JP5324544B2 - How to treat lead - Google Patents

How to treat lead Download PDF

Info

Publication number
JP5324544B2
JP5324544B2 JP2010222526A JP2010222526A JP5324544B2 JP 5324544 B2 JP5324544 B2 JP 5324544B2 JP 2010222526 A JP2010222526 A JP 2010222526A JP 2010222526 A JP2010222526 A JP 2010222526A JP 5324544 B2 JP5324544 B2 JP 5324544B2
Authority
JP
Japan
Prior art keywords
lead
copper
liquid
leaching
sulfiding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010222526A
Other languages
Japanese (ja)
Other versions
JP2012077341A (en
Inventor
康勝 佐々木
英俊 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010222526A priority Critical patent/JP5324544B2/en
Publication of JP2012077341A publication Critical patent/JP2012077341A/en
Application granted granted Critical
Publication of JP5324544B2 publication Critical patent/JP5324544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、鉛滓の処理方法に関し、特に、非鉄製錬、基板や電子部品などのリサイクル原料の溶融炉または産業廃棄物を溶融処理する乾式炉から発生する乾式煙灰を処理することによって得られる鉛滓の処理方法に関する。   The present invention relates to a method for treating lead soot, and in particular, is obtained by treating dry smoke ash generated from non-ferrous smelting, a melting furnace for recycling raw materials such as substrates and electronic components, or a dry furnace for melting industrial waste. The present invention relates to a method for treating lead iron.

銅の乾式製錬においては、自溶炉などで銅鉱石から製造した硫化銅を主とするカワを転炉で吹錬することで粗銅を製造する。転炉での空気吹き込みによる吹錬時には、カワ、または冷材に含まれる揮発性金属成分(亜鉛、カドミウム、鉛、錫、ビスマス、砒素等)が、煙灰すなわちダストとなって回収される。   In the dry smelting of copper, crude copper is produced by blowing in a converter a chiefly made of copper sulfide produced from copper ore in a flash smelting furnace or the like. At the time of blowing by air blowing in the converter, volatile metal components (zinc, cadmium, lead, tin, bismuth, arsenic, etc.) contained in the river or cold material are collected as smoke ash, that is, dust.

煙灰の処理方法としては、亜鉛、カドミウム、砒素等の揮発性金属成分を硫酸で浸出して分離し、鉛と錫を主成分とした浸出残渣を得る方法が行われる。得られた浸出残渣は「鉛滓(粗鉛滓)」と呼ばれる。この鉛滓から鉛を回収するために、現在一般的には、鉛滓(主成分:硫酸鉛)を電気炉で溶融還元することが行われている。溶融還元により分離されたメタルはソーダ処理し、その後、メタルをアノード鋳造した後、珪フッ素酸浴中にて電解精製することで鉛を回収している。   As a method for treating smoke ash, a method of leaching and separating volatile metal components such as zinc, cadmium and arsenic with sulfuric acid to obtain a leach residue mainly composed of lead and tin is performed. The obtained leaching residue is called “lead lead (crude lead)”. In order to recover lead from this lead soot, currently, lead soot (main component: lead sulfate) is smelted and reduced in an electric furnace. The metal separated by smelting reduction is treated with soda, and then the metal is subjected to anode casting, and then lead is recovered by electrolytic purification in a silicofluoric acid bath.

しかしながら、上述の方法では、前処理方法として乾式法が用いられているため、鉛滓中の揮発しやすい成分が再びダストとなって飛散する。飛散したダストは、残留成分を回収する目的で銅精練の炉へと再び送入されることから、残留成分の混入による粗銅の品質低下、或いは系内への銅に対する不純物の蓄積をもたらす場合がある。   However, since the dry method is used as the pretreatment method in the above-described method, the easily volatilized components in the lead scum are scattered again as dust. The scattered dust is sent back to the copper smelting furnace for the purpose of recovering the residual components, which may result in deterioration of the quality of crude copper due to the inclusion of residual components, or accumulation of impurities with respect to copper in the system. is there.

そこで、鉛滓から鉛を効率良く回収するとともに鉛滓中に含まれる銅及び亜鉛をダストとして飛散させずに回収するための新たな方法として、乾式法の代わりに湿式法を用いる方法が提案されてきている。例えば、特開2009−242850号公報では、鉛滓をスラリー化した液中に空気を吹き込みながら硫酸及び硫酸第二鉄を添加し、鉛滓中の銅と亜鉛を浸出させる方法が記載されている。   Therefore, a method using a wet method instead of the dry method has been proposed as a new method for efficiently recovering lead from the lead soot and collecting copper and zinc contained in the lead soot without scattering as dust. It is coming. For example, Japanese Patent Application Laid-Open No. 2009-242850 describes a method in which sulfuric acid and ferric sulfate are added while air is blown into a slurry of lead soot, and copper and zinc in the lead soot are leached. .

