JP5291313B2 - Tin recovery method - Google Patents

Tin recovery method Download PDF

Info

Publication number
JP5291313B2
JP5291313B2 JP2007243482A JP2007243482A JP5291313B2 JP 5291313 B2 JP5291313 B2 JP 5291313B2 JP 2007243482 A JP2007243482 A JP 2007243482A JP 2007243482 A JP2007243482 A JP 2007243482A JP 5291313 B2 JP5291313 B2 JP 5291313B2
Authority
JP
Japan
Prior art keywords
tin
ions
antimony
sulfur
basic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007243482A
Other languages
Japanese (ja)
Other versions
JP2009074129A (en
Inventor
康祐 井野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2007243482A priority Critical patent/JP5291313B2/en
Publication of JP2009074129A publication Critical patent/JP2009074129A/en
Application granted granted Critical
Publication of JP5291313B2 publication Critical patent/JP5291313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、錫の回収方法に関し、特に、不純物としてアンチモンを含む錫含有塩基性溶液から錫を回収する方法に関する。   The present invention relates to a method for recovering tin, and more particularly to a method for recovering tin from a tin-containing basic solution containing antimony as an impurity.

錫(Sn)が溶解した苛性ソーダ水溶液のような錫含有塩基性溶液に不純物として数十〜200mg/L程度のアンチモン(Sb)が溶解していると、その錫含有塩基性溶液を電解液として使用して電解採取を行っても、Snと共にSbも電着するため、純度の高いSnを得ることができない。例えば、JIS1種で規格されているSb200ppm以下のSnを得る場合には、電解液中のSn濃度が50g/L程度であれば、電解液中のSb濃度を10mg/L程度、好ましくは5mg/L程度まで下げなければならない。   When several tens to 200 mg / L of antimony (Sb) is dissolved as an impurity in a tin-containing basic solution such as a caustic soda solution in which tin (Sn) is dissolved, the tin-containing basic solution is used as an electrolyte. Even if electrolytic collection is carried out, Sb is electrodeposited together with Sn, so that high purity Sn cannot be obtained. For example, when obtaining Sn of 200 ppm or less of Sb standardized by JIS class 1, if the Sn concentration in the electrolyte is about 50 g / L, the Sb concentration in the electrolyte is about 10 mg / L, preferably 5 mg / L. It must be lowered to about L.

不純物としてSbを含む錫含有塩基性溶液を室温で長時間放置すると、Sbが徐々に沈澱して、Sb濃度が20mg/L程度まで低下する。しかし、その沈澱には長時間を要し、また、電解採取の際に液温を80℃程度まで上げる必要があるので、錫含有塩基性溶液中のSb濃度を下げるために冷却するのは、エネルギー的にもロスが多い。   When a tin-containing basic solution containing Sb as an impurity is allowed to stand at room temperature for a long time, Sb gradually precipitates and the Sb concentration decreases to about 20 mg / L. However, the precipitation takes a long time, and since it is necessary to raise the liquid temperature to about 80 ° C. during electrowinning, cooling to lower the Sb concentration in the tin-containing basic solution There are many energy losses.

従来、不純物として錫以外の金属を含む錫含有塩基性溶液から錫を回収する方法として、不純物を含む錫含有塩基性溶液に、還元用金属を添加するとともに、再酸化防止剤としてチオ硫酸ナトリウムなどを添加して、液中の不純物を置換還元し、析出した不純物を濾過などによって除去した後に、錫を回収する方法が提案されている(例えば、特許文献1参照)。   Conventionally, as a method for recovering tin from a tin-containing basic solution containing a metal other than tin as an impurity, a reducing metal is added to the tin-containing basic solution containing an impurity, and sodium thiosulfate is used as a reoxidation inhibitor. A method is proposed in which tin is recovered after adding and reducing impurities in the liquid and removing the precipitated impurities by filtration or the like (see, for example, Patent Document 1).

