JP2013020723A - 燃料電池、及び、膜電極構造体 - Google Patents

燃料電池、及び、膜電極構造体 Download PDF

Info

Publication number
JP2013020723A
JP2013020723A JP2011151002A JP2011151002A JP2013020723A JP 2013020723 A JP2013020723 A JP 2013020723A JP 2011151002 A JP2011151002 A JP 2011151002A JP 2011151002 A JP2011151002 A JP 2011151002A JP 2013020723 A JP2013020723 A JP 2013020723A
Authority
JP
Japan
Prior art keywords
separator
gas
electrode
electrolyte membrane
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011151002A
Other languages
English (en)
Inventor
Hidetada Kojima
秀忠 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2011151002A priority Critical patent/JP2013020723A/ja
Publication of JP2013020723A publication Critical patent/JP2013020723A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】膜電極構造体のへたりを未然に防止できるようにして、経時使用に伴う発電性能や気密性の低下を抑制可能な燃料電池、及び、膜電極構造体を提供する。
【解決手段】固体高分子電解質膜15とその両側の拡散電極16,17とによって膜電極構造体10を構成する。膜電極構造体10を第1セパレータ11と第2セパレータ12で挟持して燃料電池セル13を構成する。燃料電池セル13を複数積層し、積層した燃料電池セル13を、両端のエンドプレート14を介して締結固定する。各ガス拡散層18,19は、第1,第2セパレータ11,12との当接部に多孔質金属部材30を均等に分散して介在させる。カソード側のガス拡散層19は、シール部材25aの圧接荷重の作用する部位に、さらに多孔質金属部材30を介在させる。
【選択図】図1

