JP5861176B2 - Zinc-nickel alloy plating solution and plating method - Google Patents

Zinc-nickel alloy plating solution and plating method Download PDF

Info

Publication number
JP5861176B2
JP5861176B2 JP2011121087A JP2011121087A JP5861176B2 JP 5861176 B2 JP5861176 B2 JP 5861176B2 JP 2011121087 A JP2011121087 A JP 2011121087A JP 2011121087 A JP2011121087 A JP 2011121087A JP 5861176 B2 JP5861176 B2 JP 5861176B2
Authority
JP
Japan
Prior art keywords
nickel
compound
plating solution
alloy plating
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011121087A
Other languages
Japanese (ja)
Other versions
JP2012246554A (en
Inventor
利昭 牧野
利昭 牧野
聡史 板東
聡史 板東
小池 克博
克博 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Hyomen Kagaku KK
Original Assignee
Nippon Hyomen Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hyomen Kagaku KK filed Critical Nippon Hyomen Kagaku KK
Priority to JP2011121087A priority Critical patent/JP5861176B2/en
Publication of JP2012246554A publication Critical patent/JP2012246554A/en
Application granted granted Critical
Publication of JP5861176B2 publication Critical patent/JP5861176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は亜鉛−ニッケル合金めっきに関し、めっき液の沈殿発生、陽極バック内でのスラッジ状異種物の生成、めっきタンクへの付着物の生成、ろ過装置(濾過膜)への付着物、パイプ配管のつまりなどの諸問題に対応し、生産性と管理性を飛躍的に向上させ且つ不良発生率を大幅に低減させるめっき液並びにめっき方法を提供する。   The present invention relates to zinc-nickel alloy plating, precipitation of plating solution, generation of sludge-like foreign matters in the anode back, generation of deposits on the plating tank, deposits on a filtration device (filtration membrane), pipe piping The present invention provides a plating solution and a plating method capable of addressing various problems such as clogging, dramatically improving productivity and manageability, and greatly reducing the defect occurrence rate.

亜鉛めっきの耐食性を向上する目的で亜鉛合金めっきが広く行われている。その中でも亜鉛−ニッケル合金めっきは自動車部品、特に高温環境下に置かれるエンジン部品や、高い耐食性が要求される部品等に広範囲に使用されている。従来の亜鉛−ニッケル合金めっきは特開昭63−53285に開示されているようにポリアルケンポリアミン類、アルカノールアミン類といったアミン系の錯化剤で可溶化したニッケルを含有する電気亜鉛めっき浴で電解めっきを行うことにより亜鉛めっき皮膜中にニッケルを析出させる方法により行われる。錯化剤についてはその後、目的に応じて様々な種類のものが開発されてきた。例えば、特開平6−173073、特開2007−2274には錯化剤としてアミン化合物とエピハロヒドリン等エポキシ基含有化合物の反応生成物を用いるアルカリ性電気亜鉛めっき浴による亜鉛ニッケル合金めっき方法が開示されている。この方法はアミン化合物とグリシジルエーテル類を混合させることにより錯化剤となる反応生成物を得る方法であり、この反応生成物は亜鉛ニッケル合金めっきの錯化剤として現在最も広く用いられている。耐食性以外では、改善された膜厚分布を目的として特定の可溶性ポリマーとピリジニウム化合物を用いた特表2009−541580などがある。また、これまで発明され実用化された全てのアルカリ性亜鉛ニッケル合金めっきは、特表2008−539329の背景技術に記載されているようにめっき液変色やめっき層厚のムラ、生産性の低下などの問題を抱えている。この他にアルカリ性亜鉛ニッケル合金めっきは、めっき液の沈殿発生、陽極バック内でのスラッジ状異種物の生成(陽極への付着物)、めっきタンクへの付着物の生成、ろ過装置(濾過膜)への付着物、パイプ配管のつまりなどの生産する上で諸問題を数多く抱えている。特表2008−539329に記載される様な問題は、特表2008−539329記載の発明を施さなければ、今日までの全ての発明、例えば前述の特表2009−541580においても同様の問題を抱えている。しかしながら特表2008−539329の発明は、多額の設備投資が必要な上、めっき作業中に品物が設備に接触して破損し、その修繕費がかさむことや濾過膜の目詰まりが頻繁に発生しメンテナンスにラインを止めなくてはならないなど、実用上のコストがかさみ、解決しようとする課題に記載されたコストおよびメンテナンスの点から見て非効率的とする点は改善されていない。   Zinc alloy plating is widely performed for the purpose of improving the corrosion resistance of galvanization. Among them, zinc-nickel alloy plating is widely used for automobile parts, particularly engine parts placed in a high temperature environment, parts requiring high corrosion resistance, and the like. Conventional zinc-nickel alloy plating is performed in an electrogalvanizing bath containing nickel solubilized with an amine complex such as polyalkene polyamines and alkanolamines as disclosed in JP-A-63-53285. It is carried out by a method of depositing nickel in the galvanized film by plating. Various types of complexing agents have since been developed depending on the purpose. For example, JP-A-6-173073 and JP-A-2007-2274 disclose a zinc-nickel alloy plating method using an alkaline electrogalvanizing bath using a reaction product of an amine compound and an epoxy group-containing compound such as epihalohydrin as a complexing agent. . This method is a method of obtaining a reaction product as a complexing agent by mixing an amine compound and glycidyl ethers, and this reaction product is currently most widely used as a complexing agent for zinc-nickel alloy plating. Other than the corrosion resistance, there is a special table 2009-541580 using a specific soluble polymer and a pyridinium compound for the purpose of an improved film thickness distribution. In addition, all the alkaline zinc nickel alloy platings that have been invented and put to practical use, such as plating solution discoloration, plating layer thickness unevenness, and reduced productivity as described in the background art of JP-T-2008-539329. I have a problem. In addition, alkaline zinc-nickel alloy plating generates plating solution precipitation, generation of sludge-like foreign matter in the anode back (adhesion on the anode), generation of deposit on the plating tank, filtration device (filtration membrane) There are many problems in producing deposits on pipes and clogging of pipes. If the invention described in Special Table 2008-539329 is not applied, all the inventions up to now, for example, the above Special Table 2009-541580 have the same problem. Yes. However, the invention of Special Table 2008-539329 requires a large amount of capital investment, and the product is damaged by contact with the equipment during the plating operation, so that the repair cost is increased and the filter membrane is frequently clogged. There is no improvement in the point of inefficiency in terms of cost and maintenance described in the problem to be solved, such as the fact that the line must be stopped for maintenance, and the practical cost is high.

特開昭63−53285号公報JP-A-63-53285 特開平6−173073号公報JP-A-6-173073 特開2007−2274号公報JP 2007-2274 A 特表2009−541580号公報Special table 2009-541580 特表2008−539329号公報Special table 2008-539329

本発明の目的は、前記課題の解消であり、とりわけめっき液の安定性を向上させ、生産性の向上や不良率の低減により、コスト低減に非常に効果があるめっき液、めっき方法、めっき液管理方法を提供することにある。特に電流効率の低下抑制やメンテナンス時間の短縮などの生産性向上は、薬剤コストの低減の何倍も経済的な効果は大きい。また、メンテナンスの容易さは単純なコストの低減だけでなく、労働時間の短縮など作業環境の改善にも効果を発揮するものである。   An object of the present invention is to solve the above-mentioned problems, and in particular, a plating solution, a plating method, and a plating solution that are highly effective in reducing costs by improving the stability of the plating solution and improving the productivity and reducing the defect rate. To provide a management method. In particular, productivity improvements such as curbing the reduction in current efficiency and shortening maintenance time are many times more economical than reducing drug costs. In addition, the ease of maintenance is effective not only for simple cost reduction but also for improving the working environment such as shortening working hours.

