JP2013004246A - X-ray source - Google Patents

X-ray source Download PDF

Info

Publication number
JP2013004246A
JP2013004246A JP2011132857A JP2011132857A JP2013004246A JP 2013004246 A JP2013004246 A JP 2013004246A JP 2011132857 A JP2011132857 A JP 2011132857A JP 2011132857 A JP2011132857 A JP 2011132857A JP 2013004246 A JP2013004246 A JP 2013004246A
Authority
JP
Japan
Prior art keywords
source
power supply
electron
electron beam
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011132857A
Other languages
Japanese (ja)
Inventor
Ryoichi Otani
良一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Electron Tubes and Devices Co Ltd
Original Assignee
Toshiba Corp
Toshiba Electron Tubes and Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Electron Tubes and Devices Co Ltd filed Critical Toshiba Corp
Priority to JP2011132857A priority Critical patent/JP2013004246A/en
Publication of JP2013004246A publication Critical patent/JP2013004246A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray source capable of suppressing generation of an electron beam with a large current amount to prevent damage of an electron source.SOLUTION: An X-ray source 10 houses an electron source 22 in a vacuum container 14 having a transparent target 17. A high voltage is applied from a high-voltage power supply 29 of a power supply circuit 12 to the electron source 22 to generate an electron beam 21 that irradiates the transparent target 17 from the electron source 22. Protection means 36 is installed between the high-voltage power supply 29 and the electron source 22 to restrict an electron beam current amount by the protection means 36.

Description

本発明の実施形態は、X線を発生するX線源に関する。   Embodiments of the present invention relate to an X-ray source that generates X-rays.

一般的な微小焦点を有するX線源は、マイクロフォーカスX線源として既に製品化がなされており、対象物の微小領域を高分解能で検査する非破壊検査装置などに広く利用されている。このX線源は、電子源から放出された電子ビームを電界レンズまたは磁界レンズなどの電子光学系により収束させ、透過ターゲットの表面のμmオーダ、またはそれ以下の狭い領域に入射させることにより、この透過ターゲットでX線を発生させ、この発生したX線を透過ターゲットを透過して放出する構成が採られている。   A general X-ray source having a micro focus has already been commercialized as a micro focus X-ray source, and is widely used in a non-destructive inspection apparatus for inspecting a micro area of an object with high resolution. In this X-ray source, the electron beam emitted from the electron source is converged by an electron optical system such as an electric field lens or a magnetic field lens, and is incident on a narrow region of the order of μm or less on the surface of the transmission target. A configuration is adopted in which X-rays are generated by the transmission target, and the generated X-rays are transmitted through the transmission target and emitted.

ここで、微小な物質を測定するためにはX線の発生を微小口径にする必要があり、X線発生源である透過ターゲットに電子ビームを微小口径に収束する必要がある。このためには、高真空で維持された真空容器内に、電子源、電子をビーム流量にする高電圧を印可する引出電極、電子ビームにエネルギーを加える高電圧を印可する加速電極、および電子ビームを微小口径に収束させる高電圧を印可するレンズ電極などの構成が必要になる。   Here, in order to measure a minute substance, it is necessary to reduce the generation of X-rays to a minute aperture, and it is necessary to focus an electron beam to a minute aperture on a transmission target that is an X-ray generation source. For this purpose, an electron source, an extraction electrode for applying a high voltage for making electrons flow into a beam, an acceleration electrode for applying a high voltage for applying energy to the electron beam, and an electron beam in a vacuum vessel maintained at high vacuum Therefore, it is necessary to have a configuration such as a lens electrode that applies a high voltage for converging the light to a small aperture.

