JP5250395B2 - Inspection device - Google Patents

Inspection device Download PDF

Info

Publication number
JP5250395B2
JP5250395B2 JP2008295036A JP2008295036A JP5250395B2 JP 5250395 B2 JP5250395 B2 JP 5250395B2 JP 2008295036 A JP2008295036 A JP 2008295036A JP 2008295036 A JP2008295036 A JP 2008295036A JP 5250395 B2 JP5250395 B2 JP 5250395B2
Authority
JP
Japan
Prior art keywords
inspection apparatus
light
amount
shift
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008295036A
Other languages
Japanese (ja)
Other versions
JP2010123700A (en
Inventor
克弥 鈴木
俊郎 久保
孝広 神宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008295036A priority Critical patent/JP5250395B2/en
Publication of JP2010123700A publication Critical patent/JP2010123700A/en
Application granted granted Critical
Publication of JP5250395B2 publication Critical patent/JP5250395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

この発明は、検査装置に関するものである。例えば、半導体デバイスの製造工程で半導体ウエハの異物や傷等(以下、欠陥と称す。)を検査する方法,欠陥を検査する装置、及びそれらを用いた半導体デバイスの検査方法に関するものである。   The present invention relates to an inspection apparatus. For example, the present invention relates to a method for inspecting foreign matter or scratches (hereinafter referred to as defects) of a semiconductor wafer in a semiconductor device manufacturing process, an apparatus for inspecting defects, and a method for inspecting a semiconductor device using them.

従来の検査装置では、特開2007−279021号公報に示されているように、レーザ光の光強度を測定するためだけに、光強度測定機構を備えている。従来の半導体表面検査装置において、光強度測定機構を確認し、調整を行っていた。   A conventional inspection apparatus is provided with a light intensity measurement mechanism only for measuring the light intensity of laser light, as disclosed in Japanese Patent Application Laid-Open No. 2007-279021. In a conventional semiconductor surface inspection apparatus, the light intensity measurement mechanism has been confirmed and adjusted.

特開2007−279021号公報JP 2007-279021 A

従来の技術では、センサなどのカメラにより装置状態を調整時にモニタしているが、複数台の撮像装置(例えばカメラ)での補正は行われておらず、装置調整段階にセンサで照明光の明るさや位置を観察し、装置状態が最適になるように調整を行っていた。また、感度低下や部品交換を実施した際にセンサを用いて装置状態を復元するためにセンサを使用して調整を行う。これらのセンサは、照射光学系の状態をモニタするために使用することはなく調整時の状態復元に使用される。   In the conventional technique, the device state is monitored by a camera such as a sensor during adjustment, but correction is not performed by a plurality of imaging devices (for example, cameras), and the brightness of illumination light is detected by the sensor at the device adjustment stage. The sheath position was observed and adjustments were made to optimize the device state. Further, adjustment is performed using the sensor in order to restore the apparatus state using the sensor when the sensitivity is lowered or the parts are replaced. These sensors are not used for monitoring the state of the irradiation optical system but are used for restoring the state at the time of adjustment.

このような従来技術では、時間の経過とともに調整が最適状態から変動する点については配慮がなされていなかった。本発明の目的は、検査装置を容易に安定稼動させることである。   In such a conventional technique, no consideration has been given to the point that the adjustment varies from the optimum state over time. An object of the present invention is to easily and stably operate an inspection apparatus.

本発明の特徴は、複数の撮像装置を搭載することにある。   A feature of the present invention resides in that a plurality of imaging devices are mounted.

本発明の他の特徴は、前記複数の撮像装置の撮像結果に基づいて照射光学系からの光を調整するための調整量を算出する処理部を有することにある。   Another feature of the present invention is that it includes a processing unit that calculates an adjustment amount for adjusting light from the irradiation optical system based on imaging results of the plurality of imaging devices.

本発明のその他の特徴は、前記調整量に基づいて前記光を調整する調整機構を有することにある。   Another feature of the present invention resides in having an adjustment mechanism that adjusts the light based on the adjustment amount.

本発明によれば、安定した装置状態を実現することができる。   According to the present invention, a stable apparatus state can be realized.

