JP2012251238A - Method for recovering tin from arsenic-containing solution - Google Patents

Method for recovering tin from arsenic-containing solution Download PDF

Info

Publication number
JP2012251238A
JP2012251238A JP2012093899A JP2012093899A JP2012251238A JP 2012251238 A JP2012251238 A JP 2012251238A JP 2012093899 A JP2012093899 A JP 2012093899A JP 2012093899 A JP2012093899 A JP 2012093899A JP 2012251238 A JP2012251238 A JP 2012251238A
Authority
JP
Japan
Prior art keywords
tin
solution
arsenic
liquid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012093899A
Other languages
Japanese (ja)
Other versions
JP5936421B2 (en
Inventor
Hidetoshi Sasaoka
英俊 笹岡
Naoto Funaki
直登 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012093899A priority Critical patent/JP5936421B2/en
Priority to CN201210138988.9A priority patent/CN102776528B/en
Publication of JP2012251238A publication Critical patent/JP2012251238A/en
Application granted granted Critical
Publication of JP5936421B2 publication Critical patent/JP5936421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/14Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/04Obtaining tin by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for safely and efficiently recovering tin from a tin electrowinning liquid containing arsenic.SOLUTION: The method for recovering tin from an arsenic-containing solution includes performing an electrolytic treatment of a tin electrowinning liquid containing at least arsenic, under such conditions that hydrogen generation does not occur and at the concentration of tin which is preferably 10 g/L or more. The method preferably includes a treatment which includes, when the liquid after the electrolysis is subjected to a waste liquid treatment, stopping the electrolytic treatment at a tin concentration of 10 g/L or more, then maintaining the ORP value of the liquid after the electrolysis, obtained by the electrolytic treatment, at -200 mV (vs AgCl/Ag) or more, or when the ORP value is lower than -200 mV, adding an oxidant to adjust the ORP value to -200 mV or more, and thereafter, lowering pH to convert tin into the form of a neutralized product of Sn while dissolving at least a portion of arsenic in the liquid after the electrolysis.

Description

本発明は、砒素含有溶液からの錫の回収方法に関する。   The present invention relates to a method for recovering tin from an arsenic-containing solution.

従来、非鉄製錬、基盤や電子部品などリサイクル原料の溶融炉、及び産業廃棄物を溶融処理する乾式炉より非鉄製錬の乾式煙灰中に含まれている鉛を回収するため、煙灰を硫酸浸出し、硫酸鉛にした後、電気炉で溶融還元を行っている。   Conventionally, smoke ash was leached with sulfuric acid to recover lead contained in non-ferrous smelting dry ash from non-ferrous smelting, melting furnaces for recycling raw materials such as foundations and electronic parts, and dry furnaces for melting industrial waste. Then, after making lead sulfate, smelting reduction is performed in an electric furnace.

この溶融還元により分離したメタルはソーダ処理された後、アノード鋳造され、珪フッ素酸浴等を用いて電解精製される。この電解精製により、電気鉛が回収される。一方、前記ソーダ処理時に、生じるソーダスカム中に錫が回収される。
このソーダスカム中には、砒素も混入し、砒素の取り扱いの観点からその好ましい処理が望まれている。
The metal separated by this smelting reduction is subjected to soda treatment, then anode casting, and electrolytic purification using a silicofluoric acid bath or the like. Electrical lead is recovered by this electrolytic purification. On the other hand, tin is collected in the soda scum produced during the soda treatment.
Arsenic is also mixed in the soda scum, and a preferable treatment is desired from the viewpoint of handling arsenic.

このような電気錫の回収方法として、例えば、特開平4−191340(特許文献1)には、Na2SnO3,SnO2,SnO等の錫化合物を水およびアルカリ溶液等で浸出した後、硫化により溶出した鉛と銅を除去後、電解採取を行い、電着メタルとして回収している方法が開示されている。 As such a method for recovering electrotin, for example, in JP-A-4-191340 (Patent Document 1), after leaching a tin compound such as Na 2 SnO 3 , SnO 2 , SnO with water, an alkaline solution or the like, sulfurization is performed. In this method, after removing lead and copper eluted by the above, electrolytic collection is performed and the electrodeposited metal is recovered.

特開平4−191340号公報JP-A-4-191340

しかしながら、特許文献1では、錫化合物を水、アルカリで浸出した際、錫と共に砒素まで溶出することから、電解採取液中に砒素が混入し、錫の電解採取の途中で有害物質であるアルシンガスが発生するという問題があった。   However, in Patent Document 1, when a tin compound is leached with water or alkali, arsenic is eluted together with tin. Therefore, arsenic is mixed into the electrolytic collection solution, and arsine gas, which is a harmful substance, is collected during the electrolytic collection of tin. There was a problem that occurred.