特開昭62−270735号公報(第1−2頁)JP-A-62-270735 (page 1-2)

しかし、特許文献1の方法では、不純物としてSbを含む錫含有塩基性溶液に、還元用金属を添加するとともに、再酸化防止剤としてチオ硫酸ナトリウムなどを添加しても、錫含有塩基性溶液中のSb濃度を短時間で十分に低下させることができない場合がある。   However, in the method of Patent Document 1, even if a reducing metal is added to a tin-containing basic solution containing Sb as an impurity and sodium thiosulfate or the like is added as a reoxidation inhibitor, In some cases, the Sb concentration cannot be sufficiently reduced in a short time.

したがって、本発明は、このような従来の問題点に鑑み、不純物としてSbを含む錫含有塩基性溶液中のSb濃度を短時間で十分に低下させて効率的に錫を回収することができる、錫の回収方法を提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention can efficiently recover tin by sufficiently reducing the Sb concentration in a tin-containing basic solution containing Sb as an impurity in a short time. It aims at providing the recovery method of tin.

本発明者らは、上記課題を解決するために鋭意研究した結果、不純物としてSbを含む錫含有塩基性溶液に、酸化数(−2)の硫黄を含むイオンが存在する状態で、アルカリ領域においてSbより卑な金属を添加し、Sbを沈澱させて除去することによって、不純物としてSbを含む錫含有塩基性溶液中のSb濃度を短時間で十分に低下させて効率的に錫を回収することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that in an alkaline region, a tin-containing basic solution containing Sb as an impurity contains ions containing sulfur having an oxidation number (-2). By adding a metal lower than Sb and precipitating and removing Sb, the Sb concentration in the tin-containing basic solution containing Sb as an impurity can be sufficiently reduced in a short time to efficiently recover tin. As a result, the present invention has been completed.

すなわち、本発明による錫の回収方法は、不純物としてアンチモンを含む錫含有塩基性溶液に、酸化数(−2)の硫黄を含むイオンが存在する状態で、アルカリ領域においてアンチモンより卑な金属を添加し、アンチモンを沈澱させて除去した後、錫を回収することを特徴とする。   That is, the method for recovering tin according to the present invention adds a base metal more than antimony in an alkaline region in the presence of ions containing sulfur having an oxidation number (−2) in a tin-containing basic solution containing antimony as an impurity. The tin is recovered after the antimony is precipitated and removed.

この錫の回収方法において、酸化数(−2)の硫黄を含むイオンが、硫黄イオン(S2−)、チオ錫酸イオン(SnS 2−)およびチオアンチモン酸(SbS 2−)からなる群から選ばれる一種以上のイオンであるのが好ましい。また、錫含有塩基性溶液に、硫化ナトリウム、硫化錫および硫化アンチモンからなる群から選ばれる一種以上の化合物を添加することにより、酸化数(−2)の硫黄を含むイオンが存在する状態にするのが好ましい。また、錫含有塩基性溶液に、硫化アルカリ、水硫化アルカリ、チオ錫酸アルカリおよび金属硫化物からなる群から選ばれる一種以上の化合物を添加することにより、酸化数(−2)の硫黄を含むイオンが存在する状態にしてもよい。さらに、錫含有塩基性溶液に硫黄を添加することにより、酸化数(−2)の硫黄を含むイオンが存在する状態にしてもよい。 In this method for recovering tin, ions containing sulfur having an oxidation number (−2) are composed of sulfur ions (S 2− ), thiostannate ions (SnS 3 2− ), and thioantimonic acid (SbS 4 2− ). It is preferably one or more ions selected from the group. In addition, by adding one or more compounds selected from the group consisting of sodium sulfide, tin sulfide and antimony sulfide to the tin-containing basic solution, ions containing sulfur having an oxidation number (-2) are present. Is preferred. Further, by adding one or more compounds selected from the group consisting of alkali sulfide, alkali hydrosulfide, alkali thiostannate and metal sulfide to the tin-containing basic solution, sulfur containing an oxidation number (−2) is contained. An ion may be present. Furthermore, you may make it the state in which the ion containing sulfur of oxidation number (-2) exists by adding sulfur to a tin containing basic solution.