図1に検査装置の構成を示す。検査装置は、試料(ウエハ等の基板を含む)を載置し、走査方向に移動する搬送系1111と、光101を基板に照射する照射光学系1112と、試料からの光102(散乱光,反射光等)を検出する検出光学系1113と、検出結果から試料の検査を行う検査処理系1114と、様々な情報を表示し、入力する入出力系1115と、を有する。   FIG. 1 shows the configuration of the inspection apparatus. The inspection apparatus places a sample (including a substrate such as a wafer) and moves a scanning system 1111 in the scanning direction, an irradiation optical system 1112 that irradiates the substrate with light 101, and light 102 (scattered light, A detection optical system 1113 for detecting reflected light, an inspection processing system 1114 for inspecting a sample from the detection result, and an input / output system 1115 for displaying and inputting various information.

より、具体的には、搬送系1111は試料を載置する載置部1116と、載置部を移動させる移動部1117とを含む。照射光学系1112は光を発生する光源1と、光を試料へ導く光学素子1118とを含む。検出光学系1113は、試料からの光を検出する光検出器1119を含むが、試料からの光を光検出器へ導く光学素子を含んでも良い。検査処理系1114は、光検出器の検出結果から試料の欠陥を検査する欠陥処理部1120を有する。入出力系1115は、検査結果や欠陥の情報を表示する表示部1121と、検査条件等を入力する入力部1122とを含む。   More specifically, the transport system 1111 includes a placement unit 1116 for placing the sample and a moving unit 1117 for moving the placement unit. The irradiation optical system 1112 includes a light source 1 that generates light and an optical element 1118 that guides the light to a sample. The detection optical system 1113 includes a photodetector 1119 that detects light from the sample, but may include an optical element that guides light from the sample to the photodetector. The inspection processing system 1114 includes a defect processing unit 1120 that inspects defects of the sample from the detection result of the photodetector. The input / output system 1115 includes a display unit 1121 for displaying inspection results and defect information, and an input unit 1122 for inputting inspection conditions and the like.

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

図2に、本発明の実施例である半導体ウエハの表面を検査する表面検査装置の構成を示す。   FIG. 2 shows the configuration of a surface inspection apparatus for inspecting the surface of a semiconductor wafer according to an embodiment of the present invention.

搬送系1111の載置部1116として試料8を置く(載置する)検査テーブル19を含み、走査部1117としてXYZθステージ9を含む。なお、搬送系1111はスピンドル等のモータと、ステージとを有し、回転と直進とを行う構成でも良い。照射光学系1112は光源1を含み、調整機構として光量調整機構2,光軸調整機構3、およびズーム機構5を含み、光学素子1118としてミラー6a,6b,6c,6d,レンズ7a,7bとを含む。検出光学系1113は光検出器1119として光電子増倍管等の検出器10を含む、その他、増幅器11,A/D変換器12を含む。検査処理系1114は欠陥処理部1120として欠陥判定機構13,検出欠陥分類機構14を含む。入出力系1115は表示部111を含む。   An inspection table 19 on which the sample 8 is placed (placed) is included as the mounting portion 1116 of the transport system 1111, and an XYZθ stage 9 is included as the scanning portion 1117. Note that the transport system 1111 may include a motor such as a spindle and a stage, and rotate and go straight. The irradiation optical system 1112 includes the light source 1, includes a light amount adjustment mechanism 2, an optical axis adjustment mechanism 3, and a zoom mechanism 5 as adjustment mechanisms, and includes mirrors 6 a, 6 b, 6 c, 6 d, and lenses 7 a, 7 b as optical elements 1118. Including. The detection optical system 1113 includes a detector 10 such as a photomultiplier tube as a photodetector 1119, and further includes an amplifier 11 and an A / D converter 12. The inspection processing system 1114 includes a defect determination mechanism 13 and a detected defect classification mechanism 14 as a defect processing unit 1120. The input / output system 1115 includes a display unit 111.

