JP2013035046A - Soldered joined structure of metal film and lead, and its heat treatment method - Google Patents

Soldered joined structure of metal film and lead, and its heat treatment method Download PDF

Info

Publication number
JP2013035046A
JP2013035046A JP2011174449A JP2011174449A JP2013035046A JP 2013035046 A JP2013035046 A JP 2013035046A JP 2011174449 A JP2011174449 A JP 2011174449A JP 2011174449 A JP2011174449 A JP 2011174449A JP 2013035046 A JP2013035046 A JP 2013035046A
Authority
JP
Japan
Prior art keywords
solder
layer
lead
metal film
fillet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011174449A
Other languages
Japanese (ja)
Inventor
Susumu Nishiwaki
進 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Schott Components Corp
Original Assignee
NEC Schott Components Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Schott Components Corp filed Critical NEC Schott Components Corp
Priority to JP2011174449A priority Critical patent/JP2013035046A/en
Publication of JP2013035046A publication Critical patent/JP2013035046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the time deterioration of a solder fillet, and to improve the reliability of a soldered joined structure.SOLUTION: A lead member 10 with a solder material has a double-structure in which the surface of a lead wire 11 is coated with a Cu-soldered foundation layer 12, and an Sn-system soldered layer 13 containing Sn whose density is not lower than a prescribed value is laminated on the foundation layer. The soldered joined structure is characterized in that: an electronic element 20 such as a semiconductor and a piezoelectric vibrator is joined to the lead wire 11 by using the Sn-system soldered layer 13; the time deterioration is suppressed by bringing a diffusion reaction into a balanced state by applying prescribed heat treatment to the solder fillet after being soldered, and a metal composition of the solder fillet is changed to higher-resistance high-temperature solder. At this time, the Cu-soldered foundation layer 12 coated on the lead wire 11 is imparted with a sufficient thickness in advance, and the Cu-soldered foundation layer 12 is made not to vanish even if the mutual diffusion of Cu and Sn is progressed up to the balanced state.

Description

本発明は、電子部品の端子リードを絶縁基板上の金属膜にはんだ付けする接合構造、特にCuめっきリード線にSn合金はんだ材を形成した端子リードを絶縁基板に形成した電極用金属膜に接続する金属膜とリードのはんだ接合構体およびその熱処理方法に関する。   The present invention relates to a bonding structure in which terminal leads of electronic components are soldered to a metal film on an insulating substrate, and in particular, a terminal lead in which an Sn alloy solder material is formed on a Cu plating lead wire is connected to an electrode metal film formed on an insulating substrate. The present invention relates to a solder joint structure of a metal film and a lead, and a heat treatment method thereof.

半導体や水晶振動子などの電子素子をパッケージ配置する電子部品の組み立て構造では、通常、パッケージ端子用のリードを絶縁基板に設けた電子素子用電極に接合することが行われる。たとえば、絶縁基板上の電極金属膜に設けた電子素子を導出用のCuめっきリードにSn系高温はんだ材を使用してリフロー対応する場合がある。その際、高温はんだ材により、CuとSn合金の接触による相互拡散が生じ、Cu層とSn系はんだ層との層間に金属間化合物のCuSn層(Cu側)とCuSn層(Sn合金側)とが生成され、Cu層とCuSn層との界面に層間剥離が生じることが知られている。この現象はカーケンダルボイドの蓄積によるものとされ、はんだ接合界面の上層から順に、はんだ材のSnとリード上のめっきCuとの相互拡散で生成された金属間化合物(CuSnおよびCuSn)に依存して剥離の起因となる。特にリフロー時にCuSn層(η相)がほとんど成長せずCuSn層(ε相)が生成、成長する場合にSnに比べCuが速く大量に拡散するためCuSn層とCu層との界面に両原子の拡散速度の差異によってカーケンダルボイドが成長し、クラックに発展してはんだ接合が破壊され故障の原因となる。ここで、カーケンダルボイドの生成に関し、CuとSnの相互拡散では、Cu原子はSn原子に比べて拡散速度が速く、生成された金属間化合物のCuSn層中ではCu原子とSn原子の拡散速度の差が大きく、Cu原子が優先して拡散するのでCuSn層と下地Cu層との界面にカーケンダルボイドが生成する一方で、金属間化合物のCuSn層中の拡散過程ではCu原子とSn原子の拡散速度に大差がないので界面にカーケンダルボイドの生成は見られない。 In an assembly structure of an electronic component in which an electronic element such as a semiconductor or a crystal resonator is arranged in a package, a package terminal lead is usually bonded to an electronic element electrode provided on an insulating substrate. For example, there is a case where an electronic device provided on an electrode metal film on an insulating substrate is subjected to reflow using a Sn-based high-temperature solder material as a lead Cu plating lead. At that time, mutual diffusion due to contact between the Cu and Sn alloy occurs due to the high-temperature solder material, and an intermetallic compound Cu 3 Sn layer (Cu side) and Cu 6 Sn 5 layer (Cu side) between the Cu layer and the Sn-based solder layer ( It is known that delamination occurs at the interface between the Cu layer and the Cu 3 Sn layer. This phenomenon is attributed to the accumulation of Kirkendall voids, and in order from the upper layer of the solder joint interface, intermetallic compounds (Cu 6 Sn 5 and Cu 3) formed by mutual diffusion of Sn of the solder material and plated Cu on the lead. Depending on Sn), it causes peeling. In particular, Cu 6 Sn 5 layer (η phase) hardly grows at the time of reflow, and Cu 3 Sn layer (ε phase) is generated and grown, so that Cu diffuses faster and in large quantities than Sn, so Cu 3 Sn layer and Cu layer Kirkendall voids grow on the interface with the difference in diffusion rate of both atoms, develop into cracks, break the solder joints and cause failure. Here, regarding the generation of Kirkendall void, in the interdiffusion of Cu and Sn, the Cu atom has a faster diffusion rate than the Sn atom, and the Cu 3 Sn layer of the generated intermetallic compound contains Cu atoms and Sn atoms. The difference in diffusion rate is large and Cu atoms preferentially diffuse, so that Kirkendall voids are generated at the interface between the Cu 3 Sn layer and the underlying Cu layer, while the diffusion process in the Cu 6 Sn 5 layer of the intermetallic compound Then, since there is no big difference in the diffusion rate of Cu atom and Sn atom, the generation of Kirkendall void is not seen at the interface.

このため、下地Cu材とSn系はんだ層の接合信頼性を確保する目的で様々な対策が提案され、下地Cu材とSn系はんだ層の中間にCuに比べSnとの反応が緩慢なNi材からなる拡散バリア層を設けるなどの対策がとられている。例えば、特許文献1は導電部材に関し、Ni系下地層に対するCuSn層の面積被覆率を60%以上とし、Cu−Sn金属間化合物層の凹部に対する凸部の比率を1.2〜5として、さらにCuSn層の平均厚みを0.01〜0.5μmとすることでカーケンダルボイドを防止し、かつSn系めっき層の上にAgSn層を設けてめっき材の耐熱性を向上させている。また、特許文献2の水晶振動子では、下地金属との密着性とSnとの金属間化合物形成のためのCuめっき層と、圧入時の塑性変形により気密封止を主として担うSnめっき層と、Snとの金属間化合物形成及びSnとAuの反応抑制及びワイヤボンディングのための金属めっき層を設け、さらにSnめっき層を熱処理により金属間化合物化することにより高融点化を実施している。 For this reason, various measures have been proposed for the purpose of ensuring the bonding reliability between the base Cu material and the Sn-based solder layer, and the Ni material has a slower reaction with Sn than Cu between the base Cu material and the Sn-based solder layer. Measures such as providing a diffusion barrier layer made of For example, Patent Document 1 relates to a conductive member, in which the area coverage of the Cu 3 Sn layer with respect to the Ni-based underlayer is 60% or more, and the ratio of the convex portion to the concave portion of the Cu—Sn intermetallic compound layer is 1.2 to 5 Furthermore, by making the average thickness of the Cu 3 Sn layer 0.01 to 0.5 μm, Kirkendall void is prevented, and the Ag 3 Sn layer is provided on the Sn-based plating layer to improve the heat resistance of the plating material. I am letting. Further, in the crystal resonator of Patent Document 2, a Cu plating layer for forming an intermetallic compound with Sn and adhesion with a base metal, a Sn plating layer mainly responsible for hermetic sealing by plastic deformation at the time of press-fitting, A metal plating layer for forming an intermetallic compound with Sn, suppressing a reaction between Sn and Au, and wire bonding is provided, and the Sn plating layer is made into an intermetallic compound by heat treatment to increase the melting point.

