WO2019131433A1 - Metal film, electronic component provided with metal film and method for producing metal film - Google Patents

Metal film, electronic component provided with metal film and method for producing metal film Download PDF

Info

Publication number
WO2019131433A1
WO2019131433A1 PCT/JP2018/046979 JP2018046979W WO2019131433A1 WO 2019131433 A1 WO2019131433 A1 WO 2019131433A1 JP 2018046979 W JP2018046979 W JP 2018046979W WO 2019131433 A1 WO2019131433 A1 WO 2019131433A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
film
phosphorus
metal film
crystalline
Prior art date
Application number
PCT/JP2018/046979
Other languages
French (fr)
Japanese (ja)
Inventor
慎治 竹岡
弘幸 榎並
白石 憲一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019131433A1 publication Critical patent/WO2019131433A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present disclosure relates to a metal film, an electronic component including the metal film, and a method of manufacturing the metal film. More specifically, the present disclosure relates to a metal film suitable for alloying solder or the like to an electronic component, an electronic component including the metal film, and a method of manufacturing the metal film.
  • the nickel-phosphorus film is alloyed with solder or the like.
  • the alloy contains tin, an intermetallic compound which is a reaction product of the nickel of the nickel-phosphorus film and the tin of the alloy may be formed. Then, due to this intermetallic compound, the bond between the electronic component and the substrate is likely to be reduced.
  • Patent Document 1 proposes that the surface of a nickel-phosphorus film is covered with an electroless metal plating layer made of palladium to suppress the formation of intermetallic compounds during alloying.
  • Patent Document 1 since it is necessary to increase the number of steps for forming the electroless metal plating layer, it is conceivable that the complexity in manufacturing and the manufacturing cost increase.
  • the object of the present disclosure is to provide a metal film capable of suppressing the formation of an intermetallic compound consisting of nickel of a nickel-phosphorus film and tin of an alloy even if the nickel-phosphorus film is alloyed, an electronic component comprising a metal film, And providing a method of producing a metal film.
  • the metal film according to the present disclosure includes a nickel-phosphorus film in which crystalline Ni is dispersed.
  • An electronic component according to the present disclosure includes the metal film and a component body, and the metal film is located on the surface of the component body.
  • a method of producing a metal film according to the present disclosure comprises subjecting an amorphous film containing nickel and phosphorus to a heat treatment to reform the amorphous film into a nickel-phosphorus film in which crystalline Ni is dispersed. Including.
  • the formation of an intermetallic compound composed of nickel of the nickel-phosphorus film and tin of the alloy can be suppressed.
  • FIG. 1 shows a photograph of an example of a metal film according to an embodiment of the present disclosure taken with a transmission electron microscope.
  • FIG. 2A is a cross-sectional photograph of the distribution of tin taken with a scanning electron microscope employing energy dispersive X-ray spectroscopy in an embodiment in which a solder is bonded to the metal film.
  • FIG. 2B is a cross-sectional photograph of the distribution of nickel taken with the scanning electron microscope in the above embodiment.
  • FIG. 2C is, in the above embodiment, a cross-sectional photograph of the distribution of phosphorus taken by the scanning electron microscope.
  • FIG. 1 shows a photograph of an example of a metal film according to an embodiment of the present disclosure taken with a transmission electron microscope.
  • FIG. 2A is a cross-sectional photograph of the distribution of tin taken with a scanning electron microscope employing energy dispersive X-ray spectroscopy in an embodiment in which a solder is bonded to the metal film.
  • FIG. 2B is
  • FIG. 3A is a cross-sectional photograph of the distribution of tin taken with a scanning electron microscope as described above in a mode in which a solder is bonded to an amorphous film according to a first comparative example of the present disclosure.
  • FIG. 3B is a cross-sectional photograph of the distribution of nickel taken with the scanning electron microscope in the above embodiment.
  • FIG. 3C is a cross-sectional photograph of the distribution of phosphorus taken with the scanning electron microscope in the above embodiment.
  • FIG. 5A is a schematic cross-sectional view showing an example of a method of manufacturing a metal film according to an embodiment of the present disclosure.
  • FIG. 5B is a schematic cross-sectional view showing an example of the manufacturing method of the same.
  • FIG. 6 is a curve diagram showing, as an example, the results of differential thermal analysis on an amorphous film having a phosphorus concentration of 15 atm%, according to one embodiment of the present disclosure.
  • FIG. 7A is a third comparative example of the present disclosure, and in the aspect in which a solder is bonded to a metal film formed by heating the amorphous film at 320 ° C., the distribution of tin is measured by the scanning electron microscope. It is a cross-sectional photograph taken.
  • FIG. 7B is a cross-sectional photograph of the distribution of nickel taken with the scanning electron microscope in the above embodiment.
  • FIG. 8A is a schematic cross-sectional view showing an example of an electronic component according to an embodiment of the present disclosure.
  • FIG. 8B is a schematic cross-sectional view showing another example of the electronic component according to the embodiment of the present disclosure.
  • the metal film 1 according to the present embodiment includes a nickel-phosphorus film 1a as shown in FIG.
  • the nickel-phosphorus film 1a contains a plurality of crystalline Ni (hereinafter, crystalline nickel) 12.
  • the nickel-phosphorus film 1a further contains an amorphous structure 13 containing nickel and phosphorus.
  • the amorphous structure 13 fills the space between the adjacent crystalline nickels 12 and is in contact with the outer surface of each crystalline nickel 12.
  • the amorphous structure 13 is formed in a lattice, and crystalline nickel 12 is embedded in each lattice.
  • the total volume of the crystalline nickel 12 is larger than the total volume of the amorphous structure 13.
  • Crystalline nickel 12 is dispersed in the form of particles in the nickel-phosphorus film 1a.
  • the shape of crystalline nickel 12 is spherical.
  • the average particle diameter of such crystalline nickel 12 is preferably 3 nm or more.
  • the average particle size is 3 nm or more, the crystalline nickel 12 can easily maintain its crystal structure in the nickel-phosphorus film 1a.
  • the particle diameter of crystalline nickel 12 is 3 nm, the number of nickel atoms located on the outer surface of crystalline nickel 12 is 50% with respect to the total number 100% of nickel atoms contained in crystalline nickel 12;
  • the number of nickel atoms located inside 12 is 50%.
  • the average particle size is more preferably 5 nm or more.
  • the upper limit of the average particle size is not particularly limited as long as crystalline nickel 12 is dispersed in the nickel-phosphorus film 1a.
  • the average particle size may be, for example, 7 nm or less.
  • the average particle size is an average value of particle sizes measured for crystalline nickel 12 with a transmission electron microscope.
  • the nickel-phosphorus film 1a is a heat-treated product of an amorphous film (AL) containing nickel and phosphorus as described later.
  • A amorphous film
  • nickel is crystallized in the amorphous film (AL).
  • Such crystalline nickel 12 can contain phosphorus up to the solid solution limit as long as its crystalline structure can be maintained.
  • crystalline nickel 12 can contain 1 atm% or less of phosphorus.
  • the crystalline nickel 12 may not contain phosphorus.
  • the nickel-phosphorus film 1 a may contain more crystalline nickel 12 than crystalline Ni 3 P.
  • the crystalline Ni 3 P may be a minor component, and the crystalline nickel 12 may be a major component.
  • the nickel-phosphorus film 1a does not contain crystalline Ni 3 P.
  • the phosphorus concentration in the amorphous tissue 13 is higher than the phosphorus concentration of the amorphous film (AL). Further, even if the phosphorus concentration in the amorphous structure 13 increases with the generation and growth of the crystalline nickel 12, the amount of phosphorus in the nickel-phosphorus film 1a is the same as that of the amorphous film (AL). That is, the average phosphorus concentration (PC1) in the nickel-phosphorus film 1a is the same as the phosphorus concentration (PC2) of the amorphous film (AL).
  • the phosphorus concentration (PC2) is in the range of not less than 12.5 atm% and not more than 25 atm%.
  • the average phosphorus concentration (PC1) is also in the range of not less than 12.5 atm% and not more than 25 atm%.
  • the average phosphorus concentration (PC1) and the phosphorus concentration (PC2) may be 20 atm% or less.
  • the nickel concentration (NC) of the amorphous film (AL) may be in the range of 75 atm% to 87.5 atm%.
  • the nickel concentration (NC) may be 80 atm% or more.
  • the amorphous film (AL) contains nickel and phosphorus, and the phosphorus concentration (PC2) may be in the range of 12.5 atm% or more and 25 atm% or less, and may be any amorphous film. .
  • PC2 phosphorus concentration
  • the structure of the nickel-phosphorus film 1a can be sufficiently and clearly specified by this method.
  • the impossible and unpractical circumstances regarding the nickel-phosphorus film 1a will be described below.
  • the phosphorus concentration (PC3) in the amorphous structure 13 increases with the generation and growth of crystalline nickel 12, as described above.
  • the size and growth rate of each crystalline nickel 12 depend on the concentration of nickel around it. Therefore, the phosphorus concentration (PC3) tends to be uneven in the amorphous tissue 13.
  • the phosphorus concentration (PC3) is measured by a scanning electron microscope or the like adopting energy dispersive X-ray spectroscopy, the phosphorus concentration (PC3) is likely to differ depending on the measurement position. Therefore, even if the phosphorus concentration (PC3) is higher than the phosphorus concentration (PC2) with the generation and growth of crystalline nickel 12, the composition of the amorphous tissue 13, particularly the phosphorus concentration (PC3) is sufficiently specified. It is impossible.
  • crystalline nickel is dispersed on any substrate, and then any thin film is formed, such as vapor deposition and sputtering.
  • any thin film is formed, such as vapor deposition and sputtering.
  • the substrate is disposed with its treated surface directed downward or laterally. For this reason, it is impractical to retain crystalline nickel on the substrate during deposition of the amorphous mixture, even if the crystalline nickel is sprayed onto the substrate.
  • the nickel-phosphorus film 1 a constitutes the surface layer of the metal film 1. Therefore, the surface of the nickel-phosphorus film 1 a constitutes the exposed surface of the metal film 1.
  • the nickel-phosphorus film 1a can be joined to the alloy 2 containing tin as shown in FIGS. 2A to 2C. Do. In this case, the alloy 2 is heated and melted to be joined to the nickel-phosphorus film 1a.
  • the amorphous structure 13 makes it difficult for the nickel of the nickel-phosphorus film 1a and the tin of the alloy 2 to be mixed. For this reason, it can be made difficult to form the intermetallic compound which consists of nickel and tin. Specifically, since nickel has high affinity to phosphorus, phosphorus in the amorphous tissue 13 suppresses the reaction between nickel and tin. That is, since the phosphorus concentration (PC3) is increased by the generation of crystalline nickel 12, the amorphous structure 13 can suppress the reaction between nickel and tin.
  • PC3 phosphorus concentration
  • the reaction between nickel and tin is suppressed, the nickel of the nickel-phosphorus film 1a and the tin of the alloy 2 are less likely to be mixed, and the formation of the intermetallic compound is easily suppressed.
  • the metal film 1 after being bonded to the alloy 2 can be made less brittle.
  • the layer of the intermetallic compound is in the nickel-phosphorus film 1a or in an alloy with the nickel-phosphorus film 1a. It may be formed between two. Particularly preferably, no layer of intermetallic compound is formed. That is, the thickness of the layer of intermetallic compound is 0 ⁇ m.
  • FIGS. 2A to 2C show an embodiment in which alloy 2 is dissolved and joined in a nickel-phosphorus film 1a having an average phosphorus concentration (PC1) of 15 atm% and a thickness of 3 ⁇ m.
  • PC1 average phosphorus concentration
  • FIG. 2B the position corresponding to the surface of the alloy 2 of FIG. 2A (the surface of the part where the tin distribution is deep) is shown by a dotted line. From the result of FIG. 2B, in the thickness direction of the nickel-phosphorus film 1a, since there is no thick distribution of nickel from the dotted line to the alloy 2 side, the formation of the intermetallic compound is suppressed to such an extent that it can not be confirmed by a scanning electron microscope There is.
  • FIG. 1A the position corresponding to the surface of the alloy 2 of FIG. 2A (the surface of the part where the tin distribution is deep) is shown by a dotted line. From the result of FIG. 2B, in the thickness direction of the nickel-phosphorus film 1a, since there
  • the boundary of the part where the phosphorus distribution is dark is indicated by a dotted line. From the result of FIG. 2C, since the thickness H1 of the portion where the phosphorus distribution is deep is 3 ⁇ m, the thickness of the nickel-phosphorus film 1a is maintained even if the alloy 2 is bonded to the nickel-phosphorus film 1a.
  • an amorphous film 3 containing nickel and phosphorus having a concentration of 15 atm% is employed instead of the nickel-phosphorus film 1 a, and an amorphous film 3 ⁇ m in thickness is used.
  • membrane 3 and joined it is shown.
  • FIG. 3B the position corresponding to the surface of the part where the tin distribution is deep in FIG. 3A is shown by a dotted line. From the results of FIG. 3B, in the thickness direction of the amorphous film 3, a thick distribution of nickel is shown from the dotted line on the side of the alloy 2 with a thickness H2 of about 3 ⁇ m.
  • the boundary of the portion where the phosphorus distribution is dark is indicated by a dotted line. From the result of FIG. 3C, the thickness H3 of the part where the phosphorus distribution is deep is 5 ⁇ m. Therefore, when the alloy 2 is bonded to the amorphous film 3, the nickel of the amorphous film 3 and the tin of the alloy 2 are mixed to easily form an intermetallic compound. Therefore, the thickness of the amorphous film 3 after joining with the alloy 2 is larger than that before joining.
  • the second comparative example of FIG. 4 shows the result of annealing at 220 ° C. of the product obtained by bonding the amorphous film 3 of each phosphorus concentration (15 atm%, 23 atm%) with the alloy 2.
  • the thickness of the intermetallic compound Ni 3 Sn 4
  • the thickness of the intermetallic compound is 2.5 ⁇ m with an annealing time of about 10 minutes.
  • the nickel-phosphorus film 1a is a film obtained by modifying an amorphous film (AL) containing nickel and phosphorus by heat treatment.
