shown in FIG. 1, the defect inspection apparatus 1 can be moved in the Z direction by an image pickup means 3 that picks up an inspected lens 2 of an aspherical convex lens that is an optical device used in a camera or the like, and a moving means 4. A light source device 5, and a tray 6 provided between the imaging means 3 and the light source device 5, on which a plurality of lenses 2 to be inspected are mounted and moved in the X and Y directions by a moving means (not shown).

更に欠陥検査装置1には、撮像手段3により撮像された画像を表示する表示手段を備え、移動手段4等の欠陥検査装置1の各部を制御する制御手段7が備えられている。   Furthermore, the defect inspection apparatus 1 includes a display unit that displays an image captured by the imaging unit 3 and a control unit 7 that controls each part of the defect inspection apparatus 1 such as the moving unit 4.

撮像手段3はCCD等を使用したカメラであって、不図示の支持部材により支持されてトレイ6に載置された被検査レンズ2のいずれか1つを上方から撮像する。撮像手段3により撮像された画像は制御手段7に備えられた表示手段であるモニター7Aに表示される。撮像手段3より制御手段7へ送られてモニター7Aに表示された画像は、目視により確認されるか、または制御手段7に記憶され既知の様々な画像処理手法により画像処理される。   The image pickup means 3 is a camera using a CCD or the like, and picks up an image of any one of the inspected lenses 2 supported on a support member (not shown) and placed on the tray 6 from above. The image picked up by the image pickup means 3 is displayed on a monitor 7A which is a display means provided in the control means 7. The image sent from the imaging means 3 to the control means 7 and displayed on the monitor 7A is confirmed by visual observation, or stored in the control means 7 and subjected to image processing by various known image processing techniques.

光源装置5は、遮光部と透光部とにより形成されるパターンであるドットパターン8を備え、撮像手段3が被検査レンズ2を撮像する面の反対側の面から被検査レンズ2へドットパターン8を透過させて光を照射する。光源装置5はボールネジやモータ等の既知の移動機構により構成される移動手段4によりトレイ6が移動するX及びY方向と直行するZ方向に移動可能に設けられている。   The light source device 5 includes a dot pattern 8 that is a pattern formed by a light-shielding portion and a light-transmitting portion, and the dot pattern from the surface opposite to the surface on which the imaging unit 3 images the lens 2 to be inspected to the lens 2 to be inspected. 8 is transmitted and irradiated with light. The light source device 5 is provided so as to be movable in the Z direction perpendicular to the X and Y directions in which the tray 6 moves by a moving means 4 constituted by a known moving mechanism such as a ball screw or a motor.

このような構成の欠陥検査装置1により被検査レンズ2を検査する際には、まず図2のように撮像手段3の焦点が被検査レンズ2に合わせられる。撮像手段3の焦点が合わせられた後、撮像手段3により撮像される画像内の被検査レンズ2に写るドットパターン8の遮光部と透光部との濃度差が無くなり全体に均一な濃淡の画像となる位置まで光源装置5を被検査レンズ2より遠ざけるまたは近づける方向に移動させる。この均一な濃淡の画像となった被検査レンズ2内に生じる画像の歪みより被検査レンズ2の欠陥が検出される。   When the inspection lens 2 is inspected by the defect inspection apparatus 1 having such a configuration, the imaging means 3 is first focused on the inspection lens 2 as shown in FIG. After the imaging means 3 is focused, the density difference between the light-shielding portion and the light-transmitting portion of the dot pattern 8 reflected on the lens 2 to be inspected in the image taken by the imaging means 3 is eliminated, and a uniform grayscale image as a whole. The light source device 5 is moved away from or closer to the inspected lens 2 to a position where A defect of the lens 2 to be inspected is detected from the distortion of the image generated in the lens 2 to be inspected, which is a uniform gray image.

これにより、被検査レンズ2、撮像手段3、光源装置5がそれぞれ粗い位置決めであって、被検査レンズ2の曲率が異なっても被検査レンズ2全体に遮光部と透光部との濃度差が無い全体に均一な灰色状態の画像が即座に作られ、欠陥を容易に検出し、高速かつ安価な光学デバイス欠陥検査が可能となる。   As a result, the lens 2 to be inspected, the imaging means 3 and the light source device 5 are each roughly positioned, and even if the curvature of the lens 2 to be inspected is different, the density difference between the light shielding portion and the light transmitting portion in the entire lens 2 to be inspected. An image with a uniform gray state is immediately created without any defects, and defects can be easily detected, and optical device defect inspection can be performed at high speed and at low cost.