Description

この発明は、燃料電池と、その燃料電池で用いられる膜電極構造体に関するものである。
車両等で用いられる燃料電池として、固体高分子電解質膜の両側にアノード側拡散電極とカソード側拡散電極を配置して膜電極構造体(MEA:Membrane Electrode Assembly)を構成し、この膜電極構造体を一対のセパレータで挟み込んで燃料電池セルを構成したものがある。この燃料電池の燃料電池セルは、複数のものが層状に積層され、ボルト締結等によって相互に固定されている。また、燃料電池セルの各拡散電極は、燃料ガスまたは酸化剤ガスに接する多孔質カーボンペーパー等から成るガス拡散層と、このガス拡散層の固体高分子電解質膜側に付設される白金等を主体とする電極触媒層とを備えた構成とされている。(例えば、特許文献1参照)
この燃料電池では、各燃料電池セルのセパレータのうちの膜電極構造体(ガス拡散層)に接する側の面に流通溝が形成され、その流通溝を通して燃料ガス(例えば、水素ガス)や酸化剤ガス(例えば、酸素を含む空気)が膜電極構造体の各面に供給されるようになっている。そして、この燃料電池においては、膜電極構造体のアノード電極側の流通溝に燃料ガスが供給されると、そこで燃料ガスがイオン化され、そのイオンが固体高分子電解質膜を通してカソード電極側に移動する。この間に生じた電子は外部回路に取り出され、直流の電気エネルギーとして利用される。また、膜電極構造体のカソード電極側においては、カソード電極側の流通溝を通して供給された酸化剤ガスが水素イオン及び電子と反応して水を生成する。
特開2010−212216号公報
しかし、この従来の燃料電池においては、各燃料電池セルの膜電極構造体が一対のセパレータによって両側から挟持される構造とされているため、経時使用によって膜電極構造体、特に、そのガス拡散層部分にへたりが生じる可能性がある。そして、膜電極構造体にへたりが生じると、セパレータと膜電極構造体の間の接触面圧(電極面圧)が低下し、抵抗過電圧の上昇によって発電性能が低下したり、膜電極構造体の周縁部を、シール部材を押し当ててセパレータ間でシールしている場合には、シール部材の圧接部でのシール線圧の低下によって気密性が低下したりすることが懸念される。
そこでこの発明は、膜電極構造体のへたりを未然に防止できるようにして、経時使用に伴う発電性能や気密性の低下を抑制可能な燃料電池、及び、膜電極構造体を提供しようとするものである。
この発明に係る燃料電池では、上記課題を解決するために以下の手段を採用した。
請求項1に係る発明は、電解質膜(例えば、実施形態の固体高分子電解質膜15)とその両側の拡散電極(例えば、実施形態のアノード側拡散電極16及びカソード側拡散電極17)によって構成された膜電極構造体(例えば、実施形態の膜電極構造体10)を一対のセパレータ(例えば、実施形態の第1セパレータ11及び第2セパレータ12)で挟持して燃料電池セル(例えば、実施形態の燃料電池セル13)が構成され、この燃料電池セルが複数積層され、積層された複数の燃料電池セルが、積層方向の両端のエンドプレート(例えば、実施形態のエンドプレート14)を介して押圧状態で締結固定される燃料電池であって、前記各拡散電極は、燃料ガスまたは酸化剤ガスに接するガス拡散層(例えば、実施形態のガス拡散層18,19)と、このガス拡散層と前記電解質膜の間に介装される電極触媒層とを備えるとともに、前記ガス拡散層部分が、前記エンドプレートを介した締結荷重を受けて隣接するセパレータの凸部(例えば、実施形態の突条24,27)に当接状態で支持され、前記一方の拡散電極は、前記他方の拡散電極と前記電解質膜よりも外形が小さく形成され、前記電解質膜の前記一方の拡散電極よりも外側に延出して露出した周縁露出面(例えば、実施形態の周縁露出面15a)と、その周縁露出面に対向する一方のセパレータ(例えば、実施形態の第1セパレータ11)との間は、前記エンドプレートを介した締結荷重を受けて第1シール部材(例えば、実施形態のシール部材25a)によってシールされ、前記一対のセパレータの間は、前記電解質膜よりも外周側で前記エンドプレートを介した締結荷重を受けて第2シール部材(例えば、実施形態のシール部材28)によってシールされ、前記各拡散電極のガス拡散層は、隣接する前記セパレータとの当接部に、当該ガス拡散層の一般部(例えば、実施形態の一般部18a,19a)よりもへたり強度の高いへたり補強部(例えば、実施形態の多孔質金属部材30)が均等に分散して設けられ、前記他方の拡散電極(例えば、実施形態のカソード側拡散電極17)のガス拡散層のうちの、前記第1シール部材の圧接荷重の作用する部位には、前記へたり補強部がさらに設けられていることを特徴とするものである。
これにより、各拡散電極のガス拡散層のうちの、隣接するセパレータとの当接部がへたり補強部によって均等に補強され、セパレータとの当接部の過圧縮とそれに伴うへたりが抑制されることになる。また、他方の拡散電極のガス拡散層のうちの、第1シール部材の圧接荷重の作用する部位もへたり補強部によって補強され、その部分の過圧縮とそれに伴うへたりも抑制されることになる。
請求項2に係る発明は、請求項1に記載の燃料電池において、前記へたり補強部は、多孔質金属部材によって構成されていることを特徴とするものである。
また、この発明に係る膜電極構造体では、上記課題を解決するために以下の手段を採用した。
請求項3に係る発明は、電解質膜とその両側の拡散電極によって構成された膜電極構造体であって、一対のセパレータで挟持されて燃料電池セルを構成し、この燃料電池セルを複数積層し、積層された複数の燃料電池を、積層方向の両端のエンドプレートを介して押圧状態で締結固定することによって燃料電池を構成するものにおいて、前記各拡散電極は、燃料ガスまたは酸化剤ガスに接するガス拡散層と、このガス拡散層と前記電解質膜の間に介装される電極触媒層とを備えるとともに、前記ガス拡散層部分が、前記エンドプレートを介した締結荷重を受けて隣接するセパレータの凸部に当接状態で支持され、前記一方の拡散電極は、前記他方の拡散電極と前記電解質膜よりも外形が小さく形成され、前記電解質膜の前記一方の拡散電極よりも外側に延出して露出した周縁露出面と、その周縁露出面に対向する一方のセパレータとの間は、前記エンドプレートを介した締結荷重を受けて第1シール部材によってシールされ、前記一対のセパレータの間は、前記電解質膜よりも外周側で前記エンドプレートを介した締結荷重を受けて第2シール部材によってシールされ、前記各拡散電極のガス拡散層は、隣接する前記セパレータとの当接部に、当該ガス拡散層の一般部よりもへたり強度の高いへたり補強部が均等に分散して設けられ、前記他方の拡散電極のガス拡散層のうちの、前記第1シール部材の圧接荷重の作用する部位には、前記へたり補強部がさらに設けられていることを特徴とするものである。