光源1から照射された光101は、λ/2波長板と偏光ビームスプリッタ(PBS)とで構成されたアテネータ等の明るさを調整することができる光量調整機構2,光軸を調整する光軸調整機構3、およびビームエキスパンダ等のズーム機構5を通り、試料8に照射される。光軸調整機構3には撮像装置の一例であるCCDカメラ4a(第1の撮像装置)が設置されている。ズーム機構5から照射された光は垂直斜方照射切り替えミラー6aで垂直光路または斜方光路に切り替えられる。垂直に分岐された光はハーフミラー6dを通過し、集光レンズ7aにて集光され試料8に照射される。試料8に照射された光は、反射し、集光レンズ7aを通り、ハーフミラー6dで分岐され、CCDカメラ4b(第2の撮像装置)に到達する。   The light 101 emitted from the light source 1 is a light amount adjusting mechanism 2 that can adjust the brightness of an attenuator or the like composed of a λ / 2 wavelength plate and a polarizing beam splitter (PBS), and an optical axis that adjusts the optical axis. The sample 8 is irradiated through the adjusting mechanism 3 and the zoom mechanism 5 such as a beam expander. The optical axis adjustment mechanism 3 is provided with a CCD camera 4a (first imaging device) which is an example of an imaging device. The light emitted from the zoom mechanism 5 is switched to the vertical optical path or the oblique optical path by the vertical oblique irradiation switching mirror 6a. The vertically branched light passes through the half mirror 6d, is condensed by the condenser lens 7a, and is irradiated onto the sample 8. The light irradiated on the sample 8 is reflected, passes through the condenser lens 7a, is branched by the half mirror 6d, and reaches the CCD camera 4b (second imaging device).

また、垂直斜方照射切り替えミラー6aが光路から抜けている場合は、ビームは斜方光路を進みミラー6b,6cで反射され集光レンズ7bにて試料面に照射される。試料8から反射した光は、垂直照射と同様に集光レンズ7aを通りCCDカメラ4bで撮像される。CCDカメラ4a,4bで撮像された画像は、画像解析部、およびフィードバック制御部15(処理部)に取り込まれ画像解析を行い、正しく調整された状態からのビームのずれに関する情報(例えば、光軸の水平方向のずれを示すシフト量,光軸の傾きのずれを示すチルト量,形状ずれ量、および明るさのずれ量)を算出し、光量調整機構2,光軸調整機構3、およびズーム機構5それぞれに調整量を指令する。   When the vertical oblique irradiation switching mirror 6a is out of the optical path, the beam travels along the oblique optical path, is reflected by the mirrors 6b and 6c, and is irradiated onto the sample surface by the condenser lens 7b. The light reflected from the sample 8 passes through the condenser lens 7a and is picked up by the CCD camera 4b as in the vertical irradiation. The images captured by the CCD cameras 4a and 4b are taken into the image analysis unit and the feedback control unit 15 (processing unit), perform image analysis, and information on the beam deviation from the correctly adjusted state (for example, the optical axis) , A shift amount indicating a horizontal shift, a tilt amount indicating a shift of the optical axis tilt, a shape shift amount, and a brightness shift amount) are calculated, and the light amount adjusting mechanism 2, the optical axis adjusting mechanism 3, and the zoom mechanism are calculated. 5 Command the adjustment amount to each.

より具体的には、光量調整機構2では、調整量に基づいて、例えばλ/2波長板が回転することになる。また、光軸調整機構3では、調整量に基づいて、後述するチルト機構103、およびシフト機構104の少なくとも1つが動作することとなる。   More specifically, in the light amount adjustment mechanism 2, for example, a λ / 2 wavelength plate rotates based on the adjustment amount. In the optical axis adjustment mechanism 3, at least one of a tilt mechanism 103 and a shift mechanism 104, which will be described later, operates based on the adjustment amount.

このように、CCDカメラ4a、および4bの撮像結果に基づいて調整量を算出し、光量調整機構2,光軸調整機構3、およびズーム機構5それぞれが調整量に基づいて光101のずれを調整することとなるので、安定した装置状態を実現することができる。   In this way, the adjustment amount is calculated based on the imaging results of the CCD cameras 4a and 4b, and the light amount adjustment mechanism 2, the optical axis adjustment mechanism 3, and the zoom mechanism 5 each adjust the deviation of the light 101 based on the adjustment amount. Therefore, a stable device state can be realized.

図3に光軸調整機構3の詳細を示す。ミラー17,18には、ミラー17,18を回転させるチルト(回転)機構103と、ミラー17,18を移動させるシフト機構104がそれぞれ設置されている。チルト機構としてはモータを、シフト機構としては一方向に移動するステージを用いることができる。ミラー17,18の後ろの光路に配置された固定反射ミラー16は、光101を2つの方向に分岐させる。固定反射ミラー16を抜けた光はCCDカメラ4aで観察される機構となっている。また固定反射ミラー16で向きを変えられた光はミラー6a,6b等を経由して試料8へ照射される。   FIG. 3 shows details of the optical axis adjustment mechanism 3. The mirrors 17 and 18 are respectively provided with a tilt (rotation) mechanism 103 that rotates the mirrors 17 and 18 and a shift mechanism 104 that moves the mirrors 17 and 18. A motor can be used as the tilt mechanism, and a stage that moves in one direction can be used as the shift mechanism. The fixed reflection mirror 16 disposed in the optical path behind the mirrors 17 and 18 splits the light 101 in two directions. The light that has passed through the fixed reflecting mirror 16 is observed by the CCD camera 4a. The light whose direction is changed by the fixed reflection mirror 16 is irradiated to the sample 8 via the mirrors 6a and 6b.