なお被検査レンズ2の品種により、撮像手段3の焦点位置が被検査レンズ2に合わせられたままでは欠陥による画像の歪みが見え難い場合、撮像手段3の焦点を被検査レンズ2へ合わせた後、被検査レンズ2の軸方向であるZ方向又は軸方向に対して直交するX、Y方向の近傍へ撮像手段3の焦点位置を移動させてから被検査レンズ2を撮像して欠陥検査を行っても良い。これにより、欠陥部分が見え難い場合であっても撮像手段3の焦点がより見えやすい位置に移動するので欠陥の検出が容易になる。   Depending on the type of the lens 2 to be inspected, if it is difficult to see the distortion of the image due to a defect when the focus position of the imaging means 3 is kept on the lens 2 to be inspected, the focus of the imaging means 3 is adjusted to the lens 2 to be inspected. Then, after moving the focal position of the image pickup means 3 to the vicinity of the Z direction that is the axial direction of the lens 2 to be inspected or the X and Y directions orthogonal to the axial direction, the lens 2 to be inspected is imaged for defect inspection. May be. Thereby, even when it is difficult to see the defective portion, the focus of the imaging means 3 moves to a position where it can be seen more easily, so that the detection of the defect becomes easy.

次に、本発明に係わる光学デバイス欠陥検査方法について説明する。図3は光学デバイスに焦点を合わせた後に光学デバイスを撮像手段で撮像した画像を示した図、図4は図3の位置より光源装置を移動させた際に光学デバイスを撮像手段で撮像した画像を示した図、図5は欠陥のある光学デバイスを撮像した画像の一例を示した図である。   Next, the optical device defect inspection method according to the present invention will be described. FIG. 3 is a diagram illustrating an image obtained by imaging the optical device with the imaging unit after focusing on the optical device. FIG. 4 is an image obtained by imaging the optical device with the imaging unit when the light source device is moved from the position of FIG. FIG. 5 is a diagram showing an example of an image obtained by imaging a defective optical device.

図1に示す欠陥検査装置1により光学デバイスである被検査レンズ2の欠陥の検査を行う際には、まず図2に示されるように、トレイ6がXY方向に移動してトレイ6上に載置された複数の被検査レンズ2のうちの一つを撮像手段3の下に位置づける。撮像手段3は、被検査レンズ2が直下に位置づけられた後に被検査レンズ2の中心付近に焦点を合わせて撮像の準備を行う。   When the defect inspection apparatus 1 shown in FIG. 1 inspects a defect of the lens 2 to be inspected, which is an optical device, the tray 6 first moves in the XY direction and is placed on the tray 6 as shown in FIG. One of the placed plurality of inspected lenses 2 is positioned below the imaging means 3. The imaging means 3 prepares for imaging by focusing on the vicinity of the center of the lens 2 to be inspected after the lens 2 to be inspected is positioned immediately below.

このとき、撮像手段3は被検査レンズ2の品種に合わせ、焦点位置を被検査レンズ2の軸方向であるZ方向又は軸方向に対して直交するX、Y方向の近傍へ移動させてから被検査レンズ2の撮像を行うようにしてもよい。   At this time, the imaging unit 3 moves the focal position to the Z direction that is the axial direction of the lens 2 to be inspected or to the vicinity of the X and Y directions that are orthogonal to the axial direction in accordance with the type of the lens 2 to be inspected. The inspection lens 2 may be imaged.

撮像手段3による被検査レンズ2の撮像準備が出来た後、欠陥検査装置1は移動手段4により光源装置5をZ方向に移動させて被検査レンズ2より遠ざけるまたは近づけてドットパターン8を被検査レンズ2の焦点位置から離す。これにより、撮像手段3により撮像される画像は、図3に示す画像10Aように被検査レンズ2に写るドットパターン8の遮光部8Aと透光部8Bとの濃度差が確認できる画像から、図4に示す画像10Bのように被検査レンズ2に写る遮光部8Aと透光部8Bとが重なり濃度差が無くなった全体に均一な濃淡の画像に変化する。   After the imaging unit 3 is ready for imaging the lens 2 to be inspected, the defect inspection apparatus 1 moves the light source device 5 in the Z direction by the moving unit 4 to move away from or close to the lens 2 to be inspected, and inspect the dot pattern 8. Move away from the focal position of the lens 2. As a result, the image picked up by the image pickup means 3 is obtained from an image in which the density difference between the light shielding portion 8A and the light transmitting portion 8B of the dot pattern 8 shown on the lens 2 to be inspected can be confirmed as shown in the image 10A in FIG. As shown in the image 10B shown in FIG. 4, the light shielding portion 8A and the light transmitting portion 8B appearing on the lens 2 to be inspected are overlapped and changed to a uniform gray image with no density difference.

