JP2013014833A - Zinc-nickel alloy plating liquid and plating method - Google Patents

Zinc-nickel alloy plating liquid and plating method Download PDF

Info

Publication number
JP2013014833A
JP2013014833A JP2011152913A JP2011152913A JP2013014833A JP 2013014833 A JP2013014833 A JP 2013014833A JP 2011152913 A JP2011152913 A JP 2011152913A JP 2011152913 A JP2011152913 A JP 2011152913A JP 2013014833 A JP2013014833 A JP 2013014833A
Authority
JP
Japan
Prior art keywords
nickel
plating
structural formula
hydrogen
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011152913A
Other languages
Japanese (ja)
Other versions
JP5853283B2 (en
Inventor
Toshiaki Makino
利昭 牧野
Satoshi Bando
聡史 板東
Asami Masuda
亜沙美 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP2011152913A priority Critical patent/JP5853283B2/en
Publication of JP2013014833A publication Critical patent/JP2013014833A/en
Application granted granted Critical
Publication of JP5853283B2 publication Critical patent/JP5853283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zinc-nickel electroplating liquid formable of a coating of a zinc-nickel alloy film on a metal member, the coating being high in the eutectoid ratio of Ni and excellent in appearance and corrosion resistance.SOLUTION: This zinc-nickel plating liquid includes: one or more reaction products produced by mixing amines having 4 or more nitrogen atoms in a molecule and a compound including an epoxy group and a halogen group together in a molecule; and a soluble polymer.

Description

本発明は亜鉛−ニッケル合金めっきに関し、既存のニッケル錯化剤及び光沢剤・添加剤では事実上不可能であった、浴温25℃以上でも低温時と変わらぬ良好なめっきを実現するめっき方法及びめっき液である。しかも、このめっき液は従来の亜鉛−ニッケル合金めっきでは安定的に供給できないニッケル共析率を持つ優れためっき皮膜を析出させることを可能にし、従来より安定的に供給できる方法のあったニッケル共析率のニッケルめっきについても提供可能である上、本発明にかかるめっき液はこれまでのめっき液では不可能な管理方法によるロングライフ化にも成功している。   The present invention relates to zinc-nickel alloy plating, which is practically impossible with existing nickel complexing agents and brighteners / additives. And a plating solution. In addition, this plating solution makes it possible to deposit an excellent plating film having a nickel eutectoid rate that cannot be stably supplied by conventional zinc-nickel alloy plating, and it is possible to supply nickel with a method that can be supplied more stably than before. In addition to being able to provide nickel plating with a deposition rate, the plating solution according to the present invention has also succeeded in extending the life by a management method that is impossible with conventional plating solutions.

亜鉛めっきの耐食性を向上する目的で亜鉛合金めっきが広く行われている。その中でも亜鉛−ニッケル合金めっきは自動車部品、特に高温環境下に置かれるエンジン部品や、高い耐食性が要求される部品等に広範囲に使用されている。従来の亜鉛−ニッケル合金めっきは特開昭63−53285号に開示されているように錯化剤で可溶化したニッケルを含有するするアルカリ性電気亜鉛めっき浴で電解めっきを行うことにより亜鉛めっき皮膜中にニッケルを析出させる方法により行われる。ニッケル共析率2%以上が得られる錯化剤としてポリアルケンポリアミン類、アルカノールアミン類が挙げられている。また、光沢剤は1次光沢剤としてアミン類とエピハロヒドリンの反応生成物が、2次光沢剤として芳香族アルデヒド類が、3次光沢剤としてテルル化合物が用いられる。また、その後、錯化剤としても1次光沢剤と同様にアミン化合物とエピハロヒドリン等グリシジルエーテル類の反応生成物を用いるめっき浴も特開平6−173073号、特開2007−2274号に開示されている。これはアミン類をそのまま錯化剤として用いるよりもランニング性に優れるため、現在の亜鉛−ニッケル合金めっきでは最も一般的に用いられる錯化剤となっている。   Zinc alloy plating is widely performed for the purpose of improving the corrosion resistance of galvanization. Among them, zinc-nickel alloy plating is widely used for automobile parts, particularly engine parts placed in a high temperature environment, parts requiring high corrosion resistance, and the like. In the conventional zinc-nickel alloy plating, as disclosed in JP-A-63-53285, the electrolytic plating is carried out in an alkaline electrogalvanizing bath containing nickel solubilized with a complexing agent, thereby forming a zinc plating film. It is carried out by a method of precipitating nickel. Polyalkene polyamines and alkanolamines are mentioned as complexing agents that can obtain a nickel eutectoid rate of 2% or more. As the brightener, a reaction product of amines and epihalohydrin is used as a primary brightener, an aromatic aldehyde is used as a secondary brightener, and a tellurium compound is used as a tertiary brightener. In addition, plating baths using reaction products of amine compounds and glycidyl ethers such as epihalohydrins as complexing agents are also disclosed in JP-A-6-173073 and JP-A-2007-2274. Yes. This is superior in running performance as compared with the case where amines are used as they are as complexing agents, and is therefore the most commonly used complexing agent in current zinc-nickel alloy plating.

特開昭63−53285号公報JP-A-63-53285 特開平6−173073号公報JP-A-6-173073 特開2007−2274号公報JP 2007-2274 A