また、図4に光軸調整機構3に取り付けられたCCDカメラ画像を示す。   FIG. 4 shows a CCD camera image attached to the optical axis adjustment mechanism 3.

光軸調整機構のCCDカメラ4aでは、光軸の水平方向のずれを示すシフト量と光軸の傾きのずれを示すチルト量が確認できる。CCDカメラ4bでは、ビームのチルト量が確認できる。ビームがチルト方向にずれている場合、光軸調整機構3のチルトにてビームを調整する。CCDカメラ4aでは、シフト量とチルト量が観察できるが、チルト量はCCDカメラ4bにて調整しているため、チルトずれは無い状態で、シフト量のみを確認できる。   In the CCD camera 4a of the optical axis adjustment mechanism, the shift amount indicating the horizontal shift of the optical axis and the tilt amount indicating the shift of the optical axis tilt can be confirmed. In the CCD camera 4b, the tilt amount of the beam can be confirmed. When the beam is shifted in the tilt direction, the beam is adjusted by the tilt of the optical axis adjusting mechanism 3. In the CCD camera 4a, the shift amount and the tilt amount can be observed. However, since the tilt amount is adjusted by the CCD camera 4b, only the shift amount can be confirmed with no tilt deviation.

チルト量確認画像112,シフト量確認画像113について詳細に説明する。   The tilt amount confirmation image 112 and the shift amount confirmation image 113 will be described in detail.

チルト量確認画像112は、一方向のチルト量(第1のチルト量)を1軸114として、第1のチルト量に対して垂直なチルト量(第2のチルト量)を1軸115としてチルト量を表示する。   The tilt amount confirmation image 112 is tilted with a tilt amount in one direction (first tilt amount) as one axis 114 and a tilt amount (second tilt amount) perpendicular to the first tilt amount as one axis 115. Display quantity.

さらに、チルト量確認画像112は、画面を第1のチルト量の軸に対して平行な線(第1の線)116、および第2のチルト量の軸に対して平行な線(第2の線)117を用いて、画面を4分割表示する。第1の線116と、第2の線117の交点118付近がずれのない状態となる。   Further, the tilt amount confirmation image 112 includes a line (first line) 116 parallel to the first tilt amount axis and a line (second line) parallel to the second tilt amount axis. Line) 117 is used to display the screen in four parts. The vicinity of the intersection 118 between the first line 116 and the second line 117 is not shifted.

このように交点118付近にビーム位置が調整された画像を表示することで、作業者は容易にビームのチルト量が正しく調整されたことを知ることができる。   By displaying the image with the beam position adjusted near the intersection 118 in this way, the operator can easily know that the beam tilt amount has been adjusted correctly.

シフト量確認画像113についても同様のことが言える。シフト量確認画像113は、一方向のシフト量(第1のシフト量)を1軸119として、第1のシフト量に対して垂直なシフト量(第2のチルト量)を1軸120としてシフト量を表示する。   The same can be said for the shift amount confirmation image 113. The shift amount confirmation image 113 is shifted with a shift amount in one direction (first shift amount) as one axis 119 and a shift amount (second tilt amount) perpendicular to the first shift amount as one axis 120. Display quantity.

さらに、シフト量確認画像113は、画面を第1のシフト量の軸に対して平行な線(第1の線)121、および第2のシフト量の軸に対して平行な線(第2の線)122を用いて、画面を4分割表示する。第1の線121と、第2の線122の交点123付近がずれのない状態となる。このように交点123付近にビーム位置が調整された画像を表示することで、作業者は容易にビームのシフト量が正しく調整されたことを知ることができ、併せてビームの状態を常時監視することができる。   Further, the shift amount confirmation image 113 includes a line (first line) 121 parallel to the first shift amount axis and a line (second line) parallel to the second shift amount axis. Line) 122 is used to display the screen in four parts. The vicinity of the intersection 123 between the first line 121 and the second line 122 is not displaced. By displaying the image with the beam position adjusted in the vicinity of the intersection 123 in this manner, the operator can easily know that the beam shift amount has been correctly adjusted, and also constantly monitor the beam state. be able to.