特開2008−140687号公報JP 2008-140687 A

ところで、発生するX線量は、電子ビーム量、つまり電子ビーム電流量に比例するため、所定のX線量を得るためにはそれに応じた電流を流す必要があるが、微小口径に電子ビームを収束させると、電子ビームの電流密度が増加し、電子ビームが入射する透過ターゲットが過熱して透過ターゲット内に含まれるガスが真空容器内に飛散し、真空容器内の内部抵抗を大きく低下させる恐れがある。発生するガスは、水素や酸素、アルゴンガスなどの金属製の透過ターゲットの製作時の残留ガスである。   By the way, since the generated X-ray dose is proportional to the amount of electron beam, that is, the amount of electron beam current, in order to obtain a predetermined X-ray dose, it is necessary to flow a current corresponding thereto, but the electron beam is converged to a small aperture. As a result, the current density of the electron beam increases, the transmission target on which the electron beam is incident is overheated, and the gas contained in the transmission target is scattered in the vacuum container, which may greatly reduce the internal resistance in the vacuum container. . The generated gas is a residual gas when a metal transmission target such as hydrogen, oxygen, or argon gas is manufactured.

高真空に維持されている真空容器内にガスが飛散することにより、真空容器内の抵抗値が低下するため、大電流量の電子ビームが発生して電子源を損傷させる恐れがある。   When the gas scatters in the vacuum container maintained at a high vacuum, the resistance value in the vacuum container is lowered, so that a large current amount of electron beam may be generated and the electron source may be damaged.

本発明が解決しようとする課題は、大電流量の電子ビームの発生を抑制して電子源の損傷を防止できるX線源を提供することである。   The problem to be solved by the present invention is to provide an X-ray source capable of preventing the electron source from being damaged by suppressing generation of an electron beam having a large current amount.

本実施形態のX線源は、透過ターゲットを備えた真空容器内に、電子源を収納する。電源回路の高電圧電源から電子源に高電圧を印加し、電子源から透過ターゲットに照射する電子ビームを発生させる。高電圧電源と電子源との間に保護手段を設置し、保護手段により電子ビーム電流量を制限する。   The X-ray source of this embodiment stores an electron source in a vacuum vessel provided with a transmission target. A high voltage is applied to the electron source from a high-voltage power supply of the power supply circuit, and an electron beam that irradiates the transmission target from the electron source is generated. A protective means is installed between the high voltage power source and the electron source, and the amount of electron beam current is limited by the protective means.

第1の実施形態を示すX線源の構成図である。It is a block diagram of the X-ray source which shows 1st Embodiment. 同上X線源のX線管本体の断面図である。It is sectional drawing of the X-ray tube main body of an X-ray source same as the above. 同上X線源のX線管本体に接続するコネクタの断面図である。It is sectional drawing of the connector connected to the X-ray tube main body of an X-ray source same as the above. 同上X線源の電子源に流れるエミッション電流の変化を示すグラフである。It is a graph which shows the change of the emission current which flows into the electron source of an X-ray source same as the above. 第2の実施形態を示すX線源のX線管本体に接続するコネクタの断面図である。It is sectional drawing of the connector connected to the X-ray tube main body of the X-ray source which shows 2nd Embodiment.

以下、第1の実施形態を、図1ないし図4を参照して説明する。   Hereinafter, a first embodiment will be described with reference to FIGS. 1 to 4.

図1に示すように、X線源10は、特に例えば形状が微小でかつX線透過率が相対的に大きい樹脂等の低エネルギーX線で測定する必要がある物質測定用、例えばX線断層撮影装置としてのX線CT(Computed Tomography)装置を有する立体透視画像構成装置に用いるものである。   As shown in FIG. 1, the X-ray source 10 is used for measuring a substance that needs to be measured with low energy X-rays such as a resin having a very small shape and relatively high X-ray transmittance, for example, X-ray tomography. The present invention is used for a stereoscopic image forming apparatus having an X-ray CT (Computed Tomography) apparatus as an imaging apparatus.

そして、このX線源10は、X線管本体11、およびこのX線管本体11を駆動する電源回路12を備えている。   The X-ray source 10 includes an X-ray tube main body 11 and a power supply circuit 12 that drives the X-ray tube main body 11.

図1および図2に示すように、X線管本体11は、内部が真空保持される筒状の真空容器14を有している。この真空容器14は、金属製の容器本体15を有し、この容器本体15の一端にX線16を外部に放出する透過ターゲット17が配設され、容器本体15の他端に絶縁部18を介して支持部19が配設されている。支持部19には、凹状のコネクタ受部20が形成されている。   As shown in FIGS. 1 and 2, the X-ray tube main body 11 has a cylindrical vacuum container 14 in which the inside is held in vacuum. The vacuum container 14 has a metal container body 15, a transmission target 17 for emitting X-rays 16 to the outside is disposed at one end of the container body 15, and an insulating portion 18 is disposed at the other end of the container body 15. A support portion 19 is disposed through the support portion 19. The support portion 19 is formed with a concave connector receiving portion 20.

