JP5747359B2 - Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member - Google Patents

Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member Download PDF

Info

Publication number
JP5747359B2
JP5747359B2 JP2013206723A JP2013206723A JP5747359B2 JP 5747359 B2 JP5747359 B2 JP 5747359B2 JP 2013206723 A JP2013206723 A JP 2013206723A JP 2013206723 A JP2013206723 A JP 2013206723A JP 5747359 B2 JP5747359 B2 JP 5747359B2
Authority
JP
Japan
Prior art keywords
zinc
plating bath
bath
plating
reaction product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013206723A
Other languages
Japanese (ja)
Other versions
JP2014095147A (en
Inventor
和生 伊藤
和生 伊藤
友里 巴山
友里 巴山
伸治 石崎
伸治 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Original Assignee
Yuken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP2013206723A priority Critical patent/JP5747359B2/en
Publication of JP2014095147A publication Critical patent/JP2014095147A/en
Application granted granted Critical
Publication of JP5747359B2 publication Critical patent/JP5747359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アルカリ性であってシアン化物を含有しない、いわゆるジンケート型亜鉛系めっき浴に関する。   The present invention relates to a so-called zincate type zinc plating bath which is alkaline and does not contain cyanide.

本明細書において、亜鉛系めっきとは、亜鉛および不可避的な不純物からなる亜鉛めっきと、亜鉛および合金成分ならびに不可避的な不純物からなる亜鉛合金めっきとの総称である。ここで、亜鉛合金めっきはめっき中の亜鉛の含有量(質量%)が他の合金元素の含有量(質量%)のいずれよりも高くてもよいし、亜鉛の含有量(質量%)よりも含有量が高い合金元素が含まれていてもよい。   In this specification, the zinc-based plating is a general term for zinc plating composed of zinc and inevitable impurities and zinc alloy plating composed of zinc and alloy components and inevitable impurities. Here, in zinc alloy plating, the content (mass%) of zinc in plating may be higher than any of the contents (mass%) of other alloy elements, or may be higher than the content (mass%) of zinc. An alloy element having a high content may be included.

亜鉛系めっきからなる皮膜(本明細書において「亜鉛系めっき皮膜」ともいう。)は、自動車用の鋼板やボルトやナットなどの鋼材からなる機械部品をはじめとして、我々の身の回りの部材に対して、耐食性を向上させるなどの目的で広汎に用いられている。亜鉛−ニッケル合金、亜鉛−鉄合金、すず−亜鉛合金など、亜鉛合金めっき皮膜も、耐食性に加えて耐熱性や耐塩水性の向上などが求められる場合には、広く利用されている。   Films made of zinc-based plating (also referred to as “zinc-based plated film” in this specification) apply to parts around us, including machine parts made of steel such as automotive steel plates and bolts and nuts. It is widely used for the purpose of improving corrosion resistance. Zinc alloy plating films such as zinc-nickel alloy, zinc-iron alloy, and tin-zinc alloy are also widely used when improvement in heat resistance and salt water resistance is required in addition to corrosion resistance.

亜鉛系めっき皮膜は、亜鉛系めっき皮膜を形成するためのめっき浴(本明細書において「亜鉛系めっき浴」ともいう。)に被めっき部材を浸漬した状態で電解を行う電気めっきにて形成される。この亜鉛系めっき浴は、アルカリ浴と酸性浴とに大別され、アルカリ浴にはシアン化物浴やジンケート型亜鉛系めっき浴、酸性浴には塩化亜鉛浴や硫酸亜鉛浴がある。求める亜鉛系めっき皮膜の硬度や光沢性、被めっき部材の形状や大きさ、作業環境などの様々な条件を勘案して、これらの亜鉛系めっき浴から適切な浴が選択されている。   The zinc-based plating film is formed by electroplating in which a member to be plated is immersed in a plating bath for forming the zinc-based plating film (also referred to as “zinc-based plating bath” in this specification). The This zinc-based plating bath is roughly classified into an alkaline bath and an acidic bath. The alkaline bath includes a cyanide bath and a zincate-type zinc-based plating bath, and the acidic bath includes a zinc chloride bath and a zinc sulfate bath. An appropriate bath is selected from these zinc-based plating baths in consideration of various conditions such as the required hardness and gloss of the zinc-based plating film, the shape and size of the member to be plated, and the working environment.

これらの亜鉛系めっき浴の中でも、ジンケート型亜鉛系めっき浴は、排水処理の負担が大きいシアン化物を使用しない上、浴組成が比較的単純で管理しやすく、プレス小物、ボルト、ナットなどにも適用できる利点があるため、好まれて工業的な実施がなされている。また、めっき皮膜の特性を向上させたり、浴の安定性を向上させたりする観点から、多くの改良型浴が開発されている。   Among these zinc-based plating baths, zincate-type zinc-based plating baths do not use cyanide, which has a large burden on wastewater treatment, and the bath composition is relatively simple and easy to manage. For zinc presses, bolts, nuts, etc. Due to the advantages that can be applied, it is preferred and industrially practiced. Many improved baths have been developed from the viewpoint of improving the properties of the plating film and improving the stability of the bath.

例えば、特許文献1では、亜鉛金属の滑らかで光輝のあるめっき皮膜が得られかつ安定なアルカリ性亜鉛および亜鉛合金めっき浴を提供することを目的として、ニコチン酸と特定の化合物との水溶性反応性生成物をアルカリ性亜鉛および亜鉛合金めっき浴用の光沢剤として用いる技術が開示されている。   For example, in Patent Document 1, a water-soluble reactivity between nicotinic acid and a specific compound is provided for the purpose of providing a stable alkaline zinc and zinc alloy plating bath in which a smooth and bright plating film of zinc metal is obtained. Techniques have been disclosed for using the product as a brightener for alkaline zinc and zinc alloy plating baths.

特開2011−84821号公報JP2011-84821A

しかしながら、特許文献1にて開示された光沢剤はジンケート型亜鉛系めっき浴内での安定性が必ずしも高くなく、めっき浴の使用時間が増加することに伴いめっき浴内に形成される不溶性物質の量が増加し、これが被めっき部材に付着してめっき皮膜の外観不良を引き起こす場合があった。   However, the brightener disclosed in Patent Document 1 does not necessarily have high stability in the zincate-type zinc-based plating bath, and the insoluble material formed in the plating bath as the usage time of the plating bath increases. In some cases, the amount increases, which adheres to the member to be plated and causes a poor appearance of the plating film.

本発明は、めっき浴の使用時間が増加してもめっき浴内に不溶性物質が形成されにくいジンケート型亜鉛系めっき浴、めっき浴に添加されたときにその浴に不溶性物質が形成されにくいジンケート型亜鉛系めっき浴用添加剤、および上記亜鉛系めっき浴を用いて形成される亜鉛系めっき部材の製造方法を提供することを目的とする。
なお、亜鉛系めっき部材とは、被めっき部材と、この被めっき部材の被めっき面上に積層された亜鉛系めっき皮膜とを備えた部材をいう。
The present invention relates to a zincate type zinc-based plating bath in which insoluble substances are hardly formed in the plating bath even when the usage time of the plating bath is increased, and a zincate type in which insoluble substances are hardly formed in the bath when added to the plating bath. An object of the present invention is to provide an additive for a zinc-based plating bath and a method for producing a zinc-based plated member formed using the zinc-based plating bath.
In addition, a zinc-type plating member means the member provided with the to-be-plated member and the zinc-type plating film laminated | stacked on the to-be-plated surface of this to-be-plated member.

上記課題を解決すべく提供される本発明は次のとおりである。
(1)鎖式アルキルハライドおよび脂環式アルキルハライド、ならびにそれらのアルキルハライドにおける水素の少なくとも一つがアミノ基、ヒドロキシ基、オキシアルキレンエーテル基、アルキルカルボキシアルキル基、アリールカルボキシアルキル基、カルボキシアルキル基、ホスホン酸基またはアリール基で置換された化合物、ならびにアルカンサルトンからなる群から選ばれる一種または二種以上とニコチン酸アミドとの反応生成物(a)と、グリシジルトリメチルアンモニウムのハロゲン化物とを反応させて得られる反応生成物(A)、および浴可溶性亜鉛含有物質を含有することを特徴とするジンケート型亜鉛系めっき浴。
The present invention provided to solve the above problems is as follows.
(1) At least one of chain alkyl halide and alicyclic alkyl halide, and hydrogen in the alkyl halide is an amino group, a hydroxy group, an oxyalkylene ether group, an alkylcarboxyalkyl group, an arylcarboxyalkyl group, a carboxyalkyl group, Reaction of reaction product (a) of nicotinic acid amide with one or more compounds selected from the group consisting of phosphonic acid group or aryl group, and alkanesartone, and glycidyltrimethylammonium halide A zincate-type zinc-based plating bath characterized by containing a reaction product (A) obtained by heating and a bath-soluble zinc-containing substance.

(2)前記反応生成物(A)を0.1g/L以上15g/L以下含有する上記(1)に記載のめっき浴。 (2) The plating bath according to (1), wherein the reaction product (A) is contained in an amount of 0.1 g / L to 15 g / L.

(3)シアン化物を含有しない上記(1)または(2)に記載のめっき浴。 (3) The plating bath according to (1) or (2), which does not contain cyanide.

(4)浴可溶性亜鉛含有物質を亜鉛換算で2g/L以上60g/L含有する上記(1)から(3)のいずれか一項に記載のめっき浴。 (4) The plating bath according to any one of (1) to (3) above, wherein the bath-soluble zinc-containing substance is contained in an amount of 2 g / L or more and 60 g / L in terms of zinc.

(5)浴可溶性金属含有物質をさらに含有し、当該浴可溶性金属含有物質に含まれる金属元素は鉄、ニッケル、コバルトおよびマンガンからなる群から選ばれる一種または二種以上である上記(1)から(4)のいずれか一項に記載のめっき浴。 (5) From the above (1), further comprising a bath-soluble metal-containing substance, wherein the metal element contained in the bath-soluble metal-containing substance is one or more selected from the group consisting of iron, nickel, cobalt and manganese The plating bath according to any one of (4).

(6)上記(1)に記載される反応生成物(A)を含有するジンケート型亜鉛系めっき浴用添加剤。 (6) Additive for zincate-type zinc-based plating bath containing the reaction product (A) described in (1) above.

(7)被めっき部材と、該被めっき部材の被めっき面上に積層された亜鉛系めっき皮膜とを備えた亜鉛系めっき部材の製造方法であって、上記(1)から(5)のいずれかに記載されるジンケート型亜鉛系めっき浴を用い、当該めっき浴に含有される前記反応生成物(A)の含有量を0.1g/L以上15g/L以下の範囲に管理しながらめっきすることを特徴とする亜鉛系めっき部材の製造方法。 (7) A method for producing a zinc-based plating member comprising a member to be plated and a zinc-based plating film laminated on a surface to be plated of the member to be plated, which is any one of (1) to (5) above Using the zincate zinc-based plating bath described above, plating is performed while the content of the reaction product (A) contained in the plating bath is controlled in the range of 0.1 g / L to 15 g / L. The manufacturing method of the zinc-type plating member characterized by the above-mentioned.

(8)被めっき部材と、該被めっき部材の被めっき面上に積層された亜鉛合金めっき皮膜とを備えた亜鉛合金めっき部材の製造方法であって、上記(5)に記載されるジンケート型亜鉛系めっき浴であって浴可溶性ニッケル含有物質を含有するジンケート型亜鉛合金めっき浴を用い、前記ジンケート型亜鉛合金めっき浴から得られた亜鉛合金めっき皮膜におけるニッケルの共析率を12質量%以上20質量%以下とする亜鉛合金めっき部材の製造方法。 (8) A method for producing a zinc alloy plating member comprising a member to be plated and a zinc alloy plating film laminated on the surface to be plated of the member to be plated, the zincate type described in (5) above Using a zincate-type zinc alloy plating bath which is a zinc-based plating bath containing a bath-soluble nickel-containing substance, the eutectoid rate of nickel in the zinc alloy plating film obtained from the zincate-type zinc alloy plating bath is 12% by mass or more. The manufacturing method of the zinc alloy plating member made into 20 mass% or less.

上記の発明に係るジンケート型亜鉛系めっき浴は、優れた外観を有する亜鉛系めっき皮膜を形成することができる。   The zincate-type zinc-based plating bath according to the above invention can form a zinc-based plating film having an excellent appearance.

実施例1から3および比較例1から3に係るめっき皮膜を有する部材のめっき面の高電流密度側端部からの位置とめっき皮膜の厚さとの関係を示すグラフである。It is a graph which shows the relationship between the position from the high current density side edge part of the plating surface of the member which has a plating film concerning Examples 1 to 3 and Comparative Examples 1 to 3, and the thickness of the plating film.

以下、本発明について詳しく説明する。
1.ジンケート型亜鉛系めっき浴
本発明の一実施形態に係る亜鉛系めっき浴は、ジンケート型のめっき浴であるから、液性はアルカリ性である。また、本実施形態の好ましい一例に係る亜鉛系めっき浴はシアン化物を含有せず、有害なシアンガスが発生しないため、作業性に優れ、環境に優しい。
The present invention will be described in detail below.
1. Zincate-type zinc-based plating bath Since the zinc-based plating bath according to one embodiment of the present invention is a zincate-type plating bath, the liquidity is alkaline. In addition, the zinc-based plating bath according to a preferred example of the present embodiment does not contain cyanide and does not generate harmful cyanide gas. Therefore, the zinc plating bath is excellent in workability and environmentally friendly.