そこで、本発明は、砒素を含有する錫電解採取液から錫を安全に、かつ、効率的に回収する方法を提供することを課題とする。   Then, this invention makes it a subject to provide the method of collect | recovering tin safely and efficiently from the tin electrowinning liquid containing arsenic.

本発明者は、上記課題を解決するために鋭意検討した結果、以下の発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventor has completed the following invention.

(1)少なくとも砒素を含有する錫電解採取液を、水素が発生しない条件で電解処理する、砒素含有溶液からの錫の回収方法。
(2)(1)に記載の方法において、前記電解処理を10g/L以上の錫濃度にて行うことを特徴とする方法。
(3)(1)又は(2)に記載の方法において、上記電解処理を錫濃度が10g/L以上で止めて、さらに当該電解処理で得られた電解後液について、ORP値を−200mV(vs AgCl/Ag)以上に維持するか、又は、ORP値が−200mVより低い場合は、酸化剤を添加し、−200mV以上に調整した後、pHを低下させることで、少なくとも一部の砒素を電解後液中に溶存させながら錫をSn中和物の形態に変化させる処理を含む方法。
(4)(3)に記載の方法において、さらにSn中和物を固液分離し、このSn中和物を電解採取の溶液に再溶解し、電解処理により錫を回収することを特徴とする方法。
(5)(1)〜(4)の何れかに記載の方法において、錫電解採取液は、粗鉛をソーダ処理して得られたソーダスカムに対して、苛性ソーダ水溶液にて浸出する工程と、次いで浸出後液を硫化処理する工程を経て得られた硫化後液である錫の電解採取方法。
(6)(3)に記載の方法において、酸化剤は過酸化水素であることを特徴とする方法。
(1) A method for recovering tin from an arsenic-containing solution, in which a tin electrolytic collection solution containing at least arsenic is subjected to electrolytic treatment under conditions that do not generate hydrogen.
(2) The method according to (1), wherein the electrolytic treatment is performed at a tin concentration of 10 g / L or more.
(3) In the method described in (1) or (2), the electrolytic treatment is stopped at a tin concentration of 10 g / L or more, and the ORP value of the post-electrolysis solution obtained by the electrolytic treatment is -200 mV ( vs AgCl / Ag) or when the ORP value is lower than −200 mV, an oxidizing agent is added and adjusted to −200 mV or higher, and then the pH is lowered to reduce at least a part of arsenic. A method comprising a treatment of changing tin into a Sn neutralized form while being dissolved in a solution after electrolysis.
(4) In the method described in (3), the Sn neutralized product is further solid-liquid separated, the Sn neutralized product is redissolved in an electrolytic collection solution, and tin is recovered by electrolytic treatment. Method.
(5) In the method according to any one of (1) to (4), the tin electrowinning solution is a step of leaching with a caustic soda aqueous solution with respect to soda scum obtained by soda treatment of crude lead; A method for electrolytically collecting tin, which is a liquid after sulfidation obtained through a step of sulfiding the liquid after leaching.
(6) The method according to (3), wherein the oxidizing agent is hydrogen peroxide.

本発明によれば、砒素を含有する錫電解採取液から錫を安全に、かつ、効率的に回収する方法を提供することができる。より具体的には、
(1)砒素を少なくとも含有する錫電解液中のSn濃度を10g/L以上で、管理することで、アルシンガスの発生を防止することができる。
(2)工場での環境問題無く、砒素含有液中の錫を効率的に回収できる。
ADVANTAGE OF THE INVENTION According to this invention, the method of collect | recovering tin safely and efficiently from the tin electrowinning liquid containing arsenic can be provided. More specifically,
(1) The generation of arsine gas can be prevented by managing the Sn concentration in the tin electrolyte containing at least arsenic at 10 g / L or more.
(2) The tin in the arsenic-containing liquid can be efficiently recovered without environmental problems at the factory.

本発明の一態様である錫スカムの処理法を示す。The processing method of the tin scum which is 1 aspect of this invention is shown. pH変化におけるAsとSnの液中濃度を示す。The concentration of As and Sn in the solution in the pH change is shown. pH変化におけるAsとSnの液中残存率を示す。It shows the residual ratio of As and Sn in the solution with pH change.

以下に、本発明に係る砒素含有溶液からの錫の回収方法の実施形態を説明する。
本発明の方法の処理対象は、少なくとも砒素を含有し、錫を含有する錫電解液である。これらの溶液は、例えば、粗鉛をソーダ処理し、得られるソーダスカム中に含有した錫を回収する際に得られる。
Hereinafter, an embodiment of a method for recovering tin from an arsenic-containing solution according to the present invention will be described.
The processing target of the method of the present invention is a tin electrolyte containing at least arsenic and containing tin. These solutions are obtained when, for example, crude lead is soda-treated and the tin contained in the soda scum obtained is recovered.