特開2011−026677号公報JP 2011-026667 A 特開2010−010940号公報JP 2010-010940 A

上述したように下地Cu材にSn系はんだ層を直に施した場合には、はんだ接合の信頼性を確保するため様々な対策がとられている。しかし、CuとSnの相互拡散は、常温程度の温度環境でも容易に進行するため、最終消費者に供給された後ではんだ接合が経時劣化し問題となっていた。また、これまでにCu下地めっき層の上にSn−Pb合金はんだ層を施し、可及的に相互拡散を生じない熱処理条件によりリード端子と搭載素子の電極を接合させた後、70℃の環境に曝した場合、3μmの純Cuめっき層では320日程度で完全に消失し、その時点で接合強度が著しく低下してしまうことも経験した。従って、下地Cu材の上にSn系はんだ層を直に施した場合には、製造工程で拡散反応を進行させないように熱処理を行ったとしても早晩接合強度の劣化を来たし信頼性の低下が避けられなかった。本発明が解決しようとする課題は、相互拡散の不均衡によって発生する原子の空孔が金属層の界面に蓄積し合体成長して生じた層間成長ボイドとして知られるカーケンダルボイドの生成を防ぎ、めっき層の剥離を防止し、製品完成後の経時変化が少なく、かつ作業温度の低いSn濃度の高いはんだ材を高温はんだ材として使用可能にすることにある。   As described above, when an Sn-based solder layer is applied directly to the underlying Cu material, various measures are taken to ensure the reliability of solder bonding. However, interdiffusion of Cu and Sn easily proceeds even in a temperature environment of about room temperature, so that solder bonding deteriorates with time after being supplied to the final consumer, which is a problem. In addition, an Sn—Pb alloy solder layer has been applied on the Cu base plating layer so far, and the lead terminal and the electrode of the mounted element are bonded under heat treatment conditions that do not cause mutual diffusion as much as possible. In addition, the 3 μm pure Cu plating layer completely disappeared in about 320 days, and it was also experienced that the bonding strength was significantly reduced at that time. Therefore, when the Sn-based solder layer is applied directly on the underlying Cu material, even if heat treatment is performed so that the diffusion reaction does not proceed in the manufacturing process, the joint strength deteriorates early and avoids a decrease in reliability. I couldn't. The problem to be solved by the present invention is to prevent the generation of Kirkendall voids known as interlayer growth voids generated by coalescence and growth of atomic vacancies generated by imbalance in mutual diffusion, It is to prevent the plating layer from being peeled off, to make it possible to use a solder material having a low Sn working temperature and a high Sn concentration as a high-temperature solder material.

発明者は、種々のリード部材の相互拡散による界面反応に着目し鋭意検討を進めた結果、Cu製リード部材またはリード部材に施したCuめっき層の上に所定濃度のSnを含有するSn系はんだ層を予めコーティングしておき、より低温側の第1の溶融温度で前記Sn系はんだ層を溶融させてはんだ付けを行った後、はんだ付け工程で形成したはんだフィレットを固相状態のままさらに熱処理を加えて、該はんだフィレットの合金組成をより高温側の第2の溶融温度を有する高温はんだフィレットに変化させることができ、これを半導体や水晶振動子など電子素子パッケージ内部の高温はんだ接合に応用できることを見出した。すなわち、下地Cu材上に所定濃度のSnを含有するSn系はんだ層を用いて溶融はんだ付けを実施する際、はんだ付け作業温度で液相となったSn系はんだ層と下地Cu材との固−液拡散では、溶融Sn系はんだと固体の下地Cu材との固−液界面に、金属間化合物のCuSn層(ε相)とCuSn層(η相)が生成されるが、CuSn層(ε相)の生成は少なく、優先的にCuSn層(η相)が生成され固−液界面に生成するCu−Sn金属間化合物層と下地Cu材の界面に有害なカーケンダルボイドの発生が無いはんだフィレットとなることを見出した。このはんだフィレットは、コーティング膜のみから形成され含有するSn化学量が限られているので、はんだフィレットに熱処理を加えて平衡状態に達するまで固相拡散させると、はんだに含有されるSnは急速に拡散消費されて下地Cu側へのSnの拡散供給が減少し、CuSn層が全てCuSn層に相変化するが、この時点で熱平衡に達しているため、見かけ上、それ以上下地Cu材からのCu拡散が無くなりカーケンダルボイドの発生は抑制される。また、Cu材をめっき等の皮膜層で構成した場合は、はんだ付け工程およびはんだ付け後の熱処理においてCu下地層が食われ現象で消失してしまわないよう、Cuめっき下地層とSn系はんだ層の量を予め調整しておくことで、Cu−Sn金属間化合物層の機械的強度の劣化も防止できる。 As a result of intensive studies focusing on the interfacial reaction due to mutual diffusion of various lead members, the inventor has found that a Sn-based solder containing a predetermined concentration of Sn on a Cu lead member or a Cu plating layer applied to the lead member. The layer is pre-coated, the Sn-based solder layer is melted and soldered at the first melting temperature on the lower temperature side, and then the solder fillet formed in the soldering process is further heat-treated in the solid state. The alloy composition of the solder fillet can be changed to a high-temperature solder fillet having a second melting temperature on the higher temperature side, and this can be applied to high-temperature solder joints inside electronic device packages such as semiconductors and crystal resonators. I found that I can do it. That is, when performing melt soldering using an Sn-based solder layer containing a predetermined concentration of Sn on the underlying Cu material, the solid-state of the Sn-based solder layer that has become a liquid phase at the soldering operation temperature and the underlying Cu material is fixed. In liquid diffusion, a Cu 3 Sn layer (ε phase) and a Cu 6 Sn 5 layer (η phase) of intermetallic compounds are generated at the solid-liquid interface between the molten Sn-based solder and the solid base Cu material. , Cu 3 Sn layer (ε phase) is rarely generated, and Cu 6 Sn 5 layer (η phase) is preferentially generated and formed at the solid-liquid interface at the interface between the Cu—Sn intermetallic compound layer and the underlying Cu material. It has been found that the solder fillet has no generation of harmful Kirkendall void. Since this solder fillet is formed only from a coating film and has a limited Sn stoichiometry, when the solder fillet is subjected to heat treatment and solid phase diffusion is achieved until it reaches an equilibrium state, Sn contained in the solder rapidly Diffusion consumption is consumed and the diffusion supply of Sn to the base Cu side decreases, and all of the Cu 6 Sn 5 layers change into Cu 3 Sn layers. Cu diffusion from the Cu material is eliminated and the generation of Kirkendall void is suppressed. In addition, when the Cu material is composed of a coating layer such as plating, the Cu plating underlayer and the Sn-based solder layer will not be lost due to the erosion phenomenon in the soldering process and heat treatment after soldering. By preliminarily adjusting the amount of Cu, the mechanical strength of the Cu—Sn intermetallic compound layer can be prevented from being deteriorated.

本発明によると、前述のCu材はリード線材にCuめっき下地層を施したCuめっき下地層であっても良く、このCuめっき下地層の上に所定濃度範囲のSnを含むSn系はんだ層を積層したリード部材と、電子素子を有する絶縁基板上の電極用金属膜とのはんだ接合構体であって、Sn系はんだ層は所定の温度で溶融されてリード部材と電極用金属膜とをはんだフィレットを介して接合し、このはんだフィレットを熱処理によりCu−Snの固相拡散を進行させ、純金属Sn成分を所定濃度以下にした平衡状態の金属間化合物としたことを特徴とする金属膜とリードのはんだ接合構体が提供される。Sn系はんだ層がSn−Pb合金はんだ材の場合は、その組成においてSnが10〜30質量%の範囲内で含むことが望ましく、また、SnまたはSn−Cu合金はんだ材の場合は、その組成においてSnが85〜100質量%の範囲内で含むことが望ましい。すなわち、所定の熱処理を施すことで、拡散反応を平衡状態にして経時変化を抑制するとともに、初期のはんだフィレットの金属組成をより高温の溶融温度を有する高温はんだフィレットに変化させることを特徴とする新規かつ改良されたはんだ接合構体およびその熱処理方法が提供される。   According to the present invention, the aforementioned Cu material may be a Cu plating underlayer obtained by applying a Cu plating underlayer to a lead wire, and an Sn-based solder layer containing Sn in a predetermined concentration range is formed on the Cu plating underlayer. A solder joint structure of a laminated lead member and an electrode metal film on an insulating substrate having an electronic element, wherein the Sn-based solder layer is melted at a predetermined temperature to connect the lead member and the electrode metal film to a solder fillet The metal fillet and the lead are characterized in that the solid phase diffusion of Cu—Sn is progressed by heat treatment of the solder fillet by heat treatment to obtain an equilibrium intermetallic compound in which the pure metal Sn component is a predetermined concentration or less. A solder joint structure is provided. In the case where the Sn-based solder layer is a Sn—Pb alloy solder material, it is desirable to contain Sn in the range of 10 to 30 mass% in the composition, and in the case of Sn or Sn—Cu alloy solder material, the composition thereof In Sn, it is desirable to contain in the range of 85-100 mass%. That is, by performing a predetermined heat treatment, the diffusion reaction is brought into an equilibrium state to suppress a change with time, and the metal composition of the initial solder fillet is changed to a high-temperature solder fillet having a higher melting temperature. A new and improved solder joint structure and heat treatment method thereof are provided.

ここで、Cuめっき下地層は、そのCu相がSn系はんだ層のSn相と相互拡散し平衡状態に達した後においても、前記Cuめっき下地層のCu相が消失しない程度に、前記Sn系はんだ層が含む全Sn量に対して、予め過剰量のCuを下地層として施したことを特徴とする。すなわち、電子部品のリード線などのリード部材に施したCuめっき下地層と、このCuめっき下地層上に所定濃度範囲のSnを含むSn系はんだ層を積層したリード部材において、予め充分な厚みを有するCuめっき下地層を設けてCuとSnとの相互拡散を平衡状態まで進行させ、純金属Sn成分を所定濃度以下にしてもCuめっき下地層が消失しないようにしたことを特徴とする新規かつ改良されたはんだ接合構体が提供される。具体的に、高温はんだフィレットは、金属間化合物のSn合金を除いた純金属としてのSn含有量が1質量%以下である金属膜とリードのはんだ接合構体が開示される。   Here, the Cu plating underlayer has the Sn series to such an extent that the Cu phase of the Cu plating underlayer does not disappear even after the Cu phase mutually diffuses with the Sn phase of the Sn series solder layer and reaches an equilibrium state. An excessive amount of Cu is previously applied as a base layer to the total amount of Sn contained in the solder layer. That is, in a lead member in which a Cu plating base layer applied to a lead member such as a lead wire of an electronic component and a Sn-based solder layer containing Sn in a predetermined concentration range are laminated on the Cu plating base layer, a sufficient thickness is previously provided. A new and characterized in that the Cu plating underlayer is provided and the mutual diffusion of Cu and Sn proceeds to an equilibrium state so that the Cu plating underlayer does not disappear even if the pure metal Sn component is below a predetermined concentration. An improved solder joint structure is provided. Specifically, a high-temperature solder fillet is disclosed as a solder joint structure of a metal film and a lead having an Sn content of 1% by mass or less as a pure metal excluding an Sn alloy of an intermetallic compound.