請求項4に係る発明は、請求項3に記載の膜電極構造体において、前記へたり補強部は、多孔質金属部材によって構成されていることを特徴とすることを特徴とするものである。
この発明によれば、各拡散電極のガス拡散層のうちの、隣接するセパレータとの当接部がへたり補強部によって均等に補強されるとともに、他方の拡散電極のガス拡散層のうちの、第1シール部材の圧接荷重の作用する部位もへたり補強部によって補強されるため、膜電極構造体のセパレータとの当接部やシール部材からの荷重入力部のへたりを未然に防止することができる。したがって、この発明によれば、セパレータと膜電極構造体の間の接触面圧の低下による発電性能の低下を抑制することができるとともに、膜電極構造体のシール部の気密性の低下も抑制することができる。
特に、この発明においては、各拡散電極のガス拡散層のうちの、隣接するセパレータとの当接部がへたり補強部によって均等に補強されることから、各拡散電極のガス拡散層に均一にガスを流すことができ、かつ、ガス拡散層の隣接するセパレータとの当接部に均等に締結荷重を担わせることによってガス拡散層の局部的なへたりをより少なくすることができる。
請求項2,4に係る発明によれば、へたり補強部が多孔質金属部材によって構成されていることから、高いへたり強度の維持と十分なガス拡散性を得ることができる。
この発明の第1の実施形態の燃料電池の図3のA−A断面に対応する断面図である。 この発明の第1の実施形態の第1セパレータを図1のB矢視方向から見た図である。 この発明の第1の実施形態の第2セパレータを図1のC矢視方向から見た図である。 この発明の第1の実施形態のアノード側拡散電極を図1のB矢視方向から見た図である。 この発明の第1の実施形態のカソード側拡散電極を図1のC矢視方向から見た図である。 この発明の第2の実施形態の第1セパレータの図2に対応する図である。 この発明の第2の実施形態の第2セパレータの図3に対応する図である。 この発明の第2の実施形態のアノード側拡散電極の図4に対応する図である。 この発明の第2の実施形態のカソード側拡散電極の図5に対応する図である。
以下、この発明の実施形態を図面に基づいて説明する。
最初に、図1〜図5に示す第1の実施形態について説明する。
図1は、この実施形態の燃料電池1の断面図を示すものである。この燃料電池1は、膜電極構造体10の表裏両側に金属製の板材から成る第1セパレータ11と第2セパレータ12が配置され、これらのセパレータ11,12と膜電極構造体10によって燃料電池セル13が構成されている。燃料電池セル13は厚み方向に複数積層され、積層方向の両端に配置された肉厚のエンドプレート14で挟み込むようにして相互に固定されている。両側のエンドプレート14は、複数の燃料電池セル13を間に挟み込み、その状態においてボルト52及びナット53によって締結固定されている。
なお、図1中50は、各エンドプレート14の燃料電池セル13に臨む側の面に配置されたインシュレータであり、51は、インシュレータ50とそのインシュレータ50に隣接する燃料電池セル13との間に介装されたターミナルプレートである。また、後に参照する図2,図3においては、ボルト52の挿通される孔は図示都合上省略されている。
膜電極構造体10は、ペルフルオロスルホン酸ポリマー等から成る固体高分子電解質膜15(電解質膜)と、固体高分子電解質膜15の表裏両側に付設されたアノード側拡散電極16とカソード側拡散電極17と、によって構成されている。アノード側拡散電極16とカソード側拡散電極17は、燃料ガス(例えば、水素ガス)や酸化剤ガス(例えば、酸素を含む空気)に接するガス拡散層18,19と、このガス拡散層18,19の固体高分子電解質膜15に対向する側の面に設けられた図示しない電極触媒層と、から構成されている。ガス拡散層18,19は、例えば、多孔質カーボンペーパー等を主要部として構成され、電極触媒層は、例えば、白金合金が表面に担持された多孔質カーボン粒子を、ガス拡散層18,19の表面に一様に塗布して形成されている。ガス拡散層18,19の具体的な構造については後に詳述する。
図2は、第1セパレータ11を図1のB矢視方向から見た図である。
第1セパレータ11は、同図に示すように平面視が略長方形状に形成され、その長手方向の両側の縁部に、ガスや冷却媒体を各燃料電池セル13に流通させるための複数の孔20Fi,20Fo,21Fi,21Fo,22Fi,22Foが設けられている。
具体的には、第1セパレータ11の長手方向両側の縁部のうちの、図2中の上部位置には、燃料ガスを通過させるための入口側燃料ガス連通孔20Fiと、酸化剤ガスを通過させるための入口側酸化剤ガス連通孔21Fiとが設けられ、第1セパレータ11の長手方向両側の縁部のうちの、図2中の中央位置には、純粋やエチレングリコールやオイル等の冷却媒体を通過させるための入口側冷却媒体連通孔22Fiと、使用後の冷却媒体を通過させるための出口側冷却媒体連通孔22Foとが設けられている。また、第1セパレータ11の長手方向両側の縁部のうちの、図2中の下部位置には、燃料ガスを通過させるための出口側燃料ガス通路孔20Foと、酸化剤ガスを通過させるための出口側酸化剤ガス連通孔21Foとが、入口側燃料ガス連通孔20Fi及び入口側酸化剤ガス連通孔21Fiと対角位置となるように設けられている。