ソーダ処理後のスカムは一般的に、錫を15〜40質量%、砒素を0.5〜10質量%、鉛を40〜50質量%、銅を5〜10質量%、アンチモンを0.3〜2質量%程度含有する。
前記スカムをスラリー濃度150〜350g/Lとして温水に苛性ソーダを溶解した液により浸出処理することができる。浸出効率の観点から、温水の温度としては60〜80℃程度が好ましい。浸出後液中の錫濃度を10g/L以上になるようにスラリー濃度を調整する。該浸出時の残渣中に、鉛、アンチモンが除去される。
浸出後液中には典型的には、錫が25〜60g/L、砒素が5〜10g/L溶け込んでいる。該溶液に、硫化剤例えば、水硫化ソーダ、硫化水素ガス等を添加して硫化処理し、鉛と銅を硫化物として除去することが好ましい。
The scum after soda treatment is generally 15 to 40% by mass of tin, 0.5 to 10% by mass of arsenic, 40 to 50% by mass of lead, 5 to 10% by mass of copper, and 0.3 to 0.3% of antimony. About 2% by mass is contained.
The scum can be leached with a solution of caustic soda dissolved in warm water at a slurry concentration of 150 to 350 g / L. From the viewpoint of leaching efficiency, the temperature of the hot water is preferably about 60 to 80 ° C. The slurry concentration is adjusted so that the tin concentration in the solution after leaching is 10 g / L or more. Lead and antimony are removed from the leaching residue.
Typically, 25 to 60 g / L of tin and 5 to 10 g / L of arsenic are dissolved in the liquid after leaching. It is preferable to add a sulfiding agent, for example, sodium hydrosulfide, hydrogen sulfide gas, etc. to the solution, and perform sulfidation to remove lead and copper as sulfides.

硫化処理後の硫化後液は一般にpHが10以上、好ましくは10〜14、さらに好ましくは13〜14であるが、これを錫電解採取液として用いることができる。当該電解採取液を使用し、電流密度:50〜100A/m2、液温:50〜80℃で電解処理することでSn電着メタルを回収する。
ここで、錫電解採取液中のSn濃度を10g/L以上に維持することで、水素を発生させないようにすることができ、結果としてアルシンガスの発生を抑制することができる。更に、錫電解採取液中のSn濃度を30g/L以上に維持することが高い電流効率を得る上で好ましい。
The sulfidized solution after the sulfiding treatment generally has a pH of 10 or higher, preferably 10 to 14, more preferably 13 to 14, and this can be used as a tin electrowinning solution. Using the electrolytic collection solution, Sn electrodeposited metal is recovered by electrolytic treatment at a current density of 50 to 100 A / m 2 and a liquid temperature of 50 to 80 ° C.
Here, by maintaining the Sn concentration in the tin electrowinning liquid at 10 g / L or more, hydrogen can be prevented from being generated, and as a result, generation of arsine gas can be suppressed. Furthermore, it is preferable to maintain the Sn concentration in the tin electrowinning solution at 30 g / L or more in order to obtain high current efficiency.

また、電解後液を廃液処理に供するに際して、電解採取液から錫をできるだけ回収することが好ましい。換言すれば、電解採取終点において溶存する錫の量が多くなる、すなわち電解採取終点における錫電解採取液中のSn濃度が高いと、錫の直行率が低下することになる。
以上の観点から、アルシンガスの発生を抑えつつ、錫の直行率を極端に下げないようにするために、一般には錫濃度が10〜50g/L、好ましくは10〜20g/Lになるように電解処理の終点を管理する。錫電解採取を継続していくうちに液中の錫濃度は徐々に低下していくが、Sn濃度が10g/L、好ましくは30g/Lより低くなる前に電解処理を停止し、電解後液を中和工程に送る。
In addition, when the post-electrolysis solution is subjected to waste liquid treatment, it is preferable to recover as much tin as possible from the electrolytic collection solution. In other words, if the amount of tin dissolved at the end point of electrowinning increases, that is, if the Sn concentration in the tin electrowinning solution at the end point of electrowinning is high, the direct rate of tin decreases.
From the above viewpoint, in order to suppress the generation of arsine gas and prevent the direct rate of tin from being extremely lowered, electrolysis is generally performed so that the tin concentration is 10 to 50 g / L, preferably 10 to 20 g / L. Manage the end point of processing. While the tin electrowinning is continued, the tin concentration in the solution gradually decreases, but the electrolysis treatment is stopped before the Sn concentration becomes lower than 10 g / L, preferably less than 30 g / L, and the post-electrolysis solution To the neutralization process.