真空容器14内の他端側には、透過ターゲット17に向けて電子ビーム21を発生させる電子源22が配置されているとともに、この電子源22の両端に接続されて電子源22を加熱する一対のヒータ23a,23bが配置されている。これらヒータ23a,23bがコネクタ受部20に貫通して真空容器14外から電流を入力するための支持端子24a,24bで支持されている。   An electron source 22 that generates an electron beam 21 toward the transmission target 17 is disposed on the other end side in the vacuum vessel 14, and a pair that is connected to both ends of the electron source 22 to heat the electron source 22. Heaters 23a and 23b are arranged. These heaters 23a and 23b penetrate the connector receiving portion 20 and are supported by support terminals 24a and 24b for inputting current from outside the vacuum vessel 14.

透過ターゲット17は、X線16の減衰の小さい例えばベリリウムを構造材として、その表面に電子ビーム21の入射によってX線16を放出する例えばタングステンなどの金属材料がコーティングされて形成されている。   The transmission target 17 is formed by using, for example, beryllium having a small attenuation of the X-ray 16 as a structural material, and coating a metal material such as tungsten that emits the X-ray 16 when the electron beam 21 is incident on the surface thereof.

なお、真空容器14内には、図示していないが、電子源22から電子ビーム21を引き出す引出電極、電子ビーム21を加速する加速電極、および電子ビーム21を透過ターゲット17に収束照射させるレンズ電極が設置されている。   Although not shown in the drawings, the vacuum vessel 14 has an extraction electrode that extracts the electron beam 21 from the electron source 22, an acceleration electrode that accelerates the electron beam 21, and a lens electrode that converges and irradiates the transmission target 17 with the electron beam 21. Is installed.

また、電源回路12は、電源26、およびこの電源26とX線管本体11とを接続する配線装置27を備えている。   The power supply circuit 12 includes a power supply 26 and a wiring device 27 that connects the power supply 26 and the X-ray tube main body 11.

電源26は、ヒータ23a,23bにヒータ加熱電流を供給するヒータ用直流安定化電源であるヒータ電源28、および電子源22に高電圧(約30kV)を印加する高電圧直流安定化電源である高電圧電源29を備えている。高電圧電源29には、リップル低下用のコンデンサ30が接続されている。   The power source 26 is a heater power source 28 that is a DC stabilized power source for heaters that supplies a heater heating current to the heaters 23a and 23b, and a high voltage DC stabilized power source that applies a high voltage (about 30 kV) to the electron source 22. A voltage power supply 29 is provided. A capacitor 30 for reducing ripple is connected to the high voltage power supply 29.

図1および図3に示すように、配線装置27は、X線管本体11のコネクタ受部20に接続されるコネクタ31、およびこのコネクタ31と電源26とを接続するケーブル32を備えている。   As shown in FIGS. 1 and 3, the wiring device 27 includes a connector 31 connected to the connector receiving portion 20 of the X-ray tube main body 11, and a cable 32 connecting the connector 31 and the power supply 26.

コネクタ31には、一対の支持端子24a,24bに接続される一対の接続端子33a,33b、これら一対の接続端子33a,33bに一端が接続された一対の分圧抵抗34a,34b、およびこれら分圧抵抗34a,34bの他端の接続点に一端が接続された保護抵抗35が配設されている。保護抵抗35が、高電圧電源29と電子源22との間に設置されて電子ビーム電流量を制限する保護手段36として構成されている。   The connector 31 includes a pair of connection terminals 33a and 33b connected to the pair of support terminals 24a and 24b, a pair of voltage dividing resistors 34a and 34b having one end connected to the pair of connection terminals 33a and 33b, A protective resistor 35 having one end connected to the connection point of the other end of the piezoresistors 34a and 34b is disposed. A protective resistor 35 is installed between the high-voltage power supply 29 and the electron source 22 and is configured as a protective means 36 that limits the amount of electron beam current.