また、第1セパレータ11には、プレス成形等によって凹凸形状が形成され、その凹凸形状によってアノード側拡散電極16(ガス拡散層18)に臨む側の面(図2で正面に見える側の面)に、入口側燃料ガス連通孔20Fiから導入された燃料ガスを水平方向に一往復半蛇行しつつ、出口側燃料ガス連通孔20Foに誘導する複数本の燃料ガス流通溝23が造形されている。また、第1セパレータ11のアノード側拡散電極16に臨む側の面には、燃料ガス流通溝23を隔成する帯状の突条24(凸部)が複数設けられており、燃料電池セル13が組み付けられたときに、その突条24の頂部面がアノード側拡散電極16のガス拡散層18に規定荷重で圧接されるようになっている。
なお、図2中25aは、第1セパレータ11のアノード側拡散電極16に臨む側の面に、燃料ガス流通溝23と入口側燃料ガス連通孔20Fi及び出口側燃料ガス連通孔20Foの外側領域を連続して取り囲むように取り付けられたシリコンゴム等から成るシール部材(第1シール部材)である。
図3は、第2セパレータ12を図1のC矢視方向から見た図である。
第2セパレータ12は、第1セパレータ11と同様に平面視が略長方形状に形成され、その長手方向の両側の縁部に、ガスや冷却媒体を各燃料電池セル13に流通させるための複数の孔20Si,20So,21Si,21So,22Si,22Soが設けられている。これらの孔20Si,20So,21Si,21So,22Si,22Soは、第1セパレータ11の孔20Fi,20Fo,21Fi,21Fo,22Fi,22Foに対応して設けられたものであり、20Siは、入口側燃料ガス連通孔、20Soは、出口側燃料ガス連通孔、21Siは、入口側酸化剤ガス連通孔、21Soは、出口側酸化剤ガス連通孔、22Siは、入口側冷却媒体連通孔、22Soは、出口側冷却媒体連通孔である。
第2セパレータ12は、第1セパレータ11と同様にプレス成形によって凹凸形状が形成され、その凹凸形状によってカソード側拡散電極17(ガス拡散層19)に臨む側の面(図3で正面に見える側の面)に、入口側酸化剤ガス連通孔21Siから導入された酸化剤ガスを水平方向に一往復半蛇行させつつ、出口側酸化剤ガス連通孔21Soに誘導する複数本の酸化剤ガス流通溝26が造形されている。第2セパレータ12の場合にも、カソード側拡散電極17に臨む側の面に、酸化剤ガス流通溝26を隔成する帯状の突条27(凸部)が複数設けられている。この突条27は、燃料電池セル13が組み付けられたときに、その突条27の頂部面がカソード側拡散電極17のガス拡散層19に規定荷重で圧接される。
図3中の25bは、第2セパレータ12のカソード側拡散電極17に臨む側の面に、酸化剤ガス流通溝26と入口側酸化剤ガス連通孔21Si及び出口側酸化剤ガス連通孔21Soの外側領域を連続して取り囲むように取り付けられたシール部材であり、28は、このシール部材25bのさらに外側領域を連続して取り囲むように、第2セパレータ12のうちの、対を成す第1セパレータ11と対向する側の面に取り付けられたシール部材(第2シール部材)である。これらのシール部材25b,28は、シリコンゴム等によって構成されている。
図4は、膜電極構造体10のアノード側拡散電極16を図1のB矢視方向から見た図であり、図5は、膜電極構造体10のカソード側拡散電極17を図1のC矢視方向から見た図である。なお、これらの図においては、アノード側拡散電極16とカソード側拡散電極17のガス拡散層18,19のみを示し、電極触媒層の図示は省略している。
アノード側拡散電極16は、前述した第1セパレータ11の長手方向中央の燃料ガス流通溝23の全域を含む領域に重合される主要領域16aと、その主要領域16aの両側部から側方に膨出して設けられた一対の膨出領域16b,16cと、を備え、一方の膨出領域16bが第1セパレータ11の入口側燃料ガス連通孔20Fiの周域部に重合され、他方の膨出領域16cが第1セパレータ11の出口側燃料ガス連通孔20Foの周域部に重合されるようになっている。このアノード側拡散電極16は、第1セパレータ11に取り付けられたシール部材25aの内周面に対して一回り小さい相似形状とされている。
一方、カソード側拡散電極17は、前述した第2セパレータ12の長手方向中央の酸化剤ガス流通溝26の全域を含む領域に重合される主要領域17aと、その主要領域17aの両側部から側方に膨出して設けられた一対の膨出領域17b,17cと、を備えている。一方の膨出領域17bは、第2セパレータ12の入口側酸化剤ガス連通孔21Siの周域部に重合され、他方の膨出領域17cは、第2セパレータ12の出口側酸化剤ガス連通孔21Soの周域部に重合される。このカソード側拡散電極17の外周部の形状は、第2セパレータ12に取り付けられたシール部材25bの外形形状とほぼ合致する形状とされている。
ところで、カソード側拡散電極17は、固体高分子電解質膜15とサイズと形状がほぼ同じに設定され、固体高分子電解質膜15の一方の面のほぼ全域に重合状態で接合されている。これに対し、アノード側拡散電極16は、固体高分子電解質膜15やカソード側拡散電極17よりも一回り小さい外形に形成され、アノード側拡散電極16とカソード側拡散電極17を固体高分子電解質膜15に接合した状態において、固体高分子電解質膜15とカソード側拡散電極17の外周縁部がアノード側拡散電極16の外周部から外側に延出するようになっている。なお、図1中15aは、固体高分子電解質膜15のアノード側拡散電極16の外側に延出して露出した周縁露出面である。
アノード側拡散電極16の外周部から外側に延出した固体高分子電解質膜15とカソード側拡散電極17の外周縁部は、燃料電池セル13が組み付けられた状態において、図1に示すように、第1セパレータ11のシール部材25aと第2セパレータ12のシール部材25bによってそれぞれ上下から圧接され、それによって燃料ガス流通溝23の周域が密閉状態で封止されるようになっている。なお、このときシール部材25aは固体高分子電解質膜15の周縁露出面15aに当接する。また、第2セパレータ12の外側のシール部材28は、膜電極構造体10の外側において第1セパレータ11の対応する部位に直接圧接され、それによって燃料ガス流通溝23の周域をシール部材25a,25bとともに二重にシールする。