本発明者は上記の課題を解決するために研究開発を重ねていたが、従来の発想とは全く異なる着想による革新的な手段でこの課題を解決する方法を見出した。これまでの発明は、当初、化学的な発想により、錯化剤や光沢剤の改良により電着速度あるいは電流効率の改善などにより生産性の向上や品質の向上を図ってきた。そのような液が工業的な稼働により液の不安定さが露呈すると、液浄化のために活性炭などへの吸着や希釈などの物理的対策、或いはEP1369505A2記載の分離、WO00/06807などの隔膜による隔離や特表2008−539329記載のろ過膜による隔離と物理的、機械的、装置的な対策が打ち出されてきた。すなわち化学的な対策が手詰まりと考え、物理的、機械的、装置的な対策を取った結果、設備が増えた分だけ問題発生箇所が新たに増え、メンテナンスすべき事項が増えたため当初の目的が果たせないという本末転倒なジレンマに陥っている状況を鑑み、原点に返り物理的、機械的、装置的な対策を取らない方法を考えるに至った。
これまで多くの亜鉛−ニッケル合金めっきの発明がなされ、カルボン酸や脂肪族カルボン酸やその反応物など多くの錯化剤、有機化合物が提唱されてきたが、解決しようとする課題は、これらの有機化合物の分解生成物に因るものと考えられてきた(特表2008−539329)にもかかわらず、本発明者の一つ目の従来とは異なる着想は、課題が有機化合物の分解による生成物起因ではなく、合成による生成物起因と全く逆に考えた点にある。言い換えれば、分解であれば該有機化合物自身の反応と考えられるが、合成であれば、該有機化合物以外との合成も考えられ新たな官能基の付加も考えられる。
The present inventor has been researching and developing in order to solve the above-mentioned problem, but has found a method for solving this problem by an innovative means based on an idea completely different from the conventional idea. In the inventions so far, based on a chemical idea, the productivity and quality have been improved by improving the electrodeposition speed or current efficiency by improving the complexing agent and brightening agent. When such liquid is exposed to instability of the liquid due to industrial operation, physical measures such as adsorption or dilution to activated carbon or the like for liquid purification, or separation according to EP 1369505A2, separation membranes such as WO00 / 06807 Isolation and separation by filtration membranes described in JP-A-2008-539329 and physical, mechanical, and device measures have been proposed. In other words, chemical measures are considered clogged, and as a result of taking physical, mechanical, and device measures, the number of problems has increased as the number of facilities has increased, and the number of items to be maintained has increased. In view of the situation of falling into a dilemma that could not be fulfilled, we came back to the starting point and came up with a method that does not take physical, mechanical, and device measures.
Many inventions of zinc-nickel alloy plating have been made so far, and many complexing agents and organic compounds such as carboxylic acids, aliphatic carboxylic acids and their reaction products have been proposed. Despite being considered to be due to the decomposition product of the organic compound (Special Table 2008-539329), the first idea different from the conventional one of the inventor is that the problem is generated by the decomposition of the organic compound. This is not due to the product but to the opposite of the product due to the synthesis. In other words, if it is decomposition, it can be considered as a reaction of the organic compound itself, but if it is synthesis, synthesis with other than the organic compound can be considered and addition of a new functional group can be considered.

本発明者らが、入手した薬剤の分析或いはMSDSなどを用いて全世界の薬剤メーカーを調査した結果によると現在、実用化され工業的に用いられている亜鉛−ニッケル合金めっき液には、アルデヒド、ピリジニウム化合物、有機硫黄化合物、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルのいずれか一種或いは二種以上が使用されており、ニッケル供給源は全て硫酸ニッケルであった。   According to the results of investigations of drug manufacturers all over the world by analyzing the obtained drugs or using MSDS, etc., the present inventors have found that zinc-nickel alloy plating solutions that are currently in practical use and industrially used include aldehydes. , Pyridinium compound, organic sulfur compound, aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, sulfate ester, one or more are used, nickel supply All sources were nickel sulfate.

本発明者の二つ目の従来とは異なる着想は、従来の発明が錯化剤の反応(分解、転化など)に注目し、これを抑制しようと(特表2008−539329、p5、35〜37行)考えていたのに対し、錯化剤ではなく光沢剤などの成分に注目した点にある。特表2008−539329、p3、11行に記載されているように液の色の変化はニッケルの錯化状態の変化を示すものなので、これまでの発明が錯化剤の変化を抑制しようと考えることは当業者として当然である。   The inventor's second idea different from the conventional one is that the conventional invention pays attention to the reaction (decomposition, conversion, etc.) of the complexing agent and tries to suppress it (Special Tables 2008-539329, p5, 35-35). (Line 37). In contrast to this, the focus is on components such as brighteners, not complexing agents. As described in JP 2008-539329, p3, line 11, since the change in the color of the liquid indicates the change in the complexing state of nickel, the inventions so far considered to suppress the change in the complexing agent. This is natural for those skilled in the art.

本発明者の三つ目の従来と異なる着想は、これらの成分を除こうと考えた点にある。これらの成分は先人達が光沢性や被膜物性(二次加工性、応力)の改善、被膜の均一性、被膜密着力、耐食性など、その他諸々の改善のために発明したものであり、事実、使用によりその効果が認められているにもかかわらず除くことは、当業者のみならずとも非常識である。   The third idea of the present inventor, which is different from the conventional one, is that these components are considered to be removed. These components were invented by the predecessors to improve glossiness and physical properties of the film (secondary workability, stress), uniformity of the film, adhesion of the film, corrosion resistance, etc. It is insane not only for a person skilled in the art to remove it even though its effect is recognized by use.

これらの成分の内、ニッケル供給源については、特願昭63−149088に硫酸根の悪影響が記載されている。しかし。この発明の実施例を見る限り4〜6g/Lの光沢剤(IZ−260)を添加している。ホームページで調べるとIZ−260は特願昭63−149088の発明者であるディツプソール社製のアルカリ性亜鉛−ニッケル合金めっき用光沢剤である。その後のディツプソール社で出願されたアルカリ性亜鉛−ニッケル合金めっき関連の特許を調べると、ピリジニウム化合物など本願で指摘する成分を含んでいる(特願2000−22298、実施例5)。この為、特願昭63−149088に従い、硫酸イオン、塩素イオン、炭酸イオンなどを除いても本願の効果は得られない。   Among these components, regarding the nickel supply source, Japanese Patent Application No. 63-149088 describes the adverse effects of sulfate radicals. However. As far as the examples of the present invention are concerned, 4 to 6 g / L of brightener (IZ-260) is added. When investigated on the homepage, IZ-260 is a brightener for alkaline zinc-nickel alloy plating manufactured by Dipsol, the inventor of Japanese Patent Application No. 63-149088. When the patent relating to the alkaline zinc-nickel alloy plating applied for by Dippsor thereafter was examined, the components pointed out in the present application such as pyridinium compounds were included (Japanese Patent Application 2000-22298, Example 5). Therefore, according to Japanese Patent Application No. 63-149088, the effects of the present application cannot be obtained even if sulfate ions, chloride ions, carbonate ions, etc. are removed.

特願昭63−149088は金属ニッケルを別槽で溶解させ補給するといった方法が提示されているが、新たに溶解槽だけでなく電源装置類を設けるなど、もう一つめっき設備を設置するような多大な投資が必要である、ニッケル濃度の調整が困難であるなどの理由により現実的ではなかった。また、他のニッケル化合物に比べ硫酸ニッケルは価格的に安く容易に入手できる利点がある上、例えば塩化ニッケルを用いた場合にはめっき液中の塩素濃度の増大により合金めっき層中の塩素濃度が増大することで耐食性の低下が予想され、酢酸ニッケルやスルファミン酸ニッケルでは意図しないキレートによるめっき状態の悪化が懸念される。その他、難溶性のニッケル源を用いた場合にはニッケル化合物自身が水に難溶なためニッケル錯体の効率的な合成ができないといった問題が生じるために世界中のアルカリ性亜鉛−ニッケル合金めっきのニッケル供給源として硫酸ニッケルが使用されてきた。   Japanese Patent Application No. Sho 63-149088 proposes a method of melting and replenishing metallic nickel in a separate tank, but it is possible to install another plating facility such as newly installing not only a melting tank but also a power supply device. It was not practical because of the great investment required and the difficulty in adjusting the nickel concentration. Compared to other nickel compounds, nickel sulfate has the advantage that it is cheap and easily available, and for example, when nickel chloride is used, the chlorine concentration in the alloy plating layer increases due to the increase in the chlorine concentration in the plating solution. The increase in corrosion resistance is expected to decrease, and nickel acetate or nickel sulfamate may cause a deterioration of the plating state due to unintended chelate. In addition, when a poorly soluble nickel source is used, there is a problem that the nickel compound itself is poorly soluble in water, so the nickel complex cannot be efficiently synthesized. Nickel sulfate has been used as a source.