本発明の別の観点によれば、リード線にCuめっき下地層を施し、その上に所定濃度範囲のSnを含むSn系はんだ層を積層するリード部材を調達する工程と、電子素子を有する絶縁基板上の電極用金属膜を形成する工程と、Sn系はんだ層を溶融してリード部材と電極用金属膜とをはんだフィレットを介して接合するはんだ付け工程と、はんだフィレットを熱処理によりCu−Snの固相拡散を進行させて平衡状態の金属間化合物にする熱処理工程とを含む金属膜とリードのはんだ接合構体の熱処理方法が提案される。すなわち、はんだ材付きリード部材に半導体や圧電素子などの電子素子の電極用金属膜を接合する工程において、リード部材の下地Cu材上に、より低い温度で溶融できるようにSnを所定量含有させたSn系はんだ層を予めコーティングしておき、より低温側の第1の溶融温度でSn系はんだ層を溶融させてはんだ付けを行った後、初期はんだフィレットを固相状態で熱処理し、該はんだフィレットの金属組成を、より高温側の第2の溶融温度を有する高温はんだフィレットに変化させることを特徴とするはんだ材付きリード部材のはんだ付け熱処理方法である。   According to another aspect of the present invention, a step of procuring a lead member in which a Cu plating base layer is applied to a lead wire and an Sn-based solder layer containing Sn in a predetermined concentration range is laminated thereon, and an insulation having an electronic device A step of forming an electrode metal film on the substrate, a soldering step of melting the Sn-based solder layer and joining the lead member and the electrode metal film via a solder fillet, and heat-treating the solder fillet by Cu-Sn A heat treatment method for a solder joint structure of a metal film and a lead is proposed, which includes a heat treatment step in which solid phase diffusion of the metal is progressed to form an intermetallic compound in an equilibrium state. That is, a predetermined amount of Sn is contained on the underlying Cu material of the lead member so that it can be melted at a lower temperature in the step of joining the metal film for an electrode of an electronic element such as a semiconductor or piezoelectric element to the lead member with a solder material. The Sn-based solder layer is coated in advance, the Sn-based solder layer is melted and soldered at the first melting temperature on the lower temperature side, and then the initial solder fillet is heat-treated in a solid-phase state. A solder heat treatment method for a lead member with a solder material, wherein the metal composition of the fillet is changed to a high temperature solder fillet having a second melting temperature on the higher temperature side.

本発明のはんだ材付きリード部材を適用した電子部品は、はんだ付け後の熱処理においてSnとCuの相互拡散が平衡状態になるので、製品完成後の高温はんだフィレットが経時劣化する心配が無く接合部の信頼性が向上する。しかも、作業温度の低いより高Sn濃度のSn系はんだ層で電子素子の接合を行った後、このリード部材と電子素子とを接合した初期はんだフィレットに所定の熱処理を施し、はんだフィレット中の純金属Sn成分を所定濃度以下の低い平衡濃度とすることによって、はんだフィレットの溶融温度を高温側にシフトさせ耐熱性の高温はんだフィレットとして利用できる。さらに、本発明のはんだ材付きリード部材は、従来Sn−Cu合金はんだ材のように固相線、液相線に開きがありはんだフィレットの耐熱性を両立させることが困難とされていた非共晶のSn合金も、はんだ付け後に所定の熱処理を施しはんだフィレットを相変化させることで耐熱性の高温はんだとして利用が可能となる。   In the electronic component to which the lead member with a solder material of the present invention is applied, since the mutual diffusion of Sn and Cu is in an equilibrium state in the heat treatment after soldering, there is no fear that the high-temperature solder fillet after the product is deteriorated with time. Reliability is improved. Moreover, after joining the electronic element with a Sn-based solder layer having a higher Sn concentration at a lower working temperature, a predetermined heat treatment is applied to the initial solder fillet where the lead member and the electronic element are joined, and the pure fill in the solder fillet is applied. By setting the metal Sn component to a low equilibrium concentration equal to or lower than a predetermined concentration, the melting temperature of the solder fillet can be shifted to the high temperature side and used as a heat resistant high temperature solder fillet. Furthermore, the lead member with a solder material of the present invention has a solid-phase line and a liquid-phase line that are open like conventional Sn-Cu alloy solder materials, and it has been difficult to achieve both heat resistance of the solder fillet. A crystalline Sn alloy can also be used as a heat-resistant high-temperature solder by performing a predetermined heat treatment after soldering to change the phase of the solder fillet.

本発明に係るはんだ接合構体のはんだ処理におけるリード部材10と電子素子20の配置状態を示す部分断面図である。It is a fragmentary sectional view which shows the arrangement | positioning state of the lead member 10 and the electronic element 20 in the soldering process of the solder joint structure which concerns on this invention. 図1のはんだ処理における各工程別の部分断面図である。It is a fragmentary sectional view according to each process in the solder processing of FIG. 本発明に係る実施例である円筒型水晶振動子用気密端子の分解斜図である。1 is an exploded perspective view of a hermetic terminal for a cylindrical crystal resonator according to an embodiment of the present invention. 本発明に係るはんだ接合構体の製造工程におけるCuめっき下地層とSn−Pbはんだ層を有するリード部材の接合部分断面図である。It is a junction partial sectional view of a lead member which has Cu plating foundation layer and a Sn-Pb solder layer in a manufacturing process of a solder joint structure concerning the present invention. 本発明に係るはんだ接合構体に関し、はんだ付時および拡散処理時におけるSn−Pb合金の状態変化を説明する平衡状態図である。It is an equilibrium state figure explaining the state change of the Sn-Pb alloy at the time of soldering and a diffusion process regarding the solder joint structure concerning the present invention. 本発明に係るはんだ接合構体の製造工程におけるCuめっき下地層とSnはんだ層を有するリード部材の接合部の部分拡大断面図である。It is a partial expanded sectional view of the junction part of the lead member which has Cu plating foundation layer and Sn solder layer in the manufacturing process of the solder joint structure concerning the present invention. Snはんだ材に関するCu−Sn合金の平衡状態図である。It is an equilibrium state figure of Cu-Sn alloy about Sn solder material.

本発明に係るはんだ接合構体は、図1に示すように、リード部材10と電子素子20とを配置し、両者をそれぞれはんだ接合して構成される。リード部材10は基材となるリード線11の表面に、Cuめっき下地層12を施し、このCuめっき下地層12の上に所定濃度範囲のSnを含むSn系はんだ層13を積層した複層構造を有する。このはんだ材付きリード部材10は、絶縁基板等に実装される半導体や圧電振動子などの電子素子20を接続するために金属膜の平面電極25とはんだ接合されるが、図2に示すように、3工程を経て接合・熱処理される。すなわち、リード部材のはんだ層23と電子素子の平面電極25とを図2(a)に示すように配置し、はんだ付け工程で図2(b)に示すように電子素子用電極とはんだ材付きリード部材とが溶融したはんだ層によって接合された初期はんだフィレット26を形成し、その後、図2(c)に示すように熱処理工程による固相拡散を経て高温はんだフィレット27によるはんだ接合構体を得る。ここで、はんだ付け直後の初期はんだフィレット26に所定の熱処理を施すことで拡散反応を進行させ、含有する純金属Sn成分の濃度を1質量%以下の平衡状態にして経時変化を抑制するとともに、はんだフィレットの金属組成をより耐熱性の高温はんだフィレット27に変化させることを特徴とする。また、このときリード線11に施したCuめっき下地層12は、予め充分な厚みを設けてCuとSnとの相互拡散を前記平衡状態まで進行させてもCuめっき下地層12が消失しないようにしている。Sn系はんだ層13のトータルSn量に対して過剰量のCuめっき下地層12を予め設けておき、両元素の相互拡散が平衡状態まで達したとしてもCuめっき下地層12が消失しないように設定される。特に前記リード線11がコバール合金やNi−Fe合金などのFe基合金材からなる場合には、Fe基合金材リード線とSn系はんだ材とは相互拡散し難いためCuめっき下地層12が消失してしまうと接合代が無くなりめっき膜が界面剥離してしまうことがあるが、Cuめっき下地層12を保持することにより前記界面剥離を防止できる。   As shown in FIG. 1, the solder joint structure according to the present invention is configured by arranging a lead member 10 and an electronic element 20 and soldering them together. The lead member 10 has a multilayer structure in which a surface of a lead wire 11 serving as a base material is provided with a Cu plating base layer 12 and an Sn-based solder layer 13 containing Sn in a predetermined concentration range is laminated on the Cu plating base layer 12. Have The lead member 10 with a solder material is soldered to a planar electrode 25 made of a metal film to connect an electronic element 20 such as a semiconductor or a piezoelectric vibrator mounted on an insulating substrate or the like, as shown in FIG. Bonding and heat treatment are performed through three steps. That is, the solder layer 23 of the lead member and the planar electrode 25 of the electronic element are arranged as shown in FIG. 2A, and the electronic element electrode and the solder material are attached as shown in FIG. An initial solder fillet 26 bonded to the lead member by the molten solder layer is formed, and then a solid state diffusion by a heat treatment process is performed as shown in FIG. Here, by performing a predetermined heat treatment on the initial solder fillet 26 immediately after soldering, the diffusion reaction proceeds, and the concentration of the pure metal Sn component contained is brought to an equilibrium state of 1% by mass or less to suppress the change over time, The metal composition of the solder fillet is changed to a heat-resistant high-temperature solder fillet 27. Further, at this time, the Cu plating underlayer 12 applied to the lead wire 11 is provided with a sufficient thickness so that the Cu plating underlayer 12 does not disappear even if the mutual diffusion of Cu and Sn proceeds to the equilibrium state. ing. An excessive amount of the Cu plating underlayer 12 is provided in advance with respect to the total Sn amount of the Sn-based solder layer 13 and is set so that the Cu plating underlayer 12 does not disappear even if the mutual diffusion of both elements reaches an equilibrium state. Is done. In particular, when the lead wire 11 is made of an Fe-based alloy material such as Kovar alloy or Ni-Fe alloy, the Cu-based underlayer 12 disappears because the Fe-based alloy material lead wire and the Sn-based solder material are difficult to diffuse each other. If this is done, the bonding allowance is lost and the plating film may be peeled off at the interface. However, the interfacial peeling can be prevented by holding the Cu plating base layer 12.