  • the amorphous film 3 of the second comparative example does not have a crystal structure, and the film quality tends to be unstable.
  • crystalline nickel 12 is formed by heat treatment of the amorphous film (AL).
  • the film quality of the nickel-phosphorus film 1a is stabilized, and the increase of the phosphorus concentration in the amorphous structure 13 is considered to suppress the formation of the intermetallic compound.
  • the average phosphorus concentration in the amorphous tissue 13 is considered to be much higher than 23 atm%.
  • the alloy 2 according to the present embodiment only needs to contain tin and can be melted and joined to the nickel-phosphorus film 1a, and the specific aspect of the alloy 2 is not particularly limited.
  • the alloy 2 is, for example, a solder.
  • the alloy 2 may be any solder containing tin.
  • the solder may be lead free solder. Examples of lead-free solders include Sn-Sb, Sn-Cu, Sn-Cu-Ag, Sn-Ag, Sn-Ag-Cu, Sn-Ag-Bi-Cu, Sn-In-Ag-Bi, and Sn-Zn. , Sn-Zn-Bi, Sn-Bi, and Sn-In.
  • the nickel-phosphorus film 1a is a thin film having a structure in which crystalline nickel 12 is dispersed, and may have a thickness that can withstand bonding with the alloy 2.
  • the thickness of the nickel-phosphorus film 1a is particularly It is not limited.
  • the thickness of the nickel-phosphorus film 1a is, for example, in the range of 1 ⁇ m to 7 ⁇ m.
  • the thickness of the nickel-phosphorus film 1a is the same as the thickness of the amorphous film (AL).
  • the metal film 1 may further include one or more other metal layers if the surface layer is a nickel-phosphorus film 1a.
  • This metal layer can be composed of any metal material such as nickel, nickel-boron, iridium and the like. Also, the metal film 1 may be composed of only the nickel-phosphorus film 1a.
  • the method for producing a metal film according to the present embodiment is a method for producing the metal film 1.
  • the amorphous film 5 containing nickel and phosphorus is heat-treated to form an amorphous nickel-phosphorus film 1a in which crystalline nickel 12 is dispersed. It comprises modifying the quality membrane 5.
  • the amorphous film 5 is the above-mentioned amorphous film (AL). As shown in FIG. 5A, the amorphous film 5 is formed on the surface of the base 6, for example, the component body of the electronic component, with its one surface exposed. In this case, the amorphous film 5 may be in contact with the substrate 6. After the formation of the amorphous film 5, the amorphous film 5 is heat-treated to be reformed into a nickel-phosphorus film 1a. In this case, the nickel-phosphorus film 1a may be in contact with the substrate 6. Further, when the amorphous film 5 is modified, nickel atoms in the amorphous film 5 are aggregated to form crystalline nickel 12.
  • the phosphorus concentration (PC3) in the amorphous tissue 13 is higher than the phosphorus concentration (PC2) of the amorphous film 5 before heating.
  • the amorphous film 5 is heat-treated at a temperature at which nickel in the amorphous film 5 is crystallized.
  • the crystallization temperature of nickel is a temperature lower than the crystallization temperature of Ni 3 P as shown in FIG.
  • an amorphous film 5 may be heat treated at a temperature between peak (P1) and peak (P2). That is, the amorphous film 5 may be heat-treated at a temperature at which the amount of generation of crystalline nickel 12 is larger than the amount of generation of crystalline Ni 3 P.
  • the example of FIG. 6 shows the result of differential thermal analysis of the amorphous film 5 having a phosphorus concentration (PC2) of 15 atm%. The results in FIG. 6 indicate that crystalline nickel 12 is generated at a heating temperature of 150 ° C.
  • the generation of crystalline Ni 3 P is most accelerated at a heating temperature of 320 ° C.
  • the peak temperature of the peak (P2) tends to shift to a lower temperature side as the phosphorus concentration in the amorphous film 5 before heating is higher. For this reason, when the crystalline Ni 3 P is not generated at the time of reforming the amorphous film 5, the amorphous film 5 is heat-treated with the temperature at which the crystalline Ni 3 P is not generated as the upper limit.
  • the amorphous film 5 is heat-treated in vacuum or in an inert gas.
  • the amorphous film 5 is heat-treated, for example, in a chamber.
  • Inert gases include, for example, nitrogen and argon.
  • the heating time of the amorphous film 5 is appropriately set as long as the nickel-phosphorus film 1a can be formed.
  • the heating time of the amorphous film 5 is, for example, in the range of 0.5 hours or more and 24 hours or less.
  • the nickel-phosphorus of FIG. 1 is obtained by heat treating the amorphous film 5 having a phosphorus concentration (PC2) of 15 atm% and a thickness of 3 ⁇ m in nitrogen gas at 220 ° C. for 1 hour.
  • PC2 phosphorus concentration
  • An embodiment is shown in which the film 1a is formed, and the alloy 2 is dissolved and bonded to the nickel-phosphorus film 1a. From the results of FIGS. 2A to 2C, even when the alloy 2 is bonded to the nickel-phosphorus film 1a, the thickness of the nickel-phosphorus film 1a is maintained.
  • a nickel-phosphorus film 1a is formed by the same procedure as described above except that the amorphous film 5 is heat-treated at 150 ° C., 185 ° C., 220 ° C., or 255 ° C., and the alloy 2 is bonded to the nickel-phosphorus film 1a. Even if this is done, the thickness of the nickel-phosphorus film 1a is maintained.
  • the amorphous film 5 having a phosphorus concentration (PC2) of 15 atm% and a thickness of 3 ⁇ m is heat-treated at 320 ° C. in nitrogen gas for 1 hour.
  • a nickel-phosphorus film 1b in which Ni 3 P is generated is formed.
  • the alloy 2 is melted and joined to the nickel-phosphorus film 1b.
  • FIG. 7B the position corresponding to the surface of the part where tin distribution is thick is shown by a dotted line in FIG. 7A. From the results of FIG.
  • a thick distribution of nickel is shown with a thickness H4 of about 3 ⁇ m from the dotted line to the alloy 2 side in the thickness direction of the nickel-phosphorus film 1b. That is, when the alloy 2 is bonded to the nickel-phosphorus film 1b, the nickel of the nickel-phosphorus film 1b and the tin of the alloy 2 are easily mixed. As a result, the reaction between nickel and tin is facilitated, and the intermetallic compound is easily formed. Further, when the amorphous film 5 by reformed to generate a crystalline Ni 3 P, Ni - in phosphorus film 1b, is considered a layer of crystalline Ni 3 P is present. For this reason, the phosphorus concentration in the surface layer of the nickel-phosphorus film 1b is lower than the phosphorus concentration (PC2), which is considered to result in the formation of an intermetallic compound.
  • PC2 phosphorus concentration
  • the amorphous film 5 according to the present embodiment is a thin film as long as it can be reformed into the nickel-phosphorus film 1a at a temperature at which nickel is crystallized, and the thickness of the amorphous film 5 is not particularly limited.
  • the thickness of the amorphous film 5 is, for example, in the range of 1 ⁇ m to 7 ⁇ m.
  • the amorphous film 5 can be formed by any thin film formation method such as vapor deposition, sputtering, electrolytic plating, and electroless plating.
  • the surface of the metal film 1 is a nickel-phosphorus film 1a
  • one or a plurality of other metal layers may be formed between the nickel-phosphorus film 1a and the base 6.
  • This metal layer can be formed by any thin film formation method such as vapor deposition, sputtering, electrolytic plating, and electroless plating.
  • the metal film 1 may be composed of only the nickel-phosphorus film 1a. That is, the nickel-phosphorus film 1a may be formed in contact with the substrate 6.
  • FIGS. 8A to 8B an electronic component according to an embodiment will be described with reference to FIGS. 8A to 8B.
  • the same reference numerals are given to configurations overlapping with the description of the metal film 1 and the description of the manufacturing method of the metal film 1, and the description thereof is omitted. That is, in the present embodiment, the description of the metal film 1 and the description of the method of manufacturing the metal film 1 can be referred to.
  • the base 6 is a component body of the electronic component 10.
  • the electronic component 10 is equipped with the metal film 1 and the component main body 6 like FIG. 8A.
  • the metal film 1 is located on the surface of the component body 6.
  • the metal film 1 may be in contact with the component body 6.
  • the surface layer of the metal film 1 is the nickel-phosphorus film 1a as described above. For this reason, even if the alloy 2 is dissolved in the nickel-phosphorus film 1a and then joined, the nickel of the nickel-phosphorus film 1a and the tin of the alloy 2 become difficult to be mixed, so that the intermetallic compound can be hardly generated.
  • the component body 6 has a first end 61 and a second end 62.
  • the second end 62 is an end of the component body 6 at a position different from the first end 61.
  • the second end 62 is an end located opposite to the first end 61 in one cross section of the component body 6.
  • metal films 1 and 1 are formed on the first end 61 and the second end 62, respectively.
  • the metal film 1 is connected to the first conductor 71 by the alloy 2.
  • the metal film 1 is connected to the second conductor 72 with the alloy 2 on the side of the second end 62 of the component body 6.
  • the first end 61 and the second end 62 may be in contact with the metal film 1, 1 respectively.
  • the electronic component 10 may or may not include the first conductor 71 and the second conductor 72.
  • the electronic component 10 may have the metal film 1, the alloy 2, and the first conductor 61 at the first end 61 along the thickness direction of the component body 6. It has a structure in which one conductor 71 is stacked in this order. Furthermore, the electronic component 10 also has a structure in which the metal film 1, the alloy 2, and the second conductor 72 are laminated in this order at the second end 62 along the thickness direction of the component body 6.
  • the metal film 1 on the first end 61 side is connected to the first conductor 71 on the substrate with the alloy 2, and the second end 62 side
  • the metal film 1 is connected by an alloy 2 to a second conductor 72 on the substrate.
  • the first conductor 71 may have conductivity, and a specific aspect of the first conductor 71 is not particularly limited.
  • the shape of the first conductor 71 is, for example, a thin film.
  • any thin film forming method such as vapor deposition, sputtering, electrolytic plating, and electroless plating can be adopted.
  • As a material which comprises the 1st conductor 71 copper, nickel, platinum, and gold are mentioned, for example.
  • the 2nd conductor 72 should just have conductivity, and the specific mode of the 2nd conductor 72 is not specifically limited.
  • the shape of the second conductor 72 is, for example, a thin film.
  • any thin film forming method such as vapor deposition, sputtering, electrolytic plating, and electroless plating can be adopted.
  • As a material which comprises the 2nd conductor 72 copper, nickel, platinum, and gold are mentioned, for example.
  • the component main body 6 should just be applicable to arbitrary electric devices, and the specific aspect of the component main body 6 is not specifically limited.
  • the component main body 6 is a main body in any electronic component such as, for example, a diode, a capacitor, a resistor, and a thermoelectric conversion element.
  • the component body 6 may include a semiconductor.
  • the electronic component 10 may be a thermoelectric conversion element 10 p as shown in FIG. 8B.
  • the thermoelectric conversion element 10p is supplied with a direct current to function, and thereby, a temperature difference can be generated on both sides of the thermoelectric conversion element 10p.
  • the thermoelectric conversion element 10p can generate electric power by converting the temperature difference (difference in thermal energy) on both sides thereof into electric power energy.
  • the component body 6 When the electronic component 10 is the thermoelectric conversion element 10 p, the component body 6 includes a semiconductor. Specifically, the component body 6 includes a P-type semiconductor 6a and an N-type semiconductor 6b. The P-type semiconductors 6a and the N-type semiconductors 6b are alternately arranged and connected in series along the direction in which electricity flows in the thermoelectric conversion element 10p.
  • the P-type semiconductor 6 a has a first end 601 and a second end 602 opposite to the first end 601 in the thickness direction of the P-type semiconductor 6 a.
  • the metal film 1, the alloy 2, and the first conductor 71 are stacked in this order at the first end 601. Furthermore, the metal film 1, the alloy 2, and the second conductor 72 are stacked in this order on the second end 602.
  • the first end 601 and the second end 602 may be in contact with the metal film 1, 1 respectively.
  • the N-type semiconductor 6 b has a first end 611 and a second end 612 located on the opposite side of the first end 611 in the thickness direction of the N-type semiconductor 6 b.
  • the metal film 1, the alloy 2, and the first conductor 71 are stacked in this order at the first end 611.
  • the metal film 1, the alloy 2, and the second conductor 72 are stacked in this order.
  • the first end 611 and the second end 612 may be in contact with the metal film 1, 1 respectively.
  • Each of the P-type semiconductor 6a and the N-type semiconductor 6b includes a semiconductor.
  • the semiconductor preferably forms an ohmic contact with the metal film 1, particularly nickel in the nickel-phosphorus film 1a.
  • the work function of the portion of the metal film 1 in contact with the semiconductor becomes less susceptible to the influence of tin. That is, the Schottky contact between the semiconductor, the tin, and the intermetallic compound composed of tin and nickel is less likely to occur, and the electrical resistance due to the intermetallic compound may be less likely to occur.
  • the first conductor 71 and the second conductor 72 When there is a temperature difference between the first conductor 71 and the second conductor 72, one of the first conductor 71 and the second conductor 72 has a high temperature, and the remaining conductors have a low temperature.
  • the first conductor 71 has a high temperature
  • the formation of the intermetallic compound can be suppressed in each of the metal film 1 at the first end 601 and the metal film 1 at the first end 611. For this reason, even if the first conductor 71 is continued at a high temperature, the formation of the intermetallic compound is likely to be continuously suppressed.
  • the formation of the intermetallic compound can be suppressed in each of the metal film 1 at the second end 602 and the metal film 1 at the second end 612. For this reason, even if the second conductor 72 is continued at a high temperature, the formation of the intermetallic compound is likely to be continuously suppressed.
  • the electric resistance caused by the intermetallic compound is less likely to occur, and the power generation efficiency of the thermoelectric conversion element 10 p can be improved.