しかし、従来の亜鉛−ニッケル合金めっき液は非常に温度に弱い特性を有する。25℃以上でめっきラインを動かし続けると錯化剤及び1次光沢剤が反応により変化し、キレートが強くなってしまう。するとニッケル共析率が低下するばかりかめっきの物性が低下し、高電流部にコゲが発生してしまう症状が発生する。さらに電流効率が亜鉛めっきと比べて低いため発熱が非常に大きく、20℃前後の低い温度を維持するために多大なエネルギーと温度管理の手間を要する。そのため、25℃以上でも20℃前後でめっきした場合と変わらないめっき皮膜を提供することは亜鉛ニッケル合金めっきにおける大きな課題である。また、従来のアミン類とエピハロヒドリンの反応生成物を用いた錯化剤および光沢剤を用いためっき液を用いためっきでは安定して供給できるニッケル共析率が8〜10%にとどまる。これは錯化剤を変更することによって安定的に得られることが知られている15%以上のニッケル共析率を持つ合金めっきと比較すると加工性で上回るものの耐食性で劣る。また、両者の中間のニッケル共析率を持つ合金めっきを安定的に得られる方法は存在しなかった。また、濃度管理の面においても、従来の亜鉛−ニッケル合金めっきにおいてはめっき浴建浴時の最適なニッケル濃度、錯化剤濃度を維持した場合、ランニングとともに錯化剤及び光沢剤・添加剤が変化し、キレートが強くなるためにニッケル共析率が低下する現象が見られる。しかし、ニッケル濃度を上昇させるとニッケル共析率は維持できるものの外観、物性の悪化が見られる。よって頻繁な再建浴を強いられ、非経済的であるばかりか環境への悪影響も大きかった。   However, the conventional zinc-nickel alloy plating solution has a very sensitive characteristic to temperature. If the plating line is kept moving at 25 ° C. or higher, the complexing agent and the primary brightener change due to the reaction, and the chelate becomes strong. Then, not only the nickel eutectoid rate is lowered but also the physical properties of the plating are lowered, and a symptom in which kogation occurs in the high current portion occurs. Furthermore, since the current efficiency is lower than that of galvanizing, the heat generation is very large, and a great deal of energy and temperature management are required to maintain a low temperature around 20 ° C. Therefore, it is a big problem in zinc-nickel alloy plating to provide a plating film that is the same as when plated at about 20 ° C. even at 25 ° C. or higher. Further, in the case of plating using a plating solution using a complexing agent and a brightener using a reaction product of a conventional amine and epihalohydrin, the nickel eutectoid rate that can be stably supplied is only 8 to 10%. This is inferior in corrosion resistance although it is superior in workability as compared with an alloy plating having a nickel eutectoid rate of 15% or more, which is known to be stably obtained by changing the complexing agent. Moreover, there has been no method for stably obtaining an alloy plating having a nickel eutectoid rate intermediate between the two. Also, in terms of concentration management, in the conventional zinc-nickel alloy plating, if the optimum nickel concentration and complexing agent concentration during the plating bath preparation are maintained, the complexing agent, brightener and additives are added along with running. There is a phenomenon that the nickel eutectoid rate decreases due to the change and the chelate becoming stronger. However, when the nickel concentration is increased, the nickel eutectoid rate can be maintained, but the appearance and physical properties are deteriorated. Therefore, he was forced to rebuild frequently, which was not only economical but also had a great negative impact on the environment.

本発明者が鋭意研究した結果、(A)従来は錯化剤に用いるアミンとして分子中の窒素原子数が3以下のものを用いてきたが、窒素原子数が4以上となるアミンを用い(B)一次光沢剤・添加剤として構造式(1)

Figure 2013014833
(式中、R1、R2は水素、メチル、エチル、イソプロピル、ブチル、−CH2CH2(OCH2CH2XOH(Xは0〜5)又は−CH2CH2(OCCH2CH2XOH(Xは0〜5)を表わし、nは1以上を表わす)で表されるポリマー、構造式(2)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素、メチル、エチル、イソプロピル、2−ヒドロキシルエチル−CH2CH2(OCH2CH2)xOH(Xは0〜6)又は2−ヒドロキシルエチル−CH2CH2(OCCH2CH2)xOH(Xは0〜6)を表わし、R5は(CH22−O−(CH22、(CH22−O−(CH22−O−(CH22又はCH2−CHOH−CH2−O−CH2−CHOH−CH2を表わし、nは1以上であり、YはS又はOである)で表されるポリマー、構造式(3)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素、メチル、エチル、イソプロピル、2−ヒドロキシルエチル−CH2CH2(OCH2CH2)xOH(Xは0〜6)又は2−ヒドロキシルエチル−CH2CH2(OCCH2CH2)xOH(Xは0〜6)を表わし、R5は(CH22−O−(CH22、(CH22−O−(CH22−O−(CH22又はCH2−CHOH−CH2−O−CH2−CHOH−CH2を表わし、nは1以上を表わし、YはS又はOを表わす)で表されるポリマー、構造式(4)
Figure 2013014833
(式中、R1及びR2はそれぞれ水素、メチル、エチル、イソプロピル、ブチル、−CH2CH2(OCH2CH2XOH(Xは0〜5)又は−CH2CH2(OCCH2CH2XOH(Xは0〜5)を表わし、nは1以上を表わし、YはO又はSを表わす)をモノマーとするポリマー、構造式(5)
Figure 2013014833
(式中、R1又はR2は水素、メチル、エチル、ブチル又はイソブチルを表し、R3はCH2、C24又はC36を表わす)で表されるポリマー、構造式(6)
Figure 2013014833
(式中、R1及びR2はそれぞれ水素又は炭素数が10以下のアルキルを表わす)で表されるポリマー、構造式(7)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素又はCが5以下のアルキルを表わし、Xは無機陰イオンを表わし、YはS又はOを表わす)で表されるポリマー、構造式(8)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素又は炭素数が5以下のアルキルを表わし、Xは無機陰イオンを表わし、YはS又はOを表わす)で表されるポリマー、及び構造式(9)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素、メチル、エチル、イソプロピル、2−ヒドロキシルエチル−CH2CH2(OCH2CH2)xOH(Xは0〜6)又は2−ヒドロキシルエチル−CH2CH2(OCCH2CH2)xOH(Xは0〜6)を表わし、nは2〜4を表わす)で表されるポリマー、及び、(a)イミダゾール、(b)エピハロヒドリンの水溶性反応生成物、及び、(a)ニコチン酸、(b)エピハロヒドリンの水溶性反応生成物、及び、(a)尿素又はチオ尿素、(b)ジアルキルアミノエチルアミン及び/又はジアルキルアミノプロピルアミン及び(c)ジクロルアルキルエーテルの水溶性反応性生成物から成る群から選択される1種以上を用いることにより課題を解決した。 As a result of intensive studies by the present inventors, (A) conventionally, amines having 3 or less nitrogen atoms in the molecule have been used as amines for complexing agents, but amines having 4 or more nitrogen atoms are used ( B) Structural formula (1) as primary brightener and additive
Figure 2013014833
(In the formula, R1 and R2 are hydrogen, methyl, ethyl, isopropyl, butyl, —CH 2 CH 2 (OCH 2 CH 2 ) X OH (X is 0 to 5) or —CH 2 CH 2 (OCCH 2 CH 2 ). A polymer represented by X OH (where X represents 0 to 5 and n represents 1 or more), structural formula (2)
Figure 2013014833
(Wherein, R1, R2, R3 and R4 are each hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl -CH 2 CH 2 (OCH 2 CH 2) xOH (X is 0-6) or 2-hydroxyethyl - CH 2 CH 2 (OCCH 2 CH 2) xOH (X is 0-6) represents, R5 is (CH 2) 2 -O- (CH 2) 2, (CH 2) 2 -O- (CH 2) 2 -O- (CH 2 ) 2 or CH 2 -CHOH-CH 2 -O-CH 2 -CHOH-CH 2 , n is 1 or more, and Y is S or O), Structural formula (3)
Figure 2013014833
(Wherein, R1, R2, R3 and R4 are each hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl -CH 2 CH 2 (OCH 2 CH 2) xOH (X is 0-6) or 2-hydroxyethyl - CH 2 CH 2 (OCCH 2 CH 2) xOH (X is 0-6) represents, R5 is (CH 2) 2 -O- (CH 2) 2, (CH 2) 2 -O- (CH 2) 2 -O- (CH 2) represents 2 or CH 2 -CHOH-CH 2 -O- CH 2 -CHOH-CH 2, n is 1 or more, Y is a polymer represented by the representative) S or O, Structural formula (4)
Figure 2013014833
Wherein R1 and R2 are each hydrogen, methyl, ethyl, isopropyl, butyl, —CH 2 CH 2 (OCH 2 CH 2 ) X OH (X is 0 to 5) or —CH 2 CH 2 (OCCH 2 CH 2 ) X OH (X represents 0 to 5), n represents 1 or more, Y represents O or S), a polymer having a monomer, structural formula (5)
Figure 2013014833
Wherein R1 or R2 represents hydrogen, methyl, ethyl, butyl or isobutyl, and R3 represents CH 2 , C 2 H 4 or C 3 H 6 , a structural formula (6)
Figure 2013014833
(Wherein R1 and R2 each represent hydrogen or alkyl having 10 or less carbon atoms), structural formula (7)
Figure 2013014833
Wherein R 1, R 2, R 3 and R 4 are each hydrogen or C is alkyl having 5 or less, X is an inorganic anion, and Y is S or O, a structural formula (8 )
Figure 2013014833
(Wherein R1, R2, R3 and R4 each represent hydrogen or alkyl having 5 or less carbon atoms, X represents an inorganic anion, and Y represents S or O), and a structural formula (9)
Figure 2013014833
(Wherein, R1, R2, R3 and R4 are each hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl -CH 2 CH 2 (OCH 2 CH 2) xOH (X is 0-6) or 2-hydroxyethyl - CH 2 CH 2 (OCCH 2 CH 2 ) x OH (X represents 0 to 6 and n represents 2 to 4), a water-soluble reaction of (a) imidazole and (b) epihalohydrin Products, and (a) water-soluble reaction products of nicotinic acid, (b) epihalohydrin, and (a) urea or thiourea, (b) dialkylaminoethylamine and / or dialkylaminopropylamine and (c) di The problem has been solved by using one or more selected from the group consisting of water-soluble reactive products of chloroalkyl ethers.