本発明に係るはんだ接合構体のはんだ処理方法は、上述するように、接合部材の所定配置後、図2(b)に示すはんだ材が低い温度で溶融できるようにSn含有量を調整したSn系はんだ層23をCuめっき下地層22上にコーティングし、低温側の第1の溶融温度でSn系はんだ層23を溶融させる。この初期はんだフィレット26は、さらに図2(c)に示すように、固相状態で熱処理してフィレットの合金組成をより高温側の溶融温度を有する高温はんだフィレット27に変化させる。すなわち、はんだ材付きリード部材のSn系はんだ層23と電子素子24の平面電極25を当接させて加熱し、最表面層のSn系はんだ層23のみ溶融して初期はんだフィレット26を形成させる。その後、初期はんだフィレット26に拡散反応が平衡状態になるまで固相のまま熱処理を施し、はんだフィレット26を耐熱性の高温はんだフィレット27に相変化させることを特徴とする。   As described above, the solder processing method of the solder joint structure according to the present invention is an Sn-based solder whose Sn content is adjusted so that the solder material shown in FIG. 2B can be melted at a low temperature after the predetermined arrangement of the joining members. The solder layer 23 is coated on the Cu plating base layer 22, and the Sn-based solder layer 23 is melted at the first melting temperature on the low temperature side. As shown in FIG. 2C, the initial solder fillet 26 is further heat-treated in a solid phase to change the alloy composition of the fillet to a high-temperature solder fillet 27 having a higher melting temperature. That is, the Sn solder layer 23 of the lead member with solder material and the planar electrode 25 of the electronic element 24 are brought into contact with each other and heated, and only the Sn solder layer 23 of the outermost layer is melted to form the initial solder fillet 26. Thereafter, the initial solder fillet 26 is heat-treated in a solid phase until the diffusion reaction reaches an equilibrium state, and the solder fillet 26 is phase-changed to a heat-resistant high-temperature solder fillet 27.

本発明による実施例では、はんだ接合構体およびその熱処理方法について、円筒型水晶振動子の気密端子が適用される。円筒型水晶振動子は、図3に示すように、金属キャップ30と、水晶振動子32と、気密端子33とからなり、気密端子33のリード線31と水晶振動子32の平面電極35は、はんだ接合されて金属キャップ30を圧入し気密封止される。また、図4の部分拡大断面図に示すように、コバール合金や42Ni−Fe合金などからなる気密端子33の金属製リード線41の上にCuめっき下地層42を施し、さらにこの上にSn含有率が10〜30質量%、残部PbのSn−Pb合金はんだ層43を施したSn−Pb合金はんだ材付きリード部材が提供される。ここで、前記Sn−Pb合金はんだ層43の組成に関して、Snの含有量が10質量%未満であった場合は、はんだ材中のSnのCuめっき材への総拡散量が少なすぎるため、溶融はんだ付け工程においてCuSn層(ε相)が優先して生成してしまいCuとSnの拡散速度の大きな差に因ってカーケンダルボイドの発生が顕著となる。一方、Snの含有量が30質量%を超えると、形成したはんだフィレットのSn含有量が多すぎてはんだ付け後の初期はんだフィレットに熱処理を施しても所望する高温はんだフィレットに変化させることができない。 In the embodiment according to the present invention, an airtight terminal of a cylindrical crystal unit is applied to a solder joint structure and a heat treatment method thereof. As shown in FIG. 3, the cylindrical crystal resonator includes a metal cap 30, a crystal resonator 32, and an airtight terminal 33, and the lead wire 31 of the airtight terminal 33 and the planar electrode 35 of the crystal resonator 32 are The metal cap 30 is press-fitted and hermetically sealed by soldering. Further, as shown in the partially enlarged cross-sectional view of FIG. 4, a Cu plating base layer 42 is applied on the metal lead wire 41 of the airtight terminal 33 made of Kovar alloy, 42Ni-Fe alloy or the like, and Sn is further contained thereon. A lead member with a Sn—Pb alloy solder material having a rate of 10 to 30% by mass and the remaining Pb of the Sn—Pb alloy solder layer 43 is provided. Here, regarding the composition of the Sn—Pb alloy solder layer 43, when the Sn content is less than 10% by mass, the total diffusion amount of Sn in the solder material into the Cu plating material is too small. In the soldering process, the Cu 3 Sn layer (ε phase) is preferentially generated, and the generation of Kirkendall voids becomes significant due to the large difference in the diffusion rates of Cu and Sn. On the other hand, if the Sn content exceeds 30% by mass, the formed solder fillet has too much Sn content, and even if heat treatment is applied to the initial solder fillet after soldering, it cannot be changed to the desired high-temperature solder fillet. .

このSn−Pb合金はんだ材付きリード部材は、図4(a)に示すように水晶振動子に施されたAuなどの平面電極45に当接してリフローはんだ付けされる。Cuめっき下地層42の膜厚は、Sn−Pb合金はんだ層43の膜厚比1に対してCu層の厚みを少なくとも膜厚比0.5以上施し、はんだ付け後の熱処理において相互拡散を平衡状態まで進行させてもCuめっき下地層42が消失しないように充分なCu膜厚を確保している。Sn−Pb合金はんだ材付きリード部材は、比較的低温の230〜280℃でリフローはんだ付けを行う。この作業温度で固体のCuめっき下地層42と、溶融したSn−Pb合金はんだ70の固−液界面には、図4(b)に示すはんだフィレットようにCuめっき下地層42側にCuSn層(ε相)48、溶融はんだ側にCuSn層(η相)49が生成される。このときSn−Pb合金はんだ材中のSn濃度が10〜30質量%の範囲内にあるとき、リフローはんだ付けでは、CuSn層(η相)49が優先的に生成され、CuSn層(ε相)48の生成は少なくかつ厚みも極薄いので、Cu−Sn金属間化合物とCuめっき下地層42の界面にカーケンダルボイドを有しない初期はんだフィレット70が形成される。はんだ付け後、固体となった初期はんだフィレット70は、図5(b)の状態図に示すように、150℃以上183℃未満の温度で熱処理を行い、はんだフィレット70中に残存する純金属Sn相を平衡状態まで固相拡散させCuSn層(η相)49を成長させる。はんだフィレット70のSn濃度が1質量%以下になると拡散反応が平衡状態に達し、はんだフィレット70からのSnの拡散が飽和しCuめっき下地層42からのCuの拡散も無くなるので、CuSn層49は、図4(c)に示すCuSn層48に相変化し、カーケンダルボイドを有しない高温はんだフィレット71となる。この高温はんだフィレット71の断面構造は、図4(c)に示すようにCuめっき下地層42と、金属間化合物のCuSn層(ε相)48と、Sn濃度が当初の10〜30質量%から固相拡散により1質量%以下に変化したSn−Pb合金はんだ層とからなり320℃以上の耐熱性を有する高温はんだとなる。 As shown in FIG. 4A, the lead member with the Sn—Pb alloy solder material comes into contact with a planar electrode 45 such as Au applied to the crystal resonator and is reflow soldered. The thickness of the Cu plating underlayer 42 is such that the thickness of the Cu layer is at least 0.5 with respect to the film thickness ratio 1 of the Sn—Pb alloy solder layer 43, and the mutual diffusion is balanced in the heat treatment after soldering. A sufficient Cu film thickness is ensured so that the Cu plating underlayer 42 does not disappear even if it is advanced to the state. The lead member with a Sn—Pb alloy solder material performs reflow soldering at a relatively low temperature of 230 to 280 ° C. At this working temperature, a solid Cu-plated underlayer 42 and a molten Sn—Pb alloy solder 70 at the solid-liquid interface have Cu 3 Sn on the Cu plated underlayer 42 side as shown in FIG. 4B. A layer (ε phase) 48 and a Cu 6 Sn 5 layer (η phase) 49 are formed on the molten solder side. At this time, when the Sn concentration in the Sn—Pb alloy solder material is within a range of 10 to 30 mass%, Cu 6 Sn 5 layer (η phase) 49 is preferentially generated in reflow soldering, and Cu 3 Sn. Since the generation of the layer (ε phase) 48 is small and the thickness is extremely thin, an initial solder fillet 70 having no Kirkendall void is formed at the interface between the Cu—Sn intermetallic compound and the Cu plating underlayer 42. After soldering, the initial solder fillet 70 that has become solid is heat-treated at a temperature of 150 ° C. or higher and lower than 183 ° C. as shown in the state diagram of FIG. 5B, and the pure metal Sn remaining in the solder fillet 70 The phase is solid-phase diffused to an equilibrium state to grow a Cu 6 Sn 5 layer (η phase) 49. When the Sn concentration of the solder fillet 70 is 1 mass% or less, the diffusion reaction reaches an equilibrium state, the diffusion of Sn from the solder fillet 70 is saturated, and the Cu diffusion from the Cu plating underlayer 42 is also eliminated, so Cu 6 Sn 5 The layer 49 changes into the Cu 3 Sn layer 48 shown in FIG. 4C, and becomes a high-temperature solder fillet 71 having no Kirkendall void. As shown in FIG. 4C, the cross-sectional structure of the high-temperature solder fillet 71 includes a Cu plating underlayer 42, a Cu 3 Sn layer (ε phase) 48 of an intermetallic compound, and an initial Sn concentration of 10 to 30 mass. %, A high temperature solder having a heat resistance of 320 ° C. or higher.