(1)金属成分
(1−1)浴可溶性亜鉛含有物質
本実施形態に係る亜鉛系めっき浴は、浴可溶性亜鉛含有物質を含有する。本明細書において浴可溶性亜鉛含有物質とは、亜鉛系めっき皮膜として析出する亜鉛の供給源であって、亜鉛の陽イオンおよびこれを含有する浴可溶性物質からなる群から選ばれる一種または二種以上の成分をいう。本実施形態に係る亜鉛系めっき浴はジンケート型の浴であるから、めっき浴はアルカリ性である。したがって、浴可溶性亜鉛含有物質の一例はジンケートイオン([Zn(OH)2−)である。
浴可溶性亜鉛含有物質をめっき浴に供給する原料物質(本発明において、「亜鉛源」ともいう。)として、酸化亜鉛が例示される。
(1) Metal component (1-1) Bath-soluble zinc-containing material The zinc-based plating bath according to the present embodiment contains a bath-soluble zinc-containing material. In this specification, the bath-soluble zinc-containing substance is a source of zinc deposited as a zinc-based plating film, and is one or more selected from the group consisting of zinc cations and bath-soluble substances containing the same. Refers to the ingredients. Since the zinc-based plating bath according to this embodiment is a zincate type bath, the plating bath is alkaline. Thus, an example of a bath-soluble zinc-containing material is a zincate ion ([Zn (OH) 4 ] 2− ).
Zinc oxide is exemplified as a source material (also referred to as “zinc source” in the present invention) for supplying the bath-soluble zinc-containing material to the plating bath.

本実施形態に係る亜鉛系めっき浴における可溶性亜鉛含有物質の亜鉛換算含有量は限定されない。この含有量が過度に少ない場合には亜鉛系めっき皮膜が析出しにくくなることから、上記の亜鉛換算含有量は2g/L以上であることが好ましく、4g/L以上であることがより好ましく、8g/L以上であることが特に好ましい。可溶性亜鉛含有物質の亜鉛換算含有量が過度に多い場合には外観不良やつきまわり性の低下が生じることが懸念されるため、上記の亜鉛換算含有量は60g/L以下であることが好ましく、40g/L以下であることがより好ましく、20g/L以下であることが特に好ましい。   The zinc equivalent content of the soluble zinc-containing substance in the zinc-based plating bath according to this embodiment is not limited. When this content is excessively small, the zinc-based plating film is difficult to deposit. Therefore, the content in terms of zinc is preferably 2 g / L or more, more preferably 4 g / L or more, It is particularly preferably 8 g / L or more. When the zinc equivalent content of the soluble zinc-containing substance is excessively large, there is a concern that the appearance defect and the throwing power decrease may occur. Therefore, the zinc equivalent content is preferably 60 g / L or less, It is more preferably 40 g / L or less, and particularly preferably 20 g / L or less.

(1−2)浴可溶性金属含有物質
本発明の一実施形態に係る亜鉛系めっき浴は、当該めっき浴が亜鉛合金めっき浴である場合には、浴可溶性金属含有物質を含有する。本明細書において浴可溶性金属含有物質とは、亜鉛合金めっき皮膜に含有される亜鉛以外の金属の供給源であって、金属元素の陽イオンおよびこれを含有する浴可溶性物質からなる群から選ばれる一種または二種以上の成分をいう。浴可溶性金属含有物質に含有される金属元素として、鉄、ニッケル、コバルトおよびマンガンが例示される。好ましい一例において、金属含有物質に含まれる金属元素は鉄、ニッケル、コバルトおよびマンガンからなる群から選ばれる。
(1-2) Bath-soluble metal-containing substance The zinc-based plating bath according to an embodiment of the present invention contains a bath-soluble metal-containing substance when the plating bath is a zinc alloy plating bath. In this specification, the bath-soluble metal-containing material is a source of a metal other than zinc contained in the zinc alloy plating film, and is selected from the group consisting of a cation of a metal element and a bath-soluble material containing the metal element. It refers to one or more components. Examples of the metal element contained in the bath-soluble metal-containing material include iron, nickel, cobalt, and manganese. In a preferred example, the metal element contained in the metal-containing material is selected from the group consisting of iron, nickel, cobalt, and manganese.

浴可溶性金属含有物質をめっき浴に供給する原料物質(本発明において、「金属源」ともいう。)はその浴可溶性金属含有物質に含有される金属元素の種類に応じて適宜選択すればよい。例えば、浴可溶性金属含有物質に含有される金属元素が鉄である場合、すなわち、亜鉛合金めっき浴が浴可溶性鉄含有物質を含有する場合には、Fe(SO・7HO、FeSO・7HO、Fe(OH)、FeCl・6HO、FeCl・4HOなどが鉄源として例示される。浴可溶性金属含有物質に含有される金属元素がニッケルである場合、すなわち、亜鉛合金めっき浴が浴可溶性ニッケル含有物質を含有する場合には、NiSO・6HO、NiCl・6HO,Ni(OH)などがニッケル源として例示される。浴可溶性金属含有物質に含有される金属元素がマンガンである場合、すなわち、亜鉛合金めっき浴が浴可溶性マンガン含有物質を含有する場合には、MnSO,MnSO・HO,MnCl・4HOなどがマンガン源として例示される。 The source material (also referred to as “metal source” in the present invention) for supplying the bath-soluble metal-containing material to the plating bath may be appropriately selected according to the type of metal element contained in the bath-soluble metal-containing material. For example, when the metal element contained in the bath-soluble metal-containing material is iron, that is, when the zinc alloy plating bath contains a bath-soluble iron-containing material, Fe 2 (SO 4 ) 3 · 7H 2 O, FeSO 4 · 7H 2 O, Fe (OH) 3 , FeCl 3 · 6H 2 O, FeCl 2 · 4H 2 O and the like are exemplified as iron sources. When the metal element contained in the bath-soluble metal-containing material is nickel, that is, when the zinc alloy plating bath contains the bath-soluble nickel-containing material, NiSO 4 .6H 2 O, NiCl 2 .6H 2 O, Ni (OH) 2 or the like is exemplified as the nickel source. When the metal element contained in the bath-soluble metal-containing material is manganese, that is, when the zinc alloy plating bath contains a bath-soluble manganese-containing material, MnSO 4 , MnSO 4 .H 2 O, MnCl 2 .4H 2 O etc. are illustrated as a manganese source.

本実施形態に係る亜鉛系めっき浴における可溶性金属含有物質の金属換算含有量は、目的とする亜鉛合金めっきの組成に応じて適宜設定される。亜鉛系めっき浴が浴可溶性鉄含有物質を含有する場合には、可溶性鉄含有物質の鉄換算含有量を5mg/L以上300mg/L以下程度とすることが例示され、10mg/L以上150mg/L以下程度とすることや、20mg/L以上70mg/L以下程度とすることが好ましい場合もある。亜鉛系めっき浴が浴可溶性ニッケル含有物質を含有する場合には、可溶性ニッケル含有物質のニッケル換算含有量を50mg/L以上10000mg/L以下程度とすることが例示され、100mg/L以上4000mg/L以下程度とすることや、200mg/L以上2000mg/L以下程度とすることが好ましい場合もある。亜鉛系めっき浴が浴可溶性マンガン含有物質を含有する場合には、可溶性マンガン含有物質のマンガン換算含有量を2g/L以上80g/L以下程度とすることが例示され、5g/L以上50g/L以下程度とすることや、10g/L以上20g/L以下程度とすることが好ましい場合もある。   The metal equivalent content of the soluble metal-containing substance in the zinc-based plating bath according to this embodiment is appropriately set according to the composition of the intended zinc alloy plating. When the zinc-based plating bath contains a bath-soluble iron-containing substance, the iron equivalent content of the soluble iron-containing substance is exemplified as about 5 mg / L or more and 300 mg / L or less, and is 10 mg / L or more and 150 mg / L. In some cases, it may be preferable to be about 20 mg / L or more and 70 mg / L or less. When the zinc-based plating bath contains a bath-soluble nickel-containing substance, it is exemplified that the nickel equivalent content of the soluble nickel-containing substance is about 50 mg / L or more and 10,000 mg / L or less, and is 100 mg / L or more and 4000 mg / L. In some cases, it may be preferable to be about 200 mg / L or more and 2000 mg / L or less. When the zinc-based plating bath contains a bath-soluble manganese-containing substance, it is exemplified that the manganese equivalent content of the soluble manganese-containing substance is about 2 g / L or more and 80 g / L or less, and is 5 g / L or more and 50 g / L. In some cases, it is preferable to be about 10 g / L or more and about 20 g / L or less.

(2)添加剤成分
本実施形態に係るめっき浴は次に説明する反応生成物(A)を添加剤成分として含有し、必要に応じてさらに他の添加剤成分も含有する。
(2) Additive component The plating bath according to the present embodiment contains a reaction product (A) described below as an additive component, and further contains other additive components as necessary.

(2−1)反応生成物(A)
本実施形態に係るめっき浴は、鎖式アルキルハライドおよび脂環式アルキルハライド、ならびにそれらのアルキルハライドにおける水素の少なくとも一つがアミノ基、ヒドロキシ基、オキシアルキレンエーテル基、アルキルカルボキシアルキル基、アリールカルボキシアルキル基、カルボキシアルキル基、ホスホン酸基またはアリール基で置換された化合物、ならびにアルカンサルトンからなる群から選ばれる一種または二種以上(本明細書において、これらの化合物を「付加化合物」と総称する場合もある。)とニコチン酸アミドとの反応生成物(a)と、グリシジルトリメチルアンモニウムのハロゲン化物とを反応させて得られる反応生成物(A)を添加剤成分の一つとして含有する。
(2-1) Reaction product (A)
The plating bath according to the present embodiment includes a chain alkyl halide and an alicyclic alkyl halide, and at least one of hydrogens in the alkyl halide is an amino group, a hydroxy group, an oxyalkylene ether group, an alkylcarboxyalkyl group, an arylcarboxyalkyl group. A compound substituted with a group, a carboxyalkyl group, a phosphonic acid group or an aryl group, and one or more selected from the group consisting of alkanesultone (in the present specification, these compounds are collectively referred to as “addition compounds”) The reaction product (A) obtained by reacting the reaction product (a) of nicotinic acid amide with a halide of glycidyltrimethylammonium is contained as one of the additive components.

上記の反応生成物(a)に含まれるハロゲンおよびグリシジルトリメチルアンモニウムのハロゲン化物に含まれるハロゲンのいずれについても、具体的な種類は特に限定されない。作業性を低下させない観点および廃液処理の負荷を軽減させる観点から、ハロゲンとしてフッ素を使用しないことが好ましく、取り扱いの容易さなどの観点から、ハロゲンは塩素であることが好ましい。   The specific types of the halogen contained in the reaction product (a) and the halogen contained in the halide of glycidyltrimethylammonium are not particularly limited. From the viewpoint of not reducing workability and reducing the burden of waste liquid treatment, it is preferable not to use fluorine as the halogen, and from the viewpoint of ease of handling, the halogen is preferably chlorine.

反応生成物(a)の製造方法は特に限定されない。付加化合物とニコチン酸アミドとを適切な条件で反応させればよい。付加化合物がエチレンハロヒドリンである場合を具体例としてその反応条件を説明すれば次のとおりである。すなわち、ニコチン酸アミドとエチレンハロヒドリンとを、これらのモル比(ニコチン酸アミド/エチレンハロヒドリン)を0.5〜2程度として水系溶媒に投入し、得られた液体を100℃程度の温度で2〜6時間程度攪拌する。その後、液体の攪拌を維持しながら20〜40℃程度まで冷却することにより、反応生成物(a)を含有する液体を得ることができる。結晶化などの作業により、この反応生成物(a)を含有する液体から、反応生成物(a)を取り出してもよいが、生産性を高める観点から、反応生成物(a)を含有する液体を次の反応生成物(A)を得るための出発原料として用いてもよい。   The method for producing the reaction product (a) is not particularly limited. The addition compound and nicotinamide may be reacted under appropriate conditions. The reaction conditions will be described below by taking the case where the addition compound is ethylene halohydrin as a specific example. That is, nicotinic acid amide and ethylene halohydrin are charged into an aqueous solvent at a molar ratio of these (nicotinic acid amide / ethylene halohydrin) of about 0.5 to 2, and the liquid obtained is about 100 ° C. Stir at temperature for about 2-6 hours. Then, the liquid containing the reaction product (a) can be obtained by cooling to about 20 to 40 ° C. while maintaining stirring of the liquid. The reaction product (a) may be taken out of the liquid containing the reaction product (a) by an operation such as crystallization. However, from the viewpoint of improving productivity, the liquid containing the reaction product (a). May be used as a starting material for obtaining the next reaction product (A).