  • thermoelectric conversion element 10p is a Peltier element
  • suppressing the formation of the intermetallic compound with the high temperature metal film 1 makes it difficult to cause an electrical resistance due to the intermetallic compound, so the first conductor 71 and the first conductor 71 A more accurate temperature difference can be obtained between the two conductors 72.
  • Examples of the semiconductor included in the N-type semiconductor 6 b include BiTe-based semiconductors such as Bi 2 Te 3 . If N-type semiconductor 6b comprises a semiconductor Bi 2 Te 3, the electron affinity of the semiconductor Bi 2 Te 3 is 5.14EV.
  • the work function of nickel is 5.15 eV on average, and this work function has a width of 5.04 to 5.35 eV depending on the plane orientation.
  • the work function of tin is 4.42 eV. That is, the electron affinity of the semiconductor Bi 2 Te 3 is about the same as the work function of nickel in the metal film 1, and both form an ohmic contact.
  • the semiconductor contained in the P-type semiconductor 6a include BiTe-based semiconductor such as Bi 0.5 Sb 1.5 Te 3.
  • P-type semiconductor 6a comprises a semiconductor Bi 0.5 Sb 1.5 Te 3
  • the electron affinity of the semiconductor Bi 0.5 Sb 1.5 Te 3 is 4.50EV
  • the band gap energy is 0.20 eV.
  • the sum of the electron affinity and the band gap energy of the semiconductor Bi 0.5 Sb 1.5 Te 3 is 4.70 eV.
  • the work function of nickel is 5.15 eV on average, and this work function has a width of 5.04 to 5.35 eV depending on the plane orientation.
  • the work function of tin is 4.42 eV.
  • the sum of the electron affinity and the band gap energy needs to be smaller than the work function of the metal film.
  • the sum of the electron affinity and the band gap energy of the semiconductor Bi 0.5 Sb 1.5 Te 3 is 0.45 eV smaller than the work function of nickel, and both form an ohmic contact.
  • the work function of tin contained in alloy 2 is smaller than the sum of the electron affinity and the band gap energy of the semiconductor Bi 0.5 Sb 1.5 Te 3 .
  • the metal film 1 can suppress the diffusion of tin in the alloy 2. Therefore, the work function of the metal film 1 is less susceptible to the influence of tin in the portion where the P-type semiconductor 6a and the metal film 1 are in contact. That is, it the semiconductor Bi 0.5 Sb 1.5 Te 3, tin and, since the Schottky contact between the intermetallic compound of tin and nickel is less likely to occur, less likely to cause an electrical resistance due to the intermetallic compound.
  • thermoelectric conversion elements When connecting the P-type semiconductor 6a and the N-type semiconductor 6b in series, the same procedure as any of the thermoelectric conversion elements can be adopted.
  • one of the first conductor 71 and the second conductor 72 is divided between the P-type semiconductor 6a and the N-type semiconductor 6b, and the remaining conductors are the P-type semiconductor 6a and the N-type The semiconductor 6b is connected.
  • the first embodiment includes the nickel-phosphorus film (1a) which is the metal film (1) and in which the crystalline Ni (12) is dispersed.
  • the nickel-phosphorus film (1a) is applied with the alloy (2), formation of an intermetallic compound consisting of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) Can be suppressed.
  • a second aspect is the metal film (1) of the first aspect, wherein the nickel-phosphorus film (1a) contains crystalline Ni (12) more than crystalline Ni 3 P.
  • the formation of an intermetallic compound consisting of the nickel of the nickel-phosphorus film (1a) and the tin of the alloy (2) can be suppressed.
  • a third aspect is the metal film (1) of the second aspect, wherein the nickel-phosphorus film (1a) does not contain crystalline Ni 3 P.
  • a fourth aspect is the metal film (1) according to any one of the first to third aspects, wherein the average particle diameter of the crystalline Ni (12) is 3 nm or more.
  • the crystalline nickel (12) can easily maintain the crystalline structure in the nickel-phosphorus film (1a).
  • a fifth aspect is the metal film (1) according to any one of the first to fourth aspects, wherein the average phosphorus concentration in the nickel-phosphorus film (1a) is at least 12.5 atm% and at most 25 atm%. It is in the range.
  • the formation of an intermetallic compound consisting of the nickel of the nickel-phosphorus film (1a) and the tin of the alloy (2) can be suppressed.
  • the sixth aspect is the metal film (1) according to any one of the first to fifth aspects, wherein the nickel-phosphorus film (1a) is capable of bonding to an alloy (2) containing tin. Membrane.
  • a seventh aspect is an electronic component (10), including the metal film (1) of any one of the first to sixth aspects and a component body (6).
  • the metal film (1) is located on the surface of the component body (6).
  • the seventh aspect even if the nickel-phosphorus film (1a) is alloyed (2), an intermetallic compound composed of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) is formed. Can be suppressed.
  • An eighth aspect is the electronic component (10) of the seventh aspect, wherein the component body (6) includes a semiconductor.
  • the semiconductor forms an ohmic contact with the nickel in the metal film (1).
  • the Schottky contact between the semiconductor, the tin, and the intermetallic compound made of tin and nickel can be hardly caused, the electric resistance caused by the intermetallic compound can be hardly generated.
  • a ninth aspect is a method for producing a metal film (1), wherein the amorphous film (5) containing nickel and phosphorus is subjected to a heat treatment to form a nickel-phosphorus film in which crystalline Ni (12) is dispersed.
  • (1a) includes modifying the amorphous film (5).
  • the ninth aspect even if the nickel-phosphorus film (1a) is alloyed (2), an intermetallic compound composed of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) is produced. Can be suppressed.
  • a tenth aspect is the method for producing a metal film (1) according to the ninth aspect, wherein in the amorphous film (5), the generation amount of crystalline Ni (12) becomes larger than the generation amount of crystalline Ni 3 P Heat treated at temperature.
  • An eleventh aspect is the method for producing a metal film (1) according to the tenth aspect, wherein the amorphous film (5) is heat-treated at a temperature at which crystalline Ni 3 P is not generated.
  • the alloy (2) is attached to the nickel-phosphorus film (1a), formation of an intermetallic compound consisting of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) Can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The purpose of the present disclosure is to provide a metal film which is capable of preventing the formation of an intermetallic compound when a nickel-phosphorus film is brazed with an alloy, said intermetallic compound being formed of nickel in the nickel-phosphorus film and tin in the alloy. A metal film (1) comprises a nickel-phosphorus film (1a) in which crystalline Ni (12) is dispersed.

Description

金属膜、金属膜を備える電子部品、及び金属膜の製造方法Metal film, electronic component provided with metal film, and method of manufacturing metal film
 本開示は、金属膜、金属膜を備える電子部品、及び金属膜の製造方法に関する。より詳細には、本開示は、電子部品にはんだ等の合金付けする際に好適な金属膜、金属膜を備える電子部品、及び金属膜の製造方法に関する。 The present disclosure relates to a metal film, an electronic component including the metal film, and a method of manufacturing the metal film. More specifically, the present disclosure relates to a metal film suitable for alloying solder or the like to an electronic component, an electronic component including the metal film, and a method of manufacturing the metal film.
 従来、表面にニッケル-リン膜を有する電子部品が基板に接続される際、このニッケル-リン膜に、はんだ等の合金付けが施されている。しかし、合金がスズを含有する場合、ニッケル-リン膜のニッケルと、合金のスズとの反応生成物である金属間化合物が生じてしまう可能性がある。そして、この金属間化合物に起因して、電子部品と基板との間の結合が低下しやすくなる。 Conventionally, when an electronic component having a nickel-phosphorus film on its surface is connected to a substrate, the nickel-phosphorus film is alloyed with solder or the like. However, when the alloy contains tin, an intermetallic compound which is a reaction product of the nickel of the nickel-phosphorus film and the tin of the alloy may be formed. Then, due to this intermetallic compound, the bond between the electronic component and the substrate is likely to be reduced.
 そこで、特許文献1では、ニッケル-リン膜の表面を、パラジウムからなる無電解金属メッキ層で被覆させることで、合金付けの際に金属間化合物の生成を抑制することが提案されている。 Therefore, Patent Document 1 proposes that the surface of a nickel-phosphorus film is covered with an electroless metal plating layer made of palladium to suppress the formation of intermetallic compounds during alloying.
 しかし、特許文献1の場合、無電解金属メッキ層を形成するための工程を増やす必要があるため、製造時の煩雑性と、製造コストとが増加してしまうことが考えられる。 However, in the case of Patent Document 1, since it is necessary to increase the number of steps for forming the electroless metal plating layer, it is conceivable that the complexity in manufacturing and the manufacturing cost increase.
特開2004-79891号公報Unexamined-Japanese-Patent No. 2004-79891
 本開示の目的は、ニッケル-リン膜に、合金付けを施しても、ニッケル-リン膜のニッケルと合金のスズとからなる金属間化合物の生成を抑制できる金属膜、金属膜を備える電子部品、及び金属膜の製造方法を提供することである。 The object of the present disclosure is to provide a metal film capable of suppressing the formation of an intermetallic compound consisting of nickel of a nickel-phosphorus film and tin of an alloy even if the nickel-phosphorus film is alloyed, an electronic component comprising a metal film, And providing a method of producing a metal film.
 本開示に係る金属膜は、結晶Niが分散されているニッケル-リン膜を含む。 The metal film according to the present disclosure includes a nickel-phosphorus film in which crystalline Ni is dispersed.
 本開示に係る電子部品は、前記金属膜と、部品本体と、を備え、前記金属膜は、前記部品本体の表面に位置する。 An electronic component according to the present disclosure includes the metal film and a component body, and the metal film is located on the surface of the component body.
 本開示に係る金属膜の製造方法は、ニッケルとリンとを含有する非晶質膜に熱処理を施して、結晶Niが分散されたニッケル-リン膜に前記非晶質膜を改質させることを含む。 A method of producing a metal film according to the present disclosure comprises subjecting an amorphous film containing nickel and phosphorus to a heat treatment to reform the amorphous film into a nickel-phosphorus film in which crystalline Ni is dispersed. Including.
 本開示によると、ニッケル-リン膜に、合金付けを施しても、ニッケル-リン膜のニッケルと合金のスズとからなる金属間化合物の生成を抑制できる。 According to the present disclosure, even if the nickel-phosphorus film is alloyed, the formation of an intermetallic compound composed of nickel of the nickel-phosphorus film and tin of the alloy can be suppressed.
図1は、本開示の一実施形態に係る金属膜の一例を透過型電子顕微鏡で撮影した写真を示す。FIG. 1 shows a photograph of an example of a metal film according to an embodiment of the present disclosure taken with a transmission electron microscope. 図2Aは、同上の金属膜にはんだを接合させた態様において、スズの分布をエネルギー分散型X線分光法を採用した走査型電子顕微鏡で撮影した断面写真である。FIG. 2A is a cross-sectional photograph of the distribution of tin taken with a scanning electron microscope employing energy dispersive X-ray spectroscopy in an embodiment in which a solder is bonded to the metal film. 図2Bは、同上の態様において、ニッケルの分布を前記走査型電子顕微鏡で撮影した断面写真である。FIG. 2B is a cross-sectional photograph of the distribution of nickel taken with the scanning electron microscope in the above embodiment. 図2Cは、同上の態様において、リンの分布を前記走査型電子顕微鏡で撮影した断面写真である。FIG. 2C is, in the above embodiment, a cross-sectional photograph of the distribution of phosphorus taken by the scanning electron microscope. 図3Aは、本開示の第1比較例に係る非晶質膜にはんだを接合させた態様において、スズの分布を同上の走査型電子顕微鏡で撮影した断面写真である。FIG. 3A is a cross-sectional photograph of the distribution of tin taken with a scanning electron microscope as described above in a mode in which a solder is bonded to an amorphous film according to a first comparative example of the present disclosure. 図3Bは、同上の態様において、ニッケルの分布を前記走査型電子顕微鏡で撮影した断面写真である。FIG. 3B is a cross-sectional photograph of the distribution of nickel taken with the scanning electron microscope in the above embodiment. 図3Cは、同上の態様において、リンの分布を前記走査型電子顕微鏡で撮影した断面写真である。FIG. 3C is a cross-sectional photograph of the distribution of phosphorus taken with the scanning electron microscope in the above embodiment. 図4は、本開示の第2比較例に係る非晶質膜にはんだを接合させた態様において、非晶質膜中のリン濃度と、220℃のアニール温度で生成された金属間化合物(NiSn)からなる層の厚みとの関係を示すプロット図である。FIG. 4 shows the intermetallic compound (Ni formed at the phosphorus concentration in the amorphous film and the annealing temperature of 220 ° C.) in the embodiment in which the solder is joined to the amorphous film according to the second comparative example of the present disclosure 3 is a plot illustrating the relationship between the thickness of the Sn 4) a layer. 図5Aは、本開示の一実施形態に係る金属膜の製造方法の一例を示す概略断面図である。FIG. 5A is a schematic cross-sectional view showing an example of a method of manufacturing a metal film according to an embodiment of the present disclosure. 図5Bは、同上の製造方法の一例を示す概略断面図である。FIG. 5B is a schematic cross-sectional view showing an example of the manufacturing method of the same. 図6は、本開示に係る一態様において、リン濃度が15atm%の非晶質膜に対する示差熱分析の結果を一例として示す曲線図である。FIG. 6 is a curve diagram showing, as an example, the results of differential thermal analysis on an amorphous film having a phosphorus concentration of 15 atm%, according to one embodiment of the present disclosure. 図7Aは、本開示の第3比較例であって、同上の非晶質膜を320℃で加熱されてなる金属膜にはんだを接合させた態様において、スズの分布を前記走査型電子顕微鏡で撮影した断面写真である。FIG. 7A is a third comparative example of the present disclosure, and in the aspect in which a solder is bonded to a metal film formed by heating the amorphous film at 320 ° C., the distribution of tin is measured by the scanning electron microscope. It is a cross-sectional photograph taken. 図7Bは、同上の態様において、ニッケルの分布を前記走査型電子顕微鏡で撮影した断面写真である。FIG. 7B is a cross-sectional photograph of the distribution of nickel taken with the scanning electron microscope in the above embodiment. 図8Aは、本開示の一実施形態に係る電子部品の一例を示す概略断面図である。FIG. 8A is a schematic cross-sectional view showing an example of an electronic component according to an embodiment of the present disclosure. 図8Bは、本開示の一実施形態に係る電子部品の他例を示す概略断面図である。FIG. 8B is a schematic cross-sectional view showing another example of the electronic component according to the embodiment of the present disclosure.