このとき、被検査レンズ2に欠陥が生じている場合には入射した光が正しく屈折して進行しない為、例えば図5に示す画像10Cように、欠陥が生じている場所に歪み11が生じる。これにより、歪み11が生じている場所に欠陥が生じていると認識され、被検査レンズ2、撮像手段3、光源装置5がそれぞれ粗い位置決めであっても欠陥を容易に検出することが可能となる。   At this time, when the defect is generated in the lens 2 to be inspected, the incident light is refracted correctly and does not travel, so that, for example, as shown in an image 10C shown in FIG. As a result, it is recognized that a defect has occurred at the place where the distortion 11 is generated, and it is possible to easily detect the defect even if the lens 2 to be inspected, the imaging means 3 and the light source device 5 are each in a rough positioning. Become.

歪み11の確認は、制御手段7のモニター7Aに表示された撮像手段3による画像を目視で確認するか、または画像を制御手段7に記憶した後に各種の画像処理手法により解析することで歪み11を認識してもよい。1つの被検査レンズ2の欠陥の有無が確認された後、トレイ6が不図示の移動手段によりX,Y方向へ移動して新たな被検査レンズ2が撮像手段3の下に位置づけられる。   The distortion 11 can be confirmed by visually confirming the image by the imaging means 3 displayed on the monitor 7A of the control means 7 or by storing the image in the control means 7 and analyzing it by various image processing techniques. May be recognized. After the presence / absence of a defect in one lens 2 to be inspected is confirmed, the tray 6 is moved in the X and Y directions by a moving means (not shown), and a new lens 2 to be inspected is positioned below the imaging means 3.

以上説明したように、本発明の光学デバイス欠陥検査方法及び光学デバイス欠陥検査装置によれば、遮光部と透光部を有する光源装置を光学デバイスから所定の位置まで移動させた状態で一方の面へ光を照射すると共に、光が照射された面とは反対側の面から光学デバイスを撮像することより光学デバイスの欠陥を検出するので、撮像手段、光学デバイス、光源装置がそれぞれ粗い位置決めであって、光学デバイスの曲率が異なっても検査領域全体に遮光部と透光部との濃度差が無い全体に均一な灰色状態が即座に作られ、欠陥を容易に検出し、高速かつ安価な光学デバイス欠陥検査が可能となる。   As described above, according to the optical device defect inspection method and the optical device defect inspection apparatus of the present invention, the one surface in a state where the light source device having the light shielding portion and the light transmitting portion is moved from the optical device to a predetermined position. In addition, the optical device defect is detected by imaging the optical device from the surface opposite to the surface irradiated with the light, so that the imaging means, the optical device, and the light source device have rough positioning, respectively. Even if the curvature of the optical device is different, there is no density difference between the light-shielding part and the light-transmitting part in the entire inspection area, and a uniform gray state is instantly created, and defects can be easily detected, and high-speed and inexpensive optics Device defect inspection becomes possible.

なお、本実施の形態では光源装置5に備えられた遮光部と透光部とにより形成されるドットパターン8は、検査を行う光学デバイスの種類によりドットのサイズ、ピッチ、形状、配列等を変更してもよい。ドットパターン8の変更方法としては、光源装置5にドッドの表示手段を備えるか、光源装置5に設けられたドットパターンが形成された部材を交換する形態のいずれでも良い。   In the present embodiment, the dot pattern 8 formed by the light shielding portion and the light transmitting portion provided in the light source device 5 changes the dot size, pitch, shape, arrangement, etc. depending on the type of optical device to be inspected. May be. As a method for changing the dot pattern 8, any of a mode in which the light source device 5 is provided with a dot display means or a member on which the dot pattern provided in the light source device 5 is formed may be replaced.

本発明に係わる欠陥検査装置の構成を示した斜視図。The perspective view which showed the structure of the defect inspection apparatus concerning this invention. 光学デバイスを撮像して検査を行う様子を模式的に示した側面図。The side view which showed typically a mode that the optical device was imaged and it test | inspects. 光学デバイスに焦点を合わせた後に光学デバイスを撮像手段で撮像した画像を示した図。The figure which showed the image which imaged the optical device with the imaging means after focusing on the optical device. 図3の位置から光源装置を移動させた際に光学デバイスを撮像手段で撮像した画像を示した図。The figure which showed the image which imaged the optical device with the imaging means when moving the light source device from the position of FIG. 欠陥のある光学デバイスを撮像した画像の一例を示した図。The figure which showed an example of the image which imaged the optical device with a defect.