アノード側拡散電極16とカソード側拡散電極17の各ガス拡散層18,19は、主要領域のほぼ全域がカーボンペーパー等の均一密度の多孔質カーボンによって形成されている。以下、この均一密度の多孔質カーボンによって形成されている部分をガス拡散層18,19の一般部18a,19aと呼ぶ。
各ガス拡散層18,19は、一般部18a,19a内の複数箇所に、一般部18a,19aよりもへたり強度(弾性限界内の低い応力下において塑性歪が発生する「へたり」現象に対する強度)の高い多孔質金属部材30が介在されている。この実施形態においては、多孔質金属部材30がへたり補強部を構成している。多孔質金属部材30は、例えば、焼結金属やニッケルセルメット等の樹脂金属、微細加工を施した金属等によって構成することができる。
各ガス拡散層18,19に介在される多孔質金属部材30は、各ガス拡散層18,19のうちの、隣接する第1,第2セパレータ11,12の突条24,27の当接する領域で、かつ両突条24,27が積層方向で重なる領域、つまり、両突条24,27からエンドプレート14を介した締結荷重を受ける領域に、均等に分散して配置されている。この実施形態の例の場合、多孔質金属部材30は図示では正面視で正方形状に描かれているが、正面視の形状は正方形状に限らず任意である。
なお、多孔質金属部材30は、一般部18a,19aを肉厚方向に貫通するように配置され、多孔質金属部材30と一般部18a,19aの肉厚は全域において同一厚みとされている。
また、カソード側拡散電極17のガス拡散層19は、図5に示すように、シール部材25bの当接する外周縁部(シール部材25aの圧接荷重の作用する部位)にも、へたり補強部である多孔質金属部材30が帯状に配置されている。
また、積層方向で隣接する燃料電池セル13,13は、一方の燃料電池セル13の第1セパレータ11と他方の燃料電池セル13の第2セパレータ12が相互に背中合わせにして重合されるが、背中合わせに重合される第1セパレータ11と第2セパレータ12の間には、図1に示すようにシリコンゴム等から成るシール部材31が介装されている。このシール部材31は、背中合わせの第1セパレータ11と第2セパレータ12の間において、入口側冷却媒体連通孔22Fi,22Siと出口側冷却媒体連通孔22Fo,22Soの各周囲と、これらを接続する中間領域の周囲を取り囲み、隣接する燃料電池セル13,13間に冷却媒体流通路32を形成するようになっている。
このように構成された燃料電池1の動作について、以下に説明する。
燃料電池1には、燃料ガスと酸化剤ガスが供給されるとともに、各燃料電池セル13の発電面を冷却するために冷却媒体が供給される。各燃料電池セル13の入口側燃料ガス連通孔20Fiに供給された燃料ガスは、図2中の矢印で示すように第1セパレータ11の複数の燃料ガス流通溝23内を蛇行して流れる。また、このとき各燃料電池セル13の入口側酸化剤ガス連通孔21Siに供給された酸化剤ガスは、図3中の矢印で示すように第2セパレータ12の複数の酸化剤ガス流通溝26内を蛇行して流れる。
第1セパレータ11の燃料ガス流通溝23に供給された燃料ガスは、燃料ガス流通溝23に面するガス拡散層18を通ってアノード側の電極触媒層に供給され、第2セパレータ12の酸化剤ガス流通溝26に供給された酸化剤ガスは、酸化剤ガス流通溝26に面するガス拡散層19を通ってカソード側の電極触媒層に供給される。こうして、膜電極構造体10のアノード側とカソード側に燃料ガスと酸化剤ガスがそれぞれ供給されると、燃料ガスがアノード側でイオン化されて固体高分子電解質膜15内を移動し、その間に生じた電子が電気エネルギーとして取り出され、カソード側では水が生成される。
また、この燃料電池1では、積層された複数の燃料電池セル13が両端のエンドプレート14を介してボルト52及びナット53によって締結されることにより、各燃料電池セル13の第1セパレータ11と第2セパレータ12が膜電極構造体10の表裏に規定荷重で圧接される。具体的には、このとき、第1,第2セパレータ11,12の各突条24,27の頂部面が膜電極構造体10のガス拡散層18,19の各面に圧接されるとともに、第1セパレータ11側のシール部材25aと第2セパレータ12側のシール部材25bが固体高分子電解質膜15とカソード側拡散電極17の外周縁部に表裏から圧接される。
なお、このとき各燃料電池セル13内の第1セパレータ11と第2セパレータ12の間は、膜電極構造体10の外側においてシール部材28によって直接シールされ、隣接する燃料電池セル13,13の背中合わせの第1セパレータ11と第2セパレータ12の間は、シール部材31によってシールされる。
この燃料電池1においては、膜電極構造体10のガス拡散層18,19のうちの、第1セパレータ11と第2セパレータ12の突条24,27を通してエンドプレート14を介した締結荷重が受ける部位に、へたり補強部である多孔質金属部材30が均等に分散して介在されているため、経時使用に伴う各ガス拡散層18,19の圧接部位のへたりを未然に防止することができる。
即ち、この実施形態の場合、膜電極構造体10の各ガス拡散層18,19のうちの、第1セパレータ11と第2セパレータ12の突条24,27を通して締結荷重が受ける部位に多孔質金属部材30が均等に分散して介在されていることから、多孔質金属部材30部分が経時使用によってへたりを生じにくいうえ、多孔質金属部材30が存在しない部分についても多孔質金属部材30部分で突条24,27による過圧縮を規制でき、そのことから多孔質金属部材30の存在しない部分のへたりも抑制することができる。
したがって、この燃料電池1においては、経時使用によるガス拡散層18,19のへたりによって第1,第2セパレータ11,12の突条24,27と膜電極構造体10のガス拡散層18,19の間の接触面圧が低下するのを抑制できるため、抵抗過電圧が上昇するのを防止し、それによって高い発電性能を長期に亙って維持することができる。
また、この燃料電池1においては、シール部材25aの圧接荷重の作用するカソード側のガス拡散層19の外周縁部にも帯状の多孔質金属部材30が介在されているため、多孔質金属部材30でガス拡散層19の周縁部のへたりを直接抑制することができる。