このようなアルカリ性亜鉛−ニッケル合金めっきの開発の歴史の流れに反し、これらを除くことにより本発明者は課題を解決するに至った。   Contrary to the history of the development of such alkaline zinc-nickel alloy plating, the present inventors have solved the problem by removing these.

より具体的には、本発明の課題を解決するための技術手段は次のとおりである。
(1)亜鉛とニッケルと電導塩とニッケルの錯化剤を含有し、そのニッケル源が一水酸化ニッケル、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び酢酸ニッケルより選択される少なくとも一種であり、かつ、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルからなる化合物群を含有しない、アルカリ性亜鉛−ニッケル合金めっき液。
(2)前記めっき液中に硫酸イオンが存在する場合にはニッケル/硫酸イオンで表されるモル比が1を超える上記(1)のアルカリ性亜鉛−ニッケル合金めっき液。
(3)前記めっき液中にハロゲンイオンが存在する場合にはニッケル/ハロゲンイオンで表されるモル比が0.5を超える上記(1)又は(2)のアルカリ性亜鉛−ニッケル合金めっき液。
(4)硫酸イオンを含有しない上記(1)〜(3)のいずれか1項に記載のアルカリ性亜鉛−ニッケル合金めっき液。
(5)前記錯化剤がアミンとエポキシ基含有化合物の反応物である上記(1)〜(4)のいずれか1項に記載のアルカリ性亜鉛−ニッケル合金めっき液。
(6)前記錯化剤原料として用いられるアミンが1分子中の窒素原子数4以上である上記(5)のアルカリ性亜鉛−ニッケル合金めっき液。
(7)ニッケルの供給源の一部又は全部が、炭酸ニッケル、水酸化ニッケル、塩化ニッケルであり、更にニッケルの錯化剤を含有する上記(1)〜(6)のいずれか1項に記載のアルカリ性亜鉛−ニッケル合金めっき液用ニッケル補給剤。
(8)錯化剤がアミンとエポキシ基含有化合物の反応物である上記(7)のアルカリ性亜鉛−ニッケル合金めっき液用ニッケル補給剤。
(9)上記(1)〜(6)のいずれか1項に記載のめっき液により電解亜鉛−ニッケル合金めっきを行う方法。
(10)上記(1)〜(6)のいずれか1項に記載のめっき液に上記(7)又は(8)の補給剤を用いるニッケル補給方法。
(11)上記(1)〜(6)のいずれか1項に記載のめっき液を使用し、アルデヒド、ピリジニウム化合物、有機硫黄化合物、ポリアルコール、ポリカルボン酸のいずれも添加しないで実施されるアルカリ性亜鉛−ニッケル合金めっき方法。
(12)上記(11)記載の化合物群のいずれか一種以上の成分を定期的に添加しつついずれの成分も0.0005モル/L以下の濃度で管理するアルカリ性亜鉛−ニッケル合金めっき液管理方法。
(13)上記(11)記載の化合物群の定期的な添加を行わないアルカリ性亜鉛−ニッケル合金めっき液管理方法。
(14)上記(12)又は(13)に記載の管理方法により管理されるアルカリ性亜鉛−ニッケル合金めっき液を使用することを特徴とするアルカリ性亜鉛−ニッケル合金めっき方法。
(15)上記(9)又は(14)の方法により生産される亜鉛−ニッケル合金めっき品。
More specifically, technical means for solving the problems of the present invention are as follows.
(1) containing a complexing agent of zinc, nickel, a conductive salt and nickel, the nickel source being at least one selected from nickel monohydroxide, nickel chloride, nickel carbonate, nickel sulfamate, and nickel acetate; An alkaline zinc-nickel alloy plating solution that does not contain a compound group consisting of aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, and sulfate ester.
(2) The alkaline zinc-nickel alloy plating solution according to the above (1), wherein the molar ratio represented by nickel / sulfuric acid ions exceeds 1 when sulfate ions are present in the plating solution.
(3) The alkaline zinc-nickel alloy plating solution according to (1) or (2) above, wherein the molar ratio represented by nickel / halogen ions exceeds 0.5 when halogen ions are present in the plating solution.
(4) The alkaline zinc-nickel alloy plating solution according to any one of (1) to (3) above, which does not contain sulfate ions.
(5) The alkaline zinc-nickel alloy plating solution according to any one of (1) to (4), wherein the complexing agent is a reaction product of an amine and an epoxy group-containing compound.
(6) The alkaline zinc-nickel alloy plating solution according to the above (5), wherein the amine used as the complexing agent raw material has 4 or more nitrogen atoms in one molecule.
(7) A part or all of a nickel supply source is nickel carbonate, nickel hydroxide, or nickel chloride, and further contains a nickel complexing agent, according to any one of (1) to (6) above Nickel replenisher for alkaline zinc-nickel alloy plating solution.
(8) The nickel replenisher for alkaline zinc-nickel alloy plating solution according to (7) above, wherein the complexing agent is a reaction product of an amine and an epoxy group-containing compound.
(9) A method of performing electrolytic zinc-nickel alloy plating with the plating solution according to any one of (1) to (6) above.
(10) A nickel replenishing method using the replenisher according to (7) or (8) in the plating solution according to any one of (1) to (6) above.
(11) Alkaline effected by using the plating solution according to any one of (1) to (6) above without adding any of an aldehyde, a pyridinium compound, an organic sulfur compound, a polyalcohol, or a polycarboxylic acid. Zinc-nickel alloy plating method.
(12) An alkaline zinc-nickel alloy plating solution management method in which any one or more components of the compound group described in (11) above are periodically added and each component is controlled at a concentration of 0.0005 mol / L or less. .
(13) An alkaline zinc-nickel alloy plating solution management method in which the compound group according to (11) is not periodically added.
(14) An alkaline zinc-nickel alloy plating method characterized by using an alkaline zinc-nickel alloy plating solution managed by the management method described in (12) or (13) above.
(15) A zinc-nickel alloy plated product produced by the method of (9) or (14).

以下、本発明の亜鉛−ニッケル合金めっきに関し、詳細に説明する。
めっきの基本的な浴組成は、従来のアルカリ性亜鉛−ニッケル合金めっきの組成で良く、例えば亜鉛は3〜30g/L、好ましくは5〜15g/L、水酸化ナトリウムや水酸化カリウムのような電導塩を50〜200g/L、好ましくは80〜160g/L、ニッケルを0.5〜15g/L、好ましくは1〜8g/L含み、これに適量の錯化剤と光沢剤を含むものである。
Hereinafter, the zinc-nickel alloy plating of the present invention will be described in detail.
The basic bath composition of plating may be the composition of conventional alkaline zinc-nickel alloy plating. For example, zinc is 3 to 30 g / L, preferably 5 to 15 g / L, and conductive such as sodium hydroxide or potassium hydroxide. The salt contains 50 to 200 g / L, preferably 80 to 160 g / L, nickel contains 0.5 to 15 g / L, preferably 1 to 8 g / L, and contains appropriate amounts of complexing agent and brightener.