なお、チルト量確認画像112,シフト量確認画像113は液晶ディスプレイやCRTディスプレイ等の表示部111でも確認できる。   The tilt amount confirmation image 112 and the shift amount confirmation image 113 can also be confirmed on the display unit 111 such as a liquid crystal display or a CRT display.

図5に本発明の実施例である照射光学系調整のフローチャートを示す。CCDカメラ4bの画像からビーム位置,明るさを計算し、チルト量を確認する(211)。明るさは光量調整機構2で調整を行い(212)、ビーム位置は光軸調整機構3のチルトモータにて調整する(213)。次にCCDカメラ4aのシフト量を光軸調整機構3のシフト機構で確認し(214)、調整する(215)。また、CCDカメラ4bや表示部111では、カメラの倍率調整を実施することで、ビームの明るさおよび形状を確認できる。   FIG. 5 shows a flowchart of irradiation optical system adjustment which is an embodiment of the present invention. The beam position and brightness are calculated from the image of the CCD camera 4b, and the tilt amount is confirmed (211). The brightness is adjusted by the light amount adjusting mechanism 2 (212), and the beam position is adjusted by the tilt motor of the optical axis adjusting mechanism 3 (213). Next, the shift amount of the CCD camera 4a is confirmed by the shift mechanism of the optical axis adjustment mechanism 3 (214) and adjusted (215). Further, in the CCD camera 4b and the display unit 111, the brightness and shape of the beam can be confirmed by adjusting the magnification of the camera.

そして、CCDカメラ4a,4bでビーム位置を確認する(216)。ここでビーム位置にずれがある場合は(211)へ戻り、再度チルト量、およびシフト量を調整する。   Then, the beam position is confirmed by the CCD cameras 4a and 4b (216). If there is a deviation in the beam position, the process returns to (211), and the tilt amount and the shift amount are adjusted again.

(216)にてビーム位置にずれがない場合は、CCDカメラ4bにてビームの形状を確認する(217)。ビームの形状にずれが無い場合は調整完了とする(220)。   If there is no deviation in the beam position in (216), the shape of the beam is confirmed by the CCD camera 4b (217). If there is no deviation in the beam shape, the adjustment is completed (220).

(217)にてビームの形状にずれがある場合は、Zステージ等の位置を確認し、焦点がずれていないか確認し(218)、焦点がずれている場合はZステージ等を移動し、焦点を調整する(221)。   If there is a deviation in the beam shape in (217), check the position of the Z stage, etc., and check whether the focus is out of focus (218). If the focus is off, move the Z stage, etc. The focus is adjusted (221).

焦点にずれがない場合は、ズーム機構5にてビームの形状を調整する(219)。   If there is no defocus, the zoom mechanism 5 adjusts the beam shape (219).

この結果から光量調整機構で明るさを調整し、ズーム機構にてビーム形状を調整し、照射光学系を常に最適状態に管理が容易となる。   From this result, the brightness is adjusted by the light quantity adjustment mechanism, the beam shape is adjusted by the zoom mechanism, and the irradiation optical system can be easily managed in the optimum state at all times.

このように、ビームのチルト量とシフト量とを自動的に調整することで、安定した装置状態を実現することができる。さらに、従来では、照射光学系の調整に多くの時間を必要としていたが、本実施例では、従来よりも迅速にビームの状態を調整することができる。   In this way, a stable apparatus state can be realized by automatically adjusting the beam tilt amount and shift amount. Furthermore, in the past, it took a lot of time to adjust the irradiation optical system, but in this embodiment, the beam state can be adjusted more quickly than in the past.

また、本実施例では、チルト量のみを調整することも可能である。チルト量のみを調整する場合は、図4において(213)の手順で調整を終了すれば良い。この方法では、チルト量とシフト量とを調整する場合に比べてさらに迅速にビームの状態を調整することもできる。   In the present embodiment, it is also possible to adjust only the tilt amount. In the case of adjusting only the tilt amount, the adjustment may be completed in the procedure (213) in FIG. In this method, the state of the beam can be adjusted more rapidly than in the case of adjusting the tilt amount and the shift amount.