したがって、この燃料電池1においては、経時使用によるガス拡散層19の外周縁部のへたりによって、固体高分子電解質膜15の周縁露出面15aに対するシール部材25aの接触面圧が低下するのを抑制できるため、膜電極構造体10の周囲のシール線圧の低下による気密性の低下を防止することができる。
さらに、この燃料電池1においては、アノード側とカソード側の各ガス拡散層18,19の第1,第2セパレータ11,12との当接部が均等に分散配置された多孔質金属部材30によって補強されるため、各ガス拡散層18,19に均一にガスを流すことができるとともに、各ガス拡散層18,19の隣接する第1,第2セパレータ11,12との当接部に均等に締結荷重を担わせることで、ガス拡散層18,19の局部的なへたりをより少なくすることができる。
また、この実施形態の燃料電池1においては、ガス拡散層18,19に介在されるへたり補強部が多孔質金属材料30によって形成されているため、高いへたり強度の維持と十分なガス拡散性を維持することができる。
さらに、この燃料電池1においては、ガス拡散層18,19の全域を多孔質金属材料によって構成するのではなく、他部材との圧接部の一部にだけ多孔質金属材料30を介在させるようにしているため、重量の軽量化を図ることができるとともに、大半の領域のガス拡散性をカーボン含有量の調整によって容易調整することができる。
つづいて、図6〜図9に示す第2の実施形態について説明する。なお、第1の実施形態と同一部分には同一符号を付して重複する説明を省略するものとする。また、第1の実施形態の図1に対応する断面の図示は省略しているが、この第2の実施形態の断面構造は第1の実施形態のものとほぼ同様であるため、以下の説明においては図1を適宜参照するものとする。
この実施形態の燃料電池は、基本的な構成は第1の実施形態とほぼ同様であるが、第1セパレータ111と第2セパレータ112に形成される燃料ガス流通溝123と酸化剤ガス流通溝126の形状が大きく異なっている。
図6は、第1セパレータ111を図1のB矢視に対応する方向から見た図であり、図7は、第2セパレータ112を図1のC矢視に対応する方向から見た図である。
第1セパレータ111と第2セパレータ112は、第1の実施形態と同様に長方形状の金属板がプレス成形等によって凹凸形状に形成されている。そして、第1セパレータ111と第2セパレータ112には、この凹凸形状により、燃料ガス流通溝123と酸化剤ガス流通溝126がそれぞれ造形されている。燃料ガス流通溝123は、第1セパレータ111の幅方向(図中の上下方向)に小さく蛇行して長手方向に延出し、かつ、第1セパレータ111の幅方向に並列に並ぶように複数設けられている。同様に、酸化剤ガス流通溝126は、第2セパレータ112の幅方向(図中の上下方向)に小さく蛇行して長手方向に延出し、かつ、第2セパレータ112の幅方向に並列に並ぶように複数設けられている。
そして、第1セパレータ111には、燃料ガス流通溝123を隔成する波形に蛇行した突条124が複数設けられ、その各突条124の頂部面がアノード側拡散電極16のガス拡散層118(図8参照)に圧接されるようになっている。また、同様に第2セパレータ112には、酸化剤ガス流通溝126を隔成する波形に蛇行した突条127が複数設けられ、その各突条127の頂部面がカソード側拡散電極17のガス拡散層119(図9参照)に圧接されるようになっている。
図8は、アノード側拡散電極16のガス拡散層118を図1のB矢視に対応する方向から見た図であり、図9は、カソード側拡散電極17のガス拡散層119を図1のC矢視に対応する方向から見た図である。
アノード側とカソード側の各ガス拡散層118,119は、第1の実施形態と同様に、カーボンペーパー等の均一密度の多孔質カーボンによって形成された一般部118a,119aの複数箇所に、へたり補強部である多孔質金属部材30が介在されている。各ガス拡散層118,119に介在される多孔質金属部材30は、各ガス拡散層118,119のうちの、第1,第2セパレータ111,112の両突条124,127からエンドプレートを介した締結荷重を受ける領域に、均等に分散して配置されている。
また、カソード側拡散電極117のガス拡散層119は、図9に示すように、シール部材25b(図1参照)の当接する外周縁部(シール部材25aの圧接荷重の作用する部位)にも、へたり補強部である多孔質金属部材30が帯状に配置されている。
この実施形態の場合も、多孔質金属部材30と一般部118a,119aの肉厚は全域において同一厚みとされている。
この実施形態の燃料電池は、第1セパレータ111の燃料ガス流通溝123と第2セパレータ112の酸化剤ガス流通溝126の形状が異なるものの、各ガス拡散層118,119のうちの、第1,第2セパレータ111,112の当接部からエンドプレートを介した締結荷重を受ける領域に、多孔質金属部材30が均等に分散して配置されるとともに、カソード側のガス拡散層119の外周縁部に帯状の多孔質金属部材30が配置されている点では第1の実施形態と同様であるため、第1の実施形態とほぼ同様の効果を得ることができる。
なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば、上記の実施形態においては、各ガス拡散層の一般部の複数箇所にへたり補強部として多孔質金属部材が介在さされているが、へたり補強部は、多孔質金属部材に限らず、金属以外の多孔質材料によって構成するようにしても良い。この場合、多孔質カーボンの密度を部分的に高めて、へたり補強部とすることも可能である。
1…燃料電池セル
10…膜電極構造体
11,111…第1セパレータ(セパレータ)
12,112…第2セパレータ(セパレータ)
13…燃料電池セル
15…固体高分子電解質膜(電解質膜)
15a…周縁露出面
16…アノード側拡散電極(拡散電極)
17…カソード側拡散電極(拡散電極)
18,19,118,119…ガス拡散層
18a,19a,118a,119a…一般部
24,27,124,127…突条(凸部)
25a…シール部材(第1シール部材)
28…シール部材(第2シール部材)
30…多孔質金属部材(へたり補強部)