ケーブル32は、ヒータ電源28と、コネクタ31の接続端子33a,33bと分圧抵抗34a,34bとの間を接続するケーブル37a,37b、さらに、高電圧電源29と保護抵抗35の他端とを接続するケーブル38a、および接地電位の容器本体15とを接続するケーブル38bを備えている。   The cable 32 includes a heater power supply 28, cables 37a and 37b connecting the connection terminals 33a and 33b of the connector 31 and the voltage dividing resistors 34a and 34b, and the high voltage power supply 29 and the other end of the protective resistor 35. A cable 38a to be connected and a cable 38b to connect the container body 15 having the ground potential are provided.

次に、X線源10の作用を説明する。   Next, the operation of the X-ray source 10 will be described.

ヒータ電源28からヒータ23a,23bにヒータ加熱電流を供給し、ヒータ23a,23bで電子源22を加熱する。   A heater heating current is supplied from the heater power supply 28 to the heaters 23a and 23b, and the electron source 22 is heated by the heaters 23a and 23b.

高電圧電源29から電子源22に高電圧を印加する。すなわち、高電圧電源29からケーブル38a、保護抵抗35、分圧抵抗34a,34b、ヒータ23a,23bを介した電子源22と、接地電位の容器本体15に設けられている透過ターゲット17との間に高電圧を印加する。これにより、電子源22から熱電子が発生し、発生した熱電子が引出電極により電子ビーム21として引き出され、この電子ビーム21が加速電極により加速されるとともにレンズ電極によって微小口径に収束されて透過ターゲット17に入射する。これにより、透過ターゲット17からX線16が放射され、この放射されたX線16が透過ターゲット17を透過して外部に放出される。   A high voltage is applied from the high voltage power supply 29 to the electron source 22. That is, between the electron source 22 from the high voltage power source 29 through the cable 38a, the protective resistor 35, the voltage dividing resistors 34a and 34b, the heaters 23a and 23b, and the transmission target 17 provided in the container body 15 at the ground potential. A high voltage is applied to. As a result, thermoelectrons are generated from the electron source 22, and the generated thermoelectrons are extracted as an electron beam 21 by the extraction electrode. The electron beam 21 is accelerated by the acceleration electrode and converged to a minute aperture by the lens electrode and transmitted. Incident on the target 17. As a result, X-rays 16 are emitted from the transmission target 17, and the emitted X-rays 16 pass through the transmission target 17 and are emitted to the outside.

ところで、X線16による透過撮影を行うとき、X線発生源を小口径とすることで撮影分解能力が向上するため、透過ターゲット17に収束照射する電子ビーム21の口径を小さくすることが望まれている。しかし、透過ターゲット17に収束照射する電子ビーム21の口径を小さくすると、電子ビーム21の電流密度が増加し、透過ターゲット17が非常に高温に加熱されるため、透過ターゲット17内に含まれるガスが真空容器14内に飛散する。真空容器14内に飛散したガスにより真空容器14内の抵抗値が大幅に低下し、図4の破線に示すように、電子源22から大電流量の電子ビーム21が発生し、電子源22が損傷する恐れがある。   By the way, when performing transmission imaging using X-rays 16, since the imaging resolution capability is improved by making the X-ray generation source have a small aperture, it is desirable to reduce the aperture of the electron beam 21 that converges and irradiates the transmission target 17. ing. However, if the aperture of the electron beam 21 that converges and irradiates the transmission target 17 is reduced, the current density of the electron beam 21 increases, and the transmission target 17 is heated to a very high temperature. Spatters into the vacuum container 14. The resistance value in the vacuum container 14 is greatly reduced by the gas scattered in the vacuum container 14, and as shown by the broken line in FIG. 4, a large current amount of electron beam 21 is generated from the electron source 22. Risk of damage.