 <金属膜>
 まず、一実施形態に係る金属膜を、図1~図4を参照して説明する。
<Metal film>
First, a metal film according to an embodiment will be described with reference to FIGS. 1 to 4.
 本実施形態に係る金属膜1は、図1のように、ニッケル-リン膜1aを含む。ニッケル-リン膜1aは、複数の結晶Ni(以下、結晶ニッケル)12を含有する。 The metal film 1 according to the present embodiment includes a nickel-phosphorus film 1a as shown in FIG. The nickel-phosphorus film 1a contains a plurality of crystalline Ni (hereinafter, crystalline nickel) 12.
 ニッケル-リン膜1aは、ニッケルとリンとを含有する非晶質組織13を更に含有する。非晶質組織13は、隣り合う結晶ニッケル12、12の間を充填し、各結晶ニッケル12の外表面と接触している。例えば、ニッケル-リン膜1aの一断面において、非晶質組織13は格子状に形成されており、この格子に、それぞれ、結晶ニッケル12が埋め込まれている。また、ニッケル-リン膜1aの体積のうち、結晶ニッケル12の総体積は、非晶質組織13の総体積よりも大きい。 The nickel-phosphorus film 1a further contains an amorphous structure 13 containing nickel and phosphorus. The amorphous structure 13 fills the space between the adjacent crystalline nickels 12 and is in contact with the outer surface of each crystalline nickel 12. For example, in one cross section of the nickel-phosphorus film 1a, the amorphous structure 13 is formed in a lattice, and crystalline nickel 12 is embedded in each lattice. Further, of the volume of the nickel-phosphorus film 1 a, the total volume of the crystalline nickel 12 is larger than the total volume of the amorphous structure 13.
 結晶ニッケル12は、粒子形状で、ニッケル-リン膜1a中で分散されている。結晶ニッケル12の形状は、具体的には、球状である。このような結晶ニッケル12の平均粒子径は、3nm以上であることが好ましい。平均粒子径が3nm以上であることで、結晶ニッケル12はニッケル-リン膜1a中で結晶構造を保ちやすくできる。結晶ニッケル12の粒子径が3nmである場合、結晶ニッケル12に含有されるニッケル原子の総数100%に対して、結晶ニッケル12の外表面に位置するニッケル原子の数は50%であり、結晶ニッケル12の内部に位置するニッケル原子の数は50%である。また、平均粒子径は、より好ましくは、5nm以上である。ニッケル-リン膜1a中で結晶ニッケル12が分散していればよく、平均粒子径の上限は特に限定されない。平均粒子径は、例えば、7nm以下であってもよい。平均粒子径は、透過型電子顕微鏡で結晶ニッケル12に対して測定された粒子径の平均値である。 Crystalline nickel 12 is dispersed in the form of particles in the nickel-phosphorus film 1a. Specifically, the shape of crystalline nickel 12 is spherical. The average particle diameter of such crystalline nickel 12 is preferably 3 nm or more. When the average particle size is 3 nm or more, the crystalline nickel 12 can easily maintain its crystal structure in the nickel-phosphorus film 1a. When the particle diameter of crystalline nickel 12 is 3 nm, the number of nickel atoms located on the outer surface of crystalline nickel 12 is 50% with respect to the total number 100% of nickel atoms contained in crystalline nickel 12; The number of nickel atoms located inside 12 is 50%. The average particle size is more preferably 5 nm or more. The upper limit of the average particle size is not particularly limited as long as crystalline nickel 12 is dispersed in the nickel-phosphorus film 1a. The average particle size may be, for example, 7 nm or less. The average particle size is an average value of particle sizes measured for crystalline nickel 12 with a transmission electron microscope.
 また、ニッケル-リン膜1aは、後述のように、ニッケルとリンとを含有する非晶質膜(AL)の熱処理物である。このように非晶質膜(AL)を熱処理でニッケル-リン膜1aに改質させる際、非晶質膜(AL)中でニッケルが結晶化する。このような結晶ニッケル12は、その結晶構造を保つことができれば、固溶限界までリンを含有できる。例えば、結晶ニッケル12は、1atm%以下のリンを含有できる。結晶ニッケル12は、リンを含有しなくてもよい。 The nickel-phosphorus film 1a is a heat-treated product of an amorphous film (AL) containing nickel and phosphorus as described later. Thus, when the amorphous film (AL) is reformed into the nickel-phosphorus film 1a by heat treatment, nickel is crystallized in the amorphous film (AL). Such crystalline nickel 12 can contain phosphorus up to the solid solution limit as long as its crystalline structure can be maintained. For example, crystalline nickel 12 can contain 1 atm% or less of phosphorus. The crystalline nickel 12 may not contain phosphorus.
 非晶質膜(AL)の改質の際に、非晶質膜(AL)中でNiPの結晶が発生してもよく、又は発生しなくてもよい。結晶NiPが発生する場合、ニッケル-リン膜1aは、結晶NiPよりも多く結晶ニッケル12を含有することが好ましい。この場合、結晶NiP、及び結晶ニッケル12のうち、結晶NiPが微量成分であり、結晶ニッケル12が主要成分であってもよい。特に好ましくは、ニッケル-リン膜1aは、結晶NiPを含有しない。 During modification of the amorphous film (AL), crystals of Ni 3 P may or may not be generated in the amorphous film (AL). When crystalline Ni 3 P is generated, it is preferable that the nickel-phosphorus film 1 a contain more crystalline nickel 12 than crystalline Ni 3 P. In this case, of the crystalline Ni 3 P and the crystalline nickel 12, the crystalline Ni 3 P may be a minor component, and the crystalline nickel 12 may be a major component. Particularly preferably, the nickel-phosphorus film 1a does not contain crystalline Ni 3 P.
 結晶ニッケル12が形成される際、ニッケル原子が凝集するため、リン原子は非晶質組織13に排出される。このため、非晶質組織13中のリン濃度は、非晶質膜(AL)のリン濃度よりも高くなる。また、非晶質組織13中のリン濃度が結晶ニッケル12の発生及び成長に伴って高くなっても、ニッケル-リン膜1a中のリンの量は非晶質膜(AL)と同じである。すなわち、ニッケル-リン膜1a中の平均リン濃度(PC1)は、非晶質膜(AL)のリン濃度(PC2)と同じである。リン濃度(PC2)は12.5atm%以上25atm%以下の範囲内である。この場合、平均リン濃度(PC1)も12.5atm%以上25atm%以下の範囲内である。平均リン濃度(PC1)及びリン濃度(PC2)は、20atm%以下であってもよい。また、非晶質膜(AL)のニッケル濃度(NC)は、75atm%以上87.5atm%以下の範囲内であってもよい。ニッケル濃度(NC)は、80atm%以上であってもよい。 When the crystalline nickel 12 is formed, the phosphorus atoms are discharged to the amorphous structure 13 because the nickel atoms aggregate. Therefore, the phosphorus concentration in the amorphous tissue 13 is higher than the phosphorus concentration of the amorphous film (AL). Further, even if the phosphorus concentration in the amorphous structure 13 increases with the generation and growth of the crystalline nickel 12, the amount of phosphorus in the nickel-phosphorus film 1a is the same as that of the amorphous film (AL). That is, the average phosphorus concentration (PC1) in the nickel-phosphorus film 1a is the same as the phosphorus concentration (PC2) of the amorphous film (AL). The phosphorus concentration (PC2) is in the range of not less than 12.5 atm% and not more than 25 atm%. In this case, the average phosphorus concentration (PC1) is also in the range of not less than 12.5 atm% and not more than 25 atm%. The average phosphorus concentration (PC1) and the phosphorus concentration (PC2) may be 20 atm% or less. The nickel concentration (NC) of the amorphous film (AL) may be in the range of 75 atm% to 87.5 atm%. The nickel concentration (NC) may be 80 atm% or more.
 非晶質膜(AL)は、ニッケルとリンとを含有し、リン濃度(PC2)が12.5atm%以上25atm%以下の範囲内であればよく、任意の非晶質膜であってもよい。この場合、非晶質膜(AL)として任意の非晶質膜を用いることができるため、金属膜1を製造する際の煩雑性と、製造コストとを増加させにくくできる。 The amorphous film (AL) contains nickel and phosphorus, and the phosphorus concentration (PC2) may be in the range of 12.5 atm% or more and 25 atm% or less, and may be any amorphous film. . In this case, since an arbitrary amorphous film can be used as the amorphous film (AL), it is difficult to increase the complexity in manufacturing the metal film 1 and the manufacturing cost.
 上記のようにニッケル-リン膜1aをその製造方法で説明しても、この方法により、ニッケル-リン膜1aの構造を十分、かつ明確に特定できる。以下、ニッケル-リン膜1aに関する不可能・非実際的事情を説明する。 Even if the nickel-phosphorus film 1a is described in the manufacturing method as described above, the structure of the nickel-phosphorus film 1a can be sufficiently and clearly specified by this method. The impossible and unpractical circumstances regarding the nickel-phosphorus film 1a will be described below.
 非晶質組織13中のリン濃度(PC3)は、上記の通り、結晶ニッケル12の発生及び成長に伴って高くなる。その一方で、各結晶ニッケル12の大きさ及び成長速度は、その周辺のニッケル濃度に依存する。このため、リン濃度(PC3)は、非晶質組織13中で不均一になりやすい。また、リン濃度(PC3)がエネルギー分散型X線分光法を採用した走査型電子顕微鏡等で測定されても、その測定位置によってリン濃度(PC3)が異なりやすい。よって、結晶ニッケル12の発生及び成長に伴い、リン濃度(PC3)がリン濃度(PC2)よりも高くなっていても、非晶質組織13の組成、特にリン濃度(PC3)を十分に特定することは不可能である。 The phosphorus concentration (PC3) in the amorphous structure 13 increases with the generation and growth of crystalline nickel 12, as described above. On the other hand, the size and growth rate of each crystalline nickel 12 depend on the concentration of nickel around it. Therefore, the phosphorus concentration (PC3) tends to be uneven in the amorphous tissue 13. Further, even if the phosphorus concentration (PC3) is measured by a scanning electron microscope or the like adopting energy dispersive X-ray spectroscopy, the phosphorus concentration (PC3) is likely to differ depending on the measurement position. Therefore, even if the phosphorus concentration (PC3) is higher than the phosphorus concentration (PC2) with the generation and growth of crystalline nickel 12, the composition of the amorphous tissue 13, particularly the phosphorus concentration (PC3) is sufficiently specified. It is impossible.
 また、ニッケルとリンとの非晶質混合物と、結晶ニッケルとを組み合わせてニッケル-リン膜を形成する場合、任意の基体上に結晶ニッケルを散布した後、蒸着、及びスパッタ等の任意の薄膜形成法で非晶質混合物を堆積させる必要がある。しかし、薄膜形成法を行う装置の構造上、基体は、その処理面を、下方、又は側方に向けて配置される。このため、基体上に結晶ニッケルを散布しても、この結晶ニッケルを非晶質混合物の堆積時に基体上で保持させることは非実際的である。 When an amorphous mixture of nickel and phosphorus is combined with crystalline nickel to form a nickel-phosphorus film, crystalline nickel is dispersed on any substrate, and then any thin film is formed, such as vapor deposition and sputtering. In the process it is necessary to deposit the amorphous mixture. However, due to the structure of the apparatus for performing the thin film formation method, the substrate is disposed with its treated surface directed downward or laterally. For this reason, it is impractical to retain crystalline nickel on the substrate during deposition of the amorphous mixture, even if the crystalline nickel is sprayed onto the substrate.
 本実施形態に係るニッケル-リン膜1aは、金属膜1の表層を構成する。このため、ニッケル-リン膜1aの表面は、金属膜1の露出面を構成する。このようなニッケル-リン膜1aに、はんだ付け等の接合処理が施された場合、ニッケル-リン膜1aは、図2A~図2Cのように、スズを含有する合金2との接合を可能にする。この場合、合金2は、加熱されることで、溶融してニッケル-リン膜1aと接合する。 The nickel-phosphorus film 1 a according to the present embodiment constitutes the surface layer of the metal film 1. Therefore, the surface of the nickel-phosphorus film 1 a constitutes the exposed surface of the metal film 1. When such a nickel-phosphorus film 1a is subjected to a bonding process such as soldering, the nickel-phosphorus film 1a can be joined to the alloy 2 containing tin as shown in FIGS. 2A to 2C. Do. In this case, the alloy 2 is heated and melted to be joined to the nickel-phosphorus film 1a.
 このようにして、合金2がニッケル-リン膜1aと接合しても、非晶質組織13により、ニッケル-リン膜1aのニッケルと、合金2のスズとが混合されにくくなる。このため、ニッケルとスズとからなる金属間化合物を生成させにくくできる。具体的には、ニッケルはリンとの親和性が高いため、非晶質組織13中のリンは、ニッケルとスズとの反応を抑制する。すなわち、結晶ニッケル12の発生によりリン濃度(PC3)が高められているため、非晶質組織13はニッケルとスズとの反応を抑制するできる。ニッケルとスズとの反応が抑制されることで、ニッケル-リン膜1aのニッケルと、合金2のスズとが混合されにくくなるため、金属間化合物の生成が抑制されやすくなる。金属間化合物の生成が抑制されることで、合金2と接合させた後の金属膜1を脆くさせにくくできる。 In this manner, even if the alloy 2 is joined to the nickel-phosphorus film 1a, the amorphous structure 13 makes it difficult for the nickel of the nickel-phosphorus film 1a and the tin of the alloy 2 to be mixed. For this reason, it can be made difficult to form the intermetallic compound which consists of nickel and tin. Specifically, since nickel has high affinity to phosphorus, phosphorus in the amorphous tissue 13 suppresses the reaction between nickel and tin. That is, since the phosphorus concentration (PC3) is increased by the generation of crystalline nickel 12, the amorphous structure 13 can suppress the reaction between nickel and tin. Since the reaction between nickel and tin is suppressed, the nickel of the nickel-phosphorus film 1a and the tin of the alloy 2 are less likely to be mixed, and the formation of the intermetallic compound is easily suppressed. By suppressing the formation of the intermetallic compound, the metal film 1 after being bonded to the alloy 2 can be made less brittle.