また、上記の錫の回収方法において、アルカリ領域においてアンチモンより卑な金属が、錫、亜鉛およびアルミニウムからなる群から選ばれる一種以上の金属であるのが好ましい。また、アンチモンを沈澱させて除去した後、得られた溶液を電解液として使用して電解採取により錫を回収するのが好ましい。さらに、アルカリ領域においてアンチモンより卑な金属を添加する際に、錫含有塩基性溶液の温度を70℃以上にするのが好ましい。   In the above tin recovery method, it is preferable that the base metal in the alkaline region than antimony is one or more metals selected from the group consisting of tin, zinc and aluminum. Further, after antimony is precipitated and removed, it is preferable to recover tin by electrolytic collection using the obtained solution as an electrolytic solution. Furthermore, it is preferable that the temperature of the tin-containing basic solution is set to 70 ° C. or higher when adding a metal that is lower than antimony in the alkaline region.

本発明によれば、不純物としてSbを含む錫含有塩基性溶液中のSb濃度を短時間で十分に低下させて効率的に錫を回収することができる。特に、不純物としてSbを含む錫含有塩基性溶液が酸化した場合であっても、溶液中のSb濃度を短時間で十分に低下させて効率的に錫を回収することができる。   According to the present invention, tin can be efficiently recovered by sufficiently reducing the Sb concentration in a tin-containing basic solution containing Sb as an impurity in a short time. In particular, even if a tin-containing basic solution containing Sb as an impurity is oxidized, tin can be efficiently recovered by sufficiently reducing the Sb concentration in the solution in a short time.

本発明による錫の回収方法の実施の形態では、Snの他に不純物としてSbを含む苛性ソーダ水溶液のような錫含有塩基性溶液に、酸化数(−2)の硫黄を含むイオンが存在する状態で、アルカリ領域においてSbより卑な金属を添加し、70℃以上の温度で緩やかに攪拌して置換反応によりSbを沈澱させ、濾過によりSbを除去した後、得られた溶液を電解液として使用して電解採取によりSnを回収する。   In the embodiment of the method for recovering tin according to the present invention, a tin-containing basic solution such as a caustic soda aqueous solution containing Sb as an impurity in addition to Sn contains ions containing sulfur having an oxidation number (-2). In the alkaline region, a metal lower than Sb is added, gently stirred at a temperature of 70 ° C. or more to precipitate Sb by a substitution reaction, Sb is removed by filtration, and the resulting solution is used as an electrolyte. Then, Sn is collected by electrolytic collection.

酸化数(−2)の硫黄を含むイオンとしては、硫黄イオン(S2−)、チオ錫酸イオン(SnS 2−)、チオアンチモン酸(SbS 2−)などが挙げられる。また、酸化数(−2)の硫黄を含むイオンが存在する状態にするために、錫含有塩基性溶液に、硫化アルカリ、水硫化アルカリ、チオ錫酸アルカリおよび金属硫化物からなる群から選ばれる一種以上の化合物を添加することができ、硫化ナトリウム、硫化錫および硫化アンチモンからなる群から選ばれる一種以上の化合物を添加するのが好ましい。 Examples of ions containing sulfur having an oxidation number (-2) include sulfur ions (S 2− ), thiostannate ions (SnS 3 2− ), and thioantimonic acid (SbS 4 2− ). Further, in order to obtain a state in which ions containing sulfur with an oxidation number (-2) are present, the tin-containing basic solution is selected from the group consisting of alkali sulfide, alkali hydrosulfide, alkali thiostannate, and metal sulfide. One or more compounds can be added, and it is preferable to add one or more compounds selected from the group consisting of sodium sulfide, tin sulfide and antimony sulfide.

アルカリ領域においてSbより卑な金属としては、Sn、Zn、Alなどを使用することができ、粒状、粉状または板状のSnを使用するのが好ましい。   Sn, Zn, Al, etc. can be used as the base metal in the alkaline region, and it is preferable to use granular, powdery or plate-like Sn.