従来、(A)群に属する1分子中の窒素原子数が4以上のアミンとエピハロヒドリンの反応生成物を錯化剤に用いた場合にはめっきの光沢が弱くなるため、実際には窒素原子数が2〜3のアミンを用いた反応生成物のみが実用化されてきた経緯がある。   Conventionally, when a reaction product of an amine having 4 or more nitrogen atoms in one molecule belonging to Group (A) and an epihalohydrin is used as a complexing agent, the gloss of the plating becomes weak. However, only the reaction product using 2 or 3 amines has been put into practical use.

また、(B)群に属する物質を一次光沢剤・添加剤として添加することは特開平11−193488号、特開2001−226793号などに開示されていたが実際に亜鉛−ニッケル合金めっきに添加した場合には三号ケイ酸ソーダの添加を行わない場合に電流効率、ニッケル共析率が低下する上、めっき外観が悪化する。三号ケイ酸ソーダを添加した場合は従来の亜鉛−ニッケル合金めっきと比較して電流効率が低下する特徴があるため、亜鉛−ニッケル合金めっきには使用されず亜鉛めっきに限定して用いられてきた経緯がある。   The addition of a substance belonging to group (B) as a primary brightener / additive was disclosed in JP-A-11-193488, JP-A-2001-226793, etc., but was actually added to zinc-nickel alloy plating. In this case, the current efficiency and the nickel eutectoid rate are lowered and the plating appearance is deteriorated when the addition of No. 3 sodium silicate is not performed. When No. 3 sodium silicate is added, current efficiency is reduced compared to conventional zinc-nickel alloy plating. Therefore, it is not used for zinc-nickel alloy plating, but has been used only for zinc plating. There is a background.

以上より、亜鉛−ニッケル合金めっき液に単独で適用してもめっき状況が悪化する上、有効な相互作用があるとも事前には推考できない錯化剤としての(A)群と添加剤としての(B)群の物質を併用することは当業者にとって容易に想到し得ないものであると言える。しかし、実際に併用した上で浴組成を再検討した場合、25℃以上においても安定した合金めっき皮膜を継続的に得ることができる上に従来の亜鉛ニッケル合金めっきと比較して互角以上の外観をもち、その皮膜はニッケル共析率が10〜13%の合金めっきであり、従来、安定して得られる方法のあったニッケル共析率8〜10%または15%以上の皮膜のいずれよりも耐食性が高い。また、ニッケル濃度を変化させることでニッケル共析率15%以上の合金めっきの形成も可能であり、25℃以上の高温でも安定した合金めっき皮膜を形成できる。電流効率も従来のめっき浴と差のないものとなる。濃度管理においてもランニングでニッケル共析率の低下が起こった場合に、めっき浴自体のニッケル濃度を上げ、錯化剤として用いられる(A)群の濃度を下げることでニッケル共析率を維持できる上にめっき外観と物性の悪化も招かないため、結果としてめっき浴のロングライフ化に成功し、コストダウンと環境負荷の低減を達成している。   As mentioned above, even if it applies to a zinc-nickel alloy plating solution alone, a plating situation deteriorates, and even if there is an effective interaction, the (A) group as a complexing agent and an additive ( It can be said that it is difficult for those skilled in the art to concomitantly use the substance of group B). However, when the bath composition is reexamined after actually using it together, a stable alloy plating film can be continuously obtained even at 25 ° C. or higher, and the appearance is equal to or more than that of the conventional zinc-nickel alloy plating. The film is an alloy plating with a nickel eutectoid rate of 10 to 13%, which is higher than any of the films with a nickel eutectoid rate of 8 to 10% or 15% or more that have been conventionally obtained stably. High corrosion resistance. Further, by changing the nickel concentration, it is possible to form an alloy plating with a nickel eutectoid rate of 15% or more, and a stable alloy plating film can be formed even at a high temperature of 25 ° C. or more. The current efficiency is not different from the conventional plating bath. Also in concentration control, when the nickel eutectoid rate decreases during running, the nickel eutectoid rate can be maintained by increasing the nickel concentration of the plating bath itself and decreasing the concentration of group (A) used as a complexing agent. In addition, the appearance and physical properties of the plating are not deteriorated, and as a result, the plating bath has been successfully extended in life, thereby reducing costs and reducing environmental impact.