 また、非晶質組織13が金属間化合物の生成を抑制しても、厚みが0.3μm以下であれば金属間化合物の層が、ニッケル-リン膜1a中、又はニッケル-リン膜1aと合金2との間で形成されていてもよい。特に好ましくは、金属間化合物の層は形成されない。すなわち、金属間化合物の層の厚みは0μmである。 In addition, even if the amorphous structure 13 suppresses the formation of the intermetallic compound, if the thickness is 0.3 μm or less, the layer of the intermetallic compound is in the nickel-phosphorus film 1a or in an alloy with the nickel-phosphorus film 1a. It may be formed between two. Particularly preferably, no layer of intermetallic compound is formed. That is, the thickness of the layer of intermetallic compound is 0 μm.
 図2A~図2Cの例は、平均リン濃度(PC1)が15atm%で、厚みが3μmのニッケル-リン膜1aに合金2を溶解させて接合させた態様を示している。図2Bでは、図2Aの合金2の表面(スズ分布が濃い部分の表面)に対応する位置が点線で示されている。図2Bの結果から、ニッケル-リン膜1aの厚み方向において、点線から合金2側にニッケルの濃い分布がないため、金属間化合物の生成は、走査型電子顕微鏡で確認できないくらいまで、抑制されている。図2Cでは、リン分布が濃い部分の境界を点線で示している。図2Cの結果から、リン分布が濃い部分の厚みH1が3μmであったため、ニッケル-リン膜1aに合金2を接合させても、ニッケル-リン膜1aの厚みは維持されている。 The examples of FIGS. 2A to 2C show an embodiment in which alloy 2 is dissolved and joined in a nickel-phosphorus film 1a having an average phosphorus concentration (PC1) of 15 atm% and a thickness of 3 μm. In FIG. 2B, the position corresponding to the surface of the alloy 2 of FIG. 2A (the surface of the part where the tin distribution is deep) is shown by a dotted line. From the result of FIG. 2B, in the thickness direction of the nickel-phosphorus film 1a, since there is no thick distribution of nickel from the dotted line to the alloy 2 side, the formation of the intermetallic compound is suppressed to such an extent that it can not be confirmed by a scanning electron microscope There is. In FIG. 2C, the boundary of the part where the phosphorus distribution is dark is indicated by a dotted line. From the result of FIG. 2C, since the thickness H1 of the portion where the phosphorus distribution is deep is 3 μm, the thickness of the nickel-phosphorus film 1a is maintained even if the alloy 2 is bonded to the nickel-phosphorus film 1a.
 図3A~図3Cの第1比較例は、ニッケル-リン膜1aの代わりに、ニッケルと、濃度が15atm%のリンとを含有する非晶質膜3を採用し、厚みが3μmの非晶質膜3に合金2を溶解させて接合させた態様を示している。図3Bでは、図3Aにおいてスズ分布が濃い部分の表面に対応する位置が点線で示されている。図3Bの結果から、非晶質膜3の厚み方向において、点線から合金2側に、ニッケルの濃い分布が3μm程の厚みH2で示されている。図3Cでは、リン分布が濃い部分の境界を点線で示している。図3Cの結果から、リン分布が濃い部分の厚みH3が5μmである。このため、非晶質膜3に合金2を接合させると、非晶質膜3のニッケルと、合金2のスズとが混合されて、金属間化合物が生成されやすくなっている。このため、合金2との接合後の非晶質膜3は、接合前よりも厚みが大きくなっている。 In the first comparative example of FIGS. 3A to 3C, an amorphous film 3 containing nickel and phosphorus having a concentration of 15 atm% is employed instead of the nickel-phosphorus film 1 a, and an amorphous film 3 μm in thickness is used. The mode which melt | dissolved the alloy 2 in the film | membrane 3 and joined it is shown. In FIG. 3B, the position corresponding to the surface of the part where the tin distribution is deep in FIG. 3A is shown by a dotted line. From the results of FIG. 3B, in the thickness direction of the amorphous film 3, a thick distribution of nickel is shown from the dotted line on the side of the alloy 2 with a thickness H2 of about 3 μm. In FIG. 3C, the boundary of the portion where the phosphorus distribution is dark is indicated by a dotted line. From the result of FIG. 3C, the thickness H3 of the part where the phosphorus distribution is deep is 5 μm. Therefore, when the alloy 2 is bonded to the amorphous film 3, the nickel of the amorphous film 3 and the tin of the alloy 2 are mixed to easily form an intermetallic compound. Therefore, the thickness of the amorphous film 3 after joining with the alloy 2 is larger than that before joining.
 図4の第2比較例は、各リン濃度(15atm%、23atm%)の非晶質膜3を合金2で接合させた生成物を220℃でアニールさせた結果を示している。図4の結果から、リン濃度が15atm%の非晶質膜3の場合、10分程のアニール時間で、金属間化合物(NiSn)の厚みが、第1比較例のように3μmである。さらに、リン濃度が23atm%の非晶質膜3の場合、10分程のアニール時間で、金属間化合物の厚みは2.5μmである。これに対して、ニッケル-リン膜1aの場合、図2A~図2Bの例では、金属間化合物の生成は、上記の通り、確認できないくらいまで抑制されている。ニッケル-リン膜1aは、ニッケルとリンとを含有する非晶質膜(AL)を熱処理により改質された膜である。一方、第2比較例の非晶質膜3は結晶構造を有さず、膜質が不安定になりやすい。ニッケル-リン膜1aの場合、非晶質膜(AL)に熱処理を施すことで、結晶ニッケル12が形成される。これにより、ニッケル-リン膜1aの膜質が安定化し、かつ、非晶質組織13中のリン濃度が上昇することで、金属間化合物の生成が抑制されていると考えられる。また、非晶質組織13中の平均リン濃度は、23atm%よりもはるかに高くなっていると考えられる。 The second comparative example of FIG. 4 shows the result of annealing at 220 ° C. of the product obtained by bonding the amorphous film 3 of each phosphorus concentration (15 atm%, 23 atm%) with the alloy 2. From the results shown in FIG. 4, in the case of the amorphous film 3 having a phosphorus concentration of 15 atm%, the thickness of the intermetallic compound (Ni 3 Sn 4 ) is 3 μm as in the first comparative example in an annealing time of about 10 minutes. is there. Furthermore, in the case of the amorphous film 3 having a phosphorus concentration of 23 atm%, the thickness of the intermetallic compound is 2.5 μm with an annealing time of about 10 minutes. On the other hand, in the case of the nickel-phosphorus film 1a, in the example of FIGS. 2A to 2B, the formation of the intermetallic compound is suppressed to such an extent that it can not be confirmed as described above. The nickel-phosphorus film 1a is a film obtained by modifying an amorphous film (AL) containing nickel and phosphorus by heat treatment. On the other hand, the amorphous film 3 of the second comparative example does not have a crystal structure, and the film quality tends to be unstable. In the case of the nickel-phosphorus film 1a, crystalline nickel 12 is formed by heat treatment of the amorphous film (AL). Thereby, the film quality of the nickel-phosphorus film 1a is stabilized, and the increase of the phosphorus concentration in the amorphous structure 13 is considered to suppress the formation of the intermetallic compound. In addition, the average phosphorus concentration in the amorphous tissue 13 is considered to be much higher than 23 atm%.
 本実施形態に係る合金2は、スズを含有し、溶融されてニッケル-リン膜1aと接合できればよく、合金2の具体的な態様は特に限定されない。合金2は、例えば、はんだである。この場合、合金2は、スズを含有する任意のはんだであってもよい。また、はんだは、鉛フリーはんだであってもよい。鉛フリーはんだとして、例えば、Sn-Sb、Sn-Cu、Sn-Cu-Ag、Sn-Ag、Sn-Ag-Cu、Sn-Ag-Bi-Cu、Sn-In-Ag-Bi、Sn-Zn、Sn-Zn-Bi、Sn-Bi、及びSn-Inが挙げられる。 The alloy 2 according to the present embodiment only needs to contain tin and can be melted and joined to the nickel-phosphorus film 1a, and the specific aspect of the alloy 2 is not particularly limited. The alloy 2 is, for example, a solder. In this case, the alloy 2 may be any solder containing tin. Also, the solder may be lead free solder. Examples of lead-free solders include Sn-Sb, Sn-Cu, Sn-Cu-Ag, Sn-Ag, Sn-Ag-Cu, Sn-Ag-Bi-Cu, Sn-In-Ag-Bi, and Sn-Zn. , Sn-Zn-Bi, Sn-Bi, and Sn-In.
 ニッケル-リン膜1aは、薄膜であって、結晶ニッケル12が分散された構造を有し、合金2との接合に耐えうる厚みを有していればよく、ニッケル-リン膜1aの厚みは特に限定されない。ニッケル-リン膜1aの厚みは、例えば、1μm以上7μm以下の範囲内である。また、ニッケル-リン膜1aの厚みは、非晶質膜(AL)の厚みと同じである。 The nickel-phosphorus film 1a is a thin film having a structure in which crystalline nickel 12 is dispersed, and may have a thickness that can withstand bonding with the alloy 2. The thickness of the nickel-phosphorus film 1a is particularly It is not limited. The thickness of the nickel-phosphorus film 1a is, for example, in the range of 1 μm to 7 μm. The thickness of the nickel-phosphorus film 1a is the same as the thickness of the amorphous film (AL).
 また、金属膜1は、その表層がニッケル-リン膜1aであれば、1つ、又は複数の他の金属層を更に含むことができる。この金属層は、ニッケル、ニッケル-ホウ素、イリジウム等の任意の金属材料から構成されうる。また、金属膜1は、ニッケル-リン膜1aのみから構成されてもよい。 The metal film 1 may further include one or more other metal layers if the surface layer is a nickel-phosphorus film 1a. This metal layer can be composed of any metal material such as nickel, nickel-boron, iridium and the like. Also, the metal film 1 may be composed of only the nickel-phosphorus film 1a.
 <金属膜の製造方法>
 次に、一実施形態に係る金属膜の製造方法を、図5A~図7Bを参照して説明する。本実施形態では、金属膜1の説明と重複する構成については、同じ符号を付して、その説明を省略する。すなわち、本実施形態は、金属膜1の説明を参照できる。
<Method of manufacturing metal film>
Next, a method of manufacturing a metal film according to an embodiment will be described with reference to FIGS. 5A to 7B. In the present embodiment, the same parts as those of the metal film 1 are denoted by the same reference numerals, and the description thereof is omitted. That is, this embodiment can refer to the description of the metal film 1.
 本実施形態に係る金属膜の製造方法は、金属膜1を製造するための方法である。金属膜1の製造方法は、図5A~図5Bのように、ニッケルとリンとを含有する非晶質膜5に熱処理を施して、結晶ニッケル12が分散されたニッケル-リン膜1aに非晶質膜5を改質させることを含む。 The method for producing a metal film according to the present embodiment is a method for producing the metal film 1. In the method of manufacturing the metal film 1, as shown in FIGS. 5A to 5B, the amorphous film 5 containing nickel and phosphorus is heat-treated to form an amorphous nickel-phosphorus film 1a in which crystalline nickel 12 is dispersed. It comprises modifying the quality membrane 5.
 非晶質膜5は、上記の非晶質膜(AL)である。図5Aのように非晶質膜5は、その一表面を露出させて、基体6、例えば電子部品の部品本体、の表面上に形成されている。この場合、非晶質膜5は基体6と接触していてもよい。非晶質膜5の形成後、非晶質膜5は熱処理されてニッケル-リン膜1aに改質される。この場合、ニッケル-リン膜1aは、基体6と接触していてもよい。また、非晶質膜5を改質させる際、非晶質膜5中のニッケル原子が凝集して結晶ニッケル12が形成される。結晶ニッケル12が形成される際、ニッケル原子が凝集するため、リン原子は非晶質組織13に排出される。このため、非晶質組織13中のリン濃度(PC3)は、加熱前の非晶質膜5のリン濃度(PC2)よりも高くなる。 The amorphous film 5 is the above-mentioned amorphous film (AL). As shown in FIG. 5A, the amorphous film 5 is formed on the surface of the base 6, for example, the component body of the electronic component, with its one surface exposed. In this case, the amorphous film 5 may be in contact with the substrate 6. After the formation of the amorphous film 5, the amorphous film 5 is heat-treated to be reformed into a nickel-phosphorus film 1a. In this case, the nickel-phosphorus film 1a may be in contact with the substrate 6. Further, when the amorphous film 5 is modified, nickel atoms in the amorphous film 5 are aggregated to form crystalline nickel 12. When the crystalline nickel 12 is formed, the phosphorus atoms are discharged to the amorphous structure 13 because the nickel atoms aggregate. Therefore, the phosphorus concentration (PC3) in the amorphous tissue 13 is higher than the phosphorus concentration (PC2) of the amorphous film 5 before heating.
 非晶質膜5の改質の際に、非晶質膜5中のニッケルを結晶化させる温度で非晶質膜5は熱処理される。ニッケルの結晶化温度は、図6のようなNiPの結晶化温度よりも低い温度である。 During the modification of the amorphous film 5, the amorphous film 5 is heat-treated at a temperature at which nickel in the amorphous film 5 is crystallized. The crystallization temperature of nickel is a temperature lower than the crystallization temperature of Ni 3 P as shown in FIG.