そこで、本実施形態では、高電圧電源29と電子源22との間に設置されて電子ビーム電流量を制限する保護手段36として保護抵抗35を用いているため、電子ビーム21が照射される透過ターゲット17から真空容器14内にガスが飛散して真空容器14内の抵抗値が低下しても、図4に実線で示すように、電子ビーム電流が大きく増加するのを保護抵抗35で規制することができ、電子源22の損傷を防止できる。   Therefore, in this embodiment, since the protective resistor 35 is used as the protective means 36 that is installed between the high-voltage power supply 29 and the electron source 22 and limits the amount of electron beam current, the transmission irradiated with the electron beam 21 is performed. Even if the gas scatters from the target 17 into the vacuum vessel 14 and the resistance value in the vacuum vessel 14 decreases, the protection resistor 35 restricts the electron beam current from increasing greatly as shown by the solid line in FIG. And damage to the electron source 22 can be prevented.

また、保護抵抗35をコネクタ31に設置しているため、ケーブル32で発生する浮遊のコンデンサに蓄えられた電荷によるエネルギーに対しても、保護抵抗35によって電子ビーム21の電流の最大値を低下させることができる。この電流値は、高電圧電源29の電圧と、この高電圧電源29に接続されたリップル低下用のコンデンサ30で供給される電圧と、真空容器14内の抵抗値とで決定されるが、真空容器14内でのガス発生による放電抵抗の低下速度が大きく、ケーブル32と保護抵抗35とによって真空容器14に印加する電圧は低下するため、実際の電子ビーム電流の値を小さくすることができる。   In addition, since the protective resistor 35 is installed on the connector 31, the maximum value of the current of the electron beam 21 is reduced by the protective resistor 35 against the energy due to the charge stored in the floating capacitor generated in the cable 32. be able to. This current value is determined by the voltage of the high voltage power supply 29, the voltage supplied by the ripple reducing capacitor 30 connected to the high voltage power supply 29, and the resistance value in the vacuum vessel 14, but the vacuum The rate of decrease of the discharge resistance due to gas generation in the container 14 is large, and the voltage applied to the vacuum container 14 by the cable 32 and the protective resistance 35 is decreased, so that the actual value of the electron beam current can be reduced.

保護抵抗35の抵抗値は、大きいほど保護機能は働くが、あまり大きいと電子ビーム21の揺らぎで真空容器14に印加される電圧値が変動するため、例えば50から100キロオームの範囲が好ましい。   The larger the resistance value of the protective resistor 35 is, the greater the protective function is. However, if the resistance value is too large, the voltage value applied to the vacuum vessel 14 is fluctuated due to fluctuations in the electron beam 21, and therefore, for example, a range of 50 to 100 kilohms is preferable.

また、第2の実施形態を、図5に示す。なお、第1の実施形態と同一構成については同一符号を用いてその説明を省略する。   A second embodiment is shown in FIG. In addition, about the same structure as 1st Embodiment, the description is abbreviate | omitted using the same code | symbol.

分圧抵抗34a,34bを、保護手段36として用いてもよい。この場合にも、第1の実施形態と同様に、高電圧電源29と電子源22との間に設置されて電子ビーム電流量を制限する保護手段36として分圧抵抗34a,34bを用いているため、電子ビーム21が照射される透過ターゲット17から真空容器14内にガスが飛散して真空容器14内の抵抗値が低下しても、電子ビーム電流が大きく増加するのを分圧抵抗34a,34bで規制することができ、電子源22の損傷を防止できる。さらに、第1の実施形態に比べて、保護抵抗35を省略できる分、構成を簡素化できる。   The voltage dividing resistors 34a and 34b may be used as the protection means 36. Also in this case, as in the first embodiment, voltage dividing resistors 34a and 34b are used as protection means 36 that is installed between the high-voltage power supply 29 and the electron source 22 and limits the amount of electron beam current. Therefore, even if gas scatters from the transmission target 17 irradiated with the electron beam 21 into the vacuum vessel 14 and the resistance value in the vacuum vessel 14 decreases, the electron beam current greatly increases. 34b can be regulated, and damage to the electron source 22 can be prevented. Furthermore, compared with the first embodiment, the configuration can be simplified because the protective resistor 35 can be omitted.