なお、濾過によりSbを除去した液は、2価のSn(Sn2+)が存在すると、電着するSnがスポンジ状になるため、電解採取前に液中に酸素を吹き込むなどによって酸化して4価のSn(Sn4+)にするのが好ましい。このような処理を電解採取前に行うと、平滑な電着錫を得ることができる。 In addition, when divalent Sn (Sn 2+ ) is present in the liquid from which Sb has been removed by filtration, Sn to be electrodeposited becomes a spongy form, so that it is oxidized by blowing oxygen into the liquid before electrolytic collection, etc. It is preferable to use Sn (Sn 4+ ). If such treatment is performed before electrolytic collection, smooth electrodeposited tin can be obtained.

以下、本発明による錫の回収方法の実施例について詳細に説明する。   Examples of the method for recovering tin according to the present invention will be described in detail below.

[実施例1]
不純物としてSbを含む錫含有塩基性溶液として、NaOH濃度100g/Lの水溶液に30g/LのSnと100mg/LのSbを溶解した水溶液300mLを用意した。この水溶液に硫化ナトリウム(NaS)1gを添加して90℃に加温した後、粒径1.5mm程度の99.9%のSn粒10gを添加して、攪拌羽根で緩やかに攪拌し、経過時間毎の水溶液中のSb濃度を測定した。その結果を図1に示す。
[Example 1]
As a tin-containing basic solution containing Sb as an impurity, 300 mL of an aqueous solution prepared by dissolving 30 g / L Sn and 100 mg / L Sb in an aqueous solution having a NaOH concentration of 100 g / L was prepared. After adding 1 g of sodium sulfide (Na 2 S) to this aqueous solution and heating to 90 ° C., add 10 g of 99.9% Sn particles having a particle size of about 1.5 mm and gently stirring with a stirring blade. The Sb concentration in the aqueous solution for each elapsed time was measured. The result is shown in FIG.

[比較例1〜3]
比較例1では硫化ナトリウムを添加しなかった、比較例2では硫化ナトリウムの代わりに硫酸ナトリウム(NaSO)3gを添加した、比較例3では硫化ナトリウムの代わりにチオ硫酸ナトリウム5水和物(Na・5HO)0.6gを添加した以外は、実施例1と同様の操作を行い、経過時間毎の水溶液中のSb濃度を測定した。その結果を図1に示す。
[Comparative Examples 1-3]
In Comparative Example 1, sodium sulfide was not added. In Comparative Example 2, 3 g of sodium sulfate (Na 2 SO 4 ) was added instead of sodium sulfide. In Comparative Example 3, sodium thiosulfate pentahydrate was used instead of sodium sulfide. Except for adding 0.6 g of (Na 2 S 2 O 3 .5H 2 O), the same operation as in Example 1 was performed, and the Sb concentration in the aqueous solution at each elapsed time was measured. The result is shown in FIG.

図1に示すように、硫化ナトリウムを添加した実施例1では、約30分経過後に水溶液中のSb濃度が0mg/L程度まで低下しているが、硫化ナトリウムを添加しなかった比較例1や硫酸ナトリウムを添加した比較例2では、1時間以上経過しても水溶液中のSb濃度が50mg/L程度までしか低下することができなかった。この結果から、硫化ナトリウムの代わりに硫酸ナトリウム(硫酸イオンSO )を添加しても、水溶液中のSb濃度を低下させる効果がないのがわかる。また、図1に示すように、硫化ナトリウムの代わりにチオ硫酸ナトリウムを添加した比較例3では、水溶液中のSb濃度が0mg/L程度まで低下するまでに1時間程度を要し、実施例1のように短時間でSb濃度を十分に低下させることができないことがわかる。 As shown in FIG. 1, in Example 1 in which sodium sulfide was added, the Sb concentration in the aqueous solution decreased to about 0 mg / L after about 30 minutes, but Comparative Example 1 in which sodium sulfide was not added In Comparative Example 2 in which sodium sulfate was added, the Sb concentration in the aqueous solution could only be reduced to about 50 mg / L even after 1 hour or more had elapsed. From this result, it can be seen that even if sodium sulfate (sulfate ion SO 4 ) is added instead of sodium sulfide, there is no effect of reducing the Sb concentration in the aqueous solution. Further, as shown in FIG. 1, in Comparative Example 3 in which sodium thiosulfate was added instead of sodium sulfide, it took about 1 hour until the Sb concentration in the aqueous solution decreased to about 0 mg / L. It can be seen that the Sb concentration cannot be sufficiently reduced in a short time.