また、半導体の製造工場では複数の製造ラインを有し、各製造ラインに本実施例のような表面検査装置等の検査装置を配置し、製造ラインの発塵状態等を監視している。照射光学系を搭載している装置ならば、安定的な感度を出すためには、照射光学系の状態の安定性、および検出系の安定性は不可欠である。照射光学系状態の相違は、装置間の機差に繋がるため、どちらか一方に特化しても装置性能に影響を来たす。この複数の製造ラインに配置された検査装置それぞれに本実施例を適用することで、装置間の機差を低減することもできる。   Further, a semiconductor manufacturing factory has a plurality of manufacturing lines, and an inspection device such as a surface inspection device as in this embodiment is arranged in each manufacturing line to monitor the dust generation state of the manufacturing line. In the case of an apparatus equipped with an irradiation optical system, the stability of the state of the irradiation optical system and the stability of the detection system are indispensable in order to obtain stable sensitivity. Since the difference in the state of the irradiation optical system leads to a machine difference between apparatuses, even if one of them is specialized, the apparatus performance is affected. By applying the present embodiment to each of the inspection devices arranged on the plurality of production lines, the machine difference between the devices can be reduced.

なお、本発明は、ウエハ以外の、ハードディスク,液晶基板等の基板検査に適用できる。さらに、本発明は楕円球を用いて散乱光を集光する方式のウエハ検査装置にも適用できるし、パターンの形成されたウエハの欠陥を検査するパターン付きウエハ検査装置や、ハードディスクの欠陥を検査するハードディスク検査装置にも適用可能である。   The present invention can be applied to inspection of substrates other than wafers such as hard disks and liquid crystal substrates. Furthermore, the present invention can be applied to a wafer inspection apparatus that collects scattered light using an ellipsoidal sphere, and a wafer inspection apparatus with a pattern that inspects a defect of a wafer on which a pattern is formed, or an inspection of a defect of a hard disk. It can also be applied to a hard disk inspection device.

また、搬送系は、Xステージと、Yステージと、Zステージと、θステージとを有し、XY方向に走査する構成であっても良いし、照射光学系によって基板に照射されるレーザの形状は線状であっても良いし、検出光学系は、ミラー,レンズ等を用いた結像系であっても良いし、パターンからの回折光を除去する空間フィルタを備えていても良いし、検出器は、時間遅延積分型センサやCCDセンサであっても良い。   The transport system may include an X stage, a Y stage, a Z stage, and a θ stage, and may be configured to scan in the XY direction, or the shape of the laser irradiated onto the substrate by the irradiation optical system May be linear, the detection optical system may be an imaging system using a mirror, a lens, etc., or may be equipped with a spatial filter that removes diffracted light from the pattern, The detector may be a time delay integration type sensor or a CCD sensor.

検査装置の構成。Configuration of inspection equipment. 表面検査装置の構成。Configuration of surface inspection equipment. 光軸調整機構3の詳細。Details of the optical axis adjustment mechanism 3. チルト量確認画像112,シフト量確認画像113。Tilt amount confirmation image 112 and shift amount confirmation image 113. 照射光学系調整のフローチャート。The flowchart of irradiation optical system adjustment.

符号の説明Explanation of symbols

1 光源
2 光量調整機構
3 光軸調整機構
4 CCDカメラ
5 ズーム機構
6 ミラー
7 集光レンズ
8 試料
9 XYZθステージ
10 検出器
11 増幅器
12 A/D変換器
13 欠陥判定機構
14 検出欠陥分類機構
15 画像処理部,フィードバック制御部
DESCRIPTION OF SYMBOLS 1 Light source 2 Light quantity adjustment mechanism 3 Optical axis adjustment mechanism 4 CCD camera 5 Zoom mechanism 6 Mirror 7 Condensing lens 8 Sample 9 XYZ (theta) stage 10 Detector 11 Amplifier 12 A / D converter 13 Defect determination mechanism 14 Detection defect classification mechanism 15 Image Processing unit, feedback control unit

Claims (13)