中和工程では、電解後液の酸化還元電位(ORP)が一定値未満とならないように管理する。すなわち、電解液中のORP値は、電解処理により酸化され、ORP値が−200mV(vs Al/AgCl)以上となるのが通常であるが、場合によっては、ORP値が−200mV未満になることがあり、この場合、中和時におけるAsの除去効率が悪化するため、−200mV以上、好ましくは薬品コストの理由から−200mV以上−100mV以下にするのが好ましい。この場合は、酸化剤である過酸化水素を添加して、ORP値を−200mV以上にまで上げる。
その後、硫酸、塩酸、硝酸などの酸、好ましくは硫酸を添加してpHを低下させることにより、Sn中和物が得られる。このSn中和物はその形態は定かではないが、Sn化合物であり、水酸化物(Sn(OH)4)、Na2(Sn(OH)6)、Na2SnO3などのいずれか又は複数のSn化合物の形態でSnを回収することができると考えられる。このSn中和物を固液分離して回収する。pHは高すぎるとSn中和物が生成されない一方で、pHは低すぎるとAsの除去効率が悪化するため、9〜10とするのが好ましい。
In the neutralization step, the redox potential (ORP) of the post-electrolysis solution is managed so as not to be less than a certain value. That is, the ORP value in the electrolytic solution is usually oxidized by electrolytic treatment, and the ORP value is usually −200 mV (vs Al / AgCl) or more, but in some cases, the ORP value is less than −200 mV. In this case, since the As removal efficiency at the time of neutralization deteriorates, it is preferably −200 mV or more, preferably −200 mV or more and −100 mV or less for reasons of chemical cost. In this case, hydrogen peroxide as an oxidizing agent is added to increase the ORP value to -200 mV or higher.
Thereafter, an acid such as sulfuric acid, hydrochloric acid or nitric acid, preferably sulfuric acid is added to lower the pH, thereby obtaining a Sn neutralized product. Although the form of this neutralized Sn product is not clear, it is an Sn compound, and any one or more of hydroxide (Sn (OH) 4 ), Na 2 (Sn (OH) 6 ), Na 2 SnO 3, etc. It is considered that Sn can be recovered in the form of the Sn compound. The Sn neutralized product is recovered by solid-liquid separation. If the pH is too high, no Sn neutralized product is produced. On the other hand, if the pH is too low, the As removal efficiency deteriorates.

表1に代表的な中和前後の錫、砒素濃度の変化を示す。
又、図2に、pH=13.5からpHを低下させた際のAsとSnの液中濃度を示し、図3に、pH=13.5からpHを低下させた際のAsとSnの液中残存率を示す。図2、3によれば、pHが9〜10程度である場合、砒素が少なくとも一部が溶液中に残存しつつ、錫が優先的に析出しやすくなることがわかり、これからもpH=9〜10に調整することが好ましいことが把握される。
Table 1 shows typical changes in tin and arsenic concentrations before and after neutralization.
FIG. 2 shows the concentration of As and Sn in the solution when the pH was lowered from pH = 13.5, and FIG. 3 shows the concentration of As and Sn when the pH was lowered from pH = 13.5. The residual ratio in liquid is shown. 2 and 3, when the pH is about 9 to 10, it can be seen that tin tends to be preferentially precipitated while at least a part of arsenic remains in the solution. It is understood that it is preferable to adjust to 10.

Figure 2012251238
Figure 2012251238

中和後液は、排水処理工程に送り、慣用的な方法で脱As処理を行うことができる。
なお、Sn中和物は、電解採取液に投入して錫の回収率を上げることができる。その投入の一態様として、電解採取のSn濃度が低下した際、投入してもよく、Snの濃度を例えば20〜40g/Lに調整し、電解採取により錫を電着錫として回収することができる。
The post-neutralization solution can be sent to a wastewater treatment step and subjected to de-As treatment by a conventional method.
In addition, Sn neutralized material can be thrown into an electrowinning liquid and the recovery rate of tin can be raised. As one aspect of the charging, it may be charged when the Sn concentration of electrowinning decreases, and the Sn concentration is adjusted to, for example, 20 to 40 g / L, and tin is recovered as electrodeposited tin by electrowinning. it can.

本発明を使用することによって回収した電着錫は、99.5質量%以上の高品位とすることができる。例として実際の操業で得られたデータを表2に示す。   The electrodeposited tin recovered by using the present invention can have a high quality of 99.5% by mass or more. Table 2 shows data obtained in actual operation as an example.

Figure 2012251238
Figure 2012251238

以下、本発明の実施例を説明するが、実施例は例示目的であって発明が限定されることを意図しない。   Examples of the present invention will be described below, but the examples are for illustrative purposes and are not intended to limit the invention.