[実施例2]
不純物としてSbを含む錫含有塩基性溶液として、NaOH濃度100g/Lの水溶液に10g/LのSnを溶解させた後、Sbメタルを溶解させ、溶け残りを濾過により除去した水溶液を用意した。この水溶液に過酸化水素を添加して酸化(3価のSbを5価のSbに酸化)し、残存する過酸化水素をSnで分解し、室温で10時間放置した後、濾過した。
[Example 2]
As a tin-containing basic solution containing Sb as an impurity, 10 g / L Sn was dissolved in an aqueous solution having a NaOH concentration of 100 g / L, and then an Sb metal was dissolved and an undissolved residue was removed by filtration. Hydrogen peroxide was added to this aqueous solution for oxidation (trivalent Sb was oxidized to pentavalent Sb), and the remaining hydrogen peroxide was decomposed with Sn, allowed to stand at room temperature for 10 hours, and then filtered.

このようにして得られた濾液300mLに硫化ナトリウム0.5g(S量換算0.205)を添加して80℃に加温した後、粒径1.5mm程度の99.9%のSn粒10gを添加して、攪拌羽で緩やかに攪拌し、経過時間毎の水溶液中のSb濃度を測定した。その結果を図2に示す。   After adding sodium sulfide 0.5g (S amount conversion 0.205) to 300 mL of the filtrate thus obtained and heating to 80 ° C., 10 g of 99.9% Sn particles having a particle diameter of about 1.5 mm are obtained. Was added and stirred gently with a stirring blade, and the Sb concentration in the aqueous solution was measured for each elapsed time. The result is shown in FIG.

[実施例3、4、比較例4、5]
実施例3では硫化ナトリウムの代わりに硫化錫(SnS)0.58g(S量換算0.204)を添加した、実施例4では硫化ナトリウムの代わりに硫化アンチモン(Sb)0.1g(S量換算0.040)を添加した、比較例4では硫化ナトリウムを添加しなかった(S量換算0)、比較例5では硫化ナトリウムの代わりにチオ硫酸ナトリウム5水和物(Na・5HO)1.59g(S量換算0.410)を添加した以外は、実施例2と同様の操作を行い、経過時間毎の水溶液中のSb濃度を測定した。その結果を図2に示す。
[Examples 3 and 4, Comparative Examples 4 and 5]
In Example 3, 0.58 g of tin sulfide (SnS 2 ) (0.204 conversion in terms of S) was added instead of sodium sulfide, and in Example 4, 0.1 g of antimony sulfide (Sb 2 S 5 ) instead of sodium sulfide. In Comparative Example 4 to which (S amount conversion 0.040) was added, sodium sulfide was not added (S amount conversion 0). In Comparative Example 5, sodium thiosulfate pentahydrate (Na 2 S) was used instead of sodium sulfide. except that the addition of 2 O 3 · 5H 2 O) 1.59g (S amount in terms 0.410), the procedure of example 2 was measured Sb concentration in the aqueous solution for each elapsed time. The result is shown in FIG.

図2に示すように、硫化ナトリウムを添加した実施例2と硫化錫を添加した実施例3では、約30分経過後に水溶液中のSb濃度が0mg/L程度まで低下し、硫化アンチモンを添加した実施例4では、約90分経過後に水溶液中のSb濃度が0mg/L程度まで低下しているが、硫化ナトリウムを添加しなかった比較例4やチオ硫酸ナトリウムを添加した比較例5では、水溶液中のSb濃度を全く低下させることができなかった。この結果から、不純物としてSbを含む錫含有塩基性溶液が酸化した場合には、硫化ナトリウムの代わりにチオ硫酸ナトリウムを添加しても、水溶液中のSb濃度を低下させる効果がないのがわかる。   As shown in FIG. 2, in Example 2 in which sodium sulfide was added and Example 3 in which tin sulfide was added, the Sb concentration in the aqueous solution dropped to about 0 mg / L after about 30 minutes, and antimony sulfide was added. In Example 4, the Sb concentration in the aqueous solution decreased to about 0 mg / L after about 90 minutes. In Comparative Example 4 in which sodium sulfide was not added and in Comparative Example 5 in which sodium thiosulfate was added, the aqueous solution The Sb concentration therein could not be reduced at all. From this result, it is understood that when a tin-containing basic solution containing Sb as an impurity is oxidized, even if sodium thiosulfate is added instead of sodium sulfide, there is no effect of reducing the Sb concentration in the aqueous solution.