錯化剤としてはカルボン酸、アミン化合物などが使用できる。
カルボン酸には特に制限はないが、リンゴ酸、コハク酸、マロン酸、酒石酸、シュウ酸、クエン酸などのポリカルボン酸類ならびにそれらの塩、グルコン酸、グリセリン酸などのヒドロキシカルボン酸類並びに塩などが挙げられる。これらの濃度として0.001〜1モル/Lが好ましく、0.005〜0.1モル/Lがより好ましい。アミン化合物として特に限定はないがポリアルキレンポリアミン、具体的にはジアルキルアミノエチルアミン、ジアルキルアミノプロピルアミンなどの脂肪族アミンが好ましく、例えば、トリエタノールアミンやエチレンジアミン、ペンタエチレンヘキサミン、ジアミノプロパン、ジエチレントリアミン、エチルアミノエタノール、アミノプロピルエチレンジアミン、ビスアミノプロピルピペラジン、トリエチレンテトラミン、ヘキサメチレンテトラミン、イソプロパノールアミン、アミノアルコール、イミダゾール、ピコリン、ピペラジン、メチルピペラジン、モルホリン、ヒドロキシエチルアミノプロピルアミン、テトラメチルプロピレンジアミン、ジメチルアミノプロピルアミン、アミノアルコール、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミンが挙げられ、特にエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、トリプロピレンテトラミンが好適である。好ましくはこれらとエポキシ基含有化合物をニッケル化合物存在下で反応させる。エポキシ基含有化合物としてはグリシジルエーテル類並びにエピハロヒドリン類が好適だがこれに限定されず、エポキシ基を含有していれば本発明のニッケル錯体を合成することが可能である。
As the complexing agent, carboxylic acid, amine compound and the like can be used.
There are no particular restrictions on the carboxylic acid, but polycarboxylic acids such as malic acid, succinic acid, malonic acid, tartaric acid, oxalic acid and citric acid, and salts thereof, hydroxycarboxylic acids such as gluconic acid and glyceric acid, and salts, etc. Can be mentioned. These concentrations are preferably 0.001-1 mol / L, more preferably 0.005-0.1 mol / L. The amine compound is not particularly limited, but is preferably a polyalkylene polyamine, specifically, an aliphatic amine such as dialkylaminoethylamine or dialkylaminopropylamine. For example, triethanolamine, ethylenediamine, pentaethylenehexamine, diaminopropane, diethylenetriamine, ethyl Aminoethanol, aminopropylethylenediamine, bisaminopropylpiperazine, triethylenetetramine, hexamethylenetetramine, isopropanolamine, amino alcohol, imidazole, picoline, piperazine, methylpiperazine, morpholine, hydroxyethylaminopropylamine, tetramethylpropylenediamine, dimethylamino Propylamine, amino alcohol, dimethylaminoethylamine, di Tilaminoethylamine, dipropylaminoethylamine, dibutylaminoethylamine, dimethylaminopropylamine, diethylaminopropylamine, dipropylaminopropylamine, dibutylaminopropylamine, especially ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, Tripropylenetetramine is preferred. Preferably, these and an epoxy group-containing compound are reacted in the presence of a nickel compound. As the epoxy group-containing compound, glycidyl ethers and epihalohydrins are preferable, but not limited thereto. If the epoxy group-containing compound contains an epoxy group, the nickel complex of the present invention can be synthesized.

窒素原子数が4以上のアミンとエピハロヒドリンの反応生成物を錯化剤に用いた場合には25℃以上においても安定した合金めっき皮膜を継続的に得ることができる上に従来の亜鉛ニッケル合金めっきと比較して互角以上の外観をもち、その皮膜はニッケル共析率が10〜13%の合金めっきであり、従来、安定して得られる方法のあったニッケル共析率8〜10%又は15%以上の皮膜のいずれよりも耐食性が高い。また、ニッケル濃度を変化させることでニッケル共析率15%以上の合金めっきの形成も可能であり、25℃以上の高温でも安定した合金めっき皮膜を形成できるという際立った特徴を有する。   When a reaction product of an amine having 4 or more nitrogen atoms and epihalohydrin is used as a complexing agent, a stable alloy plating film can be continuously obtained even at 25 ° C. or higher, and conventional zinc-nickel alloy plating Compared to the above, the coating is an alloy plating with a nickel eutectoid rate of 10 to 13%, and a nickel eutectoid rate of 8 to 10% or 15 which has been conventionally obtained stably. Corrosion resistance is higher than any of the above-described coatings. Further, by changing the nickel concentration, it is possible to form an alloy plating having a nickel eutectoid rate of 15% or more, and it has a distinct feature that a stable alloy plating film can be formed even at a high temperature of 25 ° C. or more.

ニッケル供給源としてのニッケル化合物に関して、硫酸イオンの存在を避けられるニッケル化合物であれば、スルホン化や硫酸のエステル化などの反応を抑えられることになるが、酢酸ニッケルやスルファミン酸ニッケルが使用可能であるが、反応以前に意図しないキレートによるめっき状態の悪化が懸念される為、より好ましくは塩化ニッケル、炭酸ニッケル、水酸化ニッケルである。塩化ニッケルは塩素による耐食性の低下が心配され、炭酸ニッケルは、稼働による炭酸ソーダの蓄積が加速される不安があるため、水酸化ニッケルが最も好ましい。硫酸ニッケル塩以外のニッケル塩を直接めっき液に添加すると水酸化ニッケルが生じ、めっき不良を生じると特願昭63−149088は記載されているが、亜鉛−ニッケル合金めっき装置には亜鉛濃度管理のため亜鉛の溶解槽が設けられ、そこから濾過器を経由してめっき液に亜鉛を供給するシステムが通常である。水酸化ニッケルは難溶性であるが、特願昭63−149088記載のように水酸化ニッケル沈殿は一時的な生成であるので、直接の添加でなくこの亜鉛の溶解槽を利用することにより補給することは可能である。ただ、添加と溶解のタイムラグのためにめっき組成の変動が発生するのを抑えるなど管理的な観点から言えば、塩化ニッケル、炭酸ニッケル、水酸化ニッケルなどが既に溶解された状態で供給されることが望ましい。この場合のように、錯化剤にニッケルを溶かした液であれば、めっき液に添加しても沈殿が発生しない。当業者が錯化剤に本発明のニッケル供給源を混ぜ込んで溶かすことも可能であるが、手間を省くため錯化剤の合成の段階でニッケル供給源を加え、錯化剤で錯化されたニッケル補給剤を提供することはより好ましい。   Regarding nickel compounds as a nickel supply source, any nickel compound that can avoid the presence of sulfate ions can suppress reactions such as sulfonation and esterification of sulfuric acid, but nickel acetate and nickel sulfamate can be used. However, nickel chloride, nickel carbonate, and nickel hydroxide are more preferable because there is a concern about deterioration of the plating state due to an unintended chelate before the reaction. Nickel chloride is the most preferable because nickel chloride is concerned about a decrease in corrosion resistance due to chlorine, and nickel carbonate is likely to accelerate the accumulation of sodium carbonate during operation. Japanese Patent Application No. 63-149088 describes that nickel hydroxide other than nickel sulfate is directly added to the plating solution to produce nickel hydroxide, resulting in poor plating. However, the zinc-nickel alloy plating apparatus has a zinc concentration control. Therefore, a zinc dissolution tank is provided, and a system for supplying zinc to the plating solution from there through a filter is usually used. Nickel hydroxide is sparingly soluble, but as described in Japanese Patent Application No. 63-149088, nickel hydroxide precipitation is a temporary formation, so it is replenished by using this zinc dissolution tank instead of direct addition. It is possible. However, from a management point of view, such as suppressing fluctuations in the plating composition due to the time lag between addition and dissolution, nickel chloride, nickel carbonate, nickel hydroxide, etc. must be supplied in a dissolved state. Is desirable. As in this case, if the solution is a solution in which nickel is dissolved in the complexing agent, precipitation does not occur even if it is added to the plating solution. It is possible for a person skilled in the art to mix and dissolve the nickel supply source of the present invention in the complexing agent, but in order to save time, a nickel source is added at the stage of the complexing agent synthesis, and the complexing agent is complexed with the complexing agent. It is more preferable to provide a nickel supplement.

硫酸イオンは主に硫酸ニッケルから、ハロゲンイオンは塩化ニッケルとエピハロヒドリンから主に供給されるが、課題の解決、耐食性の安定のためにニッケル/硫酸イオンで表されるモル比が1を超えるように硫酸イオンを少なく管理し、ニッケル/ハロゲンイオンで表されるモル比が0.5を超えるようにハロゲンイオンを少なく管理することが好ましい。ハロゲンはエピハロヒドリンを使用する以上、不含有を意図することは難しいが、硫酸イオンは、硫酸ニッケルの使用を止め、不含有を意図することが望ましい。   Sulfate ions are mainly supplied from nickel sulfate, and halogen ions are mainly supplied from nickel chloride and epihalohydrin, but in order to solve the problem and stabilize the corrosion resistance, the molar ratio expressed by nickel / sulfate ions exceeds 1. It is preferable to manage with a small amount of sulfate ions so that the molar ratio represented by nickel / halogen ions exceeds 0.5. Halogen is difficult to contain as long as it uses epihalohydrin, but it is desirable to stop using nickel sulfate and intentionally contain no sulfate.