 非晶質膜5に対する示差熱分析の結果で、ニッケルが結晶化するピーク(P1)の高温域と、NiPが結晶化するピーク(P2)の低温域とが重なる場合、非晶質膜5は、ピーク(P1)とピーク(P2)との間の温度で熱処理されてもよい。すなわち、非晶質膜5は、結晶ニッケル12の発生量が結晶NiPの発生量よりも多くなる温度で熱処理されてもよい。図6の例は、リン濃度(PC2)が15atm%の非晶質膜5に対し、示差熱分析を行った結果を示している。図6の結果では、結晶ニッケル12が150℃以上280℃以下の加熱温度で発生し、また、320℃の加熱温度で結晶NiPの発生が最も加速されることが示されている。また、ピーク(P2)の頂点温度は、加熱前の非晶質膜5中のリン濃度が高いほど、低温側へシフトする傾向がある。このため、非晶質膜5の改質時に結晶NiPを発生させない場合、結晶NiPを発生させない温度を上限として非晶質膜5を熱処理させる。 As a result of differential thermal analysis for the amorphous film 5, when the high temperature range of the peak (P1) where nickel crystallizes and the low temperature range of the peak (P2) where Ni 3 P crystallizes overlap, an amorphous film 5 may be heat treated at a temperature between peak (P1) and peak (P2). That is, the amorphous film 5 may be heat-treated at a temperature at which the amount of generation of crystalline nickel 12 is larger than the amount of generation of crystalline Ni 3 P. The example of FIG. 6 shows the result of differential thermal analysis of the amorphous film 5 having a phosphorus concentration (PC2) of 15 atm%. The results in FIG. 6 indicate that crystalline nickel 12 is generated at a heating temperature of 150 ° C. or more and 280 ° C. or less, and the generation of crystalline Ni 3 P is most accelerated at a heating temperature of 320 ° C. In addition, the peak temperature of the peak (P2) tends to shift to a lower temperature side as the phosphorus concentration in the amorphous film 5 before heating is higher. For this reason, when the crystalline Ni 3 P is not generated at the time of reforming the amorphous film 5, the amorphous film 5 is heat-treated with the temperature at which the crystalline Ni 3 P is not generated as the upper limit.
 また、非晶質膜5の改質の際、真空中、又は不活性ガス中で非晶質膜5を熱処理させる。この場合、非晶質膜5は、例えば、チャンバー内で熱処理される。不活性ガスとして、例えば、窒素、及びアルゴンが挙げられる。 Further, at the time of reforming the amorphous film 5, the amorphous film 5 is heat-treated in vacuum or in an inert gas. In this case, the amorphous film 5 is heat-treated, for example, in a chamber. Inert gases include, for example, nitrogen and argon.
 非晶質膜5の加熱時間は、ニッケル-リン膜1aを形成できれば、適宜に設定される。非晶質膜5の加熱時間は、例えば、0.5時間以上24時間以下の範囲内である。 The heating time of the amorphous film 5 is appropriately set as long as the nickel-phosphorus film 1a can be formed. The heating time of the amorphous film 5 is, for example, in the range of 0.5 hours or more and 24 hours or less.
 図2A~図2Cの例は、リン濃度(PC2)が15atm%で、厚みが3μmの非晶質膜5に窒素ガス中で1時間、220℃で熱処理することで、図1のニッケル-リン膜1aを形成し、ニッケル-リン膜1aに合金2を溶解させて接合させた態様を示している。図2A~図2Cの結果から、ニッケル-リン膜1aに合金2を接合させても、ニッケル-リン膜1aの厚みは維持されている。なお、150℃、185℃、220℃、又は255℃で非晶質膜5を熱処理した以外は、上記と同じ手順でニッケル-リン膜1aを形成し、ニッケル-リン膜1aに合金2を接合させても、ニッケル-リン膜1aの厚みは維持される。 In the example of FIGS. 2A to 2C, the nickel-phosphorus of FIG. 1 is obtained by heat treating the amorphous film 5 having a phosphorus concentration (PC2) of 15 atm% and a thickness of 3 μm in nitrogen gas at 220 ° C. for 1 hour. An embodiment is shown in which the film 1a is formed, and the alloy 2 is dissolved and bonded to the nickel-phosphorus film 1a. From the results of FIGS. 2A to 2C, even when the alloy 2 is bonded to the nickel-phosphorus film 1a, the thickness of the nickel-phosphorus film 1a is maintained. A nickel-phosphorus film 1a is formed by the same procedure as described above except that the amorphous film 5 is heat-treated at 150 ° C., 185 ° C., 220 ° C., or 255 ° C., and the alloy 2 is bonded to the nickel-phosphorus film 1a. Even if this is done, the thickness of the nickel-phosphorus film 1a is maintained.
 また、図7A~図7Bの第3比較例では、リン濃度(PC2)が15atm%で、厚みが3μmの非晶質膜5に窒素ガス中で1時間、320℃で熱処理することで、結晶NiPを発生させたニッケル-リン膜1bが形成されている。そして、ニッケル-リン膜1bに合金2を溶解させて接合させている。図7Bでは、図7Aにおいてスズ分布が濃い部分の表面に対応する位置が点線で示されている。図7Bの結果から、ニッケル-リン膜1bの厚み方向において、点線から合金2側に、ニッケルの濃い分布が3μm程の厚みH4で示されている。すなわち、ニッケル-リン膜1bに合金2を接合させると、ニッケル-リン膜1bのニッケルと、合金2のスズとが混合されやすくなる。これにより、ニッケルとスズとが反応しやすくなり、金属間化合物が生成されやすくなる。また、非晶質膜5を改質させて結晶NiPを発生させると、ニッケル-リン膜1bの中で、結晶NiPの層が存在していると考えられる。このため、ニッケル-リン膜1bの表層のリン濃度は、リン濃度(PC2)よりも低くなり、これにより、金属間化合物が形成されていると考えられる。 In the third comparative example of FIGS. 7A to 7B, the amorphous film 5 having a phosphorus concentration (PC2) of 15 atm% and a thickness of 3 μm is heat-treated at 320 ° C. in nitrogen gas for 1 hour. A nickel-phosphorus film 1b in which Ni 3 P is generated is formed. Then, the alloy 2 is melted and joined to the nickel-phosphorus film 1b. In FIG. 7B, the position corresponding to the surface of the part where tin distribution is thick is shown by a dotted line in FIG. 7A. From the results of FIG. 7B, a thick distribution of nickel is shown with a thickness H4 of about 3 μm from the dotted line to the alloy 2 side in the thickness direction of the nickel-phosphorus film 1b. That is, when the alloy 2 is bonded to the nickel-phosphorus film 1b, the nickel of the nickel-phosphorus film 1b and the tin of the alloy 2 are easily mixed. As a result, the reaction between nickel and tin is facilitated, and the intermetallic compound is easily formed. Further, when the amorphous film 5 by reformed to generate a crystalline Ni 3 P, Ni - in phosphorus film 1b, is considered a layer of crystalline Ni 3 P is present. For this reason, the phosphorus concentration in the surface layer of the nickel-phosphorus film 1b is lower than the phosphorus concentration (PC2), which is considered to result in the formation of an intermetallic compound.
 本実施形態に係る非晶質膜5は、薄膜であって、ニッケルを結晶化させる温度でニッケル-リン膜1aに改質できればよく、非晶質膜5の厚みは特に限定されない。非晶質膜5の厚みは、例えば、1μm以上7μm以下の範囲内である。非晶質膜5は、蒸着、スパッタ、電解メッキ、及び無電解メッキ等の任意の薄膜形成法で形成されうる。 The amorphous film 5 according to the present embodiment is a thin film as long as it can be reformed into the nickel-phosphorus film 1a at a temperature at which nickel is crystallized, and the thickness of the amorphous film 5 is not particularly limited. The thickness of the amorphous film 5 is, for example, in the range of 1 μm to 7 μm. The amorphous film 5 can be formed by any thin film formation method such as vapor deposition, sputtering, electrolytic plating, and electroless plating.
 また、金属膜1は、その表層がニッケル-リン膜1aであれば、ニッケル-リン膜1aと基体6との間に1つ、又は複数の他の金属層が形成されてもよい。この金属層は、蒸着、スパッタ、電解メッキ、及び無電解メッキ等の任意の薄膜形成法で形成されうる。また、金属膜1は、ニッケル-リン膜1aのみから構成されてもよい。すなわち、ニッケル-リン膜1aは基体6に接触して形成されてもよい。 In addition, if the surface of the metal film 1 is a nickel-phosphorus film 1a, one or a plurality of other metal layers may be formed between the nickel-phosphorus film 1a and the base 6. This metal layer can be formed by any thin film formation method such as vapor deposition, sputtering, electrolytic plating, and electroless plating. Also, the metal film 1 may be composed of only the nickel-phosphorus film 1a. That is, the nickel-phosphorus film 1a may be formed in contact with the substrate 6.
 <電子部品>
 次に、一実施形態に係る電子部品を、図8A~図8Bを参照して説明する。本実施形態では、金属膜1の説明、及び金属膜1の製造方法の説明と重複する構成については、同じ符号を付して、その説明を省略する。すなわち、本実施形態は、金属膜1の説明、及び金属膜1の製造方法の説明を参照できる。
<Electronic parts>
Next, an electronic component according to an embodiment will be described with reference to FIGS. 8A to 8B. In the present embodiment, the same reference numerals are given to configurations overlapping with the description of the metal film 1 and the description of the manufacturing method of the metal film 1, and the description thereof is omitted. That is, in the present embodiment, the description of the metal film 1 and the description of the method of manufacturing the metal film 1 can be referred to.
 本実施形態において、基体6は、電子部品10の部品本体である。このため、電子部品10は、図8Aのように、金属膜1と、部品本体6と、を備える。金属膜1は、部品本体6の表面に位置する。この場合、金属膜1は部品本体6と接触してもよい。また、金属膜1の表層は、上記の通り、ニッケル-リン膜1aである。このため、ニッケル-リン膜1aに合金2を溶解させて接合させても、ニッケル-リン膜1aのニッケルと、合金2のスズとが混合されにくくなるため、金属間化合物を生成させにくくできる。 In the present embodiment, the base 6 is a component body of the electronic component 10. For this reason, the electronic component 10 is equipped with the metal film 1 and the component main body 6 like FIG. 8A. The metal film 1 is located on the surface of the component body 6. In this case, the metal film 1 may be in contact with the component body 6. Further, the surface layer of the metal film 1 is the nickel-phosphorus film 1a as described above. For this reason, even if the alloy 2 is dissolved in the nickel-phosphorus film 1a and then joined, the nickel of the nickel-phosphorus film 1a and the tin of the alloy 2 become difficult to be mixed, so that the intermetallic compound can be hardly generated.
 部品本体6は、第1端61と、第2端62とを有する。第2端62は、部品本体6において、第1端61とは異なる位置の端部である。例えば、第2端62は、部品本体6の一断面において、第1端61とは反対側に位置する端部である。また、第1端61、及び第2端62に、それぞれ、金属膜1、1が形成されている。部品本体6の第1端61の側では、金属膜1が合金2で第1導体71に接続されている。そして、部品本体6の第2端62の側では、金属膜1が合金2で第2導体72に接続されている。第1端61、及び第2端62は、それぞれ、金属膜1、1と接触してもよい。 The component body 6 has a first end 61 and a second end 62. The second end 62 is an end of the component body 6 at a position different from the first end 61. For example, the second end 62 is an end located opposite to the first end 61 in one cross section of the component body 6. In addition, metal films 1 and 1 are formed on the first end 61 and the second end 62, respectively. On the side of the first end 61 of the component body 6, the metal film 1 is connected to the first conductor 71 by the alloy 2. The metal film 1 is connected to the second conductor 72 with the alloy 2 on the side of the second end 62 of the component body 6. The first end 61 and the second end 62 may be in contact with the metal film 1, 1 respectively.
 電子部品10は、第1導体71と、第2導体72とを備えてもよく、又は備えなくてもよい。電子部品10が第1導体71と、第2導体72とを備える場合、電子部品10は、部品本体6の厚み方向に沿って、第1端61に、金属膜1と、合金2と、第1導体71とが、この順で積層された構造を有する。さらに、電子部品10は、部品本体6の厚み方向に沿って、第2端62に、金属膜1と、合金2と、第2導体72とが、この順で積層された構造も有する。電子部品10が第1導体71と、第2導体72とを備えない場合、第1端61側の金属膜1は、基板上の第1導体71に合金2で接続され、第2端62側の金属膜1は、基板上の第2導体72に合金2で接続される。 The electronic component 10 may or may not include the first conductor 71 and the second conductor 72. When the electronic component 10 includes the first conductor 71 and the second conductor 72, the electronic component 10 may have the metal film 1, the alloy 2, and the first conductor 61 at the first end 61 along the thickness direction of the component body 6. It has a structure in which one conductor 71 is stacked in this order. Furthermore, the electronic component 10 also has a structure in which the metal film 1, the alloy 2, and the second conductor 72 are laminated in this order at the second end 62 along the thickness direction of the component body 6. When the electronic component 10 does not include the first conductor 71 and the second conductor 72, the metal film 1 on the first end 61 side is connected to the first conductor 71 on the substrate with the alloy 2, and the second end 62 side The metal film 1 is connected by an alloy 2 to a second conductor 72 on the substrate.
 第1導体71は、導電性を有していればよく、第1導体71の具体的な態様は特に限定されない。第1導体71の形状は、例えば、薄膜である。第1導体71を形成するにあたって、蒸着、スパッタ、電解メッキ、及び無電解メッキ等の任意の薄膜形成法を採用できる。第1導体71を構成する材料として、例えば、銅、ニッケル、白金、及び金が挙げられる。 The first conductor 71 may have conductivity, and a specific aspect of the first conductor 71 is not particularly limited. The shape of the first conductor 71 is, for example, a thin film. In forming the first conductor 71, any thin film forming method such as vapor deposition, sputtering, electrolytic plating, and electroless plating can be adopted. As a material which comprises the 1st conductor 71, copper, nickel, platinum, and gold are mentioned, for example.
 第2導体72は、導電性を有していればよく、第2導体72の具体的な態様は特に限定されない。第2導体72の形状は、例えば、薄膜である。第2導体72を形成するにあたって、蒸着、スパッタ、電解メッキ、及び無電解メッキ等の任意の薄膜形成法を採用できる。第2導体72を構成する材料として、例えば、銅、ニッケル、白金、及び金が挙げられる。 The 2nd conductor 72 should just have conductivity, and the specific mode of the 2nd conductor 72 is not specifically limited. The shape of the second conductor 72 is, for example, a thin film. In forming the second conductor 72, any thin film forming method such as vapor deposition, sputtering, electrolytic plating, and electroless plating can be adopted. As a material which comprises the 2nd conductor 72, copper, nickel, platinum, and gold are mentioned, for example.