上記の製造方法により得られる反応生成物(a)は、ニコチン酸アミドがピリジン環における窒素を反応部位として付加化合物と反応してなるピリジニウムアミド化合物を含むと考えられる。そのようなピリジニウムアミド化合物の具体例として、付加化合物がエチレンハロヒドリンからなる場合のピリジニウムアミド化合物として、1−プロパノール−ピリジニウム−3−カルボアミド(以下、「PPCA」ともいう。)が挙げられる。
付加化合物の具体例と、上記の反応生成物(a)に含有されるピリジニウムアミド化合物におけるピリジン環の窒素に結合する基との関係を示せば、次のとおりである。
付加化合物:エチレンクロルヒドリン → 得られる基:ヒドロキシエチル基
付加化合物:ヨウ化メチル → 得られる基:メチル基
付加化合物:ヨウ化エチル → 得られる基:エチル基
付加化合物:臭化プロピル → 得られる基:プロピル基
付加化合物:ブロモメチルシクロヘキサン → 得られる基:シクロヘキシルメチル基
付加化合物:クロロ酢酸メチル → 得られる基:メチルカルボキシメチル基
付加化合物:クロロ酢酸 → 得られる基:カルボキシメチル基
付加化合物:プロパンサルトン → 得られる基:スルホプロピル基
付加化合物:塩化ベンジル → 得られる基:ベンジル基
The reaction product (a) obtained by the above production method is considered to contain a pyridinium amide compound obtained by reacting nicotinamide with an addition compound using nitrogen in the pyridine ring as a reaction site. Specific examples of such a pyridinium amide compound include 1-propanol-pyridinium-3-carboxamide (hereinafter also referred to as “PPCA”) as a pyridinium amide compound when the addition compound is composed of ethylene halohydrin.
The relationship between the specific example of the addition compound and the group bonded to nitrogen of the pyridine ring in the pyridinium amide compound contained in the above reaction product (a) is as follows.
Addition compound: ethylene chlorohydrin → group obtained: hydroxyethyl group Addition compound: methyl iodide → group obtained: methyl group Addition compound: ethyl iodide → group obtained: ethyl group Addition compound: propyl bromide → obtained Group: Propyl group Addition compound: Bromomethylcyclohexane → Resulting group: Cyclohexylmethyl group Addition compound: Methyl chloroacetate → Resulting group: Methylcarboxymethyl group Addition compound: Chloroacetic acid → Resulting group: Carboxymethyl group Addition compound: Propane Sultone → Group obtained: Sulfopropyl group Addition compound: Benzyl chloride → Group obtained: Benzyl group

反応生成物(A)の製造方法も特に限定されない。反応生成物(a)とグリシジルトリメチルアンモニウムのハロゲン化物とを適切な条件で反応させればよい。上記のように反応生成物(a)を含有する液体を次の反応生成物(A)を得るための出発原料とした場合を例とすれば、次のとおりである。すなわち、20〜40℃程度まで冷却された反応生成物(a)を含有する液体に、グリシジルトリメチルアンモニウムのハロゲン化物を、反応生成物(a)を含有する液体を得るために用いたニコチン酸アミドとグリシジルトリメチルアンモニウムのハロゲン化物とのモル比(ニコチン酸アミド/グリシジルトリメチルアンモニウムのハロゲン化物)を0.5〜2程度となる量添加する。必要に応じさらに溶媒としての水を若干量追加して、得られた液体を2〜4時間程度還流させる。この環流の際の温度は特に限定されないが、50℃程度から80℃程度とすることが具体例として挙げられる。この環流後の液体を室温まで冷却することにより、反応生成物(A)を含有する液体が得られる。   The method for producing the reaction product (A) is not particularly limited. The reaction product (a) and the glycidyltrimethylammonium halide may be reacted under appropriate conditions. As an example, the case where the liquid containing the reaction product (a) is used as a starting material for obtaining the next reaction product (A) as described above is as follows. That is, the nicotinic acid amide used to obtain the liquid containing the reaction product (a) by using a halide of glycidyltrimethylammonium in the liquid containing the reaction product (a) cooled to about 20 to 40 ° C. And a glycidyltrimethylammonium halide molar ratio (nicotinamide / glycidyltrimethylammonium halide) in an amount of about 0.5 to 2. If necessary, a small amount of water as a solvent is further added, and the obtained liquid is refluxed for about 2 to 4 hours. Although the temperature at the time of this reflux is not specifically limited, As a specific example, about 50 to 80 degreeC is mentioned. By cooling the liquid after this reflux to room temperature, a liquid containing the reaction product (A) is obtained.

上記の製造方法により得られる反応生成物(A)は、反応生成物(a)が含有すると考えられるピリジニウムアミド化合物が、そのアミド基を反応部位としてグリシジルトリメチルアンモニウムのハロゲン化物と反応してなる化合物(α)を含有すると考えられる。上記の付加化合物がエチレンクロルヒドリンの場合における化合物(α)の具体例として、下記式(I)に示される化合物(α1)(1−(2−ヒドロキシエチル−3−[N−(1−トリメチルアンモニオー2−ヒドロキシプロピル)カルバモイル]−ピリジニウムイオン)が挙げられる。

Figure 0005747359
The reaction product (A) obtained by the above production method is a compound obtained by reacting a pyridinium amide compound considered to be contained in the reaction product (a) with a glycidyltrimethylammonium halide using the amide group as a reaction site. It is thought to contain (α). As a specific example of the compound (α) when the above addition compound is ethylene chlorohydrin, the compound (α1) (1- (2-hydroxyethyl-3- [N- (1- Trimethylammonio 2-hydroxypropyl) carbamoyl] -pyridinium ion).
Figure 0005747359

また、上記の製造方法により得られる反応生成物(A)は、そのアミド基および水酸基を反応部位としてグリシジルトリメチルアンモニウムのハロゲン化物と反応してなる、化合物(β)を含有している可能性もある。上記の付加化合物がエチレンクロルヒドリンの場合における化合物(β)の具体例として、下記式(II)に示される化合物(β1)が挙げられる。   Further, the reaction product (A) obtained by the above production method may contain a compound (β) obtained by reacting with the halide of glycidyltrimethylammonium with the amide group and hydroxyl group as reaction sites. is there. A specific example of the compound (β) in the case where the above addition compound is ethylene chlorohydrin includes a compound (β1) represented by the following formula (II).

Figure 0005747359
Figure 0005747359

この反応生成物(A)は亜鉛めっき浴においても、亜鉛合金めっき浴においても、優れた添加剤として機能することができる。以下、反応生成物(A)に含まれると考えられる上記式(I)で表わされる化合物(α1)を具体例として、反応生成物(A)の機能について説明する。   This reaction product (A) can function as an excellent additive in both a zinc plating bath and a zinc alloy plating bath. Hereinafter, the function of the reaction product (A) will be described using the compound (α1) represented by the formula (I) considered to be contained in the reaction product (A) as a specific example.

化合物(α1)は、アルカリ性である亜鉛系めっき浴中で加水分解されたり、めっき析出のための電解によって電気分解されたりしても、化合物(α1)の分解生成物やその重合体(本明細書において「分解生成物等」という。)は可溶性を維持することができる。例えば、化合物(α1)におけるアミド結合が加水分解されても、アルカリ性であるめっき浴中に形成される分解生成物は、4級アミノ基を有するカチオン化合物とニコチン酸骨格を有するカルボン酸イオンとなる。このため、電解時間の増加に伴いめっき浴に添加剤の分解生成物等に基づく不溶性物質(油状物質であったり、樹脂状の物質であったりする。)が蓄積することに起因する問題が生じにくい。このような不溶性物質が生じる場合には、その性状が油状のものはめっき浴の液面に浮くように存在し、樹脂状のものはめっき浴中に浮遊し、いずれも被めっき部材の表面に吸着され、めっき外観の低下や耐食性などの特性低下をもたらす。また、化合物(α1)は不溶性物質を生じにくいため、めっき浴中の添加濃度を高めることができ、結果的に優れた外観(光沢など)を有する亜鉛系めっき皮膜が幅広いめっき条件で得られやすくなる。なお、反応生成物(A)が化合物(β)を含有する場合であっても上記の機能は得られると期待される。   Even if the compound (α1) is hydrolyzed in an alkaline zinc-based plating bath or electrolyzed by electrolysis for plating deposition, a decomposition product of the compound (α1) or a polymer thereof (this specification) "Degradation products etc.") can maintain solubility. For example, even if the amide bond in the compound (α1) is hydrolyzed, the decomposition product formed in the alkaline plating bath becomes a cation compound having a quaternary amino group and a carboxylate ion having a nicotinic acid skeleton. . For this reason, as the electrolysis time increases, problems arise due to accumulation of insoluble substances (oily substances or resinous substances) based on decomposition products of additives in the plating bath. Hateful. When such an insoluble material is generated, the oily substance exists so as to float on the surface of the plating bath, and the resinous substance floats in the plating bath, both of which are on the surface of the member to be plated. Adsorption causes deterioration of the plating appearance and corrosion resistance. In addition, since the compound (α1) hardly generates insoluble substances, the concentration of addition in the plating bath can be increased, and as a result, a zinc-based plating film having an excellent appearance (such as gloss) is easily obtained under a wide range of plating conditions. Become. In addition, even if it is a case where a reaction product (A) contains a compound ((beta)), it is anticipated that said function will be acquired.

亜鉛めっき浴が化合物(α1)を含むと考えられる反応生成物(A)を含有する場合には反応生成物(A)は光沢剤として機能し、得られる亜鉛めっき皮膜は光沢を有する。また、この場合には、反応生成物(A)は得られる亜鉛めっき皮膜の析出速度の電流密度の依存性を緩和し、亜鉛めっき皮膜の均一電着性やつきまわり性を向上させることができる。さらに、これらの機能は、反応生成物(A)の亜鉛めっき浴中の含有量に対する依存性が低く、0.1g/L程度の低含有量から15g/L程度の高含有量の幅広い範囲の電流密度で光沢を有する亜鉛めっき皮膜が得られる。   When the galvanizing bath contains the reaction product (A) that is considered to contain the compound (α1), the reaction product (A) functions as a brightener, and the resulting galvanized film has gloss. In this case, the reaction product (A) can ease the dependence of the deposition rate of the obtained galvanized film on the current density, and can improve the throwing power and throwing power of the galvanized film. . Furthermore, these functions are less dependent on the content of the reaction product (A) in the galvanizing bath, and range from a low content of about 0.1 g / L to a high content of about 15 g / L. A galvanized film having gloss at current density is obtained.

したがって、亜鉛めっき浴が反応生成物(A)を含有する場合には、被めっき部材の被めっき面が凹凸を有し電流密度を均一にすることが困難な場合であっても、得られた亜鉛めっき皮膜は均一電着性およびつきまわり性が高く、かつめっき皮膜の光沢度の均一性も高い。その上、亜鉛めっき浴の組成管理、特に添加剤濃度の管理が容易である。それゆえ、反応生成物(A)を添加剤成分として用いることによって、優れた品質の亜鉛めっき皮膜を有する亜鉛系めっき部材が生産性高く得られる。   Therefore, when the galvanizing bath contains the reaction product (A), it was obtained even when the surface to be plated of the member to be plated had irregularities and it was difficult to make the current density uniform. The galvanized film has high throwing power and throwing power, and the glossiness of the plated film is also high. In addition, it is easy to manage the composition of the galvanizing bath, especially the additive concentration. Therefore, by using the reaction product (A) as an additive component, a zinc-based plated member having an excellent quality galvanized film can be obtained with high productivity.

亜鉛合金めっき浴が反応生成物(A)を含有する場合も、反応生成物(A)は光沢剤として機能し、幅広い電流密度の範囲で優れた光沢を有する亜鉛合金めっき皮膜が得られる。また、通常光沢剤は、一次光沢剤と二次光沢剤とに分類できるところ、反応生成物(A)は亜鉛合金めっき浴中では両者の役割を行うため、一次光沢剤や二次光沢剤を追加的に使用しなくとも、優れた外観を有する亜鉛合金めっきを得ることができる。さらに、反応生成物(A)に含有されると考えられる化合物(α)は浴可溶性金属含有物質に係る金属元素(例えばニッケル)とめっき浴中で化学的な相互作用が生じにくいため、反応生成物(A)の含有量が変化したことによるめっき浴の液性状(例えば液体の透過率)の変化が少ない。それゆえ、本実施形態に係るめっき浴は、めっき浴の組成管理が容易であり、生産性に優れる。   Even when the zinc alloy plating bath contains the reaction product (A), the reaction product (A) functions as a brightener, and a zinc alloy plating film having excellent gloss in a wide current density range is obtained. In addition, normal brighteners can be classified into primary brighteners and secondary brighteners. Since reaction product (A) plays both roles in the zinc alloy plating bath, primary brighteners and secondary brighteners can be used. Even without additional use, a zinc alloy plating having an excellent appearance can be obtained. Furthermore, the compound (α), which is considered to be contained in the reaction product (A), is unlikely to cause chemical interaction in the plating bath with the metal element (for example, nickel) related to the bath-soluble metal-containing material. There is little change in the liquid property (for example, liquid permeability) of the plating bath due to the change in the content of the product (A). Therefore, the plating bath according to this embodiment is easy to manage the composition of the plating bath and is excellent in productivity.

しかも、亜鉛合金めっき浴が反応生成物(A)を含有する場合には、当該めっき浴から得られた亜鉛合金めっき皮膜は、従来技術に係る添加剤を含有する亜鉛合金めっき浴から形成される亜鉛合金めっき皮膜に比べて、耐食性に優れる。その詳細は実施例において示すが、本実施形態に係る反応生成物(A)を含有する亜鉛合金めっき浴から得られた亜鉛合金めっき皮膜を鉄系部材(本明細書において、「鉄系部材」とは鉄系金属表面を有する部材を意味する。)上に有する部材(亜鉛合金めっき部材)を耐食性試験に供したときに、従来技術に係る光沢剤を含有する亜鉛合金めっき浴から得られた亜鉛合金めっき部材に比べて、亜鉛合金めっき皮膜が腐食されたことに基づき生じる赤錆の発生の程度が少なく、亜鉛合金めっき皮膜からなる面の性状(表面粗さなど)が劣化しにくい。すなわち、反応生成物(A)を添加剤成分として用いることによって、耐食性に優れる亜鉛合金めっき皮膜を有する亜鉛系めっき部材が生産性高く得られる。   And when a zinc alloy plating bath contains the reaction product (A), the zinc alloy plating film obtained from the said plating bath is formed from the zinc alloy plating bath containing the additive which concerns on a prior art. Excellent corrosion resistance compared to zinc alloy plating film. Although the details are shown in the examples, the zinc alloy plating film obtained from the zinc alloy plating bath containing the reaction product (A) according to the present embodiment is represented by an iron-based member (in this specification, “iron-based member”). Means a member having an iron-based metal surface.) When a member (zinc alloy plated member) on the surface was subjected to a corrosion resistance test, it was obtained from a zinc alloy plating bath containing a brightener according to the prior art. Compared to a zinc alloy plated member, the degree of red rust generated due to the corrosion of the zinc alloy plated film is small, and the properties (surface roughness, etc.) of the surface made of the zinc alloy plated film are less likely to deteriorate. That is, by using the reaction product (A) as an additive component, a zinc-based plated member having a zinc alloy plating film having excellent corrosion resistance can be obtained with high productivity.