めっき液の光沢剤は、特願2000−22298、特願2009−515771、特願平9−368645等に記載されている既存の亜鉛めっき又は亜鉛−ニッケル合金めっきに用いられるものが全て使用可能であり特に限定は存在しない。   As the brightener for the plating solution, all the existing zinc plating or zinc-nickel alloy plating described in Japanese Patent Application Nos. 2000-22298, 2009-515571, 9-368645, etc. can be used. There is no particular limitation.

本発明の最適なめっき条件は錯化剤原料のアミン並びにエポキシ基含有化合物の種類や濃度、又は使用する光沢剤の種類や濃度により異なるが、通常、電流密度が静止めっきで平均電流密度1〜6A/dm2、バレルめっきで0.5〜1.5A/dm2、めっき温度が15〜50℃の範囲で行われ、めっき時間は求めるめっき厚さによって決定される。 The optimum plating conditions of the present invention vary depending on the type and concentration of the amine and epoxy group-containing compound as the complexing agent raw material, or the type and concentration of the brightener used, but the current density is usually an average current density of 1 to 1 for static plating. 6A / dm 2, 0.5~1.5A / dm 2 in barrel plating, plating temperature is performed in the range of 15 to 50 ° C., as determined by plating thickness plating time is obtained.

本発明の好ましい形態は、亜鉛とニッケルと電導塩とニッケルの錯化剤を含有し、アルデヒド、ピリジニウム化合物、有機硫黄化合物、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルを含有しないアルカリ性亜鉛−ニッケル合金めっき液であり、より好ましくは更に硫酸イオンと塩素イオンを制御し、(1)ニッケル/硫酸イオンで表されるモル比が1を超える、(2)ニッケル/ハロゲンイオンで表されるモル比が0.5を超えるの両方又は片方を満たすアルカリ性亜鉛−ニッケル合金めっき液であり、最も好ましい形態は硫酸イオン及び/又は塩素イオンを含まないアルカリ性亜鉛−ニッケル合金めっき液であるが、工業的な稼働に於いてイレギュラーな状態の発生を否定できないため、不定期的にアルデヒド、ピリジニウム化合物、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステル、硫酸イオンを添加することがある。例えば、外部からの不純物の持ち込みや作業者の間違った添加・補給による想定外の浴組成の変動、機械の故障・破損による部材の溶解、清浄でない水の使用など種々のトラブルが発生し、めっきの外観や被膜厚さや不均一性、共析率異常や物性不良など種々の問題が発生しうる。このような場合に正常な状態に戻るまで、或いはスタート直後から安定するまでの初期段階において、アルデヒド、ピリジニウム化合物、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステル、硫酸イオンを一時的に添加することが可能である。本発明の解決すべき課題は、ラボレベルの課題でなく、工業的稼働後に発生する課題の解決であるため、添加自体を完全否定するものではない。工業的な稼働に於いて、めっき液は恒に持ち込み持ち出しによる液交換が行われているため、一時的な添加であれば漸次減少するため添加可能である。添加の量はこれまでの発明の実施例が示す量以下が適切であり、多ければ課題発生のリスクが高まるため、出来るだけ少量が好ましい。より具体的には、ピリジニウム化合物の場合、ピリジニウム化合物の種類にもよるが50〜100mg/L以下である。不定期的な一時的添加であるか定期的な添加であるかは、通常のアルカリ性亜鉛−ニッケル合金めっき液中の錯化剤や光沢剤の管理は、電気量や処理面積や電導塩濃度などに連動して行われるため、これらの管理項目に連動した添加は定期的、連動しない添加は不定期的とする。   A preferred form of the present invention contains a complexing agent of zinc, nickel, a conductive salt and nickel, and an aldehyde, a pyridinium compound, an organic sulfur compound, an aromatic sulfonic acid, an aromatic sulfonamide, an aromatic sulfonimide, an acetylene compound, An alkaline zinc-nickel alloy plating solution that does not contain an allyl compound, a nitrile compound, or a sulfate ester, and more preferably further controls sulfate ions and chloride ions, and (1) the molar ratio represented by nickel / sulfate ions is 1. (2) Alkaline zinc-nickel alloy plating solution that satisfies both or one of the molar ratios expressed by nickel / halogen ions exceeding 0.5, and the most preferable form contains sulfate ions and / or chloride ions There is no alkaline zinc-nickel alloy plating solution, but it is irregular in industrial operation. -Occurrence of negative conditions cannot be denied, so aldehydes, pyridinium compounds, aromatic sulfonic acids, aromatic sulfonamides, aromatic sulfonamides, acetylene compounds, allyl compounds, nitrile compounds, sulfate esters, sulfate ions are added irregularly There are things to do. For example, various troubles such as unexpected changes in bath composition due to the introduction of impurities from outside, incorrect addition / replenishment of workers, dissolution of parts due to machine failure / breakage, use of unclean water, etc. Various problems such as appearance, film thickness, non-uniformity, abnormal eutectoid rate and poor physical properties may occur. In such a case, in the initial stage until returning to a normal state or immediately after starting, the aldehyde, pyridinium compound, aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, Nitrile compounds, sulfate esters, and sulfate ions can be temporarily added. The problem to be solved by the present invention is not a laboratory-level problem but a solution to a problem that occurs after industrial operation. Therefore, the addition itself is not completely denied. In an industrial operation, the plating solution is constantly exchanged by bringing it in and out, so if it is temporarily added, it can be added because it gradually decreases. The amount of addition is suitably less than the amount shown in the examples of the invention so far, and if it is large, the risk of problems is increased, so that it is preferably as small as possible. More specifically, in the case of a pyridinium compound, it is 50 to 100 mg / L or less although it depends on the kind of the pyridinium compound. Whether it is an occasional temporary addition or a periodic addition, the management of complexing agents and brighteners in the normal alkaline zinc-nickel alloy plating solution is based on the amount of electricity, the processing area, the concentration of conductive salts, etc. Therefore, additions linked to these management items should be done regularly, and additions that are not linked should be irregular.

本発明者は、課題の発生原因を合成反応と考えており、この反応はそれぞれの反応成分の濃度、温度、電気量などに依存すると考えられ、アルデヒド、ピリジニウム化合物、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステル、硫酸イオン、塩素イオンの含有を意図しない本発明では、濃度のファクターはこれらの成分の濃度となる。また、課題が発症するかしないか(工業的に問題となるレベルまで不具合が進行するか)は、正常な成分と合成生成物との割合によるものと考えられる。   The present inventor considers that the cause of the problem is a synthetic reaction, and this reaction is considered to depend on the concentration, temperature, amount of electricity, etc. of each reaction component, aldehyde, pyridinium compound, aromatic sulfonic acid, aromatic In the present invention which does not intend to contain sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, sulfate ester, sulfate ion or chloride ion, the concentration factor is the concentration of these components. Whether or not the problem develops (whether the problem progresses to an industrially problematic level) is considered to be due to the ratio between the normal component and the synthetic product.