 部品本体6は、任意の電気機器に適用できればよく、部品本体6の具体的な態様は特に限定されない。部品本体6は、例えば、ダイオード、コンデンサ、抵抗器、及び熱電変換素子等の任意の電子部品中の本体である。部品本体6は、半導体を含んでもよい。 The component main body 6 should just be applicable to arbitrary electric devices, and the specific aspect of the component main body 6 is not specifically limited. The component main body 6 is a main body in any electronic component such as, for example, a diode, a capacitor, a resistor, and a thermoelectric conversion element. The component body 6 may include a semiconductor.
 本実施形態において、電子部品10は、図8Bのような熱電変換素子10pであってもよい。本実施形態に係る一例において、熱電変換素子10pは直流電流が供給されて機能し、これにより、熱電変換素子10pの両面で温度差を生じさせることができる。また、本実施形態に係る他例において、熱電変換素子10pは、その両面の温度差(熱エネルギーの差)を電力エネルギーに変換して発電することができる。 In the present embodiment, the electronic component 10 may be a thermoelectric conversion element 10 p as shown in FIG. 8B. In an example according to the present embodiment, the thermoelectric conversion element 10p is supplied with a direct current to function, and thereby, a temperature difference can be generated on both sides of the thermoelectric conversion element 10p. In addition, in another example according to the present embodiment, the thermoelectric conversion element 10p can generate electric power by converting the temperature difference (difference in thermal energy) on both sides thereof into electric power energy.
 電子部品10が熱電変換素子10pである場合、部品本体6は、半導体を含む。具体的には、部品本体6は、P型半導体6aと、N型半導体6bとを含む。P型半導体6aと、N型半導体6bとは、熱電変換素子10p中で電気が流れる方向に沿って、交互に配置されて直列に接続されている。 When the electronic component 10 is the thermoelectric conversion element 10 p, the component body 6 includes a semiconductor. Specifically, the component body 6 includes a P-type semiconductor 6a and an N-type semiconductor 6b. The P-type semiconductors 6a and the N-type semiconductors 6b are alternately arranged and connected in series along the direction in which electricity flows in the thermoelectric conversion element 10p.
 P型半導体6aは、第1端601と、P型半導体6aの厚み方向において第1端601とは反対側に位置する第2端602とを有する。P型半導体6aでは、第1端601に、金属膜1と、合金2と、第1導体71とが、この順で積層されている。さらに、第2端602に、金属膜1と、合金2と、第2導体72とが、この順で積層されている。第1端601、及び第2端602は、それぞれ金属膜1、1と接触してもよい。 The P-type semiconductor 6 a has a first end 601 and a second end 602 opposite to the first end 601 in the thickness direction of the P-type semiconductor 6 a. In the P-type semiconductor 6 a, the metal film 1, the alloy 2, and the first conductor 71 are stacked in this order at the first end 601. Furthermore, the metal film 1, the alloy 2, and the second conductor 72 are stacked in this order on the second end 602. The first end 601 and the second end 602 may be in contact with the metal film 1, 1 respectively.
 N型半導体6bは、第1端611と、N型半導体6bの厚み方向において第1端611とは反対側に位置する第2端612とを有する。N型半導体6bでは、第1端611に、金属膜1と、合金2と、第1導体71とが、この順で積層されている。さらに、第2端612に、金属膜1と、合金2と、第2導体72とが、この順で積層されている。第1端611、及び第2端612は、それぞれ金属膜1、1と接触してもよい。 The N-type semiconductor 6 b has a first end 611 and a second end 612 located on the opposite side of the first end 611 in the thickness direction of the N-type semiconductor 6 b. In the N-type semiconductor 6 b, the metal film 1, the alloy 2, and the first conductor 71 are stacked in this order at the first end 611. Furthermore, at the second end 612, the metal film 1, the alloy 2, and the second conductor 72 are stacked in this order. The first end 611 and the second end 612 may be in contact with the metal film 1, 1 respectively.
 P型半導体6a、及びN型半導体6bの各々は、半導体を含む。半導体は、金属膜1、特にニッケル-リン膜1a中のニッケルとオーミック接触を形成することが好ましい。この場合、金属膜1の、半導体と接する箇所の仕事関数は、スズの影響を受けにくくなる。すなわち、半導体と、スズと、スズ及びニッケルからなる金属間化合物とのショットキー接触が生じにくくなり、金属間化合物に起因する電気抵抗を生じさせにくくできる。これにより、第1導体71と第2導体72との間の温度差(熱エネルギーの差)が電力エネルギーに変換される場合、熱電変換素子10pの発電効率を向上させることができる。 Each of the P-type semiconductor 6a and the N-type semiconductor 6b includes a semiconductor. The semiconductor preferably forms an ohmic contact with the metal film 1, particularly nickel in the nickel-phosphorus film 1a. In this case, the work function of the portion of the metal film 1 in contact with the semiconductor becomes less susceptible to the influence of tin. That is, the Schottky contact between the semiconductor, the tin, and the intermetallic compound composed of tin and nickel is less likely to occur, and the electrical resistance due to the intermetallic compound may be less likely to occur. Thereby, when the temperature difference (difference in thermal energy) between the first conductor 71 and the second conductor 72 is converted into electric power energy, the power generation efficiency of the thermoelectric conversion element 10 p can be improved.
 また、第1導体71と第2導体72との間で温度差がある場合、第1導体71と第2導体72のうちの一方の導体が高温となり、残りの導体が低温となる。例えば、第1導体71が高温である場合、第1端601の金属膜1、及び第1端611の金属膜1の各々では、金属間化合物の生成を抑制することができる。このため、第1導体71が高温のまま継続されても、金属間化合物の生成は継続して抑制されやすくなる。また、第2導体72が高温である場合、第2端602の金属膜1、及び第2端612の金属膜1の各々では、金属間化合物の生成を抑制することができる。このため、第2導体72が高温のまま継続されても、金属間化合物の生成は継続して抑制されやすくなる。このように高温の金属膜1で、金属間化合物の生成を抑制することにより、金属間化合物に起因する電気抵抗が生じにくくなるため、熱電変換素子10pの発電効率を向上させることができる。また、熱電変換素子10pがペルチェ素子である場合、高温の金属膜1で金属間化合物の生成を抑制することにより、金属間化合物に起因する電気抵抗が生じにくくなるため、第1導体71と第2導体72との間でより精度の高い温度差を得ることができる。 When there is a temperature difference between the first conductor 71 and the second conductor 72, one of the first conductor 71 and the second conductor 72 has a high temperature, and the remaining conductors have a low temperature. For example, when the first conductor 71 has a high temperature, the formation of the intermetallic compound can be suppressed in each of the metal film 1 at the first end 601 and the metal film 1 at the first end 611. For this reason, even if the first conductor 71 is continued at a high temperature, the formation of the intermetallic compound is likely to be continuously suppressed. In addition, when the second conductor 72 has a high temperature, the formation of the intermetallic compound can be suppressed in each of the metal film 1 at the second end 602 and the metal film 1 at the second end 612. For this reason, even if the second conductor 72 is continued at a high temperature, the formation of the intermetallic compound is likely to be continuously suppressed. By suppressing the formation of the intermetallic compound with the high temperature metal film 1 as described above, the electric resistance caused by the intermetallic compound is less likely to occur, and the power generation efficiency of the thermoelectric conversion element 10 p can be improved. In addition, when the thermoelectric conversion element 10p is a Peltier element, suppressing the formation of the intermetallic compound with the high temperature metal film 1 makes it difficult to cause an electrical resistance due to the intermetallic compound, so the first conductor 71 and the first conductor 71 A more accurate temperature difference can be obtained between the two conductors 72.
 N型半導体6bに含まれる半導体として、例えばBiTe等のBiTe系半導体が挙げられる。N型半導体6bが半導体BiTeを含む場合、半導体BiTeの電子親和力は5.14eVである。また、ニッケルの仕事関数は平均5.15eVであり、この仕事関数は面方位により5.04~5.35eVの幅を持つ。スズの仕事関数は4.42eVである。すなわち、半導体BiTeの電子親和力は金属膜1中のニッケルの仕事関数と同程度であり、両者はオーミック接触を形成する。 Examples of the semiconductor included in the N-type semiconductor 6 b include BiTe-based semiconductors such as Bi 2 Te 3 . If N-type semiconductor 6b comprises a semiconductor Bi 2 Te 3, the electron affinity of the semiconductor Bi 2 Te 3 is 5.14EV. In addition, the work function of nickel is 5.15 eV on average, and this work function has a width of 5.04 to 5.35 eV depending on the plane orientation. The work function of tin is 4.42 eV. That is, the electron affinity of the semiconductor Bi 2 Te 3 is about the same as the work function of nickel in the metal film 1, and both form an ohmic contact.
 P型半導体6aに含まれる半導体として、例えばBi0.5Sb1.5Te等のBiTe系半導体が挙げられる。P型半導体6aが半導体Bi0.5Sb1.5Teを含む場合、半導体Bi0.5Sb1.5Teの電子親和力は4.50eVで、バンドギャップエネルギーは0.20eVである。半導体Bi0.5Sb1.5Teの電子親和力とバンドギャップエネルギーの和は4.70eVとなる。また、ニッケルの仕事関数は平均5.15eVであり、この仕事関数は面方位により5.04~5.35eVの幅を持つ。スズの仕事関数は4.42eVである。P型半導体の場合、P型半導体と金属膜とでオーミック接触を形成するには、一般的に、電子親和力とバンドギャップエネルギーの和が、金属膜の仕事関数より小さいことが必要である。半導体Bi0.5Sb1.5Teの電子親和力とバンドギャップエネルギーの和はニッケルの仕事関数より0.45eV小さく、両者はオーミック接触を形成する。 As the semiconductor contained in the P-type semiconductor 6a, for example, include BiTe-based semiconductor such as Bi 0.5 Sb 1.5 Te 3. If P-type semiconductor 6a comprises a semiconductor Bi 0.5 Sb 1.5 Te 3, the electron affinity of the semiconductor Bi 0.5 Sb 1.5 Te 3 is 4.50EV, the band gap energy is 0.20 eV. The sum of the electron affinity and the band gap energy of the semiconductor Bi 0.5 Sb 1.5 Te 3 is 4.70 eV. In addition, the work function of nickel is 5.15 eV on average, and this work function has a width of 5.04 to 5.35 eV depending on the plane orientation. The work function of tin is 4.42 eV. In the case of a P-type semiconductor, in order to form an ohmic contact between a P-type semiconductor and a metal film, generally, the sum of the electron affinity and the band gap energy needs to be smaller than the work function of the metal film. The sum of the electron affinity and the band gap energy of the semiconductor Bi 0.5 Sb 1.5 Te 3 is 0.45 eV smaller than the work function of nickel, and both form an ohmic contact.
 合金2に含まれるスズの仕事関数は、半導体Bi0.5Sb1.5Teの電子親和力とバンドギャップエネルギーとの和より小さい。また、金属膜1と半導体Bi0.5Sb1.5Teとが接する界面にまでスズの拡散が生じると、高抵抗となるショットキー接触が形成されることが懸念される。しかし、金属膜1は合金2中のスズの拡散を抑制できる。このため、P型半導体6aと金属膜1とが接する部分において、金属膜1の仕事関数はスズの影響を受けにくくなる。すなわち、半導体Bi0.5Sb1.5Teと、スズと、スズ及びニッケルの金属間化合物とでショットキー接触が生じにくくなるため、金属間化合物に起因する電気抵抗を生じさせにくくできる。 The work function of tin contained in alloy 2 is smaller than the sum of the electron affinity and the band gap energy of the semiconductor Bi 0.5 Sb 1.5 Te 3 . In addition, when the diffusion of tin occurs to the interface where the metal film 1 and the semiconductor Bi 0.5 Sb 1.5 Te 3 contact, there is a concern that a Schottky contact with high resistance is formed. However, the metal film 1 can suppress the diffusion of tin in the alloy 2. Therefore, the work function of the metal film 1 is less susceptible to the influence of tin in the portion where the P-type semiconductor 6a and the metal film 1 are in contact. That is, it the semiconductor Bi 0.5 Sb 1.5 Te 3, tin and, since the Schottky contact between the intermetallic compound of tin and nickel is less likely to occur, less likely to cause an electrical resistance due to the intermetallic compound.
 P型半導体6aとN型半導体6bとを直列に接続させるにあたって、任意の熱電変換素子と同様の手順を採用できる。例えば、一断面において、第1導体71、及び第2導体72のうちの一方の導体はP型半導体6aとN型半導体6bとの間で分断され、残りの導体はP型半導体6aとN型半導体6bとを接続している。 When connecting the P-type semiconductor 6a and the N-type semiconductor 6b in series, the same procedure as any of the thermoelectric conversion elements can be adopted. For example, in one cross section, one of the first conductor 71 and the second conductor 72 is divided between the P-type semiconductor 6a and the N-type semiconductor 6b, and the remaining conductors are the P-type semiconductor 6a and the N-type The semiconductor 6b is connected.
 (まとめ)
 上記説明の通り、第1態様は、金属膜(1)であって、結晶Ni(12)が分散されているニッケル-リン膜(1a)を含む。
(Summary)
As described above, the first embodiment includes the nickel-phosphorus film (1a) which is the metal film (1) and in which the crystalline Ni (12) is dispersed.
 第1態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the first aspect, even if the nickel-phosphorus film (1a) is applied with the alloy (2), formation of an intermetallic compound consisting of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) Can be suppressed.
 第2態様は、第1態様の金属膜(1)であって、ニッケル-リン膜(1a)は、結晶NiPよりも多く結晶Ni(12)を含有する。 A second aspect is the metal film (1) of the first aspect, wherein the nickel-phosphorus film (1a) contains crystalline Ni (12) more than crystalline Ni 3 P.