なお、保護手段36は、コネクタ31内に配設する例に限らず、コネクタ31の近傍でケーブル38aに配設してもよい。   The protection means 36 is not limited to being disposed in the connector 31, and may be disposed in the cable 38a in the vicinity of the connector 31.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 X線源
12 電源回路
14 真空容器
17 透過ターゲット
20 コネクタ受部
21 電子ビーム
22 電子源
23a,23b ヒータ
29 高電圧電源
31 コネクタ
32 ケーブル
34a,34b 分圧抵抗
35 保護抵抗
36 保護手段
10 X-ray source
12 Power supply circuit
14 Vacuum container
17 Transmission target
20 Connector receptacle
21 Electron beam
22 electron source
23a, 23b Heater
29 High voltage power supply
31 Connector
32 cable
34a, 34b Voltage divider resistor
35 Protection resistance
36 Protective measures

Claims (5)

透過ターゲットを備えた真空容器と、
この真空容器内に収納され、前記透過ターゲットに照射する電子ビームを発生する電子源と、
前記電子源に高電圧を印加して電子ビームを発生させる高電圧電源、およびこの高電圧電源と前記電子源との間に設置されて電子ビーム電流量を制限する保護手段を有する電源回路と
を具備していることを特徴とするX線源。
A vacuum vessel with a transmission target;
An electron source that is housed in the vacuum vessel and generates an electron beam that irradiates the transmission target;
A high-voltage power source that generates an electron beam by applying a high voltage to the electron source, and a power supply circuit that is installed between the high-voltage power source and the electron source and has protection means for limiting the amount of electron beam current. An X-ray source comprising:
前記電子源に接続されて前記電子源を加熱する一対のヒータを具備し、
前記保護手段は、前記一対のヒータに接続される一対の分圧抵抗を有し、これら一対の分圧抵抗の接続点に前記高電圧電源から高電圧が印加される
ことを特徴とする請求項1記載のX線源。
A pair of heaters connected to the electron source for heating the electron source;
The protective means includes a pair of voltage dividing resistors connected to the pair of heaters, and a high voltage is applied from the high voltage power source to a connection point of the pair of voltage dividing resistors. The X-ray source according to 1.
前記保護手段は、前記一対の分圧抵抗の中間に接続される保護抵抗を有し、この保護抵抗に前記高電圧電源から高電圧が印加される
ことを特徴とする請求項2記載のX線源。
The X-ray according to claim 2, wherein the protection means includes a protection resistor connected between the pair of voltage dividing resistors, and a high voltage is applied to the protection resistor from the high-voltage power supply. source.
前記真空容器は、前記電子源と接続されたコネクタ受部を有し、
前記電源回路は、前記高電圧電源に接続されるケーブル、およびこのケーブルの先端に設けられ前記コネクタ受部に接続されるコネクタを有し、
前記保護手段は、前記コネクタに配設されている
ことを特徴とする請求項1ないし3いずれか一記載のX線源。
The vacuum vessel has a connector receiver connected to the electron source,
The power supply circuit has a cable connected to the high-voltage power supply, and a connector provided at a tip of the cable and connected to the connector receiving portion,
The X-ray source according to claim 1, wherein the protection means is disposed on the connector.
前記真空容器は、前記電子源と接続されたコネクタ受部を有し、
前記電源回路は、前記高電圧電源に接続されるケーブル、およびこのケーブルの先端に設けられ前記コネクタ受部に接続されるコネクタを有し、
前記保護手段は、前記コネクタの近傍で前記ケーブルに配設されている
ことを特徴とする請求項1ないし3いずれか一記載のX線源。
The vacuum vessel has a connector receiver connected to the electron source,
The power supply circuit has a cable connected to the high-voltage power supply, and a connector provided at a tip of the cable and connected to the connector receiving portion,
The X-ray source according to any one of claims 1 to 3, wherein the protection means is disposed on the cable in the vicinity of the connector.
JP2011132857A 2011-06-15 2011-06-15 X-ray source Withdrawn JP2013004246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132857A JP2013004246A (en) 2011-06-15 2011-06-15 X-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132857A JP2013004246A (en) 2011-06-15 2011-06-15 X-ray source

Publications (1)

Publication Number Publication Date
JP2013004246A true JP2013004246A (en) 2013-01-07