本発明の実施態様によれば、次の各発明が提供される。
(1)1分子中の窒素数が4以上のアミン類と、エポキシ基とハロゲン基をともに1分子中に含む化合物を混合して製造することを特徴とする反応生成物1種以上と浴溶解性ポリマーとして構造式(1)〜(9)のいずれか一種以上、又は(a)イミダゾールと(b)エピハロヒドリンの水溶性反応生成物、(a)ニコチン酸と(b)エピハロヒドリンの水溶性反応生成物、及び、(a)尿素又はチオ尿素、(b)ジアルキルアミノエチルアミン及び/又はジアルキルアミノプロピルアミン及び(c)ジクロルアルキルエーテルの水溶性反応性生成物から成る群から選択される1種以上と、亜鉛−ニッケル合金めっき用金属イオン源とを含有する電解めっき液。
(2)前記反応生成物と浴溶解性ポリマーの添加量の比が10:1以上である上記(1)に記載のめっき液。
(3)ニッケル源として、塩化ニッケル、水酸化ニッケル及び炭酸ニッケルから成る群から一部或いは全部のニッケルが供給される上記(1)又は(2)に記載のめっき液。
(4)めっき液温25℃以上で使用される上記(1)〜(3)のいずれか1項に記載のめっき液。
(5)前記アミン類がポリアルケンポリアミン類である上記(1)〜(4)のいずれか1項に記載のめっき液。
(6)前記化合物がエピハロヒドリン類である上記(1)〜(4)のいずれか1項に記載のめっき液。
(7)上記(1)〜(6)のいずれか一項に記載の電解めっき液を使用して、ニッケル共析率10〜13%の亜鉛−ニッケル合金めっきを施すことを特徴とする電解めっき方法。
(8)上記(1)〜(6)のいずれか一項に記載の電解めっき液を使用して亜鉛−ニッケル合金めっきを施した部材。
According to the embodiments of the present invention, the following inventions are provided.
(1) Bath dissolution with one or more reaction products produced by mixing an amine having 4 or more nitrogen atoms in one molecule and a compound containing both an epoxy group and a halogen group in one molecule. Any one or more of the structural formulas (1) to (9) as a water-soluble polymer, or (a) a water-soluble reaction product of imidazole and (b) epihalohydrin, (a) a water-soluble reaction product of (b) epihalohydrin And one or more selected from the group consisting of (a) urea or thiourea, (b) a water-soluble reactive product of dialkylaminoethylamine and / or dialkylaminopropylamine and (c) dichloroalkyl ether And an electrolytic plating solution containing a metal ion source for zinc-nickel alloy plating.
(2) The plating solution according to the above (1), wherein the ratio of the addition amount of the reaction product and the bath-soluble polymer is 10: 1 or more.
(3) The plating solution according to (1) or (2), wherein a part or all of nickel is supplied from the group consisting of nickel chloride, nickel hydroxide and nickel carbonate as a nickel source.
(4) The plating solution according to any one of (1) to (3), which is used at a plating solution temperature of 25 ° C. or higher.
(5) The plating solution according to any one of (1) to (4), wherein the amine is a polyalkene polyamine.
(6) The plating solution according to any one of (1) to (4), wherein the compound is an epihalohydrin.
(7) Electrolytic plating characterized by applying a zinc-nickel alloy plating with a nickel eutectoid rate of 10 to 13% using the electrolytic plating solution according to any one of (1) to (6) above. Method.
(8) A member subjected to zinc-nickel alloy plating using the electrolytic plating solution according to any one of (1) to (6) above.

以下、本発明の亜鉛−ニッケル合金めっきに関し、詳細に説明する。
(A)群の、錯化剤成分に用いるアミンとしてはトリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、トリプロピレンテトラミン、テトラプロピレンペンタミン、ペンタプロピレンヘキサミンなどを用いることが出来るがこれに限定されない。これとエピハロヒドリンを反応させたものを錯化剤として用いる。(B)群の光沢剤・添加剤として用いるアミンポリマーとしては(1)のポリマーの例としてローヌ・プーランから市販されている「MIRAPOL(商標)100」、前記構造式(2)のポリマーの例としては「MIRAPOL(商標)WT」、前記構造式(3)のポリマーの例としては「MIRAPOL(商標)AD−1」、前記構造式(4)のポリマーの例としては「MIRAPOL(商標)550」などがあるが、これに限定されない。また、(9)の化合物の例としてはアミノエチルエタノールアミンやテトラメチルエチレンジアミンなどがあるが、これに限定されない。
Hereinafter, the zinc-nickel alloy plating of the present invention will be described in detail.
As the amine used in the complexing agent component of group (A), triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, tripropylenetetramine, tetrapropylenepentamine, pentapropylenehexamine, and the like can be used, but are not limited thereto. Not. A product obtained by reacting this with epihalohydrin is used as a complexing agent. Examples of the amine polymer used as the brightener / additive of the group (B) are “MIRAPOL ™ 100” commercially available from Rhone-Poulenc as an example of the polymer of (1), and examples of the polymer of the structural formula (2). As “MIRAPOL ™ WT”, examples of the polymer of the structural formula (3) as “MIRAPOL ™ AD-1”, and examples of the polymer of the structural formula (4) as “MIRAPOL ™ 550”. However, it is not limited to this. Examples of the compound (9) include aminoethylethanolamine and tetramethylethylenediamine, but are not limited thereto.

めっきの対象部材は鉄素材のものが用いられる。めっき浴組成は下の表1の通りであり、従来のめっき浴と比較すると亜鉛濃度が低く、ニッケル濃度が高いという特徴がある。   The target member for plating is made of iron. The plating bath composition is as shown in Table 1 below, and is characterized in that the zinc concentration is low and the nickel concentration is high compared to the conventional plating bath.

Figure 2013014833
Figure 2013014833

亜鉛イオン濃度については高すぎると必要な光沢剤量が多くなってしまい、非経済的である。さらに皮膜の均一性が低下し、複雑な形状の部材においては低電流部へのつきまわりが弱くなってしまう。低すぎるとめっき速度が低下する。ニッケルについては高すぎても低すぎても皮膜中のニッケル共析率が適切な値にならず、めっき皮膜の外観並びに化成皮膜処理後の外観が悪化する上、必要な耐食性が得られない。特に赤錆発生が早くなる傾向がある。水酸化物イオンは高すぎると光沢剤分子を破壊し、必要な光沢剤量が多くなってしまうことが知られており、非経済的である。低すぎると皮膜の均一性、めっきのつきまわりが悪化する。錯化剤濃度が高すぎると電流効率が低下するほか、補給量も多くなってしまい、排水処理の手間も増大し非経済的である。低すぎると皮膜の均一性が悪化し、めっき皮膜の外観はもとより、化成皮膜処理後の外観も悪化する。(B)群濃度が高すぎると効果は頭打ちで非経済的であり、低すぎると、めっき皮膜に十分に光沢が出ない。   If the zinc ion concentration is too high, the required amount of brightener increases, which is uneconomical. Further, the uniformity of the film is lowered, and in a member having a complicated shape, the throwing power to the low current portion becomes weak. If it is too low, the plating rate will decrease. When nickel is too high or too low, the nickel eutectoid rate in the film does not become an appropriate value, the appearance of the plating film and the appearance after the chemical conversion film are deteriorated, and the necessary corrosion resistance cannot be obtained. In particular, red rust tends to occur more quickly. It is known that if the hydroxide ion is too high, it will destroy the brightener molecules and increase the amount of brightener required, which is uneconomical. If it is too low, the uniformity of the film and the plating coverage will deteriorate. If the concentration of the complexing agent is too high, the current efficiency is reduced and the amount of replenishment is increased, which increases the labor for wastewater treatment and is uneconomical. If it is too low, the uniformity of the film deteriorates, and not only the appearance of the plating film but also the appearance after the chemical conversion film treatment is deteriorated. (B) If the group concentration is too high, the effect is flat and uneconomical, and if it is too low, the plating film is not sufficiently glossy.