(実施例1)(電解採取液の初期Sn濃度が30〜50g/Lと高い場合)
粗鉛をソーダ処理することにより、スカムを得た。該スカムはSn:20質量%程度、As:4質量%程度、鉛:30質量%程度、銅:6質量%程度、アンチモン:5質量%程度、含有していた。該スカムをスラリー濃度300g/Lになるよう70℃の温水で苛性ソーダを溶解した液(pH:13.5)により浸出し、Pb、Sbを残渣として落とした。浸出液中にはSn:30〜50g/Lが溶け込んだ。この溶液に水硫化ソーダを添加して硫化処理することで、PbとCuを硫化物として落とした。
得られた硫化後液を電解採取液(初期Sn:30〜50g/L)とした。これを、電流密度:75A/m2、液温:70℃で電解採取することでSn電着メタルを回収した。電解採取の終点における液中のSn濃度が10〜15g/Lとなるように管理した。終点における電解採取液中のSn濃度を10〜15g/Lで管理することで、Snの直行率を上げることができる。
上記操業条件で錫の電解採取を継続的に実施したところ、スカム浸出で溶液中に溶け込んだSn量の約80%を電解採取により電着メタルとして回収することができた。アルシンガスの発生もなかった。残りの20%は、電解後液中にSn濃度10〜15g/Lで含有していることから、中和工程に送った。電解採取により溶液のORP値が−200mV(vs Al/AgCl、以下同様)以上まで酸化されているが、−200mVより低くなる場合もある。この場合は、過酸化水素を添加し、ORP値を−200mVに調整してから中和工程に送った。
中和工程では電解後液を、硫酸によりpH=9とし、Snを中和物の形態として回収した。中和工程においてもアルシンガスの発生は見られなかった。
表3に代表的な中和前後の錫、砒素濃度の変化を示す。
(Example 1) (When the initial Sn concentration of the electrolytic collection solution is as high as 30 to 50 g / L)
Crude lead was treated with soda to obtain scum. The scum contained Sn: about 20% by mass, As: about 4% by mass, lead: about 30% by mass, copper: about 6% by mass, and antimony: about 5% by mass. The scum was leached with a solution (pH: 13.5) of caustic soda dissolved in hot water at 70 ° C. to a slurry concentration of 300 g / L, and Pb and Sb were dropped as residues. Sn: 30 to 50 g / L dissolved in the leachate. Pb and Cu were dropped as sulfides by adding sodium hydrosulfide to this solution and sulfiding.
The obtained post-sulfurized solution was used as an electrolytic collection solution (initial Sn: 30 to 50 g / L). This was electrolyzed at a current density of 75 A / m 2 and a liquid temperature of 70 ° C. to recover Sn electrodeposited metal. It managed so that Sn density | concentration in the liquid in the end point of electrowinning might be set to 10-15 g / L. By managing the Sn concentration in the electrolytic collection solution at the end point at 10 to 15 g / L, the direct rate of Sn can be increased.
When electrolytic extraction of tin was continuously carried out under the above operating conditions, about 80% of the Sn amount dissolved in the solution by scum leaching could be recovered as electrodeposited metal by electrolytic extraction. There was no generation of arsine gas. The remaining 20% was contained in the post-electrolysis solution at a Sn concentration of 10 to 15 g / L, so it was sent to the neutralization step. Although the ORP value of the solution is oxidized to -200 mV (vs Al / AgCl, the same applies hereinafter) or more by electrolytic collection, it may be lower than -200 mV. In this case, hydrogen peroxide was added and the ORP value was adjusted to -200 mV before being sent to the neutralization step.
In the neutralization step, the post-electrolysis solution was adjusted to pH = 9 with sulfuric acid, and Sn was recovered in the form of a neutralized product. No arsine gas was generated in the neutralization process.
Table 3 shows typical changes in tin and arsenic concentrations before and after neutralization.

Figure 2012251238
Figure 2012251238

排液(中和後液)は、排水処理工程に送り、脱As処理を行った。
Sn中和物は、電解採取液のSn濃度が低下した際、投入することでSnの濃度を10g/L以上に維持するのに利用し、その後、電解採取により錫を電着錫として回収した。
得られた電着錫の品位は、表4の如く99.5質量%以上の値であった。また、アルシンガスを発生させない安全な環境で電解採取を行うことができた。
The drained liquid (the liquid after neutralization) was sent to the waste water treatment step and subjected to a de-As treatment.
The Sn neutralized product is used to maintain the Sn concentration at 10 g / L or more by adding when the Sn concentration of the electrolytic collection solution is lowered, and then tin is recovered as electrodeposited tin by electrolytic collection. .
As shown in Table 4, the quality of the obtained electrodeposited tin was 99.5% by mass or more. Moreover, it was possible to perform electrowinning in a safe environment that does not generate arsine gas.

Figure 2012251238
Figure 2012251238

(比較例1)(電解採取液の初期錫濃度が低い(9g/L)場合の電解採取)
上記と異なり、錫の濃度を9g/Lとした電解採取液で、他の条件は、実施例1と同じ条件で、錫の電着を行うとアルシンガスが発生し、危険な状態であった。
(Comparative example 1) (Electrolytic collection when initial tin concentration of electrolytic collection liquid is low (9 g / L))
Unlike the above, the electrowinning liquid with a tin concentration of 9 g / L was used under the same conditions as in Example 1. When tin was electrodeposited, arsine gas was generated, which was in a dangerous state.