Family

ID=47672639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132857A Withdrawn JP2013004246A (en) 2011-06-15 2011-06-15 X-ray source

Country Status (1)

Country Link
JP (1) JP2013004246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506265B1 (en) 2013-11-11 2015-03-26 (주) 브이에스아이 Replaceable type x-ray tube and photo ionizer
JP2016511516A (en) * 2013-03-15 2016-04-14 ニコン・メトロロジー・エヌヴェ X-ray source, high voltage generator, electron beam gun, rotating target assembly, rotating target, and rotating vacuum seal
CN110534388A (en) * 2019-08-30 2019-12-03 中国科学院国家空间科学中心 A kind of cathode optical texture of miniature micro- focal spot x-ray tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008357B2 (en) 2013-03-15 2018-06-26 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
JP2016511516A (en) * 2013-03-15 2016-04-14 ニコン・メトロロジー・エヌヴェ X-ray source, high voltage generator, electron beam gun, rotating target assembly, rotating target, and rotating vacuum seal
CN106935462A (en) * 2013-03-15 2017-07-07 尼康计量公众有限公司 X-ray source, high-voltage generator, electron beam gun, rotation target assembly, rotary target and rotating vacuum seals part
US9941090B2 (en) 2013-03-15 2018-04-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, and rotary vacuum seal
US9947501B2 (en) 2013-03-15 2018-04-17 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US9966217B2 (en) 2013-03-15 2018-05-08 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10020157B2 (en) 2013-03-15 2018-07-10 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10096446B2 (en) 2013-03-15 2018-10-09 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
US10102997B2 (en) 2013-03-15 2018-10-16 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target, and rotary vacuum seal
CN106935462B (en) * 2013-03-15 2018-11-02 尼康计量公众有限公司 X-ray source, high-voltage generator, electron beam gun, rotation target assembly, rotary target and rotating vacuum seals part
KR101506265B1 (en) 2013-11-11 2015-03-26 (주) 브이에스아이 Replaceable type x-ray tube and photo ionizer
CN110534388A (en) * 2019-08-30 2019-12-03 中国科学院国家空间科学中心 A kind of cathode optical texture of miniature micro- focal spot x-ray tube
CN110534388B (en) * 2019-08-30 2021-11-09 中国科学院国家空间科学中心 Cathode optical structure of miniature micro-focal spot X-ray tube

Similar Documents

Publication Publication Date Title
US9281155B2 (en) Radiation generating apparatus and radiation imaging apparatus
US9697980B2 (en) Radiation generating tube and radiation generating apparatus including radiation generation tube
JP5713832B2 (en) Radiation generator and radiation imaging apparatus using the same
JP5825892B2 (en) Radiation generator and radiation imaging apparatus using the same
EP2849202A1 (en) X-ray generation device and x-ray generation method
US9431206B2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
KR20140064903A (en) X-ray generator and x-ray imaging apparatus
JP2013020792A (en) Radiation generating device and radiography device using it
US9831060B2 (en) X-ray generating apparatus and radiography system using the same
JP6327802B2 (en) Radiation generating tube, radiation generating apparatus and radiation imaging system using the same
JP2015058180A5 (en)
US20140362972A1 (en) X-ray generator and x-ray imaging apparatus
JP2015135722A5 (en) X-ray generator tube, X-ray generator using the same, and X-ray imaging system
JP4619176B2 (en) Microfocus X-ray tube
EP2823502A1 (en) Compact x-ray sources for moderate loading with x-ray tube with carbon nanotube cathode
JP2013004246A (en) X-ray source
CN109892018B (en) X-ray generating device and X-ray photographing system
KR20150089950A (en) X-ray tube unit
JP2006164819A (en) Microfocus x-ray tube and x-ray device using it
Potrakhov et al. 0.2 BPM64-200 microfocus X-ray tube for projection radiography
JP6201394B2 (en) X-ray source, X-ray device
JP2012142129A (en) Soft x-ray source
JP2012109186A (en) Power supply unit and x-ray device
JP5370965B2 (en) X-ray tube and X-ray tube device
JP2011253785A (en) X-ray source

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902