ニッケル源については特に限定はない。実際の生産現場ではコスト等の問題から長年にわたって硫酸ニッケルが用いられてきた。しかし、本発明においてはその他のニッケル化合物、例えば塩化ニッケル、炭酸ニッケル、水酸化ニッケルも使用可能であり、特に炭酸ニッケル、水酸化ニッケルを用いた場合には従来の硫酸ニッケルを用いた場合と比べてめっき液の寿命が長くなる効果を有する。   There is no particular limitation on the nickel source. In actual production sites, nickel sulfate has been used for many years due to problems such as cost. However, other nickel compounds such as nickel chloride, nickel carbonate, and nickel hydroxide can be used in the present invention, and particularly when nickel carbonate and nickel hydroxide are used, compared to the case of using conventional nickel sulfate. This has the effect of extending the life of the plating solution.

また、上記以外に、従来の亜鉛−ニッケル合金めっきで使用可能な光沢剤成分を使うことができる。例えばアルデヒド類、テルル化合物などが使用可能である。   In addition to the above, a brightener component that can be used in conventional zinc-nickel alloy plating can be used. For example, aldehydes and tellurium compounds can be used.

めっき条件については静止めっきで電流密度1〜6A/dm2、バレルめっきで0.5〜1.5A/dm2で行う。めっき温度は15〜50℃の範囲で可能であり、これにより従来の亜鉛−ニッケル合金めっきと比較して冷却にかかるコスト、エネルギーを大幅に低減できる。 Current density 1~6A / dm 2 in a stationary plating for plating conditions, carried out in 0.5~1.5A / dm 2 in barrel plating. The plating temperature can be in the range of 15 to 50 ° C., thereby significantly reducing the cost and energy required for cooling compared to conventional zinc-nickel alloy plating.

以下、実施例及び比較例により本発明を説明する。試験片に適当な前処理を行った後、以下に示すそれぞれの実施例に従いめっきを行った。以下の実施例では特に断りのない場合、陰極となる試験片は鉄板(50×100×2mm)を使用し、陽極にはニッケル板を用いた。めっき条件は電流密度4A/dm2、めっき浴温25℃、めっき時間60分であり、めっき後に耐食性評価のため三価クロム化成皮膜処理を施した。ニッケル供給源は硫酸ニッケルを用いた。三価クロム化成皮膜処理は日本表面化学(株)製TRN−988を用いて標準条件で行った。 Hereinafter, the present invention will be described with reference to examples and comparative examples. After performing appropriate pretreatment on the test piece, plating was performed according to each of the examples shown below. In the following examples, unless otherwise specified, an iron plate (50 × 100 × 2 mm) was used as a test piece serving as a cathode, and a nickel plate was used as an anode. The plating conditions were a current density of 4 A / dm 2 , a plating bath temperature of 25 ° C., and a plating time of 60 minutes. After plating, a trivalent chromium conversion coating was applied for corrosion resistance evaluation. Nickel sulfate was used as the nickel supply source. The trivalent chromium conversion coating treatment was performed under standard conditions using TRN-988 manufactured by Nippon Surface Chemical Co., Ltd.

I めっき浴組成の変化とめっき外観、ニッケル共析率、耐食性
亜鉛、ニッケル、錯化剤、(B)群物質を変化させ外観、耐食性を評価した。以下、特に断りのない場合、錯化剤はトリエチレンテトラミンとエピクロルヒドリンの反応物を、(B)群物質は「MIRAPOL(商標)100」を用いた。外観は光沢、均一性を評価した。耐食性は赤錆発生までの時間を測定した。結果は表2の通りである。
I Change in plating bath composition and appearance of plating, nickel eutectoid rate, corrosion resistance Zinc, nickel, complexing agent, and (B) group substances were changed to evaluate appearance and corrosion resistance. Hereinafter, unless otherwise specified, a reaction product of triethylenetetramine and epichlorohydrin was used as the complexing agent, and “MIRAPOL ™ 100” was used as the group (B) substance. Appearance was evaluated for gloss and uniformity. Corrosion resistance measured the time until red rust generation. The results are shown in Table 2.

Figure 2013014833
Figure 2013014833

II 錯化剤成分
本発明の錯化剤成分は窒素原子数4以上のアミンとエピハロヒドリンの反応生成物により与えられる。そこで、複数のアミンとエピハロヒドリンの生成物に対して実施例1と同条件でめっきを行い、外観、ニッケル共析率、耐食性を比較した。結果は表3の通りである。
II Complexing Agent Component The complexing agent component of the present invention is provided by the reaction product of an amine having 4 or more nitrogen atoms and an epihalohydrin. Therefore, the products of a plurality of amines and epihalohydrins were plated under the same conditions as in Example 1, and the appearance, nickel eutectoid rate, and corrosion resistance were compared. The results are shown in Table 3.

Figure 2013014833
Figure 2013014833

III (B)群物質
「MIRAPOL(商標)100」以外の物質で実施例1と同条件でめっきを行った結果は下の表4の通りである。
III (B) Group Substances The results of plating with substances other than “MIRAPOL ™ 100” under the same conditions as in Example 1 are shown in Table 4 below.

Figure 2013014833
Figure 2013014833

IV 温度
めっき時の温度変化以外実施例1と同条件でめっき試験を行った。結果は表5の通りである。
IV Temperature A plating test was conducted under the same conditions as in Example 1 except for the temperature change during plating. The results are shown in Table 5.

Figure 2013014833
Figure 2013014833

V ニッケル共析率変化
本発明のめっき液はニッケル濃度を変化させることでニッケル共析率を変化させためっきを安定して得ることができる。結果は表6の通りである。
V Nickel eutectoid rate change The plating solution of this invention can obtain stably the plating which changed nickel eutectoid rate by changing nickel concentration. The results are shown in Table 6.

Figure 2013014833
Figure 2013014833

さらに、実施例28のニッケル濃度で温度変化試験を行うと下の表7の通りになる。   Furthermore, when a temperature change test is performed with the nickel concentration of Example 28, it is as shown in Table 7 below.