Claims (4)

  1. 電解質膜とその両側の拡散電極によって構成された膜電極構造体を一対のセパレータで挟持して燃料電池セルが構成され、この燃料電池セルが複数積層され、積層された複数の燃料電池セルが、積層方向の両端のエンドプレートを介して押圧状態で締結固定される燃料電池であって、
    前記各拡散電極は、燃料ガスまたは酸化剤ガスに接するガス拡散層と、このガス拡散層と前記電解質膜の間に介装される電極触媒層とを備えるとともに、前記ガス拡散層部分が、前記エンドプレートを介した締結荷重を受けて隣接するセパレータの凸部に当接状態で支持され、
    前記一方の拡散電極は、前記他方の拡散電極と前記電解質膜よりも外形が小さく形成され、
    前記電解質膜の前記一方の拡散電極よりも外側に延出して露出した周縁露出面と、その周縁露出面に対向する一方のセパレータとの間は、前記エンドプレートを介した締結荷重を受けて第1シール部材によってシールされ、
    前記一対のセパレータの間は、前記電解質膜よりも外周側で前記エンドプレートを介した締結荷重を受けて第2シール部材によってシールされ、
    前記各拡散電極のガス拡散層は、隣接する前記セパレータとの当接部に、当該ガス拡散層の一般部よりもへたり強度の高いへたり補強部が均等に分散して設けられ、
    前記他方の拡散電極のガス拡散層のうちの、前記第1シール部材の圧接荷重の作用する部位には、前記へたり補強部がさらに設けられていることを特徴とする燃料電池。
  2. 前記へたり補強部は、多孔質金属部材によって構成されていることを特徴とする請求項1に記載の燃料電池。
  3. 電解質膜とその両側の拡散電極によって構成された膜電極構造体であって、
    一対のセパレータで挟持されて燃料電池セルを構成し、この燃料電池セルを複数積層し、積層された複数の燃料電池を、積層方向の両端のエンドプレートを介して押圧状態で締結固定することによって燃料電池を構成するものにおいて、
    前記各拡散電極は、燃料ガスまたは酸化剤ガスに接するガス拡散層と、このガス拡散層と前記電解質膜の間に介装される電極触媒層とを備えるとともに、前記ガス拡散層部分が、前記エンドプレートを介した締結荷重を受けて隣接するセパレータの凸部に当接状態で支持され、
    前記一方の拡散電極は、前記他方の拡散電極と前記電解質膜よりも外形が小さく形成され、
    前記電解質膜の前記一方の拡散電極よりも外側に延出して露出した周縁露出面と、その周縁露出面に対向する一方のセパレータとの間は、前記エンドプレートを介した締結荷重を受けて第1シール部材によってシールされ、
    前記一対のセパレータの間は、前記電解質膜よりも外周側で前記エンドプレートを介した締結荷重を受けて第2シール部材によってシールされ、
    前記各拡散電極のガス拡散層は、隣接する前記セパレータとの当接部に、当該ガス拡散層の一般部よりもへたり強度の高いへたり補強部が均等に分散して設けられ、
    前記他方の拡散電極のガス拡散層のうちの、前記第1シール部材の圧接荷重の作用する部位には、前記へたり補強部がさらに設けられていることを特徴とする膜電極構造体。
  4. 前記へたり補強部は、多孔質金属部材によって構成されていることを特徴とすることを特徴とする請求項3に記載の膜電極構造体。
JP2011151002A 2011-07-07 2011-07-07 燃料電池、及び、膜電極構造体 Withdrawn JP2013020723A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151002A JP2013020723A (ja) 2011-07-07 2011-07-07 燃料電池、及び、膜電極構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151002A JP2013020723A (ja) 2011-07-07 2011-07-07 燃料電池、及び、膜電極構造体