実施例1および比較例1〜3において経過時間に対する液中のSb濃度を示すグラフである。It is a graph which shows Sb density | concentration in the liquid with respect to elapsed time in Example 1 and Comparative Examples 1-3. 実施例2〜4、比較例4及び5において経過時間に対する液中のSb濃度を示すグラフである。It is a graph which shows Sb density | concentration in the liquid with respect to elapsed time in Examples 2-4 and Comparative Examples 4 and 5. FIG.

Claims (8)

不純物としてアンチモンを含む錫含有塩基性溶液に、酸化数(−2)の硫黄を含むイオンが存在する状態で、アルカリ領域においてアンチモンより卑な金属を添加し、アンチモンを沈澱させて除去した後、錫を回収することを特徴とする、錫の回収方法。 After adding a base metal from antimony in the alkaline region to the tin-containing basic solution containing antimony as an impurity in the presence of ions containing sulfur having an oxidation number (-2), the antimony is precipitated and removed. A method for recovering tin, comprising recovering tin. 前記酸化数(−2)の硫黄を含むイオンが、硫黄イオン(S2−)、チオ錫酸イオン(SnS 2−)およびチオアンチモン酸(SbS 2−)からなる群から選ばれる一種以上のイオンであることを特徴とする、請求項1に記載の錫の回収方法。 One or more ions selected from the group consisting of sulfur ions (S 2− ), thiostannate ions (SnS 3 2− ), and thioantimonic acid (SbS 4 2− ), wherein the ion containing sulfur having an oxidation number (−2). The method for recovering tin according to claim 1, wherein 前記錫含有塩基性溶液に、硫化ナトリウム、硫化錫および硫化アンチモンからなる群から選ばれる一種以上の化合物を添加することにより、前記酸化数(−2)の硫黄を含むイオンが存在する状態にすることを特徴とする、請求項1に記載の錫の回収方法。 By adding one or more compounds selected from the group consisting of sodium sulfide, tin sulfide and antimony sulfide to the tin-containing basic solution, ions containing sulfur having the oxidation number (-2) are present. The method for recovering tin according to claim 1, wherein: 前記錫含有塩基性溶液に、硫化アルカリ、水硫化アルカリ、チオ錫酸アルカリおよび金属硫化物からなる群から選ばれる一種以上の化合物を添加することにより、前記酸化数(−2)の硫黄を含むイオンが存在する状態にすることを特徴とする、請求項1に記載の錫の回収方法。 By adding one or more compounds selected from the group consisting of alkali sulfides, alkali hydrosulfides, alkali thiostannates and metal sulfides to the tin-containing basic solution, sulfur containing the oxidation number (−2) is contained. The method for recovering tin according to claim 1, wherein ions are present. 前記錫含有塩基性溶液に硫黄を添加することにより、前記酸化数(−2)の硫黄を含むイオンが存在する状態にすることを特徴とする、請求項1に記載の錫の回収方法。 The method for recovering tin according to claim 1, wherein ions containing sulfur having the oxidation number (−2) are present by adding sulfur to the tin-containing basic solution. 前記アルカリ領域においてアンチモンより卑な金属が、錫、亜鉛およびアルミニウムからなる群から選ばれる一種以上の金属であることを特徴とする、請求項1乃至5のいずれかに記載の錫の回収方法。 The method for recovering tin according to any one of claims 1 to 5, wherein the base metal in the alkaline region is one or more metals selected from the group consisting of tin, zinc and aluminum. 前記アンチモンを沈澱させて除去した後、得られた溶液を電解液として使用して電解採取により錫を回収することを特徴とする、請求項1乃至6のいずれかに記載の錫の回収方法。 The method for recovering tin according to any one of claims 1 to 6, wherein after the antimony is precipitated and removed, tin is recovered by electrowinning using the obtained solution as an electrolytic solution. 前記アルカリ領域においてアンチモンより卑な金属を添加する際に、前記錫含有塩基性溶液の温度を70℃以上にすることを特徴とする、請求項1乃至7のいずれかに記載の錫の回収方法。
The method for recovering tin according to any one of claims 1 to 7, wherein a temperature of the tin-containing basic solution is set to 70 ° C or higher when adding a metal that is lower than antimony in the alkaline region. .
JP2007243482A 2007-09-20 2007-09-20 Tin recovery method Active JP5291313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007243482A JP5291313B2 (en) 2007-09-20 2007-09-20 Tin recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007243482A JP5291313B2 (en) 2007-09-20 2007-09-20 Tin recovery method