Figure 2013014833
Figure 2013014833

VI バレルめっき試験
試験片に適当な前処理を行った後、以下に示すそれぞれの実施例に従いめっきを行った。
陰極となる試験片はボルト(M8×50mm)を使用し、陽極にはニッケル板を用いた。
めっき条件は電流密度1A/dm2、めっき浴温25℃、めっき時間90分であり、めっき後に三価クロム化成皮膜処理を施した。三価クロム化成皮膜処理は日本表面化学(株)製TRN−988を用いて標準条件で行った。結果を表8の通りである。
VI Barrel Plating Test After a suitable pretreatment was performed on the test piece, plating was performed according to each of the following examples.
The test piece used as the cathode was a bolt (M8 × 50 mm), and the anode was a nickel plate.
The plating conditions were a current density of 1 A / dm 2 , a plating bath temperature of 25 ° C., a plating time of 90 minutes, and a trivalent chromium conversion coating treatment was applied after plating. The trivalent chromium conversion coating treatment was performed under standard conditions using TRN-988 manufactured by Nippon Surface Chemical Co., Ltd. The results are shown in Table 8.

Figure 2013014833
Figure 2013014833

比較例1〜4
錯化剤成分にジエチルトリアミンとエピクロルヒドリンの反応生成物を用いて各種試験を行った。結果は表9の通りである。
Comparative Examples 1-4
Various tests were conducted using a reaction product of diethyltriamine and epichlorohydrin as a complexing agent component. The results are shown in Table 9.

Figure 2013014833
Figure 2013014833

比較例5〜12
錯化剤成分にトリエチレンテトラミンとエピクロルヒドリンの反応生成物を用いて各種試験を行った。結果は表10の通りである。
Comparative Examples 5-12
Various tests were conducted using a reaction product of triethylenetetramine and epichlorohydrin as a complexing agent component. The results are shown in Table 10.

Figure 2013014833
Figure 2013014833

比較例13〜16
比較例1について、温度を変化させてめっきを行った。結果は表11の通りである。
Comparative Examples 13-16
About the comparative example 1, it plated by changing temperature. The results are shown in Table 11.

Figure 2013014833
Figure 2013014833

比較例17〜21
ニッケル共析率15%以上の高ニッケルめっきを安定的に供給できる既存製品である日本表面化学(株)製錯化剤・光沢剤ZN−204を標準条件で使用してめっき浴を建浴し、温度変化試験を行ったところ、結果は表12の通りとなった。
Comparative Examples 17-21
The plating bath is constructed using the standard product Nihon Surface Chemical Co., Ltd. complexing agent and brightener ZN-204, which can stably supply high nickel plating with a nickel eutectoid rate of 15% or more. When the temperature change test was performed, the results were as shown in Table 12.

Figure 2013014833
Figure 2013014833

比較例22〜25
ZN−204を20℃で使用し、めっき浴中のニッケル濃度を変化させたところ、以下の表13に示す結果となり、ニッケル濃度を低下させても本発明のニッケル濃度10〜13%のめっき皮膜は安定的に供給できないことがわかる。
Comparative Examples 22-25
When ZN-204 was used at 20 ° C. and the nickel concentration in the plating bath was changed, the results shown in Table 13 below were obtained. Even if the nickel concentration was lowered, the plating film having a nickel concentration of 10 to 13% according to the present invention was obtained. It can be seen that can not be stably supplied.

Figure 2013014833
Figure 2013014833

実施例1と比較例1のめっき液それぞれ、1日10AH/Lで1カ月間ランニング試験を行った。適切に薬剤を補給した上、ニッケル共析率を維持するため、めっき液中のニッケル濃度を次第に上昇させ、錯化剤濃度を次第に低下させていったところ、以下の表14の結果となった。   Each of the plating solutions of Example 1 and Comparative Example 1 was subjected to a running test for 1 month at 10 AH / L per day. In order to maintain the nickel eutectoid rate while appropriately replenishing the chemicals, the nickel concentration in the plating solution was gradually increased and the complexing agent concentration was gradually decreased. The results shown in Table 14 below were obtained. .

Figure 2013014833
Figure 2013014833

また、比較例1のランニング試験をNi濃度、(A)群濃度を変化させずに行ったところ、以下の表15の結果となった。   When the running test of Comparative Example 1 was performed without changing the Ni concentration and the (A) group concentration, the results shown in Table 15 below were obtained.

Figure 2013014833
Figure 2013014833

比較例18についてもランニング試験を実施したところ以下の表16の結果となった。   When the running test was conducted on Comparative Example 18, the results shown in Table 16 below were obtained.

Figure 2013014833
Figure 2013014833

また、比較例18のランニング試験をNi濃度、(A)群濃度を変化させずに行ったところ、以下の表17の結果となった。   Moreover, when the running test of Comparative Example 18 was performed without changing the Ni concentration and the (A) group concentration, the results shown in Table 17 below were obtained.

Figure 2013014833
Figure 2013014833

実施例1と、ニッケル供給源を炭酸ニッケル及び水酸化ニッケルに変更したケースにおいて、三カ月間ランニング試験を行ったところ、硫酸ニッケルを使用した場合、耐食性に変化はなかったが外観にムラが生じた。炭酸ニッケル及び水酸化ニッケルを使用した場合には外観、耐食性ともに良好な状態を維持し続けた。また、硫酸ニッケルと水酸化ニッケルを半分ずつ使用した場合には、全量を硫酸ニッケルで補給した場合と比べて外観のムラの程度が小さかった。   In Example 1 and the case where the nickel supply source was changed to nickel carbonate and nickel hydroxide, a three-month running test was performed. When nickel sulfate was used, the corrosion resistance did not change, but the appearance was uneven. It was. When nickel carbonate and nickel hydroxide were used, both the appearance and corrosion resistance were kept in good condition. Further, when nickel sulfate and nickel hydroxide were used in half each, the degree of unevenness in appearance was smaller than when the entire amount was replenished with nickel sulfate.