設備の老朽化などにより変動要因が多く、最も好ましい状態の定常管理が困難な場合、ある程度の変動に対応できるよう定期的な添加を行いながら正常な成分と合成生成物との割合を最小限に抑え、課題の発症を抑えることも可能である。この場合の添加の量はこれまでの発明の実施例が示す量未満でなくてはならず、好ましくは1/3以下、より好ましくは1/5以下である。多ければ課題発生のリスクが高まるため、出来るだけ少量が好ましい。より具体的には、ピリジニウム化合物の場合、ピリジニウム化合物の種類にもよるが20〜50mg/L以下、より好ましくは5〜20mg/L以下である。分子量の違いだけで全ての不含有を意図する物質について一概に言えないが0.001モル/L以下、好ましくは0.0005モル/L、より好ましくは0.0001モル/L以下である。   When there are many fluctuation factors due to aging of the equipment and it is difficult to maintain the most favorable condition, the ratio between normal components and synthetic products is minimized while regular addition is performed to cope with some fluctuation. It is also possible to suppress the onset of problems. In this case, the amount of addition must be less than that shown in the examples of the present invention, and is preferably 1/3 or less, more preferably 1/5 or less. If there are many, the risk of problem generation increases, so a small amount is preferable. More specifically, in the case of a pyridinium compound, although it depends on the kind of the pyridinium compound, it is 20 to 50 mg / L or less, more preferably 5 to 20 mg / L or less. Although it cannot be generally said about all substances not intended to be contained only by the difference in molecular weight, it is 0.001 mol / L or less, preferably 0.0005 mol / L, more preferably 0.0001 mol / L or less.

以下、実施例及び比較例により本発明を説明する。試験片に適当な前処理を行った後、以下に示す条件を標準条件とし、めっきを行った。実験は亜鉛濃度8g/L、ニッケル濃度1.6g/L、水酸化ナトリウム110g/L、錯化剤15g/L、のめっき液を用い、陰極となる試験片はベントカソードを使用し、陽極にはニッケル板を用い、錯化剤はトリエチレンテトラミンとエピクロルヒドリンの反応物を用いた。光沢剤として市販のアルカリ性亜鉛−ニッケル合金めっき用光沢剤(ZN−204A:日本表面化学(株)製)、市販の亜鉛めっき用光沢剤(9000A:日本表面化学(株)製)のいずれかカタログ記載の標準量用いた。ニッケルの供給源としては水酸化ニッケルを用い、補給を容易にするために錯化剤の反応系に水酸化ニッケルを入れて、あらかじめ錯化剤にニッケル溶解させた液により液調整・補給した。めっき条件は電流密度3A/dm2、めっき浴温25℃、めっき時間25分であり、めっき後に耐食性評価のため三価クロム化成皮膜処理を施した。三価クロム化成皮膜処理は日本表面化学(株)製トライナーTRN−988SCを用いて標準条件で行った。外観は特に低電部の灰色化に注意しつつ全体を総合的に評価した。電流効率は鉄製の0.1dm2円形陰極板を2A/dm2でめっきし、膜厚測定によりめっき付着量を計算することで測定した。膜厚及びNi共析率はFISCHER社製FISCHER SCOPE X−RAY XDLM−C4を用いて測定した。沈殿、槽付着物の有無、液の変色は目視にて判断した。ランニング試験は前述の条件で100AH/L電解された後、各項目の評価を行った。 Hereinafter, the present invention will be described with reference to examples and comparative examples. After performing an appropriate pretreatment on the test piece, plating was performed using the following conditions as standard conditions. In the experiment, a plating solution having a zinc concentration of 8 g / L, a nickel concentration of 1.6 g / L, sodium hydroxide of 110 g / L, and a complexing agent of 15 g / L was used. Used a nickel plate and the complexing agent used was a reaction product of triethylenetetramine and epichlorohydrin. Either a commercially available alkaline zinc-nickel alloy plating brightener (ZN-204A: manufactured by Nippon Surface Chemical Co., Ltd.) or a commercially available zinc plating brightener (9000A: manufactured by Nippon Surface Chemical Co., Ltd.) as a brightener The stated standard amounts were used. Nickel hydroxide was used as a nickel supply source. To facilitate replenishment, nickel hydroxide was added to the reaction system of the complexing agent, and the solution was adjusted and replenished with a solution in which nickel was previously dissolved in the complexing agent. The plating conditions were a current density of 3 A / dm 2 , a plating bath temperature of 25 ° C., and a plating time of 25 minutes. After plating, a trivalent chromium conversion coating was applied for corrosion resistance evaluation. Trivalent chromium chemical conversion film treatment was performed under standard conditions using a TRIN-988SC made by Nippon Surface Chemical Co., Ltd. The overall appearance was evaluated comprehensively, paying particular attention to the graying out of the low electrical area. The current efficiency was measured by plating an iron 0.1 dm 2 circular cathode plate at 2 A / dm 2 and calculating the plating adhesion amount by measuring the film thickness. The film thickness and the Ni eutectoid rate were measured using FISCHER SCOPE X-RAY XDLM-C4 manufactured by FISCHER. Precipitation, presence of tank deposits, and discoloration of the liquid were determined visually. In the running test, each item was evaluated after 100 AH / L electrolysis was performed under the above-described conditions.

実施例1〜6と比較例1、2
光沢剤としてZN−204Aを4mL/L添加し、ニッケル供給源を水酸化ニッケル(実施例1)、炭酸ニッケル(実施例2)、塩化ニッケル(実施例3)、硫酸ニッケル(比較例1)、光沢剤として9000Aを12mL/L添加し、ニッケル供給源を水酸化ニッケル(実施例4)、炭酸ニッケル(実施例5)、塩化ニッケル(実施例6)、硫酸ニッケル(比較例2)とした。
100AH/Lランニングの結果を以下の表1に示す。水酸化ニッケル、炭酸ニッケル、塩化ニッケルを使用すると、硫酸ニッケル(比較例1、2)に比して多くの点で優れた結果が得られることがわかる。

Figure 0005861176
評価: 良 ○>△>× 劣 Examples 1 to 6 and Comparative Examples 1 and 2
ZN-204A as a brightener was added at 4 mL / L, and nickel source was nickel hydroxide (Example 1), nickel carbonate (Example 2), nickel chloride (Example 3), nickel sulfate (Comparative Example 1), As a brightener, 9000A was added at 12 mL / L, and nickel supply sources were nickel hydroxide (Example 4), nickel carbonate (Example 5), nickel chloride (Example 6), and nickel sulfate (Comparative Example 2).
The results of 100 AH / L running are shown in Table 1 below. It can be seen that when nickel hydroxide, nickel carbonate, and nickel chloride are used, excellent results are obtained in many respects as compared with nickel sulfate (Comparative Examples 1 and 2).
Figure 0005861176
Evaluation: Good ○ > △ > × Poor

実施例7〜12と比較例3、4
亜鉛濃度を12g/L、ニッケル濃度を3.5g/L、光沢剤としてZN−204Aを4mL/L添加し、ニッケル供給源を水酸化ニッケル(実施例7)、炭酸ニッケル(実施例8)、塩化ニッケル(実施例9)、硫酸ニッケル(比較例3)、光沢剤として9000Aを12mL/L添加し、ニッケル供給源を水酸化ニッケル(実施例10)、炭酸ニッケル(実施例11)、塩化ニッケル(実施例12)、硫酸ニッケル(比較例4)とした。100AH/Lランニングの結果を表2に示す。水酸化ニッケル、炭酸ニッケル、塩化ニッケルを使用すると、硫酸ニッケル(比較例3、4)に比して多くの点で優れた結果が得られることがわかる。

Figure 0005861176
評価: 良 ○>△>× 劣 Examples 7 to 12 and Comparative Examples 3 and 4
Zinc concentration is 12 g / L, nickel concentration is 3.5 g / L, ZN-204A as a brightener is added at 4 mL / L, nickel supply source is nickel hydroxide (Example 7), nickel carbonate (Example 8), Nickel chloride (Example 9), nickel sulfate (Comparative Example 3), 9000A as a brightener was added at 12 mL / L, nickel supply source was nickel hydroxide (Example 10), nickel carbonate (Example 11), nickel chloride (Example 12) Nickel sulfate (Comparative Example 4) was used. Table 2 shows the results of 100 AH / L running. It can be seen that when nickel hydroxide, nickel carbonate, and nickel chloride are used, excellent results are obtained in many respects as compared with nickel sulfate (Comparative Examples 3 and 4).
Figure 0005861176
Evaluation: Good ○ > △ > × Poor