Publications (1)

Publication Number Publication Date
JP2013020723A true JP2013020723A (ja) 2013-01-31

Family

ID=47692004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151002A Withdrawn JP2013020723A (ja) 2011-07-07 2011-07-07 燃料電池、及び、膜電極構造体

Country Status (1)

Country Link
JP (1) JP2013020723A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130364A (ja) * 2016-01-20 2017-07-27 トヨタ自動車株式会社 燃料電池
JP7480216B2 (ja) 2022-03-31 2024-05-09 本田技研工業株式会社 燃料電池用セパレータ及び発電セル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130364A (ja) * 2016-01-20 2017-07-27 トヨタ自動車株式会社 燃料電池
JP7480216B2 (ja) 2022-03-31 2024-05-09 本田技研工業株式会社 燃料電池用セパレータ及び発電セル

Similar Documents

Publication Publication Date Title
JP5516917B2 (ja) 燃料電池セル
JP5240282B2 (ja) 燃料電池セル
US8343688B2 (en) Polymer electrolyte fuel cell having a fastening structure including elastic members
JP5564623B1 (ja) 固体高分子電解質型燃料電池、および電解質膜−電極−枠接合体
JP5029813B2 (ja) 燃料電池用セパレータ
JP2019139917A (ja) 固体高分子形の燃料電池スタック
JP2006260810A (ja) 固体高分子電解質形燃料電池
JP5741920B2 (ja) 燃料電池セル
JP2013020723A (ja) 燃料電池、及び、膜電極構造体
JP2014186858A (ja) 燃料電池及びその運転方法
JP4859281B2 (ja) 高分子電解質型燃料電池用膜電極接合体
JP2009152134A (ja) 燃料電池
JP2002093434A (ja) 電解質層・電極接合体および燃料電池
JP2010015939A (ja) 燃料電池
JP6403099B2 (ja) 燃料電池モジュール
JP5286896B2 (ja) 燃料電池の製造方法、燃料電池、および、セパレータ
JP2001126743A (ja) 高分子電解質型燃料電池
JP2004311056A (ja) 燃料電池スタック
JP2006012462A (ja) 燃料電池のシール構造
KR20170077897A (ko) 개방형 유로가 구비된 연료전지 스택
JP2017050206A (ja) 燃料電池
JP4656841B2 (ja) 燃料電池用セパレータ
JP4742488B2 (ja) 燃料電池
JP5050434B2 (ja) 燃料電池
JP2022125748A (ja) 燃料電池セル

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007