本発明の別の観点によると、はんだ付け前のリード部材と電子素子を当接させた状態である図6(a)の拡大断面図に示すように、コバール合金や42Ni−Fe合金などからなる気密端子の金属製リード線61の上にCuめっき下地層62を施し、さらにこの上にSnを85質量%以上含有するSnまたはSn−Cu合金からなるはんだ層63が施される。ここで、Sn−Cu合金はんだ層63に関し、Sn組成の含有量が85質量%未満であった場合は、溶融はんだ付け工程においてはんだ材中の固相成分が多すぎてはんだ材の溶融が不充分となり、作業温度ではんだ材に流動性が悪くなり電子素子のはんだ付けを行うことができない。   According to another aspect of the present invention, as shown in the enlarged sectional view of FIG. 6A in which the lead element before soldering and the electronic element are in contact with each other, it is made of Kovar alloy, 42Ni-Fe alloy or the like. A Cu plating base layer 62 is applied on the metal lead 61 of the airtight terminal, and a solder layer 63 made of Sn or Sn—Cu alloy containing 85% by mass or more of Sn is applied thereon. Here, regarding the Sn—Cu alloy solder layer 63, when the content of the Sn composition is less than 85% by mass, there are too many solid phase components in the solder material in the molten soldering process, and the solder material does not melt. It becomes sufficient, and the fluidity of the solder material becomes poor at the working temperature, and the electronic element cannot be soldered.

このSnまたはSn−Cu合金はんだ材付きリード部材は、水晶振動子64に施されたAuなどの平面電極65に当接してリフローはんだ付けされる。Cuめっき下地層62の膜厚は、SnまたはSn−Cu合金はんだ層63の膜厚比1に対してCu層の厚みを少なくとも膜厚比1.3以上施し、はんだ付け後の熱処理において相互拡散を平衡状態まで進行させてもCuめっき下地層62が消失しないように充分なCu膜厚を確保している。Snはんだ材付きリード部材は232℃でリフローはんだ付けを行う。この作業温度で固体のCuめっき下地層62と、溶融したSnはんだ70の固液界面には、図6(b)に示すようにCuめっき下地層62側にCuSn層(ε相)68、溶融はんだ70側にCuSn層(η相)69が生成されるが、SnまたはSn−Cu合金はんだ材中のSn濃度が85質量%以上含有するとき、リフローはんだ付けでは、CuSn層(η相)69が優先的に生成され、CuSn層(ε相)68の生成が少なくかつ厚みも極薄いので、Cuめっき下地層62とCuSn層(ε相)68の界面にカーケンダルボイドが無い初期はんだフィレット70が形成される(図6(b)参照)。はんだ付け後、固体となった初期はんだフィレット70は、図7の状態図に示すように150℃以上227℃未満の温度で熱処理を行い、Snはんだフィレット70とCuめっき下地層を平衡状態まで固相拡散させ、金属間化合物層68および69を成長させる。拡散反応が前記平衡状態に達した時点で、Snはんだフィレット70中に含有する純金属Sn成分の濃度は1質量%以下となり、Cuめっき下地層62からのCuの拡散も無くなるので、CuSn層69は、図6(c)に示すCuSn層68に相変化しカーケンダルボイドの無い高温はんだフィレット68となる。この高温はんだフィレット68の断面構造は、図6(c)に示すようにCuめっき下地層62と、金属間化合物のCuSn層(ε相)68となり、640℃以上の耐熱性を有する高温はんだに変化する。 The lead member with the Sn or Sn—Cu alloy solder material is brought into contact with the planar electrode 65 such as Au applied to the crystal resonator 64 and is reflow soldered. The film thickness of the Cu plating underlayer 62 is such that the Cu layer thickness is at least 1.3 with respect to the film thickness ratio 1 of the Sn or Sn—Cu alloy solder layer 63, and interdiffusion in the heat treatment after soldering. Sufficient Cu film thickness is ensured so that the Cu plating underlayer 62 does not disappear even if the process proceeds to an equilibrium state. The lead member with Sn solder material is subjected to reflow soldering at 232 ° C. At this working temperature, a solid-liquid interface between the solid Cu plating underlayer 62 and the molten Sn solder 70 has a Cu 3 Sn layer (ε phase) 68 on the Cu plating underlayer 62 side as shown in FIG. A Cu 6 Sn 5 layer (η phase) 69 is generated on the molten solder 70 side, but when the Sn concentration in the Sn or Sn—Cu alloy solder material is 85 mass% or more, Cu 6 Sn is used in reflow soldering. Since the Sn 5 layer (η phase) 69 is preferentially generated, the Cu 3 Sn layer (ε phase) 68 is generated little and the thickness is very thin, the Cu plating underlayer 62 and the Cu 3 Sn layer (ε phase) 68 An initial solder fillet 70 having no Kirkendall void is formed at the interface (see FIG. 6B). The initial solder fillet 70 that has become solid after soldering is heat-treated at a temperature of 150 ° C. or higher and lower than 227 ° C., as shown in the state diagram of FIG. 7, to solidify the Sn solder fillet 70 and the Cu plating underlayer to an equilibrium state. Phase diffusion is performed to grow intermetallic compound layers 68 and 69. When the diffusion reaction reaches the equilibrium state, the concentration of the pure metal Sn component contained in the Sn solder fillet 70 is 1% by mass or less, and there is no Cu diffusion from the Cu plating underlayer 62. Therefore, Cu 6 Sn The fifth layer 69 changes into a Cu 3 Sn layer 68 shown in FIG. 6C and becomes a high-temperature solder fillet 68 having no Kirkendall void. The cross-sectional structure of the high temperature solder fillet 68 is a Cu plating underlayer 62 and an intermetallic compound Cu 3 Sn layer (ε phase) 68 as shown in FIG. Change to solder.

実施例1は、Sn−Pb合金はんだ材付きリード部材を円筒型水晶振動子に適用したものであり、図4(a)の拡大断面図に示すように、直径0.15mmのコバール製リード線41に電気めっきによりCuめっき下地層42を施し、さらにこの上に電気めっきによりSn含有率が20質量%、残部PbからなるSn−Pb合金はんだ層43を施した水晶振動子用気密端子である。Cuめっき下地層42は、相互拡散を平衡状態になるまで進行させても下地層が消失しないよう予め充分な膜厚とする。すなわち、Sn−Pb合金はんだ層43の場合は、Sn−Pb合金はんだ層43の膜厚比1に対してCu層は少なくとも膜厚比0.5以上施す。従って、Cuめっき下地層42のめっき厚を5μmとし、さらにこの上にめっき厚10μmのSn−Pb合金はんだ層43を施す。実施例1のSn−Pb合金はんだ材付き電極端子は、水晶振動子44の上に施されたAu電極45に当接してリフローはんだ付けされる。   In Example 1, a lead member with a Sn—Pb alloy solder material is applied to a cylindrical crystal resonator, and as shown in the enlarged sectional view of FIG. 4A, a Kovar lead wire having a diameter of 0.15 mm. 41 is a hermetic terminal for a crystal resonator in which a Cu plating base layer 42 is applied by electroplating 41 and an Sn-Pb alloy solder layer 43 comprising an Sn content of 20% by mass and the balance Pb is applied thereon by electroplating. . The Cu plating underlayer 42 has a sufficient film thickness so that the underlayer does not disappear even if the mutual diffusion proceeds to an equilibrium state. That is, in the case of the Sn—Pb alloy solder layer 43, the Cu layer is applied at least to a film thickness ratio of 0.5 or more with respect to the film thickness ratio 1 of the Sn—Pb alloy solder layer 43. Therefore, the plating thickness of the Cu plating base layer 42 is set to 5 μm, and the Sn—Pb alloy solder layer 43 having a plating thickness of 10 μm is further formed thereon. The electrode terminal with the Sn—Pb alloy solder material of Example 1 is in contact with the Au electrode 45 provided on the crystal resonator 44 and is reflow soldered.