実施例13〜16と比較例5〜8
光沢剤としてZN−204Aを4mL/L添加し、更にバニリンを30mg/L(実施例13)、1−ベンジル−3−カルバモイルピリジニウムクロリド 15mg/L(実施例14)、サッカリン 40mg/L(実施例15)、2−ブチン−1,4−ジオール 20mg/L(実施例16)、又はバニリンを200mg/L(比較例5)、1−ベンジル−3−カルバモイルピリジニウムクロリド 100mg/L(比較例6)、サッカリン 200mg/L(比較例7)、2−ブチン−1,4−ジオール 300mg/L(比較例8)を添加しランニング試験を行った。100AH/Lランニングの結果を表3に示す。この結果は本発明が従来公知のこれらの添加剤の使用を否定するものではないが、小量に抑制すべきことを示している。

Figure 0005861176
評価: 良 ○>△>× 劣 Examples 13-16 and Comparative Examples 5-8
ZN-204A as a brightener was added at 4 mL / L, vanillin 30 mg / L (Example 13), 1-benzyl-3-carbamoylpyridinium chloride 15 mg / L (Example 14), saccharin 40 mg / L (Example) 15), 2-butyne-1,4-diol 20 mg / L (Example 16), or vanillin 200 mg / L (Comparative Example 5), 1-benzyl-3-carbamoylpyridinium chloride 100 mg / L (Comparative Example 6) Saccharin 200 mg / L (Comparative Example 7) and 2-butyne-1,4-diol 300 mg / L (Comparative Example 8) were added to perform a running test. Table 3 shows the results of 100 AH / L running. This result does not deny the use of these conventionally known additives, but indicates that the present invention should be suppressed to a small amount.
Figure 0005861176
Evaluation: Good ○ > △ > × Poor

比較例9〜12
光沢剤として9000Aを12mL/L添加し、ニッケル供給源を硫酸ニッケルとし、更にバニリンを200mg/L(比較例9)、1−ベンジル−3−カルバモイルピリジニウムクロリド 100mg/L(比較例10)、サッカリン 200mg/L(比較例11)、2−ブチン−1,4−ジオール 300mg/L(比較例12)を添加しランニング試験を行った。
100AH/Lランニングの結果を表4に示す。ニッケル供給源として硫酸ニッケルを採用すると、本発明の基本組成では所期の効果が得られず、多量の添加剤を必要とすることが分かる。

Figure 0005861176
評価: 良 ○>△>× 劣 Comparative Examples 9-12
9000A as a brightener is added at 12 mL / L, nickel source is nickel sulfate, vanillin is 200 mg / L (Comparative Example 9), 1-benzyl-3-carbamoylpyridinium chloride 100 mg / L (Comparative Example 10), saccharin 200 mg / L (Comparative Example 11) and 2-butyne-1,4-diol 300 mg / L (Comparative Example 12) were added to perform a running test.
Table 4 shows the results of 100 AH / L running. When nickel sulfate is employed as the nickel supply source, it can be seen that the basic composition of the present invention does not provide the desired effect and requires a large amount of additive.
Figure 0005861176
Evaluation: Good ○ > △ > × Poor

実施例17〜18と比較例13〜17
光沢剤としてZN−204Aを4mL/L添加し、錯化剤のアミンをジエチレントリアミンとした錯化剤50g/L(実施例17)、テトラエチレンペンタミン(実施例18)に変更してランニング試験を行った。
実施例18のニッケル供給源を硫酸ニッケルとした比較例13、実施例18に1−ベンジル−3−カルバモイルピリジニウムクロリド 100mg/L(比較例14)、サッカリン 300mg/L(比較例15)を加えためっき液、並びに実施例18のニッケル供給源を硫酸ニッケルに変更し更に1−ベンジル−3−カルバモイルピリジニウムクロリド 100mg/L(比較例16)又は、サッカリン 200mg/L(比較例17)を加えためっき液でランニング試験を行った。結果を表5に示す。これによるニッケル供給源として硫酸ニッケルを採用すると本発明では不要な各種の添加剤が多量に必要であることが分かる。

Figure 0005861176
評価: 良 ○>△>× 劣 Examples 17-18 and Comparative Examples 13-17
ZN-204A as a brightening agent was added at 4 mL / L, and the running test was performed by changing the complexing agent to 50 g / L (Example 17) and tetraethylenepentamine (Example 18) in which the amine of the complexing agent was diethylenetriamine. went.
100 mg / L of 1-benzyl-3-carbamoylpyridinium chloride (Comparative Example 14) and 300 mg / L of saccharin (Comparative Example 15) were added to Comparative Example 13 and Example 18 in which the nickel supply source of Example 18 was nickel sulfate. The plating solution and the nickel supply source of Example 18 were changed to nickel sulfate, and 1-benzyl-3-carbamoylpyridinium chloride 100 mg / L (Comparative Example 16) or saccharin 200 mg / L (Comparative Example 17) was added. A running test was conducted with the liquid. The results are shown in Table 5. When nickel sulfate is employed as the nickel supply source, a large amount of various additives unnecessary in the present invention is necessary.
Figure 0005861176
Evaluation: Good ○ > △ > × Poor

Claims (14)