Publications (2)

Publication Number Publication Date
JP2009074129A JP2009074129A (en) 2009-04-09
JP5291313B2 true JP5291313B2 (en) 2013-09-18

Family

ID=40609387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007243482A Active JP5291313B2 (en) 2007-09-20 2007-09-20 Tin recovery method

Country Status (1)

Country Link
JP (1) JP5291313B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003272790A1 (en) 2002-10-08 2004-05-04 Honeywell International Inc. Semiconductor packages, lead-containing solders and anodes and methods of removing alpha-emitters from materials
KR101272102B1 (en) * 2011-06-16 2013-06-07 한국지질자원연구원 Method for electrolytic dissociating tin from used metal using alkali solution
JP2019173134A (en) * 2018-03-29 2019-10-10 Jx金属株式会社 MANUFACTURING METHOD OF Sn
CN115404484B (en) * 2022-09-24 2023-06-27 宁波金田铜业(集团)股份有限公司 De-tin agent for tin-plated copper alloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61151027A (en) * 1984-12-25 1986-07-09 Nippon Mining Co Ltd Selective leaching of antimony and/or arsenic
JP2642230B2 (en) * 1990-07-19 1997-08-20 日鉱金属株式会社 Manufacturing method of high purity tin
JPH06145828A (en) * 1992-11-16 1994-05-27 Mitsui Kinzoku Shigen Kaihatsu Kk Method for recovering gold and silver
JPH11217634A (en) * 1998-01-29 1999-08-10 Mitsubishi Materials Corp Recovery of metallic tin from tin-containing waste
JP2001279344A (en) * 2000-03-29 2001-10-10 Nippon Mining & Metals Co Ltd Method for recovering tin
JP4417152B2 (en) * 2004-03-25 2010-02-17 Dowaホールディングス株式会社 Fly ash treatment method

Also Published As

Publication number Publication date
JP2009074129A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5160163B2 (en) Tin recovery method
JP2007119854A (en) Electrowinning method for metal manganese and high purity metal manganese
JP4852720B2 (en) Indium recovery method
JP6017877B2 (en) Method for recovering gallium from InGa waste
JP5291313B2 (en) Tin recovery method
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
JP4734603B2 (en) Indium recovery method
JPH11269570A (en) Collection of indium from indium inclusion
JP2007009274A (en) Method for recovering indium
JP6480235B2 (en) Method for removing iron and aluminum from lithium-ion battery scrap
JP4999058B2 (en) Method for recovering indium from indium-containing material
JP5843069B2 (en) Tellurium separation and recovery method
JP2010138490A (en) Method of recovering zinc
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
JP2015086436A (en) Method for recovering valuable material
JP5981821B2 (en) Tin recovery method
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
JP5091493B2 (en) Method for producing antimony oxide and method for producing metal antimony
JP2005104809A (en) Method for purifying nickel chloride aqueous solution
JP6017876B2 (en) A method for recovering gallium from waste copper gallium.
JP4914975B2 (en) Manufacturing method of high purity indium metal
JP2014025121A (en) Electrolytic extraction method for tin and method for recovering tin
JP4806820B2 (en) Method for indium sulfide from indium-containing material and method for recovering indium
JP5936421B2 (en) Method for recovering tin from arsenic-containing solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130607

R150 Certificate of patent or registration of utility model

Ref document number: 5291313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250