試料を載置し、走査方向へ移動する搬送系と、
前記試料に照明のための光を照射する照射光学系と、
前記試料からの光を検出する検出光学系と、
前記検出系からの検出結果から検査を行う検査処理系と、
前記照明のための光を撮像する第1の撮像装置と、
前記試料からの光を撮像する第2の撮像装置と、
前記第1の撮像装置、および前記第2の撮像装置の撮像結果を用いて、前記照明のための光のずれを調整する調整量を算出する処理部と、
前記調整量に基づいて前記照明のための光を調整する調整機構と、を有する検査装置。
A transport system for placing a sample and moving in the scanning direction;
An irradiation optical system for irradiating the sample with light for illumination;
A detection optical system for detecting light from the sample;
An inspection processing system for performing an inspection from a detection result from the detection system;
A first imaging device that images light for the illumination;
A second imaging device for imaging light from the sample;
A processing unit that calculates an adjustment amount for adjusting a shift of light for the illumination, using imaging results of the first imaging device and the second imaging device;
And an adjustment mechanism that adjusts light for the illumination based on the adjustment amount.
請求項1に記載の検査装置において
前記照明のための光学系は、実質的な垂直照明と斜方照明とを切り替える切替機構を有し、
前記垂直照明が前記試料に至る光路にはハーフミラー、及び前記試料からの光を集光する集光レンズが配置されており、
前記第2の撮像装置は、前記ハーフミラーによって反射された光を撮像することを特徴とする検査装置。
The inspection apparatus according to claim 1, wherein the optical system for illumination includes a switching mechanism that switches between substantially vertical illumination and oblique illumination,
A half mirror and a condensing lens for condensing light from the sample are arranged in an optical path where the vertical illumination reaches the sample,
The inspection apparatus, wherein the second imaging device images light reflected by the half mirror.
請求項1の検査装置において、
前記第1の撮像装置、および前記第2の撮像装置は、CCDカメラである検査装置。
The inspection apparatus according to claim 1,
The first imaging device and the second imaging device are inspection devices that are CCD cameras.
請求項1の検査装置において、
前記試料からの光は、
レンズによって集光され、
ミラーによって分岐され、前記第2の撮像装置にて撮像される検査装置。
The inspection apparatus according to claim 1,
The light from the sample is
Collected by the lens,
An inspection apparatus branched by a mirror and imaged by the second imaging apparatus.
請求項1の検査装置において、
前記調整機構は、光軸調整機構を有する検査装置。
The inspection apparatus according to claim 1,
The adjustment mechanism is an inspection apparatus having an optical axis adjustment mechanism.
請求項5の検査装置において、
前記光軸調整機構は、
前記照明のための光を反射するミラーと、チルト機構と、シフト機構と、を有する検査装置。
The inspection apparatus according to claim 5, wherein
The optical axis adjustment mechanism is
An inspection apparatus comprising a mirror that reflects light for illumination, a tilt mechanism, and a shift mechanism.
請求項6の検査装置において、
前記チルト機構はモータであり、
前記シフト機構はステージである検査装置。
The inspection apparatus according to claim 6.
The tilt mechanism is a motor;
An inspection apparatus in which the shift mechanism is a stage.
請求項6記載の検査装置において、
前記光軸調整機構は、
第1のミラー,第1のチルト機構、および第1のシフト機構と、
第2のミラー,第2のチルト機構、および第2のシフト機構と、を有する検査装置。
The inspection apparatus according to claim 6, wherein
The optical axis adjustment mechanism is
A first mirror, a first tilt mechanism, and a first shift mechanism;
An inspection apparatus having a second mirror, a second tilt mechanism, and a second shift mechanism.
請求項8記載の検査装置において、
前記光軸調整機構は、
第1のミラー、および第2のミラーの後ろの光路に、
前記光を第1の方向と第2の方向とに分岐する光学素子を有し、
前記第1の方向に前記第1の撮像装置が配置されている検査装置。
The inspection apparatus according to claim 8, wherein
The optical axis adjustment mechanism is
In the optical path behind the first mirror and the second mirror,
An optical element that branches the light in a first direction and a second direction;
An inspection apparatus in which the first imaging device is arranged in the first direction.
請求項1の検査装置において、
前記調整機構は、ズーム機構と、光量調整機構とを有する検査装置。
The inspection apparatus according to claim 1,
The adjustment mechanism is an inspection apparatus having a zoom mechanism and a light amount adjustment mechanism.
請求項1の検査装置において、
前記光のずれに関する情報は、
前記光の位置ずれ量,形状ずれのずれ量、および明るさのずれ量の少なくとも1つである検査装置。
The inspection apparatus according to claim 1,
Information on the light shift is as follows:
An inspection apparatus which is at least one of the light positional deviation amount, the shape deviation deviation amount, and the brightness deviation amount.
請求項1の検査装置において、
表示部を有し、
前記表示部は、チルト量確認画像と、シフト量確認画像とを表示する検査装置。
The inspection apparatus according to claim 1,
Having a display,
The display unit is an inspection apparatus that displays a tilt amount confirmation image and a shift amount confirmation image.
請求項1の検査装置において、
前記チルト量確認画像、および前記シフト量確認画像は、第1の線と第2の線とによって四分割表示される検査装置。
In the testing apparatus of claim 1 2,
The tilt amount confirmation image, and the shift amount confirmation image, the first line and the inspection device being quartered displayed by the second line.
JP2008295036A 2008-11-19 2008-11-19 Inspection device Active JP5250395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295036A JP5250395B2 (en) 2008-11-19 2008-11-19 Inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295036A JP5250395B2 (en) 2008-11-19 2008-11-19 Inspection device