Claims (8)

1分子中の窒素数が4以上のアミン類と、エポキシ基とハロゲン基をともに1分子中に含む化合物を混合して製造される反応生成物1種以上と、浴溶解性ポリマーとして構造式(1)
Figure 2013014833
(式中、R1、R2は水素、メチル、エチル、イソプロピル、ブチル、−CH2CH2(OCH2CH2XOH(Xは0〜5)又は−CH2CH2(OCCH2CH2XOH(Xは0〜5)を表わし、nは1以上を表わす)で表されるポリマー、構造式(2)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素、メチル、エチル、イソプロピル、2−ヒドロキシルエチル−CH2CH2(OCH2CH2)xOH(Xは0〜6)又は2−ヒドロキシルエチル−CH2CH2(OCCH2CH2)xOH(Xは0〜6)を表わし、R5は(CH22−O−(CH22、(CH22−O−(CH22−O−(CH22又はCH2−CHOH−CH2−O−CH2−CHOH−CH2を表わし、nは1以上であり、YはS又はOである)で表されるポリマー、構造式(3)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素、メチル、エチル、イソプロピル、2−ヒドロキシルエチル−CH2CH2(OCH2CH2)xOH(Xは0〜6)又は2−ヒドロキシルエチル−CH2CH2(OCCH2CH2)xOH(Xは0〜6)を表わし、R5は(CH22−O−(CH22、(CH22−O−(CH22−O−(CH22又はCH2−CHOH−CH2−O−CH2−CHOH−CH2を表わし、nは1以上を表わし、YはS又はOを表わす)で表されるポリマー、構造式(4)
Figure 2013014833
(式中、R1及びR2はそれぞれ水素、メチル、エチル、イソプロピル、ブチル、−CH2CH2(OCH2CH2XOH(Xは0〜5)又は−CH2CH2(OCCH2CH2XOH(Xは0〜5)を表わし、nは1以上を表わし、YはO又はSを表わす)をモノマーとするポリマー、構造式(5)
Figure 2013014833
(式中、R1又はR2は水素、メチル、エチル、ブチル又はイソブチルを表し、R3はCH2、C24又はC36を表わす)で表されるポリマー、構造式(6)
Figure 2013014833
(式中、R1及びR2はそれぞれ水素又は炭素数が10以下のアルキルを表わす)で表されるポリマー、構造式(7)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素又はCが5以下のアルキルを表わし、Xは無機陰イオンを表わし、YはS又はOを表わす)で表されるポリマー、構造式(8)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素又は炭素数が5以下のアルキルを表わし、Xは無機陰イオンを表わし、YはS又はOを表わす)で表されるポリマー、及び構造式(9)
Figure 2013014833
(式中、R1、R2、R3及びR4はそれぞれ水素、メチル、エチル、イソプロピル、2−ヒドロキシルエチル−CH2CH2(OCH2CH2)xOH(Xは0〜6)又は2−ヒドロキシルエチル−CH2CH2(OCCH2CH2)xOH(Xは0〜6)を表わし、nは2〜4を表わす)で表されるポリマー、及び(a)イミダゾールと(b)エピハロヒドリンの水溶性反応生成物、(a)ニコチン酸と(b)エピハロヒドリンの水溶性反応生成物、及び、(a)尿素又はチオ尿素、(b)ジアルキルアミノエチルアミン及び/又はジアルキルアミノプロピルアミン及び(c)ジクロルアルキルエーテルの水溶性反応性生成物から成る群から選択される1種以上と、亜鉛−ニッケル合金めっき用金属イオン源とを含有する電解めっき液。
One or more reaction products produced by mixing an amine having 4 or more nitrogen atoms in one molecule and a compound containing both an epoxy group and a halogen group in one molecule, and a structural formula ( 1)
Figure 2013014833
(In the formula, R1 and R2 are hydrogen, methyl, ethyl, isopropyl, butyl, —CH 2 CH 2 (OCH 2 CH 2 ) X OH (X is 0 to 5) or —CH 2 CH 2 (OCCH 2 CH 2 ). A polymer represented by X OH (where X represents 0 to 5 and n represents 1 or more), structural formula (2)
Figure 2013014833
(Wherein, R1, R2, R3 and R4 are each hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl -CH 2 CH 2 (OCH 2 CH 2) xOH (X is 0-6) or 2-hydroxyethyl - CH 2 CH 2 (OCCH 2 CH 2) xOH (X is 0-6) represents, R5 is (CH 2) 2 -O- (CH 2) 2, (CH 2) 2 -O- (CH 2) 2 -O- (CH 2 ) 2 or CH 2 -CHOH-CH 2 -O-CH 2 -CHOH-CH 2 , n is 1 or more, and Y is S or O), Structural formula (3)
Figure 2013014833
(Wherein, R1, R2, R3 and R4 each represent a hydrogen, methyl, an ethyl, isopropyl, 2-hydroxyethyl -CH 2 CH 2 (OCH 2 CH 2) xOH (X is 0-6) or 2-hydroxyethyl - CH 2 CH 2 (OCCH 2 CH 2) xOH (X is 0-6) represents, R5 is (CH 2) 2 -O- (CH 2) 2, (CH 2) 2 -O- (CH 2) 2 -O- (CH 2) represents 2 or CH 2 -CHOH-CH 2 -O- CH 2 -CHOH-CH 2, n is 1 or more, Y is a polymer represented by the representative) S or O, Structural formula (4)
Figure 2013014833
Wherein R1 and R2 are each hydrogen, methyl, ethyl, isopropyl, butyl, —CH 2 CH 2 (OCH 2 CH 2 ) X OH (X is 0 to 5) or —CH 2 CH 2 (OCCH 2 CH 2 ) X OH (X represents 0 to 5), n represents 1 or more, Y represents O or S), a polymer having a monomer, structural formula (5)
Figure 2013014833
Wherein R1 or R2 represents hydrogen, methyl, ethyl, butyl or isobutyl, and R3 represents CH 2 , C 2 H 4 or C 3 H 6 , a structural formula (6)
Figure 2013014833
(Wherein R1 and R2 each represent hydrogen or alkyl having 10 or less carbon atoms), structural formula (7)
Figure 2013014833
Wherein R 1, R 2, R 3 and R 4 are each hydrogen or C is alkyl having 5 or less, X is an inorganic anion, and Y is S or O, a structural formula (8 )
Figure 2013014833
(Wherein R1, R2, R3 and R4 each represent hydrogen or alkyl having 5 or less carbon atoms, X represents an inorganic anion, and Y represents S or O), and a structural formula (9)
Figure 2013014833
(Wherein, R1, R2, R3 and R4 each represent a hydrogen, methyl, ethyl, isopropyl, 2-hydroxyethyl -CH 2 CH 2 (OCH 2 CH 2) xOH (X is 0-6) or 2-hydroxyethyl - CH 2 CH 2 (OCCH 2 CH 2 ) x OH (X represents 0 to 6 and n represents 2 to 4), and (a) water-soluble reaction product of (imidazole) and (b) epihalohydrin , (A) water-soluble reaction product of nicotinic acid and (b) epihalohydrin, and (a) urea or thiourea, (b) dialkylaminoethylamine and / or dialkylaminopropylamine and (c) dichloroalkyl ether An electroplating solution containing at least one selected from the group consisting of water-soluble reactive products and a metal ion source for zinc-nickel alloy plating.
前記反応生成物と浴溶解性ポリマーの添加量の比が10:1以上である請求項1記載のめっき液。   The plating solution according to claim 1, wherein the ratio of the reaction product to the addition amount of the bath-soluble polymer is 10: 1 or more. ニッケル源として、塩化ニッケル、水酸化ニッケル及び炭酸ニッケルから成る群から一部或いは全部のニッケルが供給される請求項1又は2に記載のめっき液。   The plating solution according to claim 1 or 2, wherein a part or all of nickel is supplied from the group consisting of nickel chloride, nickel hydroxide and nickel carbonate as a nickel source. めっき液温25℃以上で使用される請求項1〜3のいずれか1項に記載のめっき液。   The plating solution according to any one of claims 1 to 3, which is used at a plating solution temperature of 25 ° C or higher. 前記アミン類がポリアルケンポリアミン類である請求項1〜4のいずれか1項に記載のめっき液。   The plating solution according to claim 1, wherein the amine is a polyalkene polyamine. 前記化合物がエピハロヒドリン類である請求項1〜4のいずれか1項に記載のめっき液。   The plating solution according to claim 1, wherein the compound is an epihalohydrin. 請求項1〜6のいずれか1項に記載の電解めっき液を使用して、ニッケル共析率10〜13%の亜鉛−ニッケル合金めっきを施すことを特徴とする電解めっき方法。   An electroplating method comprising applying a zinc-nickel alloy plating with a nickel eutectoid rate of 10 to 13% using the electroplating solution according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の電解めっき液を使用して亜鉛−ニッケル合金めっきを施した部材。   The member which gave zinc-nickel alloy plating using the electrolytic plating solution of any one of Claims 1-6.
JP2011152913A 2010-07-22 2011-07-11 Zinc-nickel alloy plating solution and plating method Active JP5853283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152913A JP5853283B2 (en) 2010-07-22 2011-07-11 Zinc-nickel alloy plating solution and plating method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010165039 2010-07-22
JP2010165039 2010-07-22
JP2011129420 2011-06-09
JP2011129420 2011-06-09
JP2011152913A JP5853283B2 (en) 2010-07-22 2011-07-11 Zinc-nickel alloy plating solution and plating method