次に、実施例1のSn−Pb合金はんだ材付きリード部材のリフローはんだ付けおよび熱処理について、図4を参照しながら説明する。先ず図4(a)に示すように、はんだ材付き電極端子は水晶振動子44のAu電極45と互いに当接した状態で加熱され、Sn−Pb合金はんだ層43のみを溶融させてリフローはんだ付けを行う。実施例1のSn−Pb合金はんだ材付き電極端子は、Cuめっき下地層42の上にSn含有率が20質量%、残部PbのSn−Pb合金めっき層43からなるはんだ材を有し、比較的低温の230〜280℃でリフローはんだ付けが可能である。リフローはんだ付け工程では、図4(b)に示すように、溶融したSn−Pb合金はんだ70と固体のCuめっき下地層の固−液界面に金属間化合物のCuSn層(η相)49が優先的に生成され、CuSn層(ε相)48の生成が少なくかつ厚みも極薄いので、CuSn層(ε相)48とCuめっき下地層42の界面にカーケンダルボイドが無い初期はんだフィレット70が形成される。次いで、固相となった初期はんだフィレット70を、150℃以上183℃未満の温度条件下で、初期はんだフィレット70中に残存する純金属Sn成分を、図4(c)の平衡状態の高温はんだフィレット71となるまで固相拡散させると、先行してCuSn層(η相)49が成長し、次いで高温はんだフィレット71中のSn濃度が1質量%以下の熱平衡となると、高温はんだフィレット71からのSnの拡散が飽和しCuSn層49はCuSn層48に相変化する。初期はんだフィレット70は、膜厚が薄いめっき材のSn−Pb合金はんだ層43からなり総量的に限られるため極短時間で固相拡散は平衡状態に達するが、この時点で熱平衡に達しているので、見かけ上、Cuめっき下地層42からのCuの拡散も無くなりカーケンダルボイドの発生は抑制されボイド蓄積の無い高温はんだフィレット71が形成される。熱処理後形成された高温はんだフィレット71の断面構造は、図4(c)の拡大断面図に示すように、1.0μmの下地Cuめっき層42と、5.1μmの金属間化合物のCuSn層(ε相)48と、Sn濃度が当初の10〜20質量%から固相拡散により1質量%以下に減少したSn−Pb合金層とからなり、図5のSn−Pb合金状態図に示すように320℃以上の耐熱性を有する高温はんだフィレット71となり気密封止される。 Next, reflow soldering and heat treatment of the lead member with the Sn—Pb alloy solder material of Example 1 will be described with reference to FIG. First, as shown in FIG. 4A, the soldered electrode terminal is heated while being in contact with the Au electrode 45 of the crystal unit 44, and only the Sn—Pb alloy solder layer 43 is melted to perform reflow soldering. I do. The electrode terminal with the Sn—Pb alloy solder material of Example 1 has a solder material composed of the Sn-Pb alloy plating layer 43 with an Sn content of 20% by mass and the remaining Pb on the Cu plating base layer 42. Reflow soldering is possible at an extremely low temperature of 230 to 280 ° C. In the reflow soldering step, as shown in FIG. 4B, an intermetallic compound Cu 6 Sn 5 layer (η phase) is formed at the solid-liquid interface between the molten Sn—Pb alloy solder 70 and the solid Cu plating underlayer. 49 is preferentially produced, and the Cu 3 Sn layer (ε phase) 48 is generated little and the thickness is very thin. Therefore, a Kirkendall void is formed at the interface between the Cu 3 Sn layer (ε phase) 48 and the Cu plating underlayer 42. A missing initial solder fillet 70 is formed. Next, the pure metal Sn component remaining in the initial solder fillet 70 under the temperature condition of 150 ° C. or more and less than 183 ° C. is used to convert the initial solder fillet 70 in the solid phase into the equilibrium high-temperature solder of FIG. When solid phase diffusion is performed until the fillet 71 is obtained, a Cu 6 Sn 5 layer (η phase) 49 grows first, and then when the Sn concentration in the high-temperature solder fillet 71 reaches a thermal equilibrium of 1% by mass or less, the high-temperature solder fillet The diffusion of Sn from 71 is saturated and the Cu 6 Sn 5 layer 49 changes to the Cu 3 Sn layer 48. The initial solder fillet 70 is composed of a Sn-Pb alloy solder layer 43 of a thin plating material and is limited in terms of the total amount. Therefore, the solid phase diffusion reaches an equilibrium state in a very short time, but has reached thermal equilibrium at this point. Therefore, apparently, Cu is not diffused from the Cu plating underlayer 42, the generation of Kirkendall void is suppressed, and the high temperature solder fillet 71 without void accumulation is formed. The cross-sectional structure of the high-temperature solder fillet 71 formed after the heat treatment is as shown in the enlarged cross-sectional view of FIG. 4C. The base Cu plating layer 42 of 1.0 μm and the intermetallic compound Cu 3 Sn of 5.1 μm are used. Layer (ε phase) 48 and an Sn—Pb alloy layer in which the Sn concentration is initially reduced from 10 to 20 mass% to 1 mass% or less by solid phase diffusion, and is shown in the Sn—Pb alloy phase diagram of FIG. Thus, the high-temperature solder fillet 71 having a heat resistance of 320 ° C. or higher is hermetically sealed.

実施例2は、Snはんだ材付きリード部材を円筒型水晶振動子に適用したものであり、図6を参照しながら説明する。実施例2は、図6(a)の拡大断面図に示すように、直径0.15mmのコバール製リード線61に電気めっきによりCuめっき下地層62を施し、さらにこの上に電気めっきによりSnはんだ層63を施した水晶振動子用気密端子である。Cuめっき下地層62は、相互拡散を平衡状態になるまで進行させても下地層が消失しないよう予め充分な膜厚とする。すなわち、Snはんだ層63の場合は、Snはんだ層63の膜厚比1に対してCu層は少なくとも膜厚比1.3以上施す。従って、Cuめっき下地層42のめっき厚を16μmとし、さらにこの上にめっき厚10μmのSnはんだ層63を施す。   In Example 2, a lead member with Sn solder material is applied to a cylindrical crystal resonator, which will be described with reference to FIG. In Example 2, as shown in the enlarged cross-sectional view of FIG. 6A, a Cu plating base layer 62 is applied by electroplating to a Kovar lead wire 61 having a diameter of 0.15 mm, and Sn solder is further formed thereon by electroplating. This is a hermetic terminal for a crystal resonator provided with a layer 63. The Cu plating underlayer 62 has a sufficient film thickness in advance so that the underlayer does not disappear even if the mutual diffusion proceeds to an equilibrium state. That is, in the case of the Sn solder layer 63, the Cu layer is applied at least to a film thickness ratio of 1.3 or more with respect to the film thickness ratio 1 of the Sn solder layer 63. Accordingly, the plating thickness of the Cu plating base layer 42 is set to 16 μm, and the Sn solder layer 63 having a plating thickness of 10 μm is further formed thereon.

実施例2のSnはんだ材付き電極端子は、図6(a)に示すように水晶振動子64の上に施されたAu電極65に当接してリフローはんだ付けされる。Snはんだ層63は232℃の溶融温度を有するので比較的低温でリフローはんだ付けができる。Snはんだ層63をはんだ材としてリフローはんだ付けを行った場合も、前記の実施例1の電子部品用電極端子と同様に、溶融過程では、図6(b)に示すように溶融したSnはんだ70と固体のCuめっき下地層62の固液界面に金属間化合物のCuSn層(η相)69が優先的に生成され、CuSn層(ε相)68の生成は少なくかつ厚みも極薄い。従って、カーケンダルボイドの発生が無い初期はんだフィレット70となる。図6(c)に示す熱処理過程では、初期はんだフィレット70を、150℃以上227℃未満の温度でSn層が完全に消失するまで熱処理を施しCuSn層(η相)69を成長させる。初期はんだフィレット70は、膜厚が薄いめっき材のSnはんだ層63からなり総量が限られるため極短時間で固相拡散は平衡状態に達する。この熱処理によって、初期はんだフィレット70が完全にCuSn層(η相)69に変化してしまうと、該はんだフィレットから拡散するSnの供給がなくなるので、CuSn層(η相)69はCuSn層(ε相)68に相変化するが、この時点で熱平衡に達しているので、新たなカーケンダルボイド生成が抑制され、ボイドの無い高温はんだフィレット71を形成することができる。図6(c)に示すように高温はんだフィレット71は、0.8μmのCuめっき下地層62と、はんだフィレット70が完全に金属間化合物に変化した18.9μmのCuSn層(ε相)のみからなり、図7のCu−Sn合金状態図に示すように640℃以上の耐熱性を有する高温はんだフィレット71に変化して気密封止される。 The electrode terminal with Sn solder material of Example 2 is in contact with the Au electrode 65 provided on the crystal resonator 64 and reflow soldered as shown in FIG. Since the Sn solder layer 63 has a melting temperature of 232 ° C., reflow soldering can be performed at a relatively low temperature. Also when reflow soldering is performed using the Sn solder layer 63 as a solder material, in the melting process, as shown in FIG. Cu 6 Sn 5 layer (η phase) 69 of an intermetallic compound is preferentially generated at the solid-liquid interface between the solid Cu plating underlayer 62 and the Cu 3 Sn layer (ε phase) 68 and the thickness is small. Very thin. Accordingly, the initial solder fillet 70 is free of the occurrence of Kirkendall void. In the heat treatment process shown in FIG. 6C, the initial solder fillet 70 is heat-treated at a temperature of 150 ° C. or higher and lower than 227 ° C. until the Sn layer completely disappears to grow a Cu 6 Sn 5 layer (η phase) 69. . The initial solder fillet 70 is composed of an Sn solder layer 63 of a thin plating material, and the total amount is limited, so that the solid phase diffusion reaches an equilibrium state in a very short time. If the initial solder fillet 70 is completely changed to the Cu 6 Sn 5 layer (η phase) 69 by this heat treatment, the supply of Sn diffusing from the solder fillet is lost, so the Cu 6 Sn 5 layer (η phase) 69 changes to a Cu 3 Sn layer (ε phase) 68, but since thermal equilibrium is reached at this point, generation of a new Kirkendall void is suppressed and a high-temperature solder fillet 71 without voids can be formed. . As shown in FIG. 6C, the high-temperature solder fillet 71 includes a 0.8 μm Cu plating underlayer 62 and a 18.9 μm Cu 3 Sn layer (ε phase) in which the solder fillet 70 is completely changed to an intermetallic compound. 7 and changes to a high-temperature solder fillet 71 having a heat resistance of 640 ° C. or higher as shown in the Cu—Sn alloy phase diagram of FIG.