Publications (2)

Publication Number Publication Date
JP2010123700A JP2010123700A (en) 2010-06-03
JP5250395B2 true JP5250395B2 (en) 2013-07-31

Family

ID=42324793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295036A Active JP5250395B2 (en) 2008-11-19 2008-11-19 Inspection device

Country Status (1)

Country Link
JP (1) JP5250395B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544176B2 (en) * 2010-01-07 2014-07-09 株式会社日立ハイテクノロジーズ Inspection apparatus and inspection method
JP2011252871A (en) * 2010-06-04 2011-12-15 Hitachi High-Technologies Corp Optical inspection apparatus and method for adjusting spot light by model prediction thereof
JP5676307B2 (en) * 2011-02-28 2015-02-25 株式会社ニューフレアテクノロジー Pattern inspection apparatus and pattern inspection method
JP2013226588A (en) 2012-04-26 2013-11-07 Olympus Corp Repairing apparatus and repairing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142307A (en) * 1979-04-24 1980-11-06 Matsushita Electric Ind Co Ltd Optical axis position correcting device
JPS62220838A (en) * 1986-03-20 1987-09-29 Hitachi Electronics Eng Co Ltd Surface inspecting instrument
JPH07253311A (en) * 1994-03-15 1995-10-03 Fujitsu Ltd Calibration method, pattern inspection method and pattern position decision method for pattern inspection device and manufacture of semiconductor device
JP2004045111A (en) * 2002-07-10 2004-02-12 Hitachi High-Technologies Corp Illumination optical mechanism apparatus and defect inspection apparatus
JP2006012370A (en) * 2004-05-24 2006-01-12 Ricoh Co Ltd Exposure apparatus of master optical disk and discentering eliminating method thereof

Also Published As

Publication number Publication date
JP2010123700A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP5469839B2 (en) Device surface defect inspection apparatus and method
JP4337999B2 (en) Focus position control mechanism and method, and semiconductor wafer inspection apparatus and method
JP4713185B2 (en) Foreign object defect inspection method and apparatus
JP5444053B2 (en) Polycrystalline silicon thin film inspection method and apparatus
KR20160013813A (en) Auto-Focus system
US20100014083A1 (en) Method and Apparatus for Inspecting Defects
JP2007248086A (en) Flaw inspection device
JP2008249921A (en) Reticle defect inspection device and reticle defect inspection method
JP2012078164A (en) Pattern inspection device
KR101917131B1 (en) Optical inspecting apparatus
JP5419293B2 (en) Inspection device
WO2009133849A1 (en) Inspection device
JP5250395B2 (en) Inspection device
JP6927790B2 (en) Inspection method and inspection equipment
JP5134603B2 (en) Light beam adjusting method and light beam adjusting apparatus
US7767982B2 (en) Optical auto focusing system and method for electron beam inspection tool
JP4560900B2 (en) Inspection device
JP2007205828A (en) Optical image acquisition device, pattern inspection device, optical image acquisition method, and pattern inspection method
JP2009150718A (en) Inspecting device and inspection program
JP3677263B2 (en) How to adjust the height position of the sample surface
CN218956441U (en) Optical detection system
JP2007101494A (en) Surface inspection device
JP2010243212A (en) Tilt detection method and device of the same
JP2012068321A (en) Mask defect inspection device and mask defect inspection method
JPH09318330A (en) Method and instrument for inspection of fine pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Ref document number: 5250395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350