Publications (2)

Publication Number Publication Date
JP2013014833A true JP2013014833A (en) 2013-01-24
JP5853283B2 JP5853283B2 (en) 2016-02-09

Family

ID=47687767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152913A Active JP5853283B2 (en) 2010-07-22 2011-07-11 Zinc-nickel alloy plating solution and plating method

Country Status (1)

Country Link
JP (1) JP5853283B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246554A (en) * 2011-05-30 2012-12-13 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating liquid and plating method
WO2014157105A1 (en) 2013-03-27 2014-10-02 日本表面化学株式会社 Zinc-nickel alloy plating solution and plating method
CN107922611A (en) * 2015-08-31 2018-04-17 埃托特克德国有限公司 Imidazole radicals urea polymers and its purposes in metal or metal alloy bath compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298192A (en) * 1988-05-27 1989-12-01 Ebara Yuujiraito Kk Zinc-nickel alloy plating solution
JP2001214293A (en) * 2000-01-31 2001-08-07 Dipsol Chem Co Ltd Alkaline zinc and zinc alloy plating bath
JP2001214294A (en) * 2000-01-31 2001-08-07 Dipsol Chem Co Ltd Alkaline zinc and zinc alloy plating bath

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298192A (en) * 1988-05-27 1989-12-01 Ebara Yuujiraito Kk Zinc-nickel alloy plating solution
JP2001214293A (en) * 2000-01-31 2001-08-07 Dipsol Chem Co Ltd Alkaline zinc and zinc alloy plating bath
JP2001214294A (en) * 2000-01-31 2001-08-07 Dipsol Chem Co Ltd Alkaline zinc and zinc alloy plating bath

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246554A (en) * 2011-05-30 2012-12-13 Nippon Hyomen Kagaku Kk Zinc-nickel alloy plating liquid and plating method
WO2014157105A1 (en) 2013-03-27 2014-10-02 日本表面化学株式会社 Zinc-nickel alloy plating solution and plating method
US9644279B2 (en) 2013-03-27 2017-05-09 Nippon Hyomen Kagaku Kabushiki Kaisha Zinc-nickel alloy plating solution and plating method
CN107922611A (en) * 2015-08-31 2018-04-17 埃托特克德国有限公司 Imidazole radicals urea polymers and its purposes in metal or metal alloy bath compositions
CN107922611B (en) * 2015-08-31 2020-11-24 埃托特克德国有限公司 Imidazoyl urea polymers and their use in metal or metal alloy plating bath compositions
US11066553B2 (en) 2015-08-31 2021-07-20 Atotech Deutschland Gmbh Imidazoyl urea polymers and their use in metal or metal alloy plating bath compositions

Also Published As

Publication number Publication date
JP5853283B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
US20100155257A1 (en) Aqueous, alkaline, cyanide-free bath for the galvanic deposition of zinc alloy coatings
JP6047702B2 (en) Zinc-nickel alloy plating solution and plating method
AU764300B2 (en) Zinc and zinc alloy electroplating additives and electroplating methods
US4444629A (en) Zinc-iron alloy electroplating baths and process
JPH0312157B2 (en)
WO2007025606A1 (en) Nitrogen polymer additive for electrolytic deposition of zinc and zinc alloys and process for producing and use of the same
JP5853283B2 (en) Zinc-nickel alloy plating solution and plating method
US20100096274A1 (en) Zinc alloy electroplating baths and processes
EP3428323B1 (en) Nickel electroplating compositions with cationic polymers and methods of electroplating nickel
US20030192785A1 (en) Zinc and zinc alloy electroplating additives and electroplating methods
JP5419021B2 (en) Zincate-type galvanizing bath
CN103510133A (en) Carrier brightening agent as well as preparation method and application thereof
JP5874107B2 (en) Zinc-nickel alloy plating solution and nickel supply method
JP5861176B2 (en) Zinc-nickel alloy plating solution and plating method
JPH11193488A (en) Alkaline plating bath for zinc or zinc alloy and plating process
JP5551094B2 (en) Alkaline zinc and zinc alloy plating bath
US3748237A (en) Zinc plating
JP5747359B2 (en) Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member
KR101011473B1 (en) Ni-flash plating composition for electrolytic galvanized iron plating process having improved ph buffer effects
JP6925985B2 (en) Additives for alkaline galvanization
EP3428322B1 (en) Nickel electroplating compositions with copolymers of arginine and bisepoxides and methods of electroplating nickel
JP2014088608A (en) Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member
US20230015534A1 (en) Electroplating composition and method for depositing a chromium coating on a substrate
TW202409351A (en) Stable alkaline electroplating bath with a diacid
JP2016098382A (en) Water-soluble compound, additive for alkaline zinc plating solution, alkaline zinc plating solution, and electrogalvanizing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5853283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250