実施例3は、実施例2の変形例でSnはんだ層をSn−Cu合金はんだ層に変えたSn−Cu合金はんだ材付リード部材であり、これを円筒型水晶振動子に適用したものである。実施例3について実施例2と同様に図6の拡大断面図を用いて説明する。直径0.15mmのコバール製リード線61に電気めっきによりCuめっき下地層62を13μm施し、さらにこの上に電気めっきによりSn85質量%、残部CuのSn−Cu合金はんだ層63を10μm施して水晶振動子用気密端子とする。   Example 3 is a lead member with an Sn—Cu alloy solder material in which the Sn solder layer is changed to an Sn—Cu alloy solder layer in the modification of Example 2, and this is applied to a cylindrical crystal resonator. . Example 3 will be described using the enlarged cross-sectional view of FIG. A Kovar lead wire 61 having a diameter of 0.15 mm is subjected to an electroplating with a Cu plating underlayer 62 of 13 μm, and further subjected to electroplating with an Sn 85 mass% and the remaining Cu of an Sn—Cu alloy solder layer 63 of 10 μm to produce crystal vibration It is a hermetic terminal for a child.

実施例3のSn−Cu合金はんだ材付き電極端子は、図6(a)に示すように水晶振動子64の上に施されたAu電極65に当接してリフローはんだ付けされる。Sn85質量%、残部CuのSn−Cu合金はんだ層63は227℃以上でSn−Cu共晶相による溶融が開始するため比較的低温でリフローはんだ付けができる。Sn−Cu合金はんだ層63をはんだ材としてリフローはんだ付けを行った場合も、図6(b)に示す溶融過程では、Sn−Cu合金はんだ70と固体のCuめっき下地層62の固液界面に金属間化合物のCuSn層(η相)69が優先的に生成され、CuSn層(ε相)68の生成は少なくかつ厚みも極薄いので、カーケンダルボイドの発生が無い初期はんだフィレット70となる。次いで、150℃以上227℃未満の温度でSn−Cu合金はんだ70中のSn相が完全に拡散するまで熱処理を施し、図6(b)のCuSn層(η相)69と初期はんだフィレット70をCuSn層(ε相)68に相変化させて、図6(c)に示す高温はんだフィレット71に変異させる。高温はんだフィレット71は、1.2μmのCuめっき下地層62と、金属間化合物に変化した16.5μmのCuSn層(ε相)71のみからなり、640℃以上の耐熱性を有する高温はんだフィレット71となって気密封止される。 The electrode terminal with the Sn—Cu alloy solder material of Example 3 is in contact with the Au electrode 65 applied on the crystal resonator 64 and reflow soldered as shown in FIG. Since Sn-Cu alloy solder layer 63 of Sn 85 mass% and the remaining Cu starts melting by Sn-Cu eutectic phase at 227 ° C. or higher, reflow soldering can be performed at a relatively low temperature. Even when reflow soldering is performed using the Sn—Cu alloy solder layer 63 as a solder material, in the melting process shown in FIG. 6B, the solid-liquid interface between the Sn—Cu alloy solder 70 and the solid Cu plating underlayer 62 is formed. Since the intermetallic compound Cu 6 Sn 5 layer (η phase) 69 is preferentially generated and the Cu 3 Sn layer (ε phase) 68 is generated little and the thickness is very thin, the initial solder with no generation of Kirkendall void Fillet 70 is obtained. Next, heat treatment is performed until the Sn phase in the Sn—Cu alloy solder 70 is completely diffused at a temperature of 150 ° C. or higher and lower than 227 ° C., and the Cu 6 Sn 5 layer (η phase) 69 and initial solder in FIG. The fillet 70 is changed to a Cu 3 Sn layer (ε phase) 68 to be mutated into a high-temperature solder fillet 71 shown in FIG. The high-temperature solder fillet 71 is composed of only a 1.2 μm Cu plating underlayer 62 and a 16.5 μm Cu 3 Sn layer (ε phase) 71 changed to an intermetallic compound, and has a heat resistance of 640 ° C. or higher. It becomes a fillet 71 and hermetically sealed.

本発明は、電子部品パッケージのリード部材に用いられ、特にパッケージ内部に用いられる耐熱高温はんだ継ぎ手用部材に有効である。   The present invention is used for a lead member of an electronic component package, and is particularly effective for a heat-resistant and high-temperature solder joint member used inside the package.

10・・・はんだ材付きリード部材、 20,24,34・・・電子素子、
30・・・金属キャップ、 32,44,64・・・水晶振動子、
33・・・気密端子、 11,31,41,61・・・リード線、
12,22,42,62・・・Cuめっき下地層、
13,23,43,63・・・はんだ層、 25,35,45,65・・・平面電極、
48,68・・・CuSn層(ε相)、 49,69・・・CuSn層(η相)、
26,70・・・初期はんだフィレット、 27,71・・・高温はんだフィレット。
10 ... Lead member with solder material 20, 24, 34 ... Electronic element,
30 ... Metal cap, 32, 44, 64 ... Quartz crystal,
33 ... Airtight terminal 11, 31, 41, 61 ... Lead wire,
12, 22, 42, 62 ... Cu plating underlayer,
13, 23, 43, 63 ... solder layer, 25, 35, 45, 65 ... planar electrodes,
48, 68 ... Cu 3 Sn layer (ε phase), 49, 69 ... Cu 6 Sn 5 layer (η phase),
26, 70 ... initial solder fillet, 27, 71 ... high temperature solder fillet.

Claims (10)

リード線にCuめっき下地層を施し、その上に所定濃度のSnを含むSn系はんだ層を積層したリード部材と、電子素子を有する絶縁基板上の電極用金属膜とのはんだ接合構体であって、前記Sn系はんだ層は所定の温度で溶融されて前記リード部材と電極用金属膜とをはんだフィレットを介して接合し、このはんだフィレットを熱処理によりCu−Snの固相拡散を進行させ高温はんだフィレットの平衡状態金属間化合物とすることを特徴とする金属膜とリードのはんだ接合構体。   A solder joint structure comprising a lead member in which a Cu plating base layer is applied to a lead wire and an Sn-based solder layer containing a predetermined concentration of Sn is laminated thereon, and an electrode metal film on an insulating substrate having an electronic element. The Sn-based solder layer is melted at a predetermined temperature, and the lead member and the electrode metal film are joined via a solder fillet. The solder fillet is subjected to heat treatment to cause solid-phase diffusion of Cu-Sn to proceed. A metal film and lead solder joint structure characterized by using an intermetallic compound in an equilibrium state of a fillet. 前記Cuめっき下地層は、そのCu相が前記Sn系はんだ材のSn相と相互拡散し平衡状態に達した後、前記Sn系はんだ層が含む全Sn量に対し、前記Cuめっき下地層のCu相が消失しない程度に、予め過剰量のCuを施すことを特徴とする請求項1に記載の金属膜とリードのはんだ接合構体。   After the Cu phase of the Cu plating underlayer interdiffuses with the Sn phase of the Sn-based solder material and reaches an equilibrium state, the Cu plating underlayer has a Cu content with respect to the total amount of Sn contained in the Sn-based solder layer. The metal film and lead solder joint structure according to claim 1, wherein an excessive amount of Cu is applied in advance so that the phase does not disappear. 前記Sn系はんだ層は、その組成においてSnが10〜30質量%の範囲内で含むSn−Pb合金であることを特徴とする請求項1に記載の金属膜とリードのはんだ接合構体。   The metal film and lead solder joint structure according to claim 1, wherein the Sn-based solder layer is a Sn—Pb alloy containing Sn in a range of 10 to 30 mass% in composition. 前記Sn系はんだ層は、その組成においてSnが85〜100質量%の範囲内で含むSnまたはSn−Cu合金であることを特徴とする請求項1に記載の金属膜とリードのはんだ接合構体。   2. The solder joint structure of a metal film and a lead according to claim 1, wherein the Sn-based solder layer is Sn or Sn—Cu alloy containing Sn in a range of 85 to 100 mass% in composition. 前記高温はんだフィレットは、金属間化合物を除いた純金属Sn成分の含有量が1質量%以下であることを特徴とする請求項1ないし請求項4に記載の金属膜とリードのはんだ接合構体。   The metal film and lead solder joint structure according to claim 1, wherein the high-temperature solder fillet has a pure metal Sn component content excluding intermetallic compounds of 1 mass% or less. リード線にCuめっき下地層を施し、その上に所定濃度以上のSnを含むSn系はんだ材を積層するリード部材を調達する工程と、電子素子を有する絶縁基板上の電極用金属膜を形成する工程と、前記Sn系はんだ層を溶融して前記リード部材と前記電極用金属膜とをはんだフィレットを介して接合する工程と、前記はんだフィレットを熱処理によりCu−Snの固相拡散を進行させて平衡状態の金属間化合物にする熱処理工程とを含む金属膜とリードのはんだ接合構体の熱処理方法。   A step of procuring a lead member on which a lead plating layer is provided with a Cu plating base layer and an Sn-based solder material containing Sn of a predetermined concentration or more is laminated thereon, and an electrode metal film on an insulating substrate having an electronic element is formed A step of melting the Sn-based solder layer and joining the lead member and the electrode metal film through a solder fillet; and a solid phase diffusion of Cu—Sn is advanced by heat-treating the solder fillet. A heat treatment method for a solder joint structure of a metal film and a lead, including a heat treatment step for forming an intermetallic compound in an equilibrium state. 前記Sn系はんだ層は、その組成においてSnが10〜30質量%の範囲内で含むSn−Pb合金であり、前記Cuめっき下地層は、その膜厚を、前記Sn−Pb合金の膜厚比1に対して前記Cuめっき下地層の厚みを少なくとも膜厚比0.5以上施したことを特徴とする請求項6に記載の金属膜とリードのはんだ接合構体の熱処理方法。   The Sn-based solder layer is a Sn—Pb alloy containing Sn in the range of 10 to 30% by mass, and the Cu plating underlayer has a film thickness ratio of the Sn—Pb alloy. 7. The heat treatment method for a solder joint structure of a metal film and a lead according to claim 6, wherein the thickness of the Cu plating underlayer is at least 0.5 or more with respect to 1. 前記熱処理工程は、固相となった前記はんだフィレットを150℃以上183℃未満の温度条件下で前記はんだフィレット中に残存する純金属Sn相を平衡状態となるまで固相拡散させたことを特徴とする請求項7に記載の金属膜とリードのはんだ接合構体の熱処理方法。   In the heat treatment step, the solid phase diffusion of the pure metal Sn phase remaining in the solder fillet is performed in a solid state under a temperature condition of 150 ° C. or higher and lower than 183 ° C. until a solid state is reached. The method for heat-treating a solder joint structure of a metal film and a lead according to claim 7. 前記Sn系はんだ層は、その組成においてSnを85〜100質量%の範囲内で含むSnまたはSn−Cu合金であり、前記Cuめっき下地層は、その膜厚を、前記SnまたはSn−Cu合金の膜厚比1に対して前記Cuめっき下地層の厚みを少なくとも膜厚比 1.3以上施したことを特徴とする請求項6に記載の金属膜とリードのはんだ接合構体の熱処理方法。   The Sn-based solder layer is Sn or Sn—Cu alloy containing Sn in a range of 85 to 100 mass% in composition, and the Cu plating underlayer has a film thickness that is the Sn or Sn—Cu alloy. The heat treatment method for a solder joint structure of a metal film and a lead according to claim 6, wherein the thickness of the Cu plating underlayer is at least 1.3 or more with respect to the film thickness ratio of 1. 前記熱処理工程は、固相となった前記はんだフィレットを150℃以上227℃未満の温度条件下で前記はんだフィレット中に残存する純金属Sn相を平衡状態となるまで固相拡散させたことを特徴とする請求項9に記載の金属膜とリードのはんだ接合構体の熱処理方法。
The heat treatment step is characterized in that the solid phase diffusion of the pure metal Sn phase remaining in the solder fillet under a temperature condition of 150 ° C. or higher and lower than 227 ° C. is performed until the solder fillet in a solid phase is in an equilibrium state. A heat treatment method for a solder joint structure of a metal film and a lead according to claim 9.
JP2011174449A 2011-08-10 2011-08-10 Soldered joined structure of metal film and lead, and its heat treatment method Pending JP2013035046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174449A JP2013035046A (en) 2011-08-10 2011-08-10 Soldered joined structure of metal film and lead, and its heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174449A JP2013035046A (en) 2011-08-10 2011-08-10 Soldered joined structure of metal film and lead, and its heat treatment method