亜鉛とニッケルと電導塩とニッケルの錯化剤を含有し、そのニッケル源がNiOH、Ni(OH)2、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び酢酸ニッケルより選択される少なくとも一種であり、かつ、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルからなる化合物群を含有せず、かつ硫酸イオンを含有せず、前記錯化剤がアミンとエポキシ基含有化合物の反応物であり、前記錯化剤原料として用いられるアミンが1分子中の窒素原子数4以上である、アルカリ性亜鉛−ニッケル合金めっき液。 Containing a complexing agent of zinc, nickel, a conductive salt and nickel, the nickel source being at least one selected from NiOH, Ni (OH) 2 , nickel chloride, nickel carbonate, nickel sulfamate, and nickel acetate; And the complexing agent does not contain a compound group consisting of aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, and sulfate ester, and does not contain sulfate ion. An alkaline zinc-nickel alloy plating solution , which is a reaction product of an amine and an epoxy group-containing compound, and the amine used as the complexing agent raw material has 4 or more nitrogen atoms in one molecule . 亜鉛とニッケルと電導塩とニッケルの錯化剤を含有し、そのニッケル源がNiOH、Ni(OH)2、塩化ニッケル、炭酸ニッケル、スルファミン酸ニッケル、及び酢酸ニッケルより選択される少なくとも一種であり、かつ、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルからなる化合物群を含有せず、
更にハロゲンイオンを含み、且つニッケル/ハロゲンイオンで表されるモル比が0.5を超える、アルカリ性亜鉛−ニッケル合金めっき液。
Containing a complexing agent of zinc, nickel, a conductive salt and nickel, the nickel source being at least one selected from NiOH, Ni (OH) 2 , nickel chloride, nickel carbonate, nickel sulfamate, and nickel acetate; And does not contain a compound group consisting of aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, sulfate ester,
Further, an alkaline zinc-nickel alloy plating solution containing a halogen ion and having a molar ratio expressed by nickel / halogen ion exceeding 0.5.
前記めっき液中に硫酸イオンが存在し、且つニッケル/硫酸イオンで表されるモル比が1を超える請求項2に記載のアルカリ性亜鉛−ニッケル合金めっき液。   3. The alkaline zinc-nickel alloy plating solution according to claim 2, wherein sulfate ions are present in the plating solution, and a molar ratio represented by nickel / sulfate ions exceeds 1. 4. 前記錯化剤がアミンとエポキシ基含有化合物の反応物である請求項2又は3に記載のアルカリ性亜鉛−ニッケル合金めっき液。 The alkaline zinc-nickel alloy plating solution according to claim 2 or 3 , wherein the complexing agent is a reaction product of an amine and an epoxy group-containing compound. 前記錯化剤原料として用いられるアミンが1分子中の窒素原子数4以上であることを特徴とする請求項4に記載のアルカリ性亜鉛−ニッケル合金めっき液。   The alkaline zinc-nickel alloy plating solution according to claim 4, wherein the amine used as the complexing agent raw material has 4 or more nitrogen atoms in one molecule. ニッケル補給剤であって、A nickel replenisher,
前記ニッケル補給剤は、炭酸ニッケル、Ni(OH)The nickel replenisher is nickel carbonate, Ni (OH) 22 、及び塩化ニッケルから選択されるニッケル供給源を含み、And a nickel source selected from nickel chloride,
かつ、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルからなる化合物群を含有せず、And does not contain a compound group consisting of aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, sulfate ester,
前記ニッケル補給剤は、請求項2〜5のいずれか1項に記載のアルカリ性亜鉛−ニッケル合金めっき液に用いるための物であり、The nickel replenisher is used for the alkaline zinc-nickel alloy plating solution according to any one of claims 2 to 5,
前記ニッケル補給剤を補給した時にアルカリ性亜鉛−ニッケル合金めっき液のニッケル/ハロゲンイオンで表されるモル比が0.5を超える、該ニッケル補給剤。The nickel replenisher, wherein the molar ratio represented by nickel / halogen ions in the alkaline zinc-nickel alloy plating solution exceeds 0.5 when the nickel replenisher is replenished.
ニッケル補給剤であって、A nickel replenisher,
前記ニッケル補給剤は、炭酸ニッケル、Ni(OH)The nickel replenisher is nickel carbonate, Ni (OH) 22 、及び塩化ニッケルから選択されるニッケル供給源を含み、And a nickel source selected from nickel chloride,
かつ、芳香族スルホン酸、芳香族スルホンアミド、芳香族スルホンイミド、アセチレン化合物、アリル化合物、ニトリル化合物、硫酸エステルからなる化合物群を含有せず、And does not contain a compound group consisting of aromatic sulfonic acid, aromatic sulfonamide, aromatic sulfonimide, acetylene compound, allyl compound, nitrile compound, sulfate ester,
かつ、硫酸イオンを含有せず、And it does not contain sulfate ions,
前記ニッケル補給剤は、請求項1に記載のアルカリ性亜鉛−ニッケル合金めっき液に用いるための物である、該ニッケル補給剤。The nickel replenisher, which is used for the alkaline zinc-nickel alloy plating solution according to claim 1.
請求項6又は7に記載のニッケル補給剤であって、
前記ニッケル補給剤は、更に錯化剤を含み、
前記錯化剤がアミンとエポキシ基含有化合物の反応物である、該ニッケル補給剤。
The nickel replenisher according to claim 6 or 7,
The nickel supplement further includes a complexing agent,
The nickel replenisher , wherein the complexing agent is a reaction product of an amine and an epoxy group-containing compound.
請求項1〜5のいずれか1項に記載のめっき液により電解亜鉛−ニッケル合金めっきを行う方法。   The method to perform electrolytic zinc-nickel alloy plating with the plating solution of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載のめっき液に請求項6〜8のいずれか1項に記載の補給剤を用いるニッケル補給方法。 The nickel replenishment method which uses the replenisher of any one of Claims 6-8 for the plating solution of any one of Claims 1-5. 請求項1〜5のいずれか1項に記載のめっき液を使用し、アルデヒド、ピリジニウム化合物、有機硫黄化合物から選択される化合物群のいずれか一種以上の成分を定期的に添加しつついずれの成分も0.0005モル/L以下の濃度で管理するアルカリ性亜鉛−ニッケル合金めっき液管理方法。 Any claim to use a plating solution according to any one of claim 1 to 5, aldehyde, pyridinium compounds, any one or more components of the organic sulfur compounds or al a compound selected group periodically while adding An alkaline zinc-nickel alloy plating solution management method in which the component is controlled at a concentration of 0.0005 mol / L or less. 請求項1〜5のいずれか1項に記載のめっき液を使用し、アルデヒド、ピリジニウム化合物、有機硫黄化合物から選択される化合物群の定期的な添加を行わないアルカリ性亜鉛−ニッケル合金めっき液管理方法。   An alkaline zinc-nickel alloy plating solution management method that uses the plating solution according to any one of claims 1 to 5 and does not periodically add a compound group selected from an aldehyde, a pyridinium compound, and an organic sulfur compound. . 請求項11又は12に記載の管理方法により管理されるアルカリ性亜鉛−ニッケル合金めっき液を使用することを特徴とするアルカリ性亜鉛−ニッケル合金めっき方法。 An alkaline zinc-nickel alloy plating method, wherein the alkaline zinc-nickel alloy plating solution managed by the management method according to claim 11 or 12 is used. 請求項又は13の方法により亜鉛−ニッケル合金めっき品を生産する方法Claim 9 or 13 the method by the rear lead - method of producing a nickel alloy plated products.
JP2011121087A 2011-05-30 2011-05-30 Zinc-nickel alloy plating solution and plating method Active JP5861176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121087A JP5861176B2 (en) 2011-05-30 2011-05-30 Zinc-nickel alloy plating solution and plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121087A JP5861176B2 (en) 2011-05-30 2011-05-30 Zinc-nickel alloy plating solution and plating method

Publications (2)

Publication Number Publication Date
JP2012246554A JP2012246554A (en) 2012-12-13
JP5861176B2 true JP5861176B2 (en) 2016-02-16

Family

ID=47467284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121087A Active JP5861176B2 (en) 2011-05-30 2011-05-30 Zinc-nickel alloy plating solution and plating method

Country Status (1)

Country Link
JP (1) JP5861176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104805480A (en) * 2015-05-21 2015-07-29 广东达志环保科技股份有限公司 Alkaline zinc-nickel electroplating liquid, preparation method and electroplating method
EP4067539A1 (en) 2021-03-31 2022-10-05 Coventya GmbH Electroplating device and process for depositing nickel alloys with a solid replenisher

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298192A (en) * 1988-05-27 1989-12-01 Ebara Yuujiraito Kk Zinc-nickel alloy plating solution
JP4738910B2 (en) * 2005-06-21 2011-08-03 日本表面化学株式会社 Zinc-nickel alloy plating method
JP5853283B2 (en) * 2010-07-22 2016-02-09 日本表面化学株式会社 Zinc-nickel alloy plating solution and plating method

Also Published As

Publication number Publication date
JP2012246554A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP6582353B1 (en) Zinc or zinc alloy electroplating method and system
JP4955657B2 (en) Alkaline electroplating bath with filtration membrane
CN106550606B (en) Kirsite method for plating
US9644279B2 (en) Zinc-nickel alloy plating solution and plating method
BRPI0713500A2 (en) aqueous, alkaline, cyanide-free bath for galvanic deposition of zinc alloy coatings
EP2194165A1 (en) Method for replenishing tin and its alloying metals in electrolyte solutions
EP3485069A1 (en) Composition for cobalt plating comprising additive for void-free submicron feature filling
BR112020003856A2 (en) electroplating compositions for electrolytic deposition of copper, its use and method for electrolytic deposition of a layer of copper or copper alloy on at least one surface of a substrate
US20090038950A1 (en) High speed method for plating palladium and palladium alloys
EP3428323B1 (en) Nickel electroplating compositions with cationic polymers and methods of electroplating nickel
JP5861176B2 (en) Zinc-nickel alloy plating solution and plating method
US9435046B2 (en) High speed method for plating palladium and palladium alloys
WO2010044957A1 (en) Zinc alloy electroplating baths and processes
TW201329286A (en) Supplement, method for manufacturing surface treated steel sheet
JP5853283B2 (en) Zinc-nickel alloy plating solution and plating method
JP5874107B2 (en) Zinc-nickel alloy plating solution and nickel supply method
KR20100121399A (en) Nickel flash plating solution, zinc-electroplated steel sheet and manufacturing method thereof
JP4570738B2 (en) Electrogalvanizing bath and plating method
KR101173879B1 (en) Multi-functional super-saturated slurry plating solution for nickel flash plating
JPH1060683A (en) Electroplating with ternary system zinc alloy, and its method
JP5551094B2 (en) Alkaline zinc and zinc alloy plating bath
US4397718A (en) Zinc plating baths with condensating polymer brighteners
JP5747359B2 (en) Zincate-type zinc-based plating bath, additive for zincate-type zinc-based plating bath, and method for producing zinc-based plated member
WO2022186183A1 (en) Additive for acidic zinc alloy plating bath, acidic zinc alloy plating bath and zinc alloy plating film
US20200240029A1 (en) Indium electroplating compositions and methods for electroplating indium on nickel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151125

R150 Certificate of patent or registration of utility model

Ref document number: 5861176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250