上記の反応生成物(A)の亜鉛系めっき浴における含有量は特に限定されない。過度に少ない場合には反応生成物(A)を含有させたことに基づく効果(優れた外観を有するめっきが得られることなど)が得られにくく、過度に多い場合には電流密度が高い条件で光沢を有するめっきを得られにくくなることが懸念される。したがって、反応生成物(A)の亜鉛系めっき浴における含有量は、0.1g/L以上15g/L以下とすることが好ましく、0.5g/L以上10g/L以下とすることがより好ましく、1g/L以上5g/L以下とすることが特に好ましい。   The content of the reaction product (A) in the zinc plating bath is not particularly limited. When the amount is excessively small, it is difficult to obtain an effect based on the inclusion of the reaction product (A) (such as obtaining a plating having an excellent appearance). When the amount is excessively large, the current density is high. There is a concern that it may be difficult to obtain a glossy plating. Therefore, the content of the reaction product (A) in the zinc-based plating bath is preferably 0.1 g / L or more and 15 g / L or less, and more preferably 0.5 g / L or more and 10 g / L or less. 1 g / L or more and 5 g / L or less is particularly preferable.

なお、反応生成物(A)は、高圧水銀灯のi線(波長365nm)が照射されると、青色(発光波長:450〜460nm程度)の発光を呈する。この発光を与える構造は明確でないが、化合物(α)や化合物(β)が有するアミド結合をなす部分、特にそのカルボニル基と、アミド結合の窒素に対してβ位にある水酸基との相互作用に基づくものである可能性がある。従来技術に係るジンケート型亜鉛系めっき浴では上記のような発光を呈する成分が添加剤として含有されることはないため、あるジンケート型亜鉛系めっき浴が本実施形態に係る亜鉛系めっき浴であることを、この発光の有無により確認することができる。すなわち、本実施形態は、一態様として、ジンケート型亜鉛系めっき浴に高圧水銀灯のi線を照射したときに青色の発光が観測されるか否かによってそのジンケート型亜鉛系めっき浴に反応生成物(A)が含まれているか否かを判定する方法も提供する。   The reaction product (A) emits blue light (emission wavelength: about 450 to 460 nm) when irradiated with i-line (wavelength 365 nm) of a high-pressure mercury lamp. The structure that gives this light emission is not clear, but the interaction between the amide bond part of the compound (α) and the compound (β), in particular the carbonyl group, and the hydroxyl group at the β position relative to the nitrogen of the amide bond. It may be based. Since the zincate-based zinc plating bath according to the prior art does not contain a component exhibiting light emission as described above as an additive, a certain zincate-type zinc-based plating bath is the zinc-based plating bath according to this embodiment. This can be confirmed by the presence or absence of this light emission. That is, as an aspect, the present embodiment has a reaction product in a zincate zinc plating bath depending on whether or not blue light emission is observed when i-line of a high pressure mercury lamp is irradiated on the zincate zinc plating bath. A method for determining whether (A) is included is also provided.

(2−2)その他の添加剤成分
本実施形態に係る亜鉛系めっき浴は、上記の反応生成物(A)以外の添加剤成分を含有してもよい。そのような添加剤成分またはめっき浴中で添加剤成分を与える材料として、次のようなものが例示される。
(2-2) Other additive components The zinc-based plating bath according to the present embodiment may contain additive components other than the reaction product (A). Examples of such an additive component or a material that provides the additive component in the plating bath include the following.

i)一次光沢剤
本実施形態に係る亜鉛系めっき浴は、添加剤成分の一種として一次光沢剤を含有してもよい。かかる一次光沢剤の例として、各種亜鉛めっき浴に使用されるアニオン系界面活性剤、ノニオン系界面活性剤、ポリアミン化合物および水溶性カチオン高分子化合物などの水溶性の有機化合物などを挙げることができる。
このポリアミン化合物および水溶性カチオン高分子化合物として、ポリアリルアミン、ポリエポキシポリアミン、ポリアミドポリアミン、およびポリアルキレンポリアミン、などが例示される。
i) Primary brightener The zinc-based plating bath according to the present embodiment may contain a primary brightener as a kind of additive component. Examples of such primary brighteners include water-soluble organic compounds such as anionic surfactants, nonionic surfactants, polyamine compounds and water-soluble cationic polymer compounds used in various zinc plating baths. .
Examples of the polyamine compound and the water-soluble cationic polymer compound include polyallylamine, polyepoxypolyamine, polyamide polyamine, and polyalkylene polyamine.

ポリアリルアミンの具体例として、ジアリルジメチルアンモニウムクロライドと二酸化硫黄の共重合体などが挙げられる。ポリエポキシポリアミンの具体例として、エチレンジアミンとエピクロルヒドリンとの縮合重合体、ジメチルアミノプロピルアミンとエピクロルヒドリンとの縮合重合体、イミダゾールとエピクロルヒドリンとの縮合重合体、1−メチルイミダゾールや2−メチルイミダゾール等のイミダゾール誘導体とエピクロルヒドリンとの縮合重合体、アセトグアナミン、ベンゾグアナミン等のトリアジン誘導体などを含む複素環状アミンとエピクロルヒドリンとの縮合重合体などが挙げられる。ポリアミドポリアミンの具体例として、3−ジメチルアミノプロピル尿素とエピクロルヒドリンとの縮合重合体、ビス(N,N−ジメチルアミノプロピル)尿素とエピクロルヒドリンとの縮合重合体等のポリアミンポリ尿素樹脂、N,N−ジメチルアミノプロピルアミンとアルキレンジカルボン酸とエピクロルヒドリンとの縮合重合体等の水溶性ナイロン樹脂などが挙げられる。また、ポリアルキレンポリアミンの具体例として、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンペンタミン、ジメチルアミノプロピルアミンと2,2’−ジクロルジエチルエーテルとの縮合重合体、ジメチルアミノプロピルアミンと1,3−ジクロルプロパンとの縮合重合体、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパンと2,2’−ジクロルジエチルエーテルとの縮合重合体、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパンと1,4−ジクロルブタンとの縮合重合体、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパンと1,3−ジクロルプロパン−2−オールとの縮合重合体などが挙げられる。   Specific examples of polyallylamine include a copolymer of diallyldimethylammonium chloride and sulfur dioxide. Specific examples of polyepoxypolyamines include condensation polymers of ethylenediamine and epichlorohydrin, condensation polymers of dimethylaminopropylamine and epichlorohydrin, condensation polymers of imidazole and epichlorohydrin, and imidazoles such as 1-methylimidazole and 2-methylimidazole. Examples thereof include condensation polymers of derivatives and epichlorohydrin, and condensation polymers of heterocyclic amines including triazine derivatives such as acetoguanamine and benzoguanamine, and epichlorohydrin. Specific examples of the polyamide polyamine include polyamine polyurea resins such as a condensation polymer of 3-dimethylaminopropylurea and epichlorohydrin, a condensation polymer of bis (N, N-dimethylaminopropyl) urea and epichlorohydrin, N, N- Examples thereof include water-soluble nylon resins such as a condensation polymer of dimethylaminopropylamine, alkylenedicarboxylic acid and epichlorohydrin. Specific examples of polyalkylene polyamines include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, hexamethylenepentamine, a condensation polymer of dimethylaminopropylamine and 2,2′-dichlorodiethyl ether, dimethylaminopropylamine. And 1,3-dichloropropane condensation polymer, N, N, N ′, N′-tetramethyl-1,3-diaminopropane and 2,2′-dichlorodiethyl ether condensation polymer, N , N, N ′, N′-tetramethyl-1,3-diaminopropane and 1,4-dichlorobutane condensation polymer, N, N, N ′, N′-tetramethyl-1,3-diaminopropane and Examples thereof include condensation polymers with 1,3-dichloropropan-2-ol.

なお、上記の反応生成物(A)は一次光沢剤としての機能を有するため、上記の一次光沢剤の分解生成物が亜鉛系めっき皮膜の外観や特性(耐食性など)を劣化させる可能性がある場合には、本実施形態に係る亜鉛系めっき浴に上記の一次光沢剤を含有させなくとも優れた外観を有する亜鉛系めっき皮膜を得ることができる。この傾向は、亜鉛系めっき浴が亜鉛合金めっき浴の場合に特に顕著である。通常、一次光沢剤を含有しない亜鉛合金めっき浴から外観に優れる亜鉛合金めっき皮膜を得ることは困難であるが、上記の反応生成物(A)を含有する場合には、一次光沢剤を含有することなく優れた外観の亜鉛合金めっき皮膜を安定的に得ることができる。なお、本実施形態に係る亜鉛系めっき浴が亜鉛めっき浴の場合には、一次光沢剤を含有させた方が優れた外観の亜鉛めっき皮膜がより安定的に得られることもある。   In addition, since said reaction product (A) has a function as a primary brightener, the decomposition product of said primary brightener may deteriorate the external appearance and characteristics (corrosion resistance etc.) of a zinc-type plating film. In this case, a zinc-based plating film having an excellent appearance can be obtained without including the primary brightener in the zinc-based plating bath according to the present embodiment. This tendency is particularly remarkable when the zinc-based plating bath is a zinc alloy plating bath. Usually, it is difficult to obtain a zinc alloy plating film having an excellent appearance from a zinc alloy plating bath not containing a primary brightener, but when the reaction product (A) is contained, it contains a primary brightener. A zinc alloy plating film having an excellent appearance can be stably obtained without any problems. When the zinc-based plating bath according to the present embodiment is a galvanizing bath, a galvanized film having an excellent appearance may be obtained more stably when a primary brightener is contained.

ii)二次光沢剤
本実施形態に係る亜鉛系めっき浴は、添加剤成分の一種として一次光沢剤を含有してもよい。特に、光沢性の向上とつきまわり性の向上の観点からは、二次光沢剤として、芳香族アルデヒドおよびピリジニウム化合物のうち少なくとも一方を含有してもよい。
二次光沢剤として機能することができる芳香族アルデヒドとしては、アニスアルデヒド、ベラトルアルデヒド、サリチルアルデヒド、バニリン、ピペロナール、およびp−ヒドロキシベンズアルデヒドなどを挙げることができる。光沢性の向上と亜鉛系めっき浴に含有される化合物の安定性の観点から、二次光沢剤として含有されることが好ましい芳香族アルデヒドとして、ベラトルアルデヒド、およびバニリンが例示される。
二次光沢剤として機能することができるピリジニウム化合物としては、ベンジルピリジニウムカルボキシレート(塩化3−カルボキシベンジルピリジニウム)、および塩化3−カルバモイルベンジルピリジニウムなどを挙げることができる。
ii) Secondary brightener The zinc-based plating bath according to this embodiment may contain a primary brightener as a kind of additive component. In particular, from the viewpoint of improving glossiness and throwing power, at least one of an aromatic aldehyde and a pyridinium compound may be contained as a secondary brightener.
Aromatic aldehydes that can function as secondary brighteners include anisaldehyde, veratraldehyde, salicylaldehyde, vanillin, piperonal, and p-hydroxybenzaldehyde. Veratraldehyde and vanillin are exemplified as aromatic aldehydes preferably contained as a secondary brightener from the viewpoint of improvement of gloss and stability of compounds contained in the zinc-based plating bath.
Examples of the pyridinium compound that can function as a secondary brightener include benzylpyridinium carboxylate (3-carboxybenzylpyridinium chloride) and 3-carbamoylbenzylpyridinium chloride.

iii)めっき促進剤
「めっき促進剤」とは、めっき金属の析出を促進させる機能を有するものであって、被めっき面に吸着してその吸着した領域近傍で金属イオンの還元反応が生じることを促進しているものと推測される。
そのようなめっき促進剤として、チアジアゾール骨格を有する化合物であるチアジアゾール化合物が例示される。チアジアゾール骨格に含まれる3つの硫黄が被めっき面に化学吸着し、この化学吸着した領域での金属イオンの還元反応を促進している可能性がある。チアジアゾール化合物の具体例として、2,5−ジメルカプト−1,3,4−チアジアゾール、2−チオ酢酸−5−メルカプト−1,3,4−チアジアゾール、2,5−ジチオ酢酸−1,3,4−チアジアゾール、2−ヒドロキシエチルチオ−5−メルカプト−1,3,4−チアジアゾール、2,5−ジヒドロキシエチルチオ−1,3,4−チアジアゾール、エピクロルヒドリン改質2,5−ジメルカプト−1,3,4−チアジアゾール、ビス(1,3,4−チアジアゾール−2,5−ジイル)などが挙げられる。
iii) Plating Accelerator “Plating Accelerator” has a function of accelerating the deposition of plating metal, and it is adsorbed on the surface to be plated and causes a reduction reaction of metal ions in the vicinity of the adsorbed region. Presumed to be promoting.
As such a plating accelerator, a thiadiazole compound which is a compound having a thiadiazole skeleton is exemplified. There is a possibility that three sulfur contained in the thiadiazole skeleton are chemisorbed on the surface to be plated and promote the reduction reaction of metal ions in the chemisorbed region. Specific examples of thiadiazole compounds include 2,5-dimercapto-1,3,4-thiadiazole, 2-thioacetic acid-5-mercapto-1,3,4-thiadiazole, 2,5-dithioacetic acid-1,3,4 Thiadiazole, 2-hydroxyethylthio-5-mercapto-1,3,4-thiadiazole, 2,5-dihydroxyethylthio-1,3,4-thiadiazole, epichlorohydrin modified 2,5-dimercapto-1,3 4-thiadiazole, bis (1,3,4-thiadiazole-2,5-diyl) and the like can be mentioned.

iv)キレート剤
本実施形態に係る亜鉛系めっき浴が亜鉛合金めっき浴である場合には、キレート剤を含有させてもよい。
キレート剤の具体例として、酒石酸、クエン酸、グルコン酸、エチレンジアミン、ヘキサミン、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,2−ジアミノブタン、1,4−ジアミノブタン、トリアミノトリエチルアミン、メチルアミノプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエタノールアミノプロピルアミン、2−ヒドロキシエチルアミノプロピルアミン、1,3−ビス−(3−アミノプロポキシ)エタン、ニトリロトリ酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)などが例示される。このキレート剤は、例えばジエチレントリアミンやトリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなどのポリアミン化合物のように、一次光沢剤としての機能も有するキレート剤であってもよい。なお、キレート剤がカルボン酸など酸の部分構造を有する場合には、キレート剤はフリーの酸の形態として亜鉛合金めっき浴に添加されてもよいし、塩として添加されてもよい。あるいは、アルカリ性である亜鉛合金めっき浴中で加水分解されることにより酸イオンを形成しうる誘導体(例えばエステル)の形態で亜鉛合金めっき浴に添加されてもよい。
iv) Chelating agent When the zinc-based plating bath according to the present embodiment is a zinc alloy plating bath, a chelating agent may be contained.
Specific examples of chelating agents include tartaric acid, citric acid, gluconic acid, ethylenediamine, hexamine, 1,2-diaminopropane, 1,3-diaminopropane, 1,2-diaminobutane, 1,4-diaminobutane, triaminotriethylamine , Methylaminopropylamine, monoethanolamine, diethanolamine, triethanolamine, diethanolaminopropylamine, 2-hydroxyethylaminopropylamine, 1,3-bis- (3-aminopropoxy) ethane, nitrilotriacetic acid (NTA), ethylenediamine Examples include tetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), and triethylenetetraminehexaacetic acid (TTHA). This chelating agent may be a chelating agent that also functions as a primary brightener, such as polyamine compounds such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and pentaethylenehexamine. When the chelating agent has an acid partial structure such as carboxylic acid, the chelating agent may be added to the zinc alloy plating bath as a free acid form or as a salt. Alternatively, it may be added to the zinc alloy plating bath in the form of a derivative (for example, ester) that can form an acid ion by hydrolysis in an alkaline zinc alloy plating bath.

v)酸化防止剤、消泡剤等
酸化防止剤として、フェノール、カテコール、レゾルシン、ヒドロキノン、ピロガロール等のヒドロキシフェニル化合物や、L−アスコルビン酸、ソルビトール等が例示される。なお、上記のキレート剤が還元性物質である場合には、そのキレート剤が酸化防止剤の機能を有しているため、酸化防止剤を含有させなくともよい。
消泡剤として、シリコーン系消泡剤や、界面活性剤、ポリエーテル、高級アルコール等の有機系消泡剤が例示される。
v) Antioxidants, antifoaming agents, etc. Antioxidants include hydroxyphenyl compounds such as phenol, catechol, resorcin, hydroquinone, pyrogallol, L-ascorbic acid, sorbitol and the like. In addition, when said chelating agent is a reducing substance, since the chelating agent has the function of antioxidant, it is not necessary to contain antioxidant.
Examples of antifoaming agents include silicone-based antifoaming agents and organic antifoaming agents such as surfactants, polyethers, and higher alcohols.

(3)溶媒、液性
本実施形態に係るめっき浴の溶媒は水を主成分とする。水以外の溶媒としてアルコール、エーテル、ケトンなど水への溶解度が高い有機溶媒を混在させてもよい。この場合には、めっき浴全体の安定性および廃液処理への負荷の緩和の観点から、その比率は全溶媒に対して10体積%以下とすることが好ましい。
(3) Solvent, liquidity The solvent of the plating bath which concerns on this embodiment has water as a main component. As a solvent other than water, an organic solvent having high solubility in water, such as alcohol, ether, and ketone, may be mixed. In this case, the ratio is preferably 10% by volume or less with respect to the total solvent from the viewpoint of the stability of the entire plating bath and the relaxation of the load on the waste liquid treatment.

本実施形態に係る亜鉛系めっき浴はジンケート型のめっき浴であるから、アルカリ性である。めっき浴をアルカリ性とするために用いられる材料(本明細書において「アルカリ成分」ともいう。)の種類は特に限定されない。水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物など公知の材料を用いればよい。   Since the zinc-based plating bath according to this embodiment is a zincate-type plating bath, it is alkaline. The type of material used to make the plating bath alkaline (also referred to as “alkaline component” in this specification) is not particularly limited. A known material such as an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide may be used.

本実施形態に係る亜鉛系めっき浴に含まれるアルカリ成分の含有量は特に限定されない。過度に少ない場合には亜鉛系めっき浴の液性をアルカリ性とすることができず、めっき浴中でジンケートイオンを生成することが困難となる。一方、アルカリ成分の含有量が過度に高い場合には、亜鉛系めっき浴の安定性が低下して、得られる亜鉛系めっき皮膜の外観が低下したりつきまわり性が低下したりすることが懸念される。したがって、亜鉛系めっき浴に含まれるアルカリ成分の含有量は、水酸化ナトリウム換算で40g/L以上400g/L以下とすることが好ましく、80g/L以上250g/L以下とすることがより好ましく、100g/L以上200g/L以下とすることが特に好ましい。   The content of the alkali component contained in the zinc-based plating bath according to this embodiment is not particularly limited. If the amount is excessively small, the liquidity of the zinc-based plating bath cannot be made alkaline, and it is difficult to generate zincate ions in the plating bath. On the other hand, when the content of the alkali component is excessively high, the stability of the zinc-based plating bath may decrease, and the appearance of the resulting zinc-based plating film may decrease or the throwing power may decrease. Is done. Therefore, the content of the alkali component contained in the zinc-based plating bath is preferably 40 g / L or more and 400 g / L or less, more preferably 80 g / L or more and 250 g / L or less in terms of sodium hydroxide, It is particularly preferable that the amount be 100 g / L or more and 200 g / L or less.

(4)調製方法
本実施形態に係る亜鉛系めっき浴の調製方法は特に限定されない。亜鉛めっき浴の場合には、アルカリ成分、亜鉛源および反応生成物(A)を含む成分(そのような成分の具体例として前述の反応生成物を含む液体が挙げられ、以下、この成分を「反応生成物(A)源」ともいう。)、ならびに必要に応じ任意添加成分として前述のその他の添加剤成分などを水などの溶媒に溶解させることによって調製することができる。亜鉛合金めっき浴の場合には、アルカリ成分、亜鉛源、金属源および反応生成物(A)源、ならびに必要に応じ任意添加成分として前述のその他の添加剤成分などを溶媒に溶解させることによって調製することができる。通常は、溶媒にアルカリ成分を添加し、続いて他の成分を添加することによって、作業性を低下させることなくかつ安全に亜鉛系めっき浴を調製することができる。
(4) Preparation method The preparation method of the zinc-type plating bath which concerns on this embodiment is not specifically limited. In the case of a galvanizing bath, a component containing an alkali component, a zinc source and a reaction product (A) (a liquid containing the aforementioned reaction product is given as a specific example of such a component. It can also be prepared by dissolving the above-mentioned other additive components and the like as optional additional components in a solvent such as water. In the case of a zinc alloy plating bath, it is prepared by dissolving an alkali component, a zinc source, a metal source and a reaction product (A) source, and, if necessary, other additive components as described above in a solvent. can do. Usually, a zinc-based plating bath can be prepared safely and without reducing workability by adding an alkaline component to a solvent and then adding other components.

2.ジンケート型亜鉛系めっき浴用添加剤
本実施形態に係るジンケート型亜鉛系めっき浴用添加剤は、上記の本実施形態に係る亜鉛系めっき浴に含有される添加剤成分を含有する。すなわち、本実施形態に係るジンケート型亜鉛系めっき浴用添加剤は反応生成物(A)を含有し、必要に応じ、さらに、一次光沢剤、二次光沢剤、めっき促進剤などの他の添加剤成分を含有する。なお、前述のように、反応生成物(A)は高圧水銀灯のi線(波長365nm)が照射されたときに青色の発光を呈するため、ある添加剤が反応生成物(A)を含有しているか否かを、その添加剤に高圧水銀灯のi線を照射したときに青色の発光が観測されるか否かによって判定することができる。
2. Additive for zincate-type zinc-based plating bath The additive for zincate-type zinc-based plating bath according to the present embodiment contains an additive component contained in the zinc-based plating bath according to the present embodiment. That is, the additive for zincate-type zinc-based plating bath according to the present embodiment contains the reaction product (A), and if necessary, other additives such as a primary brightener, a secondary brightener, and a plating accelerator. Contains ingredients. As mentioned above, since the reaction product (A) emits blue light when irradiated with i-line (wavelength 365 nm) of a high-pressure mercury lamp, an additive contains the reaction product (A). Whether or not blue emission is observed when the additive is irradiated with i-line of a high-pressure mercury lamp can be determined.

本実施形態に係るジンケート型亜鉛系めっき浴用添加剤における反応生成物(A)の含有量は特に限定されない。反応生成物(A)は溶解度が高いため、50g/L程度まで含有量を高めることができる。
本実施形態に係るジンケート型亜鉛系めっき浴用添加剤が反応生成物(A)以外の成分を含有する場合におけるそれらの含有量は、その添加剤の機能との関係で適宜設定されるべきものである。
The content of the reaction product (A) in the zincate-type zinc plating bath additive according to this embodiment is not particularly limited. Since the reaction product (A) has high solubility, the content can be increased to about 50 g / L.
In the case where the additive for zincate-type zinc plating bath according to the present embodiment contains components other than the reaction product (A), their contents should be appropriately set in relation to the function of the additive. is there.

3.亜鉛系めっき部材の製造方法
亜鉛系めっき部材は、本実施形態に係る亜鉛系めっき浴に被めっき部材を浸漬させ、被めっき部材をカソード(陰極)として電解を行うことによって得ることができる。被めっき部材の材質は導電性を有する限り特に限定されない。鉄系材料などの金属系材料、および樹脂系材料やセラミックス系材料などからなる導電性を有さない材料の表面に無電解めっきなどにより導電性材料からなる層が形成されたものが例示される。被めっき部材の形状も特に限定されない。板材や棒材、線材などの一次加工品、ねじ、ボルト、プレス加工品などの二次加工品が挙げられる。
なお、アノード(陽極)を構成する材料は特に限定されない。通常は、安価で入手しやすい鉄系材料が用いられる。
3. Method for Producing Zinc-Based Plating Member A zinc-based plated member can be obtained by immersing a member to be plated in the zinc-based plating bath according to the present embodiment and performing electrolysis using the member to be plated as a cathode (cathode). The material of the member to be plated is not particularly limited as long as it has conductivity. Examples are those in which a layer made of a conductive material is formed on the surface of a metal-based material such as an iron-based material and a non-conductive material made of a resin-based material or a ceramic-based material by electroless plating or the like . The shape of the member to be plated is not particularly limited. Examples include primary processed products such as plate materials, bar materials, and wire materials, and secondary processed products such as screws, bolts, and pressed products.
In addition, the material which comprises an anode (anode) is not specifically limited. Usually, iron-based materials that are inexpensive and easily available are used.

電解における電流密度は特に限定されない。電流密度が過度に低い場合には得られる亜鉛系めっき皮膜の析出速度が低く生産性に劣り、電流密度が過度に高い場合には得られる亜鉛めっき皮膜の外観が劣化したり、均一電着性、つきまわり性などが低下したりすることが懸念されることを考慮して、適宜設定すればよい。生産性を高めることとめっき皮膜の品質を高めることとを両立する観点から、0.01A/dm以上10A/dm以下とすることが好ましく、0.5A/dm以上6A/dm以下とすることがより好ましく、0.5A/dm以上3A/dm以下とすることが特に好ましい。 The current density in electrolysis is not particularly limited. When the current density is excessively low, the deposition rate of the obtained zinc-based plating film is low and the productivity is inferior. When the current density is excessively high, the appearance of the obtained zinc-plating film is deteriorated or the electrodeposition is uniform. Considering that there is a concern that the throwing power may be lowered, it may be set as appropriate. From the viewpoint of improving productivity and improving the quality of the plating film, it is preferably 0.01 A / dm 2 or more and 10 A / dm 2 or less, and 0.5 A / dm 2 or more and 6 A / dm 2 or less. And more preferably 0.5 A / dm 2 or more and 3 A / dm 2 or less.

電解におけるめっき浴の温度(めっき浴温度)は室温程度(25℃程度)で行えばよい。めっき浴温度が過度に高い場合には、溶媒や低分子量の有機成分が揮発しやすくなることが懸念される。この揮発が顕著となると、液組成が安定せずめっき皮膜の品質安定性を維持することが困難となる。めっき浴温度が過度に低い場合には、めっき皮膜の析出速度が低下するなど生産性に悪影響を及ぼすことが懸念される。   The temperature of the plating bath in electrolysis (plating bath temperature) may be about room temperature (about 25 ° C.). When the plating bath temperature is excessively high, there is a concern that the solvent and low molecular weight organic components are likely to volatilize. When this volatilization becomes significant, the liquid composition becomes unstable and it becomes difficult to maintain the quality stability of the plating film. When the plating bath temperature is excessively low, there is a concern that the productivity may be adversely affected, for example, the deposition rate of the plating film may decrease.

電解時間(めっき時間)は、めっき浴の組成、上記の電流密度、めっき浴温度などによって決定されるめっき皮膜の析出速度と求めるめっき皮膜の厚さとから適宜設定される。   The electrolysis time (plating time) is appropriately set based on the deposition rate of the plating film determined by the composition of the plating bath, the current density, the plating bath temperature, and the like, and the desired thickness of the plating film.

めっき設備の構成は特に限定されない。板状または棒状のアノードに対向するようにカソードとしての被めっき部材を亜鉛系めっき浴中に配置し、亜鉛系めっき浴内で液攪拌を適宜行いながら電解して被めっき部材に亜鉛系めっき皮膜を形成してもよいし、ボルトなどの被めっき部材がその内部に入っているバレルを亜鉛系めっき浴中に浸漬させ、バレルを回転させながら電解を行うことで被めっき部材に亜鉛系めっき皮膜を形成してもよい。   The configuration of the plating facility is not particularly limited. A member to be plated as a cathode is placed in a zinc-based plating bath so as to face the plate-like or rod-shaped anode, and a zinc-based plating film is applied to the member to be plated by performing electrolysis while appropriately stirring the solution in the zinc-based plating bath. The barrel to be plated such as bolts is immersed in a zinc plating bath, and electrolysis is performed while rotating the barrel. May be formed.

以下、本発明の効果を実施例に基づいて説明するが、本発明はこれに限定されるものではない。   Hereinafter, although the effect of the present invention is explained based on an example, the present invention is not limited to this.

1.亜鉛系めっき浴の調製および亜鉛系めっき皮膜を有する部材の作製
[実施例1]
(1)反応生成物(A1)源の製造
ニコチン酸アミド97.7g(0.8mol)と水168.6gを容量が1000mlの三つ口フラスコに入れ攪拌し、このフラスコ内にエチレンクロロヒドリン70.9g(0.88mol)を投入した。投入後フラスコ内の液温を100℃に維持して4時間攪拌し、その後、フラスコ内の液を攪拌しながら放冷して液温を35℃まで低下させた後、フラスコ内にグリシジルトリメチルアンモニウムクロライドを主成分とする水溶液(四日市合成社製「カチオマスター(登録商標)G」、73%純分)166.7g(0.8mol)、水76.7mlを添加し撹拌した。続いて、フラスコ内の液温を65℃に調整し2時間環流して得られた反応物(以下、「反応生成物(A1)」ともいう。)を含む液体をめっき浴添加剤の一種として用いた。この液体は反応生成物(A)源の一種であり、以下、「反応生成物(A1)源」ともいう。得られた反応生成物(A1)源は、収量580.6g、固形分(すなわち、反応生成物(A1)の含有量)50重量%の褐色液体であった。
1. Preparation of a zinc-based plating bath and production of a member having a zinc-based plating film [Example 1]
(1) Production of reaction product (A1) source 97.7 g (0.8 mol) of nicotinamide and 168.6 g of water were placed in a 1000 ml three-necked flask and stirred, and ethylene chlorohydrin was placed in the flask. 70.9 g (0.88 mol) was added. After the addition, the liquid temperature in the flask was maintained at 100 ° C. and stirred for 4 hours, and then the liquid in the flask was allowed to cool while stirring to lower the liquid temperature to 35 ° C., and then glycidyltrimethylammonium in the flask. 166.7 g (0.8 mol) of an aqueous solution containing chloride as a main component (“Kachio Master (registered trademark) G” manufactured by Yokkaichi Synthesis Co., Ltd., 73% pure content) and 76.7 ml of water were added and stirred. Subsequently, a liquid containing a reaction product (hereinafter also referred to as “reaction product (A1)”) obtained by adjusting the liquid temperature in the flask to 65 ° C. and refluxing for 2 hours is a kind of plating bath additive. Using. This liquid is a kind of reaction product (A) source, and is hereinafter also referred to as “reaction product (A1) source”. The obtained reaction product (A1) source was a brown liquid having a yield of 580.6 g and a solid content (that is, the content of the reaction product (A1)) of 50% by weight.

(2)亜鉛めっき浴の調製
亜鉛源としての酸化亜鉛を、これに由来する浴可溶性亜鉛含有物質のめっき浴中の亜鉛換算含有量が12g/Lとなる量、アルカリ成分としての水酸化ナトリウムを、めっき浴1Lあたりの溶解量が120gとなる量、上記の反応生成物(A1)源を、めっき浴中の反応生成物(A1)の含有量が1.0g/Lとなる量(すなわち、反応生成物(A1)源としては2.0g/L)、およびN,N’−ビス[3−(ジメチルアミノ)プロピル尿素]と1,1’−オキシビス[2−クロロエタン]とのポリマー(ローディア日華社製「MIRAPOL WT」、以下、「ポリマー1」という。)を、ポリマー1に基づきめっき浴中に形成されるカチオンポリマー(以下、「カチオンポリマー1」という。)の含有量が2g/Lとなる量、純水からなる溶媒に溶解させて、浴可溶性亜鉛含有物質および化合物(A1)を含有するアルカリ性のジンケート型亜鉛めっき浴を調製した。
(2) Preparation of zinc plating bath Zinc oxide as a zinc source, an amount in which the zinc equivalent content in a plating bath of a bath-soluble zinc-containing substance derived therefrom is 12 g / L, sodium hydroxide as an alkali component The amount of dissolution of the reaction product (A1) per liter of the plating bath is 120 g, and the amount of the reaction product (A1) in the plating bath is 1.0 g / L. The reaction product (A1) source is 2.0 g / L), and a polymer of N, N′-bis [3- (dimethylamino) propylurea] and 1,1′-oxybis [2-chloroethane] (Rhodia “MIRAPOL WT” (hereinafter referred to as “Polymer 1”) manufactured by Nikka Corporation has a content of 2 g / cation polymer (hereinafter referred to as “cationic polymer 1”) formed in the plating bath based on Polymer 1. An alkaline zincate-type galvanizing bath containing a bath-soluble zinc-containing substance and compound (A1) was prepared by dissolving in an amount of L and a solvent comprising pure water.

(3)亜鉛めっき皮膜を有する亜鉛系めっき部材の作製
スターラー回転数1000rpmの液循環型ハルセル試験器(山本めっき試験器社製:スマートハルセルB−53−SM)を用意した。この試験器のめっき槽内の所定の位置に、縦45mm、横45mm、厚さ1mmのアノードとしての鉄板、および縦67mm、横100mm、厚さ0.3mmの被めっき部材(カソード)としての鉄板を配置した。めっき槽内に上記のめっき浴を液面が所定の高さとなるまで入れた。アノードおよびカソードをめっき電源に接続し、次の電解条件で電気めっきを行って、亜鉛めっき皮膜を有する亜鉛系めっき部材を得た。
電流:1A
通電時間:10分
めっき浴温度:25℃
上記の電流では、カソードの電流密度は0.1A/dmから5A/dmの範囲であった。
(3) Production of zinc-based plating member having galvanized film A liquid circulation type hull cell tester (manufactured by Yamamoto Plating Tester Co., Ltd .: Smart Hull Cell B-53-SM) having a stirrer rotation speed of 1000 rpm was prepared. At predetermined positions in the plating tank of this tester, an iron plate as an anode having a length of 45 mm, a width of 45 mm, and a thickness of 1 mm, and an iron plate as a member to be plated (cathode) having a length of 67 mm, a width of 100 mm, and a thickness of 0.3 mm Arranged. The above-described plating bath was placed in the plating tank until the liquid level reached a predetermined height. The anode and the cathode were connected to a plating power source, and electroplating was performed under the following electrolytic conditions to obtain a zinc-based plated member having a zinc plating film.
Current: 1A
Energizing time: 10 minutes Plating bath temperature: 25 ° C
In the above current, cathode current density ranged from 0.1 A / dm 2 of 5A / dm 2.

[実施例2]
実施例1に係るめっき浴の調製にあたり、上記の反応生成物(A1)源の配合量を変更して、めっき浴中の反応生成物(A1)の含有量を5.0g/Lとした以外は、実施例1と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛めっき皮膜を有する亜鉛系めっき部材を得た。
[Example 2]
In preparing the plating bath according to Example 1, the content of the reaction product (A1) in the plating bath was changed to 5.0 g / L by changing the blending amount of the reaction product (A1) source. Prepared a plating bath and electroplated by the same operation as in Example 1 to obtain a zinc-based plated member having a galvanized film.

[実施例3]
実施例1に係るめっき浴の調製にあたり、上記の反応生成物(A1)源の配合量を変更して、めっき浴中の反応生成物(A1)の含有量を10g/Lとした以外は、実施例1と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛めっき皮膜を有する亜鉛系めっき部材を得た。
[Example 3]
In preparing the plating bath according to Example 1, the content of the reaction product (A1) in the plating bath was changed to 10 g / L by changing the blending amount of the reaction product (A1) source. A plating bath was prepared and electroplated in the same manner as in Example 1 to obtain a zinc-based plated member having a galvanized film.

[比較例1]
実施例1に係るめっき浴の調製にあたり、反応生成物(A1)源に代えて、ベンジルピリジニウムカルボキシレート(BPC)の塩酸塩を配合し、その添加量をめっき浴中に形成されるBPCの含有量が0.24g/Lとなる量とした以外は、実施例1と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 1]
In preparation of the plating bath according to Example 1, instead of the reaction product (A1) source, a hydrochloride of benzylpyridinium carboxylate (BPC) is blended, and the amount of BPC formed in the plating bath is included. A plating bath was prepared and electroplated in the same manner as in Example 1 except that the amount was 0.24 g / L, and a zinc-based plated member having a galvanized film was obtained.

[比較例2]
比較例1に係るめっき浴の調製にあたり、BPCの塩酸塩の配合量を変更して、BPCの含有量を1.2g/Lとした以外は、比較例1と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 2]
In preparing the plating bath according to Comparative Example 1, the preparation of the plating bath was carried out in the same manner as in Comparative Example 1 except that the amount of BPC hydrochloride was changed and the BPC content was 1.2 g / L. And electroplating was performed to obtain a zinc-based plated member having a galvanized film.

[比較例3]
比較例1に係るめっき浴の調製にあたり、BPCの塩酸塩の配合量を変更して、BPCの含有量を2.4g/Lとした以外は、比較例1と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 3]
In preparation of the plating bath according to Comparative Example 1, the preparation of the plating bath was carried out in the same manner as in Comparative Example 1, except that the amount of BPC hydrochloride was changed and the content of BPC was changed to 2.4 g / L. And electroplating was performed to obtain a zinc-based plated member having a galvanized film.

[実施例4]
(1)亜鉛合金めっき浴の調製
亜鉛源としての酸化亜鉛を、これに由来する浴可溶性亜鉛含有物質のめっき浴中の亜鉛換算含有量が10g/Lとなる量、ニッケル源としての硫酸ニッケルを、これに由来する浴可溶性ニッケル含有物質のめっき浴中のニッケル換算含有量が1.5g/Lとなる量、アルカリ成分としての水酸化ナトリウムを、めっき浴1Lあたりの溶解量が120gとなる量、キレート剤としてのテトラエチレンペンタミン(TEPA)を、めっき浴の含有量が15g/Lとなる量、および反応生成物(A1)源を、めっき浴中の反応生成物(A1)の含有量が1.0g/Lとなる量、純水からなる溶媒に溶解させて、浴可溶性亜鉛含有物質、浴可溶性ニッケル含有物質、反応生成物(A1)およびTEPAを含有するアルカリ性のジンケート型亜鉛−ニッケル合金めっき浴を調製した。
[Example 4]
(1) Preparation of zinc alloy plating bath Zinc oxide as a zinc source, an amount in which the zinc equivalent content in a plating bath of a bath-soluble zinc-containing substance derived therefrom is 10 g / L, and nickel sulfate as a nickel source , The amount of the bath-soluble nickel-containing substance derived from this in an amount such that the nickel equivalent content in the plating bath is 1.5 g / L, the amount of sodium hydroxide as the alkaline component is 120 g dissolved per 1 L of the plating bath , Tetraethylenepentamine (TEPA) as the chelating agent, the amount of the plating bath content to be 15 g / L, and the reaction product (A1) source, the content of the reaction product (A1) in the plating bath Is dissolved in a solvent consisting of pure water in an amount of 1.0 g / L, and a bath-soluble zinc-containing material, a bath-soluble nickel-containing material, a reaction product (A1), and an alkase containing TEPA A reusable zincate type zinc-nickel alloy plating bath was prepared.

(2)亜鉛合金めっき皮膜を有する亜鉛系めっき部材の作製
スターラー回転数1000rpmの液循環型ハルセル試験器(山本めっき試験器社製:スマートハルセルB−53−SM)を用意した。この試験器のめっき槽内の所定の位置に、縦45mm、横45mm、厚さ1mmのアノードとしての鉄板、および縦67mm、横100mm、厚さ0.3mmの被めっき部材(カソード)としての鉄板を配置した。めっき槽内に上記のめっき浴を液面が所定の高さとなるまで入れた。アノードおよびカソードをめっき電源に接続し、次の電解条件で電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
電流:1A
通電時間:10分
めっき浴温度:25℃
上記の電流では、カソードの電流密度は0.1A/dmから5A/dmの範囲であった。
(2) Production of zinc-based plating member having zinc alloy plating film A liquid circulation type hull cell tester (manufactured by Yamamoto Plating Tester Co., Ltd .: Smart Hull Cell B-53-SM) having a stirrer rotation speed of 1000 rpm was prepared. At predetermined positions in the plating tank of this tester, an iron plate as an anode having a length of 45 mm, a width of 45 mm, and a thickness of 1 mm, and an iron plate as a member to be plated (cathode) having a length of 67 mm, a width of 100 mm, and a thickness of 0.3 mm Arranged. The above-described plating bath was placed in the plating tank until the liquid level reached a predetermined height. The anode and the cathode were connected to a plating power source, and electroplating was performed under the following electrolytic conditions to obtain a zinc-based plated member having a zinc-nickel alloy plating film.
Current: 1A
Energizing time: 10 minutes Plating bath temperature: 25 ° C
In the above current, cathode current density ranged from 0.1 A / dm 2 of 5A / dm 2.

[実施例5]
実施例4に係るめっき浴の調製にあたり、反応生成物(A1)源の配合量を変更して、めっき浴中の反応生成物(A1)の含有量を5.0g/Lとした以外は、実施例4と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Example 5]
In preparing the plating bath according to Example 4, the content of the reaction product (A1) in the plating bath was changed to 5.0 g / L by changing the blending amount of the reaction product (A1) source. A plating bath was prepared and electroplated in the same manner as in Example 4 to obtain a zinc-based plated member having a zinc-nickel alloy plating film.

[実施例6]
実施例4に係るめっき浴の調製にあたり、反応生成物(A1)源の配合量を変更して、めっき浴中の反応生成物(A1)の含有量を10g/Lとした以外は、実施例4と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Example 6]
In preparation of the plating bath according to Example 4, the amount of the reaction product (A1) source was changed to change the content of the reaction product (A1) in the plating bath to 10 g / L. A plating bath was prepared and electroplated by the same operation as in No. 4 to obtain a zinc-based plated member having a zinc-nickel alloy plating film.

[比較例4]
実施例4に係るめっき浴の調製にあたり、反応生成物(A1)源に代えてベンジルピリジニウムカルボキシレート(BPC)の塩酸塩を配合して、めっき浴中に形成されるBPCの含有量が0.24g/Lとなる量とするとともに、カチオンポリマー1の含有量が0.001mol/Lとなる量のポリマー1をめっき浴に配合した以外は、実施例4と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 4]
In preparing the plating bath according to Example 4, the benzylpyridinium carboxylate (BPC) hydrochloride was blended in place of the reaction product (A1) source, and the content of BPC formed in the plating bath was 0.00. The preparation of the plating bath was carried out in the same manner as in Example 4 except that the amount of the cationic polymer 1 was 0.001 mol / L and the amount of the polymer 1 was 0.001 mol / L. Electroplating was performed to obtain a zinc-based plated member having a zinc-nickel alloy plating film.

[比較例5]
比較例4に係るめっき浴の調製にあたり、BPCの塩酸塩の配合量を変更して、BPCの含有量を1.2g/Lとした以外は、比較例4と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 5]
In preparing the plating bath according to Comparative Example 4, the preparation of the plating bath was carried out in the same manner as in Comparative Example 4 except that the amount of BPC hydrochloride was changed and the BPC content was 1.2 g / L. And electroplating was performed to obtain a zinc-based plated member having a zinc-nickel alloy plating film.

[比較例6]
比較例4に係るめっき浴の調製にあたり、BPCの塩酸塩の配合量を変更して、BPCの含有量を2.4g/Lとした以外は、比較例4と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 6]
In preparing the plating bath according to Comparative Example 4, the preparation of the plating bath was carried out in the same manner as in Comparative Example 4 except that the amount of BPC hydrochloride was changed and the BPC content was 2.4 g / L. And electroplating was performed to obtain a zinc-based plated member having a zinc-nickel alloy plating film.

[実施例7]
(1)亜鉛合金めっき浴の調製
実施例4に係るめっき浴の調製にあたり、反応生成物(A1)源の配合量を変更して、めっき浴中の反応生成物(A1)の含有量を0.5g/Lとした以外は、実施例4と同様の操作によりめっき浴を調製した。
(2)亜鉛合金めっき皮膜を有する亜鉛系めっき部材の作製
スターラー回転数450rpmの縦100mm、横100mm、高さ145mmのめっき槽を用意した。めっき槽内の所定の位置に、縦130mm、横65mm、厚さ1mmのアノードとしてのニッケル板を2枚、および縦50mm、横100mm、厚さ1mmの被めっき部材(カソード)としての鉄板をアノードの間に配置した。めっき槽内に上記のめっき浴を液面が130mmの高さとなるまで入れた。アノードおよびカソードをめっき電源に接続し、次の電解条件で電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
電流密度:2A/dm
通電時間:19分
めっき浴温度:25℃
得られためっき皮膜の厚さは6〜7μmの範囲であった。
[Example 7]
(1) Preparation of zinc alloy plating bath In preparation of the plating bath according to Example 4, the content of the reaction product (A1) in the plating bath was changed to 0 by changing the blending amount of the reaction product (A1) source. A plating bath was prepared in the same manner as in Example 4 except that the amount was changed to 0.5 g / L.
(2) Production of a zinc-based plating member having a zinc alloy plating film A plating tank having a stirrer rotation speed of 450 rpm and a length of 100 mm, a width of 100 mm, and a height of 145 mm was prepared. In a predetermined position in the plating tank, two nickel plates as anodes with a length of 130 mm, a width of 65 mm, and a thickness of 1 mm, and an iron plate as a member to be plated (cathode) with a length of 50 mm, width of 100 mm, and thickness of 1 mm as an anode Arranged between. The plating bath was placed in the plating tank until the liquid level reached 130 mm. The anode and the cathode were connected to a plating power source, and electroplating was performed under the following electrolytic conditions to obtain a zinc-based plated member having a zinc-nickel alloy plating film.
Current density: 2 A / dm 2
Energizing time: 19 minutes Plating bath temperature: 25 ° C
The thickness of the obtained plating film was in the range of 6 to 7 μm.

[実施例8]
実施例4に係るめっき浴を用いて、実施例7と同じようにニッケル板に対して電気めっきを行って、厚さが6〜7μmの亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Example 8]
Using the plating bath according to Example 4, electroplating was performed on the nickel plate in the same manner as in Example 7 to obtain a zinc-based plated member having a zinc-nickel alloy plating film with a thickness of 6 to 7 μm. It was.

[実施例9]
(1)反応生成物(A2)の製造
ニコチン酸アミド97.7g(0.8mol)と水222.6gを容量が1000mlの三つ口フラスコに入れ攪拌し、このフラスコ内にヨウ化メチル124.9g(0.88mol)を投入した。投入後フラスコ内の液温を100℃に維持して4時間攪拌し、その後、フラスコ内の液を攪拌しながら放冷して液温を35℃まで低下させた後、フラスコ内にグリシジルトリメチルアンモニウムクロライドを主成分とする水溶液(四日市合成社製「カチオマスター(登録商標)G」、73%純分)166.7g(0.8mol)、水76.7mlを添加し撹拌した。続いて、フラスコ内の液温を65℃に調整し2時間環流して得られた反応物(以下、「反応生成物(A2)」ともいう。)を含む液体をめっき浴添加剤の一種として用いた。この液体は反応生成物(A)源の一種であり、以下、「反応生成物(A2)源」ともいう。得られた反応生成物(A1)源は、収量688.6g、固形分(すなわち、反応生成物(A2)の含有量)50重量%の褐色液体であった。
[Example 9]
(1) Production of reaction product (A2) 97.7 g (0.8 mol) of nicotinamide and 222.6 g of water were placed in a three-necked flask having a capacity of 1000 ml and stirred, and methyl iodide 124. 9 g (0.88 mol) was added. After the addition, the liquid temperature in the flask was maintained at 100 ° C. and stirred for 4 hours, and then the liquid in the flask was allowed to cool while stirring to lower the liquid temperature to 35 ° C., and then glycidyltrimethylammonium in the flask. 166.7 g (0.8 mol) of an aqueous solution containing chloride as a main component (“Kachio Master (registered trademark) G” manufactured by Yokkaichi Synthesis Co., Ltd., 73% pure content) and 76.7 ml of water were added and stirred. Subsequently, a liquid containing a reaction product (hereinafter also referred to as “reaction product (A2)”) obtained by adjusting the liquid temperature in the flask to 65 ° C. and refluxing for 2 hours is used as a kind of plating bath additive. Using. This liquid is a kind of source of reaction product (A), and is hereinafter also referred to as “reaction product (A2) source”. The obtained reaction product (A1) source was a brown liquid having a yield of 688.6 g and a solid content (that is, the content of the reaction product (A2)) of 50% by weight.

(2)亜鉛合金めっき浴の調製
亜鉛源としての酸化亜鉛を、これに由来する浴可溶性亜鉛含有物質のめっき浴中の亜鉛換算含有量が10g/Lとなる量、ニッケル源としての硫酸ニッケルを、これに由来する浴可溶性ニッケル含有物質のめっき浴中のニッケル換算含有量が1.5g/Lとなる量、アルカリ成分としての水酸化ナトリウムを、めっき浴1Lあたりの溶解量が120gとなる量、キレート剤としてのテトラエチレンペンタミン(TEPA)を、めっき浴の含有量が15g/Lとなる量、および反応生成物(A2)源を、めっき浴中の反応生成物(A2)の含有量が1.0g/Lとなる量、純水からなる溶媒に溶解させて、浴可溶性亜鉛含有物質、浴可溶性ニッケル含有物質、反応生成物(A2)およびTEPAを含有するアルカリ性のジンケート型亜鉛−ニッケル合金めっき浴を調製した。
(2) Preparation of zinc alloy plating bath Zinc oxide as a zinc source is used in such an amount that the zinc equivalent content in the plating bath of the bath-soluble zinc-containing substance derived therefrom is 10 g / L, and nickel sulfate is used as the nickel source. , The amount of the bath-soluble nickel-containing substance derived from this in an amount such that the nickel equivalent content in the plating bath is 1.5 g / L, the amount of sodium hydroxide as the alkaline component is 120 g dissolved per 1 L of the plating bath , Tetraethylenepentamine (TEPA) as the chelating agent, the amount of the plating bath content to be 15 g / L, and the reaction product (A2) source, the content of the reaction product (A2) in the plating bath Is dissolved in a solvent comprising pure water in an amount of 1.0 g / L, and a bath-soluble zinc-containing material, a bath-soluble nickel-containing material, a reaction product (A2), and an alkase containing TEPA A reusable zincate type zinc-nickel alloy plating bath was prepared.

(3)亜鉛合金めっき皮膜を有する亜鉛系めっき部材の作製
上記のめっき浴を用いて、実施例7と同じようにニッケル板に対して電気めっきを行って、厚さが6〜7μmの亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
(3) Production of a zinc-based plating member having a zinc alloy plating film Using the above plating bath, electroplating was performed on a nickel plate in the same manner as in Example 7 to obtain a zinc having a thickness of 6 to 7 μm. A zinc-based plating member having a nickel alloy plating film was obtained.

[比較例7]
比較例4に係るめっき浴の調製にあたり、BPCの塩酸塩の配合量を変更して、BPCの含有量を0.12g/Lとした以外は、比較例4と同様の操作によりめっき浴を調製した。
得られためっき浴を用いて、実施例7と同じようにニッケル板に対して電気めっきを行って、厚さが6〜7μmの亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
[Comparative Example 7]
In preparing the plating bath according to Comparative Example 4, the plating bath was prepared by the same operation as in Comparative Example 4 except that the blending amount of BPC hydrochloride was changed so that the BPC content was 0.12 g / L. did.
Using the obtained plating bath, electroplating was performed on the nickel plate in the same manner as in Example 7 to obtain a zinc-based plated member having a zinc-nickel alloy plating film with a thickness of 6 to 7 μm.

[実施例10から12]
実施例4に係るめっき浴の調製にあたり、下記のカチオンポリマー2から4の含有量が1.5g/Lとなる量の各ポリマーをめっき浴に配合したとした以外は、実施例4と同様の操作によりめっき浴の調製および電気めっきを行って、亜鉛−ニッケル合金めっき皮膜を有する亜鉛系めっき部材を得た。
カチオンポリマー2:尿素1モルとN,N−ジメチルアミノプロピルアミン2モルとエピクロロヒドリン1モルの反応物
カチオンポリマー3:尿素1モルとN,N−ジメチルアミノプロピルアミン1.5モルとエピクロロヒドリン1モルの反応物
カチオンポリマー4:尿素1モルとN,N−ジメチルアミノプロピルアミン1.5モルとエピクロロヒドリン0.6モル、ジクロロエチルエーテル0.8モルとの反応物
[Examples 10 to 12]
In preparing the plating bath according to Example 4, the same as Example 4 except that the following amount of each of the cationic polymers 2 to 4 was blended in the plating bath so that the amount of each polymer was 1.5 g / L. A plating bath was prepared and electroplated by operation to obtain a zinc-based plated member having a zinc-nickel alloy plating film.
Cationic polymer 2: 1 mol of urea, 2 mol of N, N-dimethylaminopropylamine and 1 mol of epichlorohydrin Cationic polymer 3: 1 mol of urea and 1.5 mol of N, N-dimethylaminopropylamine and epi Reactive substance of 1 mol of chlorohydrin Cationic polymer 4: Reaction of 1 mol of urea, 1.5 mol of N, N-dimethylaminopropylamine, 0.6 mol of epichlorohydrin, 0.8 mol of dichloroethyl ether

2.評価
(1)めっき浴の外観評価
実施例4から6および比較例4から6により作製しためっき浴の外観を目視で観察して、その性状を評価した。評価結果を表1に示す。なお、表1中の「含有量(g/L)」の列に示される数値は、実施例4から6については反応生成物(A1)の含有量であり、比較例4から6についてはBPCの含有量である。
2. Evaluation (1) Appearance Evaluation of Plating Bath The appearances of the plating baths prepared in Examples 4 to 6 and Comparative Examples 4 to 6 were visually observed to evaluate their properties. The evaluation results are shown in Table 1. In addition, the numerical value shown in the column of “content (g / L)” in Table 1 is the content of the reaction product (A1) for Examples 4 to 6, and BPC for Comparative Examples 4 to 6. Content.

Figure 0005747359
Figure 0005747359

(2)めっき面の外観評価
実施例および比較例により作製しためっき皮膜を有する部材のめっき面性状を、電気めっきを行った際に高電流密度であった側の端部(以下、「高電流密度側端部」という。)から10mmごとの位置で目視にて観察して、次の基準で評価した。
1:ほぼ鏡面の高光沢
2:光沢
3:半光沢
4:無光沢
5:気泡発生に基づく粗な面
評価結果を表2から3に示す。なお、表2および3中の「含有量(g/L)」の列に示される数値は、実施例1から6および10から12については反応生成物(A1)の含有量であり、比較例1から6についてはBPCの含有量である。
(2) Appearance evaluation of plated surface The properties of the plated surface of the member having the plating film prepared according to the examples and comparative examples are the end portions (hereinafter referred to as “high current”) that had a high current density when electroplating was performed. It was visually observed at a position of every 10 mm from the “density side end” and evaluated according to the following criteria.
1: Almost mirror surface high gloss 2: Gloss 3: Semi-gloss 4: Matte 5: Rough surface based on bubble generation Tables 2 to 3 show the evaluation results. In addition, the numerical value shown in the column of “content (g / L)” in Tables 2 and 3 is the content of the reaction product (A1) for Examples 1 to 6 and 10 to 12, and is a comparative example. 1 to 6 are BPC contents.

Figure 0005747359
Figure 0005747359

Figure 0005747359
Figure 0005747359

(3)めっき膜厚分布
実施例および比較例により作製しためっき皮膜を有する部材のめっき皮膜の厚さ(単位:μm)を、高電流密度側端部から10mmごとの位置で、蛍光X線膜厚計(SII社製:SFT−9200)により測定した。
測定結果を表4から6ならびに図1に示す。
(3) Plating film thickness distribution The thickness (unit: μm) of the plating film of the member having the plating film prepared according to the example and the comparative example is set at a position of every 10 mm from the end portion on the high current density side. The thickness was measured with a thickness meter (SFT-9200, manufactured by SII).
The measurement results are shown in Tables 4 to 6 and FIG.

Figure 0005747359
Figure 0005747359

Figure 0005747359
Figure 0005747359

Figure 0005747359
Figure 0005747359

(4)ニッケル共析率
実施例4から6および10から12ならびに比較例4から6により作製しためっき皮膜を有する部材のめっき皮膜におけるニッケルの共析率(単位:質量%)を、高電流密度側端部から10mmごとの位置で、蛍光X線膜厚計(SII社製:SFT−9200)により測定した。
測定結果を表7および8に示す。
(4) Nickel eutectoid rate The nickel eutectoid rate (unit: mass%) in the plating film of the member having the plating film produced in Examples 4 to 6 and 10 to 12 and Comparative Examples 4 to 6 is expressed as high current density. It measured with the fluorescent X-ray film thickness meter (SII company make: SFT-9200) in the position for every 10 mm from a side edge part.
The measurement results are shown in Tables 7 and 8.

Figure 0005747359
Figure 0005747359

Figure 0005747359
Figure 0005747359

(5)耐食性試験
実施例7から9および比較例7に係る亜鉛系めっき部材について、JASO M609に規定されるCCT(自動車部品外観腐食試験方法)に基づく耐食性試験を5サイクル行った。
(5) Corrosion Resistance Test For the zinc-based plated members according to Examples 7 to 9 and Comparative Example 7, the corrosion resistance test based on CCT (Automobile Parts Appearance Corrosion Test Method) defined in JASO M609 was performed for 5 cycles.

耐食性試験の条件について以下に示す。
(A)塩水噴霧
温度:35±1℃
塩水濃度:5±0.5%
その他はJIS Z2371:2000(ISO 9227:1990)に準拠した。
(B)乾燥
温度:60±1℃
相対湿度:20〜30%RH
(C)湿潤
温度:50±1℃
相対湿度:95%RH以上
(D)1サイクルの時間および内容
塩水噴霧2時間、乾燥4時間、湿潤2時間
各時間は、それぞれの移行時間(各条件に移行後、その条件の規定の温度および相対湿度に達するまでの時間)を含む。
(E)移行時間
噴霧から乾燥:30分以内
乾燥から湿潤:15分以内
湿潤から噴霧:30分以内(通常はこの移行時間は瞬時である。)
(F)試験片保持角度
原則として、試験片の評価対象面が垂直に対し15〜20°となるように保持する。
The conditions of the corrosion resistance test are shown below.
(A) Salt spray temperature: 35 ± 1 ° C
Salt water concentration: 5 ± 0.5%
Others conformed to JIS Z2371: 2000 (ISO 9227: 1990).
(B) Drying temperature: 60 ± 1 ° C
Relative humidity: 20-30% RH
(C) Wetting temperature: 50 ± 1 ° C
Relative humidity: 95% RH or more (D) Time and content of 1 cycle Salt spray 2 hours, Dry 4 hours, Wet 2 hours Each time represents the transition time (after the transition to each condition, Time to reach relative humidity).
(E) Transition time Drying to drying: within 30 minutes Drying to wet: within 15 minutes Wet to spraying: within 30 minutes (Normally, this transition time is instantaneous.)
(F) Test piece holding angle As a general rule, the test piece is held so that the evaluation target surface of the test piece is 15 to 20 ° with respect to the vertical.

5サイクル終了後の亜鉛系めっき部材の亜鉛−ニッケル合金めっき皮膜からなる面を目視にて観察し、赤錆が発生している位置(赤錆発生ポイント)数を計測した。また、耐食性試験を行う前後で亜鉛−ニッケル合金めっき皮膜からなる面の表面粗さを測定した(測定装置:東京精密社製、サーフコム1400G)。なお、表面粗さに関するパラメータとして、中心線平均粗さRa75、十点平均粗さRzおよび最大高さRmax(いずれもJIS B0601:1994に基づく。)を求めた。さらに、各パラメータについて、耐食性試験前後の測定結果の比(試験後/試験前)について算出した。
測定結果を表9に示す。
The surface consisting of the zinc-nickel alloy plating film of the zinc-based plated member after the end of 5 cycles was visually observed, and the number of positions (red rust occurrence points) where red rust was generated was measured. Moreover, the surface roughness of the surface consisting of a zinc-nickel alloy plating film was measured before and after performing the corrosion resistance test (measuring device: manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 1400G). In addition, centerline average roughness Ra 75 , ten-point average roughness Rz, and maximum height Rmax (all based on JIS B0601: 1994) were determined as parameters related to surface roughness. Further, for each parameter, the ratio of the measurement results before and after the corrosion resistance test (after the test / before the test) was calculated.
Table 9 shows the measurement results.

Figure 0005747359
Figure 0005747359

(6)発光の有無の確認
反応生成物(A1)源および反応生成物(A2)源、ならびに実施例1から9および比較例1から7に係るジンケート型亜鉛系めっき浴に高圧水銀灯(i線)を照射したところ、反応生成物(A1)または反応生成物(A2)を含有する、反応生成物(A1)源および反応生成物(A2)源ならびに実施例1から9に係るジンケート型亜鉛系めっき浴については、青色(450〜460nm)の発光が観測された。一方、比較例1から7に係るジンケート型亜鉛系めっき浴については青色の発光は確認されなかった。
(6) Confirmation of the presence or absence of light emission The reaction product (A1) source and the reaction product (A2) source, and the zincate zinc plating baths according to Examples 1 to 9 and Comparative Examples 1 to 7 were combined with a high-pressure mercury lamp (i-line). ), The reaction product (A1) source and the reaction product (A2) source containing the reaction product (A1) or the reaction product (A2) and the zincate zinc system according to Examples 1 to 9 For the plating bath, blue (450-460 nm) emission was observed. On the other hand, no blue light emission was observed for the zincate-type zinc plating baths according to Comparative Examples 1 to 7.

Claims (8)

鎖式アルキルハライドおよび脂環式アルキルハライド、ならびにそれらのアルキルハライドにおける水素の少なくとも一つがアミノ基、ヒドロキシ基、オキシアルキレンエーテル基、アルキルカルボキシアルキル基、アリールカルボキシアルキル基、カルボキシアルキル基、ホスホン酸基またはアリール基で置換された化合物、ならびにアルカンサルトンからなる群から選ばれる一種または二種以上とニコチン酸アミドとの反応生成物(a)と、グリシジルトリメチルアンモニウムのハロゲン化物とを反応させて得られる反応生成物(A)、および浴可溶性亜鉛含有物質を含有することを特徴とするジンケート型亜鉛系めっき浴。 A chain alkyl halide and an alicyclic alkyl halide, and at least one of hydrogen in the alkyl halide is an amino group, a hydroxy group, an oxyalkylene ether group, an alkylcarboxyalkyl group, an arylcarboxyalkyl group, a carboxyalkyl group, a phosphonic acid group Or a compound substituted with an aryl group, and a reaction product (a) of nicotinamide with one or more selected from the group consisting of alkanesultone and a halide of glycidyltrimethylammonium. A zincate-type zinc-based plating bath characterized by containing a reaction product (A) obtained and a bath-soluble zinc-containing substance. 前記反応生成物(A)を0.1g/L以上15g/L以下含有する請求項1に記載のめっき浴。   The plating bath according to claim 1, wherein the reaction product (A) is contained in an amount of 0.1 g / L or more and 15 g / L or less. シアン化物を含有しない請求項1または2に記載のめっき浴。   The plating bath according to claim 1 or 2, which does not contain cyanide. 浴可溶性亜鉛含有物質を亜鉛換算で2g/L以上60g/L含有する請求項1から3のいずれか一項に記載のめっき浴。   The plating bath according to any one of claims 1 to 3, wherein the bath-soluble zinc-containing material contains 2 g / L or more and 60 g / L in terms of zinc. 浴可溶性金属含有物質をさらに含有し、
当該浴可溶性金属含有物質に含まれる金属元素は鉄、ニッケル、コバルトおよびマンガンからなる群から選ばれる一種または二種以上である請求項1から4のいずれか一項に記載のめっき浴。
Further containing a bath-soluble metal-containing substance,
The plating bath according to any one of claims 1 to 4, wherein the metal element contained in the bath-soluble metal-containing substance is one or more selected from the group consisting of iron, nickel, cobalt, and manganese.
請求項1に記載される反応生成物(A)を含有するジンケート型亜鉛系めっき浴用添加
剤。
An additive for a zincate zinc-based plating bath containing the reaction product (A) according to claim 1.
被めっき部材と、該被めっき部材の被めっき面上に積層された亜鉛系めっき皮膜とを備えた亜鉛系めっき部材の製造方法であって、
請求項1から5のいずれかに記載されるジンケート型亜鉛系めっき浴を用い、当該めっき浴に含有される前記反応生成物(A)の含有量を0.0001mol/L以上0.05mol/L以下の範囲に管理しながらめっきすることを特徴とする亜鉛系めっき部材の製造方法。
A method for producing a zinc-based plating member comprising a member to be plated and a zinc-based plating film laminated on a surface to be plated of the member to be plated,
Using the zincate-type zinc plating bath according to any one of claims 1 to 5, the content of the reaction product (A) contained in the plating bath is 0.0001 mol / L or more and 0.05 mol / L. A method for producing a zinc-based plated member, characterized in that plating is performed while controlling within the following range.
被めっき部材と、該被めっき部材の被めっき面上に積層された亜鉛合金めっき皮膜とを備えた亜鉛合金めっき部材の製造方法であって、
請求項5に記載されるジンケート型亜鉛系めっき浴であって浴可溶性ニッケル含有物質を含有するジンケート型亜鉛合金めっき浴を用い、
前記ジンケート型亜鉛合金めっき浴から得られた亜鉛合金めっき皮膜におけるニッケルの共析率を12質量%以上20質量%以下とする亜鉛合金めっき部材の製造方法。
A method for producing a zinc alloy plating member comprising a member to be plated and a zinc alloy plating film laminated on a surface to be plated of the member to be plated,
A zincate-type zinc-based plating bath according to claim 5, wherein the zincate-type zinc alloy plating bath contains a bath-soluble nickel-containing substance.
The manufacturing method of the zinc alloy plating member which makes the eutectoid rate of nickel in the zinc alloy plating film obtained from the said zincate type zinc alloy plating bath 12 mass% or more and 20 mass% or less.
JP2013206723A 2012-10-09 2013-10-01 Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member Active JP5747359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013206723A JP5747359B2 (en) 2012-10-09 2013-10-01 Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012224577 2012-10-09
JP2012224577 2012-10-09
JP2013206723A JP5747359B2 (en) 2012-10-09 2013-10-01 Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member

Publications (2)

Publication Number Publication Date
JP2014095147A JP2014095147A (en) 2014-05-22
JP5747359B2 true JP5747359B2 (en) 2015-07-15

Family

ID=50938456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013206723A Active JP5747359B2 (en) 2012-10-09 2013-10-01 Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member

Country Status (1)

Country Link
JP (1) JP5747359B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740616B1 (en) * 2014-09-25 2015-06-24 ユケン工業株式会社 Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath, and method for producing zinc alloy plated member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840019C1 (en) * 1998-09-02 2000-03-16 Atotech Deutschland Gmbh Aqueous alkaline cyanide-free bath for the electrodeposition of zinc or zinc alloy coatings and method
EP1870495A1 (en) * 2006-06-21 2007-12-26 Atotech Deutschland Gmbh Aqueous alkaline, cyanide-free, bath for the galvanic deposition of Zinc and Zinc alloy layers
JP2014088608A (en) * 2012-10-31 2014-05-15 Yuken Industry Co Ltd Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member

Also Published As

Publication number Publication date
JP2014095147A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5642928B2 (en) Bronze electroplating
CN1922343B (en) Baths, systems and processes for electroplating zinc-nickel ternary and higher alloys and articles so electroplated
US20100155257A1 (en) Aqueous, alkaline, cyanide-free bath for the galvanic deposition of zinc alloy coatings
JP6582353B1 (en) Zinc or zinc alloy electroplating method and system
WO2016075963A1 (en) Zinc alloy plating method
JP3946957B2 (en) Zinc and zinc alloy electroplating additive and electroplating method
WO2007025606A1 (en) Nitrogen polymer additive for electrolytic deposition of zinc and zinc alloys and process for producing and use of the same
JP5419021B2 (en) Zincate-type galvanizing bath
US20030192785A1 (en) Zinc and zinc alloy electroplating additives and electroplating methods
CN109642337B (en) Ternary zinc-nickel-iron alloy and alkaline electrolyte for electroplating such an alloy
JP5747359B2 (en) Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member
US5194140A (en) Electroplating composition and process
JP5853283B2 (en) Zinc-nickel alloy plating solution and plating method
JP5005849B2 (en) Alkaline zinc and zinc alloy plating bath
JP2014037621A (en) Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member
US4792383A (en) Polymer compositions and alkaline zinc electroplating baths and processes
JP5728711B2 (en) Zincate-type zinc-based plating bath additive, zincate-type zinc-based plating bath, and method for producing zinc-based plated member
JP2014088608A (en) Zincate type galvanizing bath, additive for zincate type galvanizing bath and method for producing galvanized member
JP5551094B2 (en) Alkaline zinc and zinc alloy plating bath
JP4570738B2 (en) Electrogalvanizing bath and plating method
JP5861176B2 (en) Zinc-nickel alloy plating solution and plating method
US9587320B2 (en) Additive for acid zinc alloy plating bath, acid zinc alloy plating bath, and method for producing zinc alloy plated article
WO2022186183A1 (en) Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and zinc alloy plating film
JP2997072B2 (en) Zinc-nickel alloy plating bath and method for preventing black deposition on plating object
JP4855631B2 (en) Zinc and zinc alloy electroplating additive and electroplating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140905

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140905

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150422

R150 Certificate of patent or registration of utility model

Ref document number: 5747359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250