(実施例2)(電解採取液のSn濃度が低下した場合 Sn濃度を30〜50g/Lで維持)
電解採取の終点における液中のSn濃度が30〜50g/Lとなるように管理した以外は、実施例1と同様の条件で、Snの電解採取を行った。終点における電解採取液中のSn濃度を30〜50g/Lで管理することで、Sn電解採取の電流効率を上げることができる。
上記操業条件で錫の電解採取を継続的に実施したところ、Sn電解採取の電流効率は、90%以上を維持することができた。アルシンガスの発生もなかった。Sn濃度が30g/L以下の電解後液は、中和工程に送った。実施例1と同様に、電解採取により溶液のORP値が−200mV以上まで酸化されているが、−200mVより低くなる場合もある。この場合は、過酸化水素を添加し、ORP値を−200mVに調整してから中和工程に送った。
中和工程では電解後液を、硫酸によりpH=9とし、Snを中和物の形態として回収した。中和工程においてもアルシンガスの発生は見られなかった。
表5に代表的な中和前後の錫、砒素濃度の変化を示す。
(Example 2) (When the Sn concentration of the electrolytic collection solution is decreased, the Sn concentration is maintained at 30 to 50 g / L)
Electrolytic extraction of Sn was performed under the same conditions as in Example 1 except that the Sn concentration in the liquid at the end point of electrolytic extraction was controlled to be 30 to 50 g / L. By managing the Sn concentration in the electrolytic collection solution at the end point at 30 to 50 g / L, the current efficiency of Sn electrolytic collection can be increased.
When tin electrowinning was continuously carried out under the above operating conditions, the current efficiency of Sn electrowinning could be maintained at 90% or more. There was no generation of arsine gas. The post-electrolysis solution having a Sn concentration of 30 g / L or less was sent to the neutralization step. Similar to Example 1, the ORP value of the solution is oxidized to −200 mV or more by electrowinning, but may be lower than −200 mV. In this case, hydrogen peroxide was added and the ORP value was adjusted to -200 mV before being sent to the neutralization step.
In the neutralization step, the post-electrolysis solution was adjusted to pH = 9 with sulfuric acid, and Sn was recovered in the form of a neutralized product. No arsine gas was generated in the neutralization process.
Table 5 shows typical changes in tin and arsenic concentrations before and after neutralization.

Figure 2012251238
Figure 2012251238

排液(中和後液)は、排水処理工程に送り、脱As処理を行った。
Sn中和物は、電解採取液のSn濃度が低下した際、投入することでSnの濃度を30〜50g/L以上に上昇させるのに利用し、その後、電解採取により錫を電着錫として回収した。その結果、電流効率を94%まで上げることができた。また、実施例1と同様に、アルシンガスを発生させない安全な環境で電解採取を行うことができた。
The drained liquid (the liquid after neutralization) was sent to the waste water treatment step and subjected to a de-As treatment.
The Sn neutralized product is used to increase the Sn concentration to 30 to 50 g / L or more by adding when the Sn concentration of the electrolytic collection solution is lowered, and then tin is electrodeposited by electrolytic collection. It was collected. As a result, the current efficiency could be increased to 94%. Further, as in Example 1, electrowinning could be performed in a safe environment where no arsine gas was generated.

(実施例3)(電解採取液の初期錫濃度が低い(15g/L)場合の電解採取)
上記と異なり、電解採取液の初期錫の濃度を15g/Lとした電解採取液で、他の条件は、実施例1と同じ条件で、錫の電着を行うとアルシンガスを発生させない安全な環境で電解採取を行うことができた。また、電流効率は、70%であった。
(Example 3) (Electrolytic collection when initial tin concentration of electrolytic collection liquid is low (15 g / L))
Unlike the above, the electrowinning liquid is an electrowinning liquid whose initial tin concentration is 15 g / L. The other conditions are the same as in Example 1, and a safe environment in which arsine gas is not generated when tin is electrodeposited. We were able to perform electrowinning. The current efficiency was 70%.