 第2態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the second aspect, even if the nickel-phosphorus film (1a) is applied with the alloy (2), the formation of an intermetallic compound consisting of the nickel of the nickel-phosphorus film (1a) and the tin of the alloy (2) Can be suppressed.
 第3態様は、第2態様の金属膜(1)であって、ニッケル-リン膜(1a)は、結晶NiPを含有しない。 A third aspect is the metal film (1) of the second aspect, wherein the nickel-phosphorus film (1a) does not contain crystalline Ni 3 P.
 第3態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the third aspect, even if the nickel-phosphorus film (1a) is alloyed (2), an intermetallic compound composed of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) is produced Can be suppressed.
 第4態様は、第1~第3態様のうちのいずれか1つの金属膜(1)であって、結晶Ni(12)の平均粒子径が3nm以上である。 A fourth aspect is the metal film (1) according to any one of the first to third aspects, wherein the average particle diameter of the crystalline Ni (12) is 3 nm or more.
 第4態様によれば、結晶ニッケル(12)はニッケル-リン膜(1a)中で結晶構造を保ちやすくできる。 According to the fourth aspect, the crystalline nickel (12) can easily maintain the crystalline structure in the nickel-phosphorus film (1a).
 第5態様は、第1~第4態様のうちのいずれか1つの金属膜(1)であって、ニッケル-リン膜(1a)中の平均リン濃度は、12.5atm%以上25atm%以下の範囲内である。 A fifth aspect is the metal film (1) according to any one of the first to fourth aspects, wherein the average phosphorus concentration in the nickel-phosphorus film (1a) is at least 12.5 atm% and at most 25 atm%. It is in the range.
 第5態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the fifth aspect, even if the nickel-phosphorus film (1a) is applied with the alloy (2), the formation of an intermetallic compound consisting of the nickel of the nickel-phosphorus film (1a) and the tin of the alloy (2) Can be suppressed.
 第6態様は、第1~第5態様のうちのいずれか1つの金属膜(1)であって、ニッケル-リン膜(1a)は、スズを含有する合金(2)との接合を可能にする膜である。 The sixth aspect is the metal film (1) according to any one of the first to fifth aspects, wherein the nickel-phosphorus film (1a) is capable of bonding to an alloy (2) containing tin. Membrane.
 第6態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the sixth aspect, even if the nickel-phosphorus film (1a) is subjected to the alloy (2) attachment, formation of an intermetallic compound consisting of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) Can be suppressed.
 第7態様は、電子部品(10)であって、第1~第6態様のうちのいずれか1つの金属膜(1)と、部品本体(6)とを備える。金属膜(1)は、部品本体(6)の表面に位置する。 A seventh aspect is an electronic component (10), including the metal film (1) of any one of the first to sixth aspects and a component body (6). The metal film (1) is located on the surface of the component body (6).
 第7態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the seventh aspect, even if the nickel-phosphorus film (1a) is alloyed (2), an intermetallic compound composed of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) is formed. Can be suppressed.
 第8態様は、第7態様の電子部品(10)であって、部品本体(6)は、半導体を含む。半導体は、金属膜(1)中のニッケルとオーミック接触を形成する。 An eighth aspect is the electronic component (10) of the seventh aspect, wherein the component body (6) includes a semiconductor. The semiconductor forms an ohmic contact with the nickel in the metal film (1).
 第8態様によれば、半導体と、スズと、スズ及びニッケルからなる金属間化合物とのショットキー接触を生じさせにくくできるため、金属間化合物に起因する電気抵抗を生じさせにくくできる。 According to the eighth aspect, since the Schottky contact between the semiconductor, the tin, and the intermetallic compound made of tin and nickel can be hardly caused, the electric resistance caused by the intermetallic compound can be hardly generated.
 第9態様は、金属膜(1)の製造方法であって、ニッケルとリンとを含有する非晶質膜(5)に熱処理を施して、結晶Ni(12)が分散されたニッケル-リン膜(1a)に非晶質膜(5)を改質させることを含む。 A ninth aspect is a method for producing a metal film (1), wherein the amorphous film (5) containing nickel and phosphorus is subjected to a heat treatment to form a nickel-phosphorus film in which crystalline Ni (12) is dispersed. (1a) includes modifying the amorphous film (5).
 第9態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the ninth aspect, even if the nickel-phosphorus film (1a) is alloyed (2), an intermetallic compound composed of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) is produced. Can be suppressed.
 第10態様は、第9態様の金属膜(1)の製造方法であって、非晶質膜(5)は、結晶Ni(12)の発生量が結晶NiPの発生量よりも多くなる温度で熱処理される。 A tenth aspect is the method for producing a metal film (1) according to the ninth aspect, wherein in the amorphous film (5), the generation amount of crystalline Ni (12) becomes larger than the generation amount of crystalline Ni 3 P Heat treated at temperature.
 第10態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the tenth aspect, even when the nickel-phosphorus film (1a) is subjected to the alloy (2) attachment, formation of an intermetallic compound consisting of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) Can be suppressed.
 第11態様は、第10態様の金属膜(1)の製造方法であって、非晶質膜(5)は、結晶NiPを発生させない温度で熱処理される。 An eleventh aspect is the method for producing a metal film (1) according to the tenth aspect, wherein the amorphous film (5) is heat-treated at a temperature at which crystalline Ni 3 P is not generated.
 第11態様によれば、ニッケル-リン膜(1a)に、合金(2)付けを施しても、ニッケル-リン膜(1a)のニッケルと合金(2)のスズとからなる金属間化合物の生成を抑制できる。 According to the eleventh aspect, although the alloy (2) is attached to the nickel-phosphorus film (1a), formation of an intermetallic compound consisting of nickel of the nickel-phosphorus film (1a) and tin of the alloy (2) Can be suppressed.
 1  金属膜
 1a ニッケル-リン膜
 12 結晶Ni
 2  合金
 5  非晶質膜
 10 電子部品
 6  部品本体
1 metal film 1a nickel-phosphorus film 12 crystal Ni
2 alloy 5 amorphous film 10 electronic component 6 component body

Claims (11)

  1.  結晶Niが分散されているニッケル-リン膜を含む、
     金属膜。
    Including a nickel-phosphorus film in which crystalline Ni is dispersed,
    Metal film.
  2.  前記ニッケル-リン膜は、結晶NiPよりも多く前記結晶Niを含有する、
     請求項1に記載の金属膜。
    The nickel-phosphorus film contains the crystalline Ni more than the crystalline Ni 3 P,
    The metal film according to claim 1.
  3.  前記ニッケル-リン膜は、前記結晶NiPを含有しない、
     請求項2に記載の金属膜。
    The nickel-phosphorus film does not contain the crystalline Ni 3 P.
    The metal film according to claim 2.
  4.  前記結晶Niの平均粒子径が3nm以上である、
     請求項1~3のいずれか1項に記載の金属膜。
    The average particle diameter of the crystalline Ni is 3 nm or more
    The metal film according to any one of claims 1 to 3.
  5.  前記ニッケル-リン膜中の平均リン濃度は、12.5atm%以上25atm%以下の範囲内である、
     請求項1~4のいずれか1項に記載の金属膜。
    The average phosphorus concentration in the nickel-phosphorus film is in the range of not less than 12.5 atm% and not more than 25 atm%.
    The metal film according to any one of claims 1 to 4.
  6.  前記ニッケル-リン膜は、スズを含有する合金との接合を可能にする膜である、
     請求項1~5のいずれか1項に記載の金属膜。
    The nickel-phosphorus film is a film that enables bonding with an alloy containing tin.
    The metal film according to any one of claims 1 to 5.
  7.  請求項1~6のいずれか1項に記載の金属膜と、
     部品本体と、を備え、
     前記金属膜は、前記部品本体の表面に位置する、
     電子部品。
    A metal film according to any one of claims 1 to 6;
    Parts body, and
    The metal film is located on the surface of the component body.
    Electronic parts.
  8.  前記部品本体は、半導体を含み、
     前記半導体は、前記金属膜中のニッケルとオーミック接触を形成する、
     請求項7に記載の電子部品。
    The component body includes a semiconductor,
    The semiconductor forms an ohmic contact with nickel in the metal film,
    The electronic component according to claim 7.
  9.  ニッケルとリンとを含有する非晶質膜に熱処理を施して、結晶Niが分散されたニッケル-リン膜に前記非晶質膜を改質させることを含む、
     金属膜の製造方法。
    Heat treating the amorphous film containing nickel and phosphorus to reform the amorphous film into a nickel-phosphorus film in which crystalline Ni is dispersed;
    Method of manufacturing metal film.
  10.  前記非晶質膜は、結晶Niの発生量が結晶NiPの発生量よりも多くなる温度で熱処理される、
     請求項9に記載の金属膜の製造方法。
    The amorphous film is heat-treated at a temperature at which the generation amount of crystalline Ni is larger than the generation amount of crystalline Ni 3 P.
    The manufacturing method of the metal film of Claim 9.
  11.  前記非晶質膜は、前記結晶NiPを発生させない温度で熱処理される、
     請求項10に記載の金属膜の製造方法。
    The amorphous film is heat-treated at a temperature which does not generate the crystalline Ni 3 P.
    The manufacturing method of the metal film of Claim 10.
PCT/JP2018/046979 2017-12-26 2018-12-20 Metal film, electronic component provided with metal film and method for producing metal film WO2019131433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017249433 2017-12-26
JP2017-249433 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019131433A1 true WO2019131433A1 (en) 2019-07-04

Family

ID=67066405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046979 WO2019131433A1 (en) 2017-12-26 2018-12-20 Metal film, electronic component provided with metal film and method for producing metal film

Country Status (1)

Country Link
WO (1) WO2019131433A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139034A (en) * 2020-02-29 2021-09-16 廣志 西口 Composite material, hydrogen container using composite material, and production method of composite material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852832A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Semiconductor device
JPS60130801A (en) * 1983-12-19 1985-07-12 トヨタ自動車株式会社 Positive temperature coefficient thermistor
JPH0472075A (en) * 1990-07-10 1992-03-06 Mitsubishi Electric Corp Production of film having wear resistance and corrosion resistance
JPH09223312A (en) * 1996-02-19 1997-08-26 Nippon Micro Coating Kk Working method for work having coating layer consisting of amorphous-nickel-phosphorus formed on surface
JPH1096084A (en) * 1996-09-20 1998-04-14 Taiho Kogyo Co Ltd Treatment of surface of sliding member
JP2001196646A (en) * 2000-01-17 2001-07-19 Aisin Seiki Co Ltd Thermoelectric device
JP2007308802A (en) * 2006-05-19 2007-11-29 Ching Ho Method of preparing nickel-based laminated structure on magnesium alloy substrate, surface-treated magnesium alloy product made by the method and cleaning solution and surface-treating solution used for the method
JP2008150226A (en) * 2006-12-14 2008-07-03 Toshiba Mach Co Ltd Method for producing mold for glass molding
JP2011246739A (en) * 2010-05-24 2011-12-08 Toyota Motor Corp Method of plating stainless steel and plated material for the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852832A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Semiconductor device
JPS60130801A (en) * 1983-12-19 1985-07-12 トヨタ自動車株式会社 Positive temperature coefficient thermistor
JPH0472075A (en) * 1990-07-10 1992-03-06 Mitsubishi Electric Corp Production of film having wear resistance and corrosion resistance
JPH09223312A (en) * 1996-02-19 1997-08-26 Nippon Micro Coating Kk Working method for work having coating layer consisting of amorphous-nickel-phosphorus formed on surface
JPH1096084A (en) * 1996-09-20 1998-04-14 Taiho Kogyo Co Ltd Treatment of surface of sliding member
JP2001196646A (en) * 2000-01-17 2001-07-19 Aisin Seiki Co Ltd Thermoelectric device
JP2007308802A (en) * 2006-05-19 2007-11-29 Ching Ho Method of preparing nickel-based laminated structure on magnesium alloy substrate, surface-treated magnesium alloy product made by the method and cleaning solution and surface-treating solution used for the method
JP2008150226A (en) * 2006-12-14 2008-07-03 Toshiba Mach Co Ltd Method for producing mold for glass molding
JP2011246739A (en) * 2010-05-24 2011-12-08 Toyota Motor Corp Method of plating stainless steel and plated material for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139034A (en) * 2020-02-29 2021-09-16 廣志 西口 Composite material, hydrogen container using composite material, and production method of composite material
JP7434700B2 (en) 2020-02-29 2024-02-21 廣志 西口 Composite material, hydrogen container using composite material, and method for manufacturing composite material

Similar Documents

Publication Publication Date Title
CN108290250B (en) Soldered joint
US8471386B2 (en) Junction body, semiconductor module, and manufacturing method for junction body
US10147859B2 (en) Thermoelectric power module
JP5224430B2 (en) Power semiconductor module
JP5282593B2 (en) Thermoelectric conversion element and thermoelectric conversion module using the same
US10157877B2 (en) Semiconductor device and manufacturing method of semiconductor device
US10224472B2 (en) Thermoelectric power module
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
EP3078446B1 (en) Method of manufacturing a solder material and joining structure
JP4699822B2 (en) Manufacturing method of semiconductor module
US7670879B2 (en) Manufacturing method of semiconductor module including solid-liquid diffusion joining steps
JP2009147111A (en) Bonding material, method of manufacturing the same, and semiconductor apparatus
CN110178234B (en) Thermoelectric module
CN112334267B (en) Braze joint
WO2019131433A1 (en) Metal film, electronic component provided with metal film and method for producing metal film
JP6127941B2 (en) Solder joint material and manufacturing method thereof
RU2601243C1 (en) Method for production of thermoelectric element
EP1734569B1 (en) Process for producing semiconductor module
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
JP2020043096A (en) Semiconductor device, bonding sheet, and manufacturing method thereof
RU2564685C1 (en) Heat fusion method
JP2013035046A (en) Soldered joined structure of metal film and lead, and its heat treatment method
JPH0258364A (en) Circuit board and electronic device using it and its manufacture
WO2013172155A1 (en) Metal coating film and electronic component provided with metal coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP