JP2008014714A - Flaw inspection method - Google Patents

Flaw inspection method Download PDF

Info

Publication number
JP2008014714A
JP2008014714A JP2006184662A JP2006184662A JP2008014714A JP 2008014714 A JP2008014714 A JP 2008014714A JP 2006184662 A JP2006184662 A JP 2006184662A JP 2006184662 A JP2006184662 A JP 2006184662A JP 2008014714 A JP2008014714 A JP 2008014714A
Authority
JP
Japan
Prior art keywords
imaging
angle
inspection
image
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006184662A
Other languages
Japanese (ja)
Inventor
Yutaka Uchiki
裕 内木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006184662A priority Critical patent/JP2008014714A/en
Publication of JP2008014714A publication Critical patent/JP2008014714A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspection method which enables the certain and easy extraction of a defocusing region by photographing the image of an inspection target, especially the regular reflected image thereof. <P>SOLUTION: In the flaw inspection method is constituted so as to inspect the flaw of the inspection target using an imaging system equipped with an irradiator for irradiating the inspection target with illumination light and an imaging device for photographing the image of the inspection target on the basis of at least the light from the inspection target, and includes the step of calculating the incident angle of the irradiator, which satisfies a condition for totally reflecting the illumination light by the surface of the inspection target and the imaging angle of the imaging device, which images a diffracted light at this time, using a flaw-free target and storing the incident angle and the imaging angle along with a reference image and the step of setting the illumination angle of the irradiator to the incident angle and imaging the inspection target at the imaging angle of the imaging device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、欠陥検査方法に関する。   The present invention relates to a defect inspection method.

例えば半導体製造工程においては、半導体ウェハ表面における傷、ダスト、むら、汚れなどを検出するためにマクロ検査が行われている。このマクロ検査では、半導体ウェハ表面に照明光を照射し、その正反射光、回折光、或いは干渉光等による画像を撮像装置により撮像し、その画像データを画像処理することによって半導体ウェハ表面における傷、ダスト、むら、汚れなどを検出している(例えば、特許文献1:特開平9−61365号公報参照)。   For example, in a semiconductor manufacturing process, macro inspection is performed to detect scratches, dust, unevenness, dirt, and the like on the surface of a semiconductor wafer. In this macro inspection, the surface of the semiconductor wafer is irradiated with illumination light, an image of the specularly reflected light, diffracted light, interference light, or the like is picked up by an image pickup device, and the image data is subjected to image processing to thereby damage the surface of the semiconductor wafer. , Dust, unevenness, dirt, and the like are detected (see, for example, Patent Document 1: Japanese Patent Laid-Open No. 9-61365).

上記のような半導体ウェハの検査において、半導体ウェハのデフォーカスを撮像するのにウェハパターンからの回折光による画像を撮像する方法が一般的に行われている。しかし、回折光による検査では、表面層からの回折光とそれよりも下の層(下地)からの回折光との区別が出来ないために、撮像レシピの作成に時間と手間が掛かるという問題がある。
特開平9−61365号公報
In the inspection of a semiconductor wafer as described above, a method of capturing an image by diffracted light from a wafer pattern is generally performed to image defocusing of the semiconductor wafer. However, in the inspection using diffracted light, it is impossible to distinguish between the diffracted light from the surface layer and the diffracted light from the lower layer (underlying layer), so that it takes time and effort to create an imaging recipe. is there.
JP-A-9-61365

本発明は、検査対象物の画像、特に正反射像を撮像してデフォーカス部位を確実且つ容易に抽出することができる欠陥検査方法を提供することを目的とする。   An object of the present invention is to provide a defect inspection method capable of reliably and easily extracting a defocused part by capturing an image of an inspection object, particularly a specular reflection image.

本発明の局面に係る発明は、検査対象物に照明を照射する照射装置と、少なくとも前記検査対象物からの光に基づいて検査対象物の画像を撮像する撮像装置とを備えた撮像系を用いて前記検査対象物の欠陥検査を行う欠陥検査方法において、欠陥のない対象物を用いて、照明光が検査対象物表面で全反射する条件を満たす前記照射装置の入射角度と、その時の回折光を撮像することが可能な前記撮像装置の撮像角度とを求め、参照画像と共に前記入射角度と前記撮像角度とを記憶するステップと、前記照射装置の照明角度を前記入射角度に設定し、前記撮像装置の撮像角度で検査対象物を撮像するステップと、を具備する。   The invention according to an aspect of the present invention uses an imaging system that includes an irradiation device that illuminates an inspection target and an imaging device that captures an image of the inspection target based on at least light from the inspection target. In the defect inspection method for performing the defect inspection of the inspection object, the incident angle of the irradiation device that satisfies the condition that the illumination light is totally reflected on the surface of the inspection object using the object having no defect, and the diffracted light at that time The imaging angle of the imaging device capable of imaging the image is obtained, the incident angle and the imaging angle are stored together with a reference image, the illumination angle of the irradiation device is set to the incident angle, and the imaging Imaging an inspection object at an imaging angle of the apparatus.

本発明によれば、下地パターンによる回折光に影響されず表面パターンによる回折光を安定して撮像可能な欠陥検査装置を提供することができる。また、回折光を撮像せずともデフォーカス検査が可能となり、パターンピッチ微細化によって回折光がウェハ表面から出てこなくなった場合でも欠陥抽出が可能になる。   ADVANTAGE OF THE INVENTION According to this invention, the defect inspection apparatus which can image stably the diffracted light by a surface pattern without being influenced by the diffracted light by a base pattern can be provided. In addition, defocus inspection can be performed without imaging diffracted light, and defect extraction can be performed even when diffracted light does not come out of the wafer surface due to pattern pitch miniaturization.

図面を参照して本発明の実施の形態を説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る欠陥検査方法に適用される欠陥検査装置の概略構成を示す図である。また、図2は、図1の2−2断面図である。
Embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a defect inspection apparatus applied to the defect inspection method according to the first embodiment of the present invention. 2 is a cross-sectional view taken along the line 2-2 of FIG.

図1に示すように、欠陥検査装置は、線状の照明が可能な照明部30と、前記照明部30に対応して設けられ、撮像素子が線状に配置された撮像部35とを備えている。ガラス基板や半導体ウェハ等の検査対象物31は、例えば、矢印X方向に移動可能な図示しない搭載台(検査ステージ)に載置されている。そして、照明部30から、出射された光(以下、本明細書において「入射光」と称する。また、入射光の光軸を「入射光軸」と称する)が検査対象物31に照射され、検査対象物31から正反射、回折或いは干渉された光(以下、本明細書において単に「反射光」と称する。また、反射光の光軸を「反射光軸」と称する)が撮像部35に入射し、撮像部35によって撮像された画像に基づいて、検査対象物31の表面に欠陥があるか否か、欠陥の種類、検査対象物の良否を判定する欠陥検査が行われる。この場合において、検査対象物31を、X方向に一定の速度で移動させながら、照明部30及び撮像部35により検査対象物31に対して走査することで、1回の走査で検査対象物31の表面の画像を取得することができる。   As shown in FIG. 1, the defect inspection apparatus includes an illumination unit 30 capable of linear illumination, and an imaging unit 35 provided corresponding to the illumination unit 30 and in which imaging elements are arranged in a line. ing. An inspection object 31 such as a glass substrate or a semiconductor wafer is placed on a mounting table (inspection stage) (not shown) that can move in the direction of arrow X, for example. Then, light emitted from the illumination unit 30 (hereinafter referred to as “incident light” in the present specification. The optical axis of the incident light is referred to as “incident optical axis”) is applied to the inspection object 31, Light that is specularly reflected, diffracted or interfered from the inspection object 31 (hereinafter simply referred to as “reflected light” in the present specification, and the optical axis of the reflected light is referred to as “reflected optical axis”) is input to the imaging unit 35. Based on the image incident and imaged by the imaging unit 35, a defect inspection is performed to determine whether the surface of the inspection object 31 has a defect, the type of defect, and the quality of the inspection object. In this case, the inspection object 31 is scanned by the illumination unit 30 and the imaging unit 35 while moving the inspection object 31 at a constant speed in the X direction. An image of the surface can be acquired.

照明部30は、ライン照明部32とシリンドリカルレンズ33とを備え、検査対象物31に対して入射角θで検査対象物31の表面を照明する。照明部30には、光ファイバ束32aを介して照明用の光源が接続されており、この照明用の光源にはハロゲンランプと熱線吸収フィルタとコンデンサレンズとを内部に備えたランプハウスが用いられている。ライン照明部32は、ファイバ束32aの端面を直線状に1列又は複数列並べて構成されており、この端面に平行に離間した位置にシリンドリカルレンズ33が配置されている。 Lighting unit 30 is provided with a line illumination portion 32 and the cylindrical lens 33 and illuminates the surface of the test object 31 at an incident angle theta 1 with respect to the inspection object 31. A light source for illumination is connected to the illumination unit 30 via an optical fiber bundle 32a, and a lamp house having a halogen lamp, a heat ray absorption filter, and a condenser lens inside is used as the illumination light source. ing. The line illumination unit 32 is configured by linearly arranging one or more end faces of the fiber bundle 32a, and a cylindrical lens 33 is disposed at a position spaced parallel to the end face.

正反射像を得る場合には、撮像部35の反射光軸が照明部30の入射光軸の入射角と同じになる反射角度θに設定される。撮像部35は、ロッドレンズアレイ36とリニアイメージセンサ37とを備えている。ロッドレンズアレイ36は、照明部30によって照明された検査対象物31の直線状の領域の像をリニアイメージセンサ37上に結像する。 When obtaining a specular reflection image, the reflection optical axis of the imaging unit 35 is set to a reflection angle θ 2 that is the same as the incident angle of the incident optical axis of the illumination unit 30. The imaging unit 35 includes a rod lens array 36 and a linear image sensor 37. The rod lens array 36 forms an image of a linear region of the inspection object 31 illuminated by the illumination unit 30 on the linear image sensor 37.

また、反射光軸上には、フィルタ部34が配置されており、検査対象物31からの反射光のうち特定の波長の光のみを通過させる。このフィルタ部34は複数の波長のバンドパスフィルタを光軸上に任意に出し入れすることにより、所望の波長の光を通過させることが可能となっている。   In addition, a filter unit 34 is disposed on the reflected optical axis, and allows only light having a specific wavelength among the reflected light from the inspection object 31 to pass therethrough. The filter unit 34 can pass light of a desired wavelength by arbitrarily putting in and out a band pass filter of a plurality of wavelengths on the optical axis.

なお、照明部30の入射角θ及び撮像部35の反射角θは可変であり、所定の角度毎に段階的或いは連続的に変化させることができる。 Note that the incident angle θ 1 of the illumination unit 30 and the reflection angle θ 2 of the imaging unit 35 are variable, and can be changed stepwise or continuously for each predetermined angle.

上記のように構成された欠陥検査装置において、ウェハ表面に対して照明を入射角度θで照射した時、ウェハ表面に対して出射角度θの出射光を撮像するよう光学系を設定する。ここで、θ=θである場合には、いわゆる正反射光を撮像することになる。この場合において、−90°≦θ=θ≦90°の範囲で撮像角度と照明角度を変化させて、ウェハを撮像した時の撮像角度に対するウェハ上の輝度変化特性を図3に示す。なお、ウェハパターンによって特性形状は異なる。 In the defect inspection apparatus configured as described above, the optical system is set so as to image the emitted light with the exit angle θ 2 on the wafer surface when the wafer surface is illuminated with the incident angle θ 1 . Here, when θ 1 = θ 2 , so-called regular reflection light is imaged. In this case, FIG. 3 shows luminance change characteristics on the wafer with respect to the imaging angle when the imaging angle and the illumination angle are changed in the range of −90 ° ≦ θ 1 = θ 2 ≦ 90 ° and the wafer is imaged. The characteristic shape varies depending on the wafer pattern.

図3において、A部(約52度の撮像角度)より左の部分における輝度はウェハ表面を透過して下地で反射した光との干渉現象の影響である周期で振動する正弦波のような特性を示す。この場合において、輝度の絶対値が異なるのは、カメラの波長感度特性と照明光の波長成分の影響である。しかし、A部より右の部分(すなわち、撮像角度が約52度より大きくなった場合)では、撮像角度が変わってもほぼ同等又はそれ以上の輝度を維持している。これはウェハの表面層を透過する成分がなくなり、ウェハの表面層で全反射が起きていることを意味する。   In FIG. 3, the luminance in the portion to the left of the portion A (imaging angle of about 52 degrees) is a characteristic like a sine wave that vibrates at a period that is an influence of an interference phenomenon with light transmitted through the wafer surface and reflected by the base. Indicates. In this case, the absolute value of the brightness is different due to the influence of the wavelength sensitivity characteristic of the camera and the wavelength component of the illumination light. However, in the portion to the right of part A (that is, when the imaging angle is greater than about 52 degrees), the luminance is substantially equal or higher even if the imaging angle changes. This means that there is no component transmitted through the surface layer of the wafer, and total reflection occurs in the surface layer of the wafer.

従って、全反射する角度でウェハ表面パターンに対して照明し、その時の回折光をカメラで撮像すると、表面パターンからの回折光のみを撮像できることになる。すなわち、全反射する角度でウェハ表面パターンに対して照明して、その回折光を撮像することで、下地の回折光を誤って撮像することなく表面のみの回折光を安定して撮像することができる。具体的な、処理の流れは以下の通りである。   Accordingly, when the wafer surface pattern is illuminated at an angle that causes total reflection and the diffracted light at that time is imaged by the camera, only the diffracted light from the surface pattern can be imaged. In other words, by illuminating the wafer surface pattern at a totally reflecting angle and imaging the diffracted light, it is possible to stably image the diffracted light only on the surface without erroneously imaging the diffracted light of the base. it can. The specific processing flow is as follows.

まず、レシピ作成時に照明光がウェハ表面で全反射する条件を満たす入射角度θと、その時の回折光を撮像することが可能なカメラ角度θとを求めて、設定パラメータとして図示しない記憶部に記憶しておく。また、その時の良品ウェハ画像をリフアレンスウェハデータとして記憶する。
次に、レシピにあらかじめ記憶されている角度θに照明角度を設定し、θにカメラ角度を設定して検査対象ウェハを撮像する。
そして、撮像した検査対象ウェハ画像とリファレンスウェハデータを比較して欠陥抽出を行い。検査対象ウェハの良/不良を決定する。
First, an incident angle θ 1 that satisfies the condition that the illumination light is totally reflected on the wafer surface at the time of recipe creation and a camera angle θ 2 that can capture the diffracted light at that time are obtained, and a storage unit (not shown) is set as a setting parameter. Remember it. Further, the non-defective wafer image at that time is stored as reference wafer data.
Next, an illumination angle is set to an angle θ 1 stored in advance in the recipe, and a camera angle is set to θ 2 to image a wafer to be inspected.
Then, defect extraction is performed by comparing the imaged wafer image to be inspected with reference wafer data. Determine good / bad of wafer to be inspected.

上記のように、全反射による表面のみの回折光を安定して撮像することにより、誤ってウェハの下地層による回折光を撮像することがなくなる。   As described above, by stably imaging only the diffracted light on the surface due to total reflection, the diffracted light by the underlayer of the wafer is not erroneously imaged.

(第2の実施形態)
本第2の実施形態に係る欠陥検査装置の構成は、第1の実施形態のそれと同じであるので、図示及び説明を省略する。
上述したように、光学系を正反射撮像用の設定とし、その状態でウェハに対して撮像角度と照明角をそれぞれ同じ角度ずつ変化させると図3のような特性を示す。しかし、正常パターン部分とデフォーカス部分とでは、例えば図4に示すように、撮像角度を変化させたときにおける輝度の変化特性が異なっていることを示すことが知られている。図4において、実線は正常パターンにおける輝度の変化を示し、破線はデフォーカスパターンにおける輝度の変化を示している。
(Second Embodiment)
Since the configuration of the defect inspection apparatus according to the second embodiment is the same as that of the first embodiment, illustration and description thereof are omitted.
As described above, when the optical system is set for regular reflection imaging, and the imaging angle and illumination angle are changed by the same angle with respect to the wafer in this state, the characteristics shown in FIG. 3 are obtained. However, it is known that the normal pattern portion and the defocus portion show different luminance change characteristics when the imaging angle is changed, as shown in FIG. 4, for example. In FIG. 4, a solid line indicates a change in luminance in the normal pattern, and a broken line indicates a change in luminance in the defocus pattern.

従来のリファレンスウェハ比較方式による欠陥検査では、基本的に1枚の撮像画像と1枚のリファレンス画像との輝度差で欠陥を抽出しているが、この輝度差が小さい場合には、その他の部位の疑似欠陥に埋もれて、欠陥を見逃してしまう可能性が高い。しかし、撮像画像の各画素に、図4のような特性情報も併せて持たせることによって、その画素の特徴を強調させることができる。このため、回折光を撮像することなく正反射光の撮像で欠陥部位を安定して抽出することが可能となる。第2の実施形態の具体的な処理の流れは、以下の通りである。   In the defect inspection by the conventional reference wafer comparison method, the defect is basically extracted by the luminance difference between one captured image and one reference image. If this luminance difference is small, other parts are extracted. There is a high possibility that the defect will be overlooked by being buried in the pseudo defect. However, by giving each pixel of the captured image also characteristic information as shown in FIG. 4, the feature of the pixel can be emphasized. For this reason, it becomes possible to extract a defective part stably by imaging regular reflection light, without imaging diffracted light. The specific processing flow of the second embodiment is as follows.

まず、レシピ作成時に光学系を正反射撮像用の状態で、ウェハに対して撮像角度と照明角をそれぞれ同じ角度ずつ変化させた時の各画素における輝度変化特性を取得して、各画素単位で上記輝度変化特性を記憶する。ここで、欠陥部位と正常部位とでは特性(すなわち、撮像角度に対する輝度の変化)が異なる。   First, when the recipe is created with the optical system in the state for specular reflection imaging, the luminance change characteristics in each pixel when the imaging angle and illumination angle are changed by the same angle with respect to the wafer are obtained, and each pixel unit is obtained. The luminance change characteristic is stored. Here, the characteristic (that is, the change in luminance with respect to the imaging angle) differs between the defective part and the normal part.

欠陥抽出時に、リファレンス画像と撮像画像との比較を輝度の比較のみでなく上記輝度変化特性の形状の違いも合わせて比較することで欠陥部位と正常部位の違いを検出する。これにより、正反射光を撮像してデフォーカス部位を抽出することが出来る。   At the time of defect extraction, the difference between the defective part and the normal part is detected by comparing the reference image and the captured image with not only the luminance comparison but also the difference in the shape of the luminance change characteristic. As a result, the defocused part can be extracted by imaging the specularly reflected light.

本発明は、上記各実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記各実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements.

また、例えば各実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   In addition, for example, even if some structural requirements are deleted from all the structural requirements shown in each embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the effect of the invention Can be obtained as an invention.

本発明の第1の実施形態に係る欠陥検査方法に適用される欠陥検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the defect inspection apparatus applied to the defect inspection method which concerns on the 1st Embodiment of this invention. 図1の2−2断面図である。It is 2-2 sectional drawing of FIG. −90°≦θ=θ≦90°の範囲で撮像角度と照明角度を変化させて、ウェハを撮像した時の撮像角度に対するウェハ上の輝度変化特性を示す図である。It is a figure which shows the luminance change characteristic on a wafer with respect to the imaging angle when the imaging angle and the illumination angle are changed in the range of −90 ° ≦ θ 1 = θ 2 ≦ 90 ° to image the wafer. 撮像角度を変化させたときにおける輝度の変化特性が異なっている例を示す図である。It is a figure which shows the example from which the change characteristic of a brightness | luminance when changing an imaging angle is different.

符号の説明Explanation of symbols

30…照明部
31…検査対象物
32…ライン照明部
32a…光ファイバ束
33…シリンドリカルレンズ
34…フィルタ部
35…撮像部
36…ロッドレンズアレイ
37…リニアイメージセンサ
DESCRIPTION OF SYMBOLS 30 ... Illumination part 31 ... Test object 32 ... Line illumination part 32a ... Optical fiber bundle 33 ... Cylindrical lens 34 ... Filter part 35 ... Imaging part 36 ... Rod lens array 37 ... Linear image sensor

Claims (4)

検査対象物に照明を照射する照射装置と、少なくとも前記検査対象物からの光に基づいて検査対象物の画像を撮像する撮像装置とを備えた撮像系を用いて前記検査対象物の欠陥検査を行う欠陥検査方法において、
欠陥のない対象物を用いて、照明光が検査対象物表面で全反射する条件を満たす前記照射装置の入射角度と、その時の回折光を撮像することが可能な前記撮像装置の撮像角度とを求め、参照画像と共に前記入射角度と前記撮像角度とを記憶するステップと、
前記照射装置の照明角度を前記入射角度に設定し、前記撮像装置の撮像角度で検査対象物を撮像するステップと、を具備することを特徴とする欠陥検査方法。
Defect inspection of the inspection object using an imaging system including an irradiation device that illuminates the inspection object and an imaging device that captures an image of the inspection object based on at least light from the inspection object In the defect inspection method to be performed,
Using an object having no defect, the incident angle of the irradiation device that satisfies the condition that the illumination light is totally reflected on the surface of the inspection object, and the imaging angle of the imaging device capable of imaging the diffracted light at that time Determining and storing the incident angle and the imaging angle together with a reference image;
And setting the illumination angle of the irradiation device to the incident angle, and imaging the inspection object at the imaging angle of the imaging device.
検査対象物に照明を照射する照射装置と、少なくとも前記検査対象物からの光に基づいて検査対象物の画像を撮像する撮像装置とを備えた撮像系を用いて前記検査対象物の欠陥検査を行う欠陥検査方法において、
欠陥のない対象物を用いて、前記照射装置の入射角度と、前記撮像装置の撮像角度とを変化させながら参照画像を撮像して画素毎の第1の輝度変化特性を取得するステップと、
検査対象物を、前記欠陥のない対象物と同様の条件で、検査画像を撮像して画素毎の第2の輝度変化特性を取得するステップと、
前記第1の輝度特性と前記第2の輝度特性とを比較するステップと、を具備することを特徴とする欠陥検査方法。
Defect inspection of the inspection object using an imaging system including an irradiation device that illuminates the inspection object and an imaging device that captures an image of the inspection object based on at least light from the inspection object In the defect inspection method to be performed,
Capturing a reference image while changing an incident angle of the irradiation device and an imaging angle of the imaging device using an object having no defect, and obtaining a first luminance change characteristic for each pixel;
Capturing an inspection image of the inspection object under the same conditions as the object having no defect to obtain a second luminance change characteristic for each pixel;
Comparing the first luminance characteristic with the second luminance characteristic, a defect inspection method comprising:
請求項2に記載の欠陥検査方法において、画素毎の輝度の比較を行うステップを更に具備することを特徴とする欠陥検査方法。 The defect inspection method according to claim 2, further comprising a step of comparing luminance for each pixel. 請求項2又は請求項3に記載の欠陥検査方法において、前記入射角度と前記撮像角度とを同じ角度に設定することを特徴とする欠陥検査方法。 4. The defect inspection method according to claim 2 or 3, wherein the incident angle and the imaging angle are set to the same angle.
JP2006184662A 2006-07-04 2006-07-04 Flaw inspection method Withdrawn JP2008014714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184662A JP2008014714A (en) 2006-07-04 2006-07-04 Flaw inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184662A JP2008014714A (en) 2006-07-04 2006-07-04 Flaw inspection method

Publications (1)

Publication Number Publication Date
JP2008014714A true JP2008014714A (en) 2008-01-24

Family

ID=39071874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184662A Withdrawn JP2008014714A (en) 2006-07-04 2006-07-04 Flaw inspection method

Country Status (1)

Country Link
JP (1) JP2008014714A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021056A (en) * 2011-07-08 2013-01-31 Disco Abrasive Syst Ltd Processing apparatus
WO2021261319A1 (en) * 2020-06-25 2021-12-30 日本板硝子株式会社 Rod lens array, optical equipment, image sensor, printer, inspection device, mother glass composition for refractive index distribution-type rod lens, and manufacturing method of refractive index distribution-type rod lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021056A (en) * 2011-07-08 2013-01-31 Disco Abrasive Syst Ltd Processing apparatus
KR101848511B1 (en) * 2011-07-08 2018-04-12 가부시기가이샤 디스코 Processing apparatus
WO2021261319A1 (en) * 2020-06-25 2021-12-30 日本板硝子株式会社 Rod lens array, optical equipment, image sensor, printer, inspection device, mother glass composition for refractive index distribution-type rod lens, and manufacturing method of refractive index distribution-type rod lens

Similar Documents

Publication Publication Date Title
JP4908925B2 (en) Wafer surface defect inspection apparatus and method
JP4351522B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
US20070237385A1 (en) Defect inspection apparatus
US6928185B2 (en) Defect inspection method and defect inspection apparatus
JP5585615B2 (en) Inspection apparatus and inspection method
JP2006005360A (en) Method and system for inspecting wafer
JP2011047724A (en) Apparatus and method for inspecting defect
JP2001013085A (en) Flow inspection apparatus
JP5610462B2 (en) Inspection method and inspection apparatus based on photographed image
JP2013061185A (en) Pattern inspection device and pattern inspection method
JP6505776B2 (en) Defect detection apparatus, defect detection method, wafer, semiconductor chip, die bonder, semiconductor manufacturing method, and semiconductor device manufacturing method
JP2008032433A (en) Substrate inspection device
JP2006292412A (en) Surface inspection system, surface inspection method and substrate manufacturing method
KR100862883B1 (en) Apparatus for inspection of semiconductor device and method for inspection using the same
JP5500427B2 (en) Surface inspection apparatus and surface inspection method
JP2009097928A (en) Defect inspecting device and defect inspection method
JP2007205828A (en) Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method
US6970238B2 (en) System for inspecting the surfaces of objects
JP2008014714A (en) Flaw inspection method
JP2001165632A (en) Inspection device and inspection method
JP2009229221A (en) Optical device defect inspection method and optical device defect inspecting apparatus
JP2005077272A (en) Method for inspecting defect
JP2007147376A (en) Inspection device
TWI686673B (en) Inspection Method
JP4924931B2 (en) Stencil mask inspection method and apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006