符号の説明Explanation of symbols

1…欠陥検査装置,2…被検査レンズ(光学デバイス),3…撮像手段,4…移動手段,5…光源装置,6…トレイ,7…制御手段,7A…モニター(表示手段),8…ドットパターン(パターン),8A…遮光部,8B・・・透光部,10A、10B、10C…画像,11…歪み DESCRIPTION OF SYMBOLS 1 ... Defect inspection apparatus, 2 ... Lens to be inspected (optical device), 3 ... Imaging means, 4 ... Moving means, 5 ... Light source device, 6 ... Tray, 7 ... Control means, 7A ... Monitor (display means), 8 ... Dot pattern (pattern), 8A ... light-shielding portion, 8B ... translucent portion, 10A, 10B, 10C ... image, 11 ... distortion

Claims (5)

遮光部と透光部とにより形成されるパターンを備えた光源装置より前記パターンを透過させて光学デバイスの一方の面へ光を照射し、前記光学デバイスの光が照射される面の反対側の面より前記光学デバイスを撮像手段で撮像することにより前記光学デバイスの欠陥を検査する光学デバイス欠陥検査方法において、
前記撮像手段の焦点を前記光学デバイスに合わせ、該撮像手段により撮像される前記光学デバイスの画像内の前記遮光部と前記透光部との濃度差が無くなる位置まで前記光源装置を移動させ、濃度差の無い前記画像内に生じる該画像の歪みにより該光学デバイスの欠陥を検出することを特徴とする光学デバイス欠陥検査方法。
A light source device having a pattern formed by a light-shielding part and a light-transmitting part transmits the pattern to irradiate light on one surface of the optical device. In the optical device defect inspection method for inspecting the defect of the optical device by imaging the optical device from the surface by the imaging means,
Focusing the imaging unit on the optical device, moving the light source device to a position where there is no density difference between the light shielding unit and the light transmitting unit in the image of the optical device imaged by the imaging unit, An optical device defect inspection method, comprising: detecting a defect of the optical device based on distortion of the image generated in the image having no difference.
前記光学デバイスは単一の非球面凸レンズであることを特徴とする請求項1に記載の光学デバイス欠陥検査方法。   The optical device defect inspection method according to claim 1, wherein the optical device is a single aspherical convex lens. 前記パターンはドットパターンであることを特徴とする請求項1または請求項2に記載の光学デバイス欠陥検査方法。   The optical device defect inspection method according to claim 1, wherein the pattern is a dot pattern. 前記撮像手段は前記光学デバイスに焦点を合わせた後、該光学デバイスの軸方向又は軸方向に対して直交する方向であって該光学デバイスの近傍に焦点位置を移動させてから該光学デバイスを撮像することを特徴とする請求項1、2、または3のいずれか1項に記載の光学デバイス欠陥検査方法。   The imaging means focuses the optical device, and then moves the focal position in the vicinity of the optical device in the axial direction of the optical device or in a direction orthogonal to the axial direction, and then images the optical device. The optical device defect inspection method according to any one of claims 1, 2, and 3. 光学デバイスを一方から撮像する撮像手段と、
遮光部と透光部とにより形成されるパターンを備え、前記撮像手段が前記光学デバイスを撮像する面の反対側の面から前記パターンを透過させて該光学デバイスへ光を照射する光源装置と、
前記撮像手段と前記光源装置との間に位置し、前記光学デバイスが載置されるトレイと、
前記光源装置を移動させる移動手段と、
前記撮像手段により撮像された画像を表示する表示手段が設けられた制御手段と、を備え、
前記光学デバイスに焦点を合わせた前記撮像手段より撮像され、前記表示手段に表示された該光学デバイスの画像内の前記遮光部と前記透光部との濃度差が無くなる位置まで前記光源装置を移動させ、濃度差の無い前記画像内に生じる該画像の歪みにより該光学デバイスの欠陥を検出する光学デバイス欠陥検査装置。
Imaging means for imaging the optical device from one side;
A light source device comprising a pattern formed by a light-shielding part and a light-transmitting part, wherein the imaging means transmits the pattern from a surface opposite to the surface on which the optical device is imaged and irradiates the optical device with light;
A tray located between the imaging means and the light source device, on which the optical device is placed;
Moving means for moving the light source device;
Control means provided with display means for displaying an image picked up by the image pickup means,
The light source device is moved to a position where there is no difference in density between the light shielding portion and the light transmitting portion in the image of the optical device picked up by the imaging means focused on the optical device and displayed on the display means. An optical device defect inspection apparatus for detecting defects of the optical device by distortion of the image generated in the image having no density difference.
JP2008074398A 2008-03-21 2008-03-21 Optical device defect inspection method and optical device defect inspection apparatus Active JP5281815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074398A JP5281815B2 (en) 2008-03-21 2008-03-21 Optical device defect inspection method and optical device defect inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074398A JP5281815B2 (en) 2008-03-21 2008-03-21 Optical device defect inspection method and optical device defect inspection apparatus