なお、本発明は以下の態様を包含する。
(1)少なくとも砒素を含有する錫電解採取液中のSn濃度を10g/L以上で保持しながら、錫の電解採取を行う電解採取工程と、
前記工程で得られた電解後液について、ORP値を−200mV(vs AgCl/Ag)以上に維持するか、又は、ORP値が−200mVより低い場合は、酸化剤を添加し、−200mV以上に調整した後、pHを低下させることで、少なくとも一部の砒素を電解後液中に溶存させながら錫をSn中和物の形態に変化させる中和工程と、
を含む錫の電解採取方法。
(2)(1)において、錫電解採取液中のSn濃度を30g/L以上で保持する錫の電解採取方法。
(3)(1)または(2)において、中和工程においてpHを9〜10に調整する錫の電解採取方法。
(4)(1)〜(3)の何れかにおいて、酸化剤は過酸化水素であることを特徴とする錫の電解採取方法。
(5)(1)〜(4)の何れかにおいて、前記工程で得られたSn中和物を溶液中に溶存した状態の砒素分と固液分離する工程をさらに含む錫の電解採取方法。
(6)(1)〜(4)の何れかにおいて、Sn中和物は、電解採取の溶液に再溶解し、電解採取により錫を電着錫として回収することを特徴とする錫の電解採取方法。
(7)(1)〜(6)の何れかにおいて、錫電解採取液は、粗鉛をソーダ処理して得られたソーダスカムに対して、苛性ソーダ水溶液にて浸出する工程と、次いで浸出後液を硫化処理する工程を経て得られた硫化後液である錫の電解採取方法。
In addition, this invention includes the following aspects.
(1) an electrowinning step of electrowinning tin while maintaining the Sn concentration in the tin electrowinning solution containing at least arsenic at 10 g / L or more;
For the post-electrolysis solution obtained in the above step, the ORP value is maintained at −200 mV (vs AgCl / Ag) or higher, or when the ORP value is lower than −200 mV, an oxidizing agent is added to increase it to −200 mV or higher. After the adjustment, a neutralization step of changing tin into a Sn neutralized form while dissolving at least a part of arsenic in the post-electrolysis solution by lowering the pH;
Method for electrolytically collecting tin containing
(2) A method for electrolytically collecting tin according to (1), wherein the Sn concentration in the tin electrolytic collection solution is maintained at 30 g / L or more.
(3) The method for electrolytically collecting tin according to (1) or (2), wherein the pH is adjusted to 9 to 10 in the neutralization step.
(4) The method for electrolytically collecting tin according to any one of (1) to (3), wherein the oxidizing agent is hydrogen peroxide.
(5) The tin electrowinning method according to any one of (1) to (4), further comprising a step of solid-liquid separation of the Sn neutralized product obtained in the above step from an arsenic component dissolved in the solution.
(6) In any one of (1) to (4), the Sn neutralized product is redissolved in a solution for electrolytic collection, and tin is recovered as electrodeposited tin by electrolytic collection. Method.
(7) In any one of (1) to (6), the tin electrowinning solution is a step of leaching a soda scum obtained by soda treatment of crude lead with a caustic soda aqueous solution, and then a solution after leaching. A method for electrolytically collecting tin, which is a liquid after sulfidation obtained through a sulfiding process.

Claims (6)

少なくとも砒素を含有する錫電解採取液を、水素が発生しない条件で電解処理する、砒素含有溶液からの錫の回収方法。   A method for recovering tin from an arsenic-containing solution, wherein an electrolytic treatment is performed on a tin electrolysis solution containing at least arsenic under conditions that do not generate hydrogen. 請求項1に記載の方法において、前記電解処理を10g/L以上の錫濃度にて行うことを特徴とする方法。   The method according to claim 1, wherein the electrolytic treatment is performed at a tin concentration of 10 g / L or more. 請求項1又は2に記載の方法において、上記電解処理を錫濃度が10g/L以上で止めて、さらに当該電解処理で得られた電解後液について、ORP値を−200mV(vs AgCl/Ag)以上に維持するか、又は、ORP値が−200mVより低い場合は、酸化剤を添加し、−200mV以上に調整した後、pHを低下させることで、少なくとも一部の砒素を電解後液中に溶存させながら錫をSn中和物の形態に変化させる処理を含む方法。   3. The method according to claim 1, wherein the electrolytic treatment is stopped at a tin concentration of 10 g / L or more, and the ORP value is −200 mV (vs AgCl / Ag) for the post-electrolysis solution obtained by the electrolytic treatment. If the ORP value is lower than -200 mV, an oxidant is added and adjusted to -200 mV or higher, and then the pH is lowered so that at least a part of arsenic is contained in the post-electrolysis solution. A method comprising a process of changing tin into a Sn neutralized form while being dissolved. 請求項3に記載の方法において、さらにSn中和物を固液分離し、このSn中和物を電解採取の溶液に再溶解し、電解処理により錫を回収することを特徴とする方法。   4. The method according to claim 3, wherein the Sn neutralized product is further solid-liquid separated, the Sn neutralized product is redissolved in an electrowinning solution, and tin is recovered by electrolytic treatment. 請求項1〜4の何れか一項に記載の方法において、錫電解採取液は、粗鉛をソーダ処理して得られたソーダスカムに対して、苛性ソーダ水溶液にて浸出する工程と、次いで浸出後液を硫化処理する工程を経て得られた硫化後液である錫の電解採取方法。   The method according to any one of claims 1 to 4, wherein the tin electrowinning liquid is a step of leaching with a caustic soda aqueous solution to a soda scum obtained by soda treatment of crude lead, and then a liquid after leaching. A method for electrolytically collecting tin, which is a post-sulfurized solution obtained through a step of sulfidizing the steel. 請求項3に記載の方法において、酸化剤は過酸化水素であることを特徴とする方法。   4. The method of claim 3, wherein the oxidizing agent is hydrogen peroxide.
JP2012093899A 2011-05-11 2012-04-17 Method for recovering tin from arsenic-containing solutions Active JP5936421B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012093899A JP5936421B2 (en) 2011-05-11 2012-04-17 Method for recovering tin from arsenic-containing solutions
CN201210138988.9A CN102776528B (en) 2011-05-11 2012-05-07 The method of tin is reclaimed from arsenic containing solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011106445 2011-05-11
JP2011106445 2011-05-11
JP2012093899A JP5936421B2 (en) 2011-05-11 2012-04-17 Method for recovering tin from arsenic-containing solutions