Publications (1)

Publication Number Publication Date
JP2013035046A true JP2013035046A (en) 2013-02-21

Family

ID=47885165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174449A Pending JP2013035046A (en) 2011-08-10 2011-08-10 Soldered joined structure of metal film and lead, and its heat treatment method

Country Status (1)

Country Link
JP (1) JP2013035046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084080A1 (en) * 2012-11-30 2014-06-05 千住金属工業株式会社 Layered solder material for bonding dissimilar electrodes, and method for bonding dissimilar electrodes to electronic components
JP6489257B1 (en) * 2018-03-14 2019-03-27 日立金属株式会社 Tin-plated copper wire, method of manufacturing the same, insulated wire, cable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032447A (en) * 1996-07-12 1998-02-03 Miyota Kk Manufacture of force-fitting and sealing type piezoelectric vibrator
JP2000054189A (en) * 1998-08-10 2000-02-22 Furukawa Electric Co Ltd:The MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JP2001015188A (en) * 1999-06-28 2001-01-19 Nec Kansai Ltd Airtight terminal and its manufacture
JP2004335793A (en) * 2003-05-08 2004-11-25 Mitsubishi Materials Corp Thermometer
JP2006082119A (en) * 2004-09-17 2006-03-30 Nec Schott Components Corp Brazing structure, airtight terminal using the same, and brazing method
JP2006093282A (en) * 2004-09-22 2006-04-06 Nihon Dennetsu Keiki Co Ltd Lead-free solder feeding pump
WO2010093031A1 (en) * 2009-02-13 2010-08-19 千住金属工業株式会社 Solder bump formation on a circuit board using a transfer sheet
WO2010098239A1 (en) * 2009-02-25 2010-09-02 千住金属工業株式会社 Jet solder bath
JP2011109409A (en) * 2009-11-17 2011-06-02 Seiko Instruments Inc Package, piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled clock

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032447A (en) * 1996-07-12 1998-02-03 Miyota Kk Manufacture of force-fitting and sealing type piezoelectric vibrator
JP2000054189A (en) * 1998-08-10 2000-02-22 Furukawa Electric Co Ltd:The MATERIAL FOR ELECTRIC AND ELECTRONIC PARTS USED BY BONDING WITH Sn-Bi-BASED SOLDER, ELECTRIC AND ELECTRONIC PARTS USING IT, ELECTRIC AND ELECTRONIC PARTS-MOUNTED SUBSTRATE, AND SOLDER BONDING, OR MOUNTING METHOD USING IT
JP2001015188A (en) * 1999-06-28 2001-01-19 Nec Kansai Ltd Airtight terminal and its manufacture
JP2004335793A (en) * 2003-05-08 2004-11-25 Mitsubishi Materials Corp Thermometer
JP2006082119A (en) * 2004-09-17 2006-03-30 Nec Schott Components Corp Brazing structure, airtight terminal using the same, and brazing method
JP2006093282A (en) * 2004-09-22 2006-04-06 Nihon Dennetsu Keiki Co Ltd Lead-free solder feeding pump
WO2010093031A1 (en) * 2009-02-13 2010-08-19 千住金属工業株式会社 Solder bump formation on a circuit board using a transfer sheet
WO2010098239A1 (en) * 2009-02-25 2010-09-02 千住金属工業株式会社 Jet solder bath
JP2011109409A (en) * 2009-11-17 2011-06-02 Seiko Instruments Inc Package, piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled clock

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084080A1 (en) * 2012-11-30 2014-06-05 千住金属工業株式会社 Layered solder material for bonding dissimilar electrodes, and method for bonding dissimilar electrodes to electronic components
JP2016128191A (en) * 2012-11-30 2016-07-14 千住金属工業株式会社 Laminated solder material for hetero electrode joint and joint method of hetero electrode of electronic part
JPWO2014084080A1 (en) * 2012-11-30 2017-01-05 千住金属工業株式会社 Multilayer solder material for joining different types of electrodes and method for joining different types of electrodes of electronic parts
US9669493B2 (en) 2012-11-30 2017-06-06 Senju Metal Industry Co., Ltd. Layered solder material for bonding different species of electrodes and method of bonding the different species of electrodes in an electronic component
JP6489257B1 (en) * 2018-03-14 2019-03-27 日立金属株式会社 Tin-plated copper wire, method of manufacturing the same, insulated wire, cable
JP2019157224A (en) * 2018-03-14 2019-09-19 日立金属株式会社 Tin plated copper wire, method for manufacturing the same, insulated wire and cable

Similar Documents

Publication Publication Date Title
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
TWI390642B (en) Stable gold bump solder connections
TWI505899B (en) A bonding method, a bonding structure, and a method for manufacturing the same
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
JP5546067B2 (en) Semiconductor junction structure and manufacturing method of semiconductor junction structure
US20130043594A1 (en) Method for manufacturing semiconductor device and semiconductor device
WO2013099243A1 (en) Junction structure
JP2020520807A (en) Lead-free solder film for diffusion soldering and method for its manufacture
JP2006269903A (en) Lead frame for semiconductor device
JP4959539B2 (en) Laminated solder material, soldering method and solder joint using the same
JP2006066716A (en) Semiconductor device
JP2011243752A (en) Semiconductor device manufacturing method, internal semiconductor connection member, and internal semiconductor connection member group
JP2013035046A (en) Soldered joined structure of metal film and lead, and its heat treatment method
JP4011214B2 (en) Semiconductor device and joining method using solder
JP2009158725A (en) Semiconductor device and die bonding material
JP2007123566A (en) Semiconductor device and its manufacturing method
JP6477517B2 (en) Manufacturing method of semiconductor device
JP2005236019A (en) Manufacturing method of semiconductor device
JP6156693B2 (en) Manufacturing method of semiconductor device
JP6329212B2 (en) Lead solder joint structure and manufacturing method
JP4745878B2 (en) Solder film and soldering method using the same
JP2008079167A (en) Package for crystal vibrator
JP4071049B2 (en) Lead-free solder paste
WO2019131433A1 (en) Metal film, electronic component provided with metal film and method for producing metal film
JP3596445B2 (en) Soldering method and mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151214