Publications (2)

Publication Number Publication Date
JP2009229221A true JP2009229221A (en) 2009-10-08
JP5281815B2 JP5281815B2 (en) 2013-09-04

Family

ID=41244799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074398A Active JP5281815B2 (en) 2008-03-21 2008-03-21 Optical device defect inspection method and optical device defect inspection apparatus

Country Status (1)

Country Link
JP (1) JP5281815B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229422A (en) * 2008-03-25 2009-10-08 Fujifilm Corp Optical device defect inspection method and optical device defect inspecting apparatus
CN112683493A (en) * 2019-10-18 2021-04-20 江西晶润光学有限公司 Light-transmitting device detection system
CN115436018A (en) * 2021-06-04 2022-12-06 九骅科技股份有限公司 Optical detection system
CN115876784A (en) * 2023-01-31 2023-03-31 眉山博雅新材料股份有限公司 Workpiece defect detection method, system and equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223746A (en) * 1992-02-12 1993-08-31 Toyo Glass Co Ltd Method and device for detecting defect of transparent object
JPH0674907A (en) * 1992-06-26 1994-03-18 Central Glass Co Ltd Detection method for defect of tranparent plate-like body
JPH08220021A (en) * 1995-02-10 1996-08-30 Central Glass Co Ltd Defect detecting method for transparent plate-shaped body
JPH0961291A (en) * 1995-08-29 1997-03-07 Asahi Optical Co Ltd Apparatus for testing optical parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05223746A (en) * 1992-02-12 1993-08-31 Toyo Glass Co Ltd Method and device for detecting defect of transparent object
JPH0674907A (en) * 1992-06-26 1994-03-18 Central Glass Co Ltd Detection method for defect of tranparent plate-like body
JPH08220021A (en) * 1995-02-10 1996-08-30 Central Glass Co Ltd Defect detecting method for transparent plate-shaped body
JPH0961291A (en) * 1995-08-29 1997-03-07 Asahi Optical Co Ltd Apparatus for testing optical parts

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229422A (en) * 2008-03-25 2009-10-08 Fujifilm Corp Optical device defect inspection method and optical device defect inspecting apparatus
CN112683493A (en) * 2019-10-18 2021-04-20 江西晶润光学有限公司 Light-transmitting device detection system
CN115436018A (en) * 2021-06-04 2022-12-06 九骅科技股份有限公司 Optical detection system
CN115876784A (en) * 2023-01-31 2023-03-31 眉山博雅新材料股份有限公司 Workpiece defect detection method, system and equipment

Also Published As

Publication number Publication date
JP5281815B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP4224863B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
JP4550610B2 (en) Lens inspection device
JP2011089826A (en) Internal surface defect inspection apparatus of screw hole or hole
JP2010071845A (en) Inspection device
JP2012002676A (en) Mask defect checking device and mask defect checking method
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
JP5281815B2 (en) Optical device defect inspection method and optical device defect inspection apparatus
JP5388467B2 (en) Optical device defect inspection method and optical device defect inspection apparatus
WO2015174114A1 (en) Substrate inspection device
JP5042503B2 (en) Defect detection method
KR20090107314A (en) Apparatus for inspecting surface and method for inspecting surface
JP2007205828A (en) Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method
JP6574674B2 (en) Coating inspection device and inspection method
JP2009236760A (en) Image detection device and inspection apparatus
JP2008275496A (en) Defect detection method and device of foam roller
KR102237593B1 (en) Optical device for inspecting glass surface
JP2004212353A (en) Optical inspection apparatus
JP2008241662A (en) Image stabilizing device
JP2008014714A (en) Flaw inspection method
JP2006258649A (en) Surface inspection device
JP2008014822A (en) Inspection device for plate body
JPH11101712A (en) Panel surface inspection device
JP4679995B2 (en) Defect detection method and apparatus
JP2016070724A (en) Device and method for inspecting wiring on substrate
WO2004057297A1 (en) Method and apparatus for automatic optical inspection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250