Publications (2)

Publication Number Publication Date
JP2012251238A true JP2012251238A (en) 2012-12-20
JP5936421B2 JP5936421B2 (en) 2016-06-22

Family

ID=47524311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093899A Active JP5936421B2 (en) 2011-05-11 2012-04-17 Method for recovering tin from arsenic-containing solutions

Country Status (2)

Country Link
JP (1) JP5936421B2 (en)
KR (1) KR101453151B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017369A (en) * 1975-05-07 1977-04-12 Boliden Aktiebolag Method for the electrolytic recovery of Sb, As, Hg and/or Sn
JPS5487631A (en) * 1977-12-20 1979-07-12 Noranda Mines Ltd Removing of arsenic from electrolyte containing arsenic and copper
JPH04191340A (en) * 1990-07-19 1992-07-09 Nikko Kyodo Co Ltd Production of high purity tin
JP2008150658A (en) * 2006-12-15 2008-07-03 Dowa Metals & Mining Co Ltd Method for producing arsenic liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276322B2 (en) * 1999-02-08 2009-06-10 日本化学産業株式会社 Method for producing high purity alkali stannate compound
JP2001279344A (en) * 2000-03-29 2001-10-10 Nippon Mining & Metals Co Ltd Method for recovering tin
JP5160163B2 (en) 2007-08-02 2013-03-13 Dowaメタルマイン株式会社 Tin recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017369A (en) * 1975-05-07 1977-04-12 Boliden Aktiebolag Method for the electrolytic recovery of Sb, As, Hg and/or Sn
JPS5487631A (en) * 1977-12-20 1979-07-12 Noranda Mines Ltd Removing of arsenic from electrolyte containing arsenic and copper
JPH04191340A (en) * 1990-07-19 1992-07-09 Nikko Kyodo Co Ltd Production of high purity tin
JP2008150658A (en) * 2006-12-15 2008-07-03 Dowa Metals & Mining Co Ltd Method for producing arsenic liquid

Also Published As

Publication number Publication date
JP5936421B2 (en) 2016-06-22
KR101453151B1 (en) 2014-10-27
KR20120127274A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US20150053572A1 (en) Hydrometallurgical process for the recovery of tellurium from high lead bearing copper refinery anode slime
JP5160163B2 (en) Tin recovery method
JP5370777B2 (en) Method for recovering copper from copper sulfide
JP2021070843A (en) Recovery method of copper, nickel, cobalt from waste lithium ion secondary battery
JP2019173107A (en) Method of recovering tellurium
JP2006219719A (en) Method for recovering indium
JP2016191093A (en) Method for removing iron and aluminum from lithium ion battery scrap
JP4962078B2 (en) Nickel sulfide chlorine leaching method
JP2010138490A (en) Method of recovering zinc
JP5702272B2 (en) Treatment method of bismuth electrolytic deposits
JP2012052215A (en) Method for collecting indium
JP5291313B2 (en) Tin recovery method
JP6172526B2 (en) Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process
JP5936421B2 (en) Method for recovering tin from arsenic-containing solutions
CN110629253B (en) Method for electrorefining lead bullion by using ionic liquid and method for recovering metal bismuth and silver
JP6127902B2 (en) Method for leaching nickel and cobalt from mixed sulfides
JP6957974B2 (en) Chlorine leaching method, electronickel manufacturing method
JP5145843B2 (en) Wet copper refining method for copper raw materials containing copper sulfide minerals
JP2014025121A (en) Electrolytic extraction method for tin and method for recovering tin
JP6418140B2 (en) Nickel smelting method, chlorine leaching method
CN110923467A (en) Method for recycling lead from waste lead-acid battery
JP2016044355A (en) Treatment method of nickel sulfide raw material
JP6250365B2 (en) Method for concentrating rhodium and ruthenium
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP5324544B2 (en) How to treat lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5936421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250