特開2009−242850号公報JP 2009-242850 A

特許文献1に記載された方法では、鉛滓中の銅と亜鉛の浸出率を高くできるため、例えば浸出後のろ液を亜鉛回収工程へ送液し、ろ液中から亜鉛を回収することが行われている。しかしながら、従来、硫酸浸出後のろ液を亜鉛回収工程へ送液すること以外の別の廃水処理方法が確立されていなかったため、亜鉛工程が停止する場合には、鉛滓の処理も同時に停止していた。   In the method described in Patent Document 1, since the leaching rate of copper and zinc in the lead slag can be increased, for example, the filtrate after leaching is fed to a zinc recovery step, and zinc can be recovered from the filtrate. Has been done. However, since other wastewater treatment methods other than sending the filtrate after sulfuric acid leaching to the zinc recovery process have not been established, when the zinc process stops, the treatment of lead soot is stopped at the same time. It was.

鉛滓の処理を停止しない場合は、硫酸浸出後のろ液を排液処理する方法も考えられる。しかしながら、ろ液中には硫酸、硫酸第二鉄等の有害成分が含まれるため、有害成分を排液処理するために、中和剤等の薬液を更に必要とする。その結果、排液処理により生じる排液量が増大し、処理効率が悪くなる。また、排液中には残渣が多く生じる場合もあるため、排液中の残渣の処理も煩雑である。   If the treatment of lead soot is not stopped, a method of draining the filtrate after sulfuric acid leaching is also conceivable. However, since harmful components such as sulfuric acid and ferric sulfate are contained in the filtrate, a chemical solution such as a neutralizing agent is further required to discharge the harmful components. As a result, the amount of drainage generated by the drainage process increases, and the processing efficiency deteriorates. In addition, since a large amount of residue may be generated in the drainage liquid, the treatment of the residue in the drainage liquid is complicated.

鉛滓の硫酸浸出後のろ液中には亜鉛の他にも銅が含まれている。硫酸浸出後のろ液を亜鉛回収工程に送液する前に銅も効率よく除去することができれば、その後の亜鉛回収工程の作業負担が軽くなる。   The filtrate after sulfuric acid leaching of lead bran contains copper in addition to zinc. If copper can also be efficiently removed before the filtrate after sulfuric acid leaching is sent to the zinc recovery step, the work load of the subsequent zinc recovery step is reduced.

上記課題を鑑み、本発明は、鉛滓の処理により生じる排液量を少なくでき、鉛滓から銅を除去することが可能な鉛滓の処理方法を提供する。
更に本発明は、鉛滓の処理に用いる薬液量を低減可能な鉛滓の処理方法を提供する。
In view of the above problems, the present invention provides a method for treating lead soot that can reduce the amount of drainage generated by the treatment of lead soot and remove copper from the lead soot.
Furthermore, this invention provides the processing method of a lead iron which can reduce the amount of chemical | medical solutions used for the process of a lead iron.

上記課題を解決するために、本発明者らが鋭意検討した結果、鉛滓を硫酸浸出した後のろ液に対して硫化処理を施すことにより、処理に用いる薬液量を少なくでき、鉛滓の処理により生じる排液量の低減が可能で、鉛滓の硫酸浸出後のろ液から銅を除去することが可能な鉛滓の処理方法を見出した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, the amount of the chemical used for the treatment can be reduced by subjecting the filtrate after leaching sulfuric acid to sulfuric acid to sulfidation treatment. The present inventors have found a method for treating lead soot that can reduce the amount of drainage generated by the treatment and can remove copper from the filtrate after the sulfuric acid leach of lead soot.

以上の知見を基礎として完成した本発明は一側面において、鉛滓中に硫酸と硫酸第二鉄と空気を加え、浸出液中に銅を浸出させる工程と、浸出液をろ過により固液分離する工程と、固液分離後の浸出液に硫化剤を加えて硫化処理し、硫化銅を生成させる工程と、硫化処理後に得られる硫化液をろ過により固液分離し、硫化液中から硫化銅を除去する工程とを備える鉛滓の処理方法である。   The present invention completed on the basis of the above knowledge is, in one aspect, a step of adding sulfuric acid, ferric sulfate and air into the lead soot to leach copper in the leachate, and a step of solid-liquid separation of the leachate by filtration. , A step of adding a sulfidizing agent to the leachate after solid-liquid separation to sulfidize to produce copper sulfide, and a step of separating the sulfidized liquid obtained after sulfidation by solid-liquid separation by filtration and removing copper sulfide from the sulfided liquid A method for treating lead iron.

本発明の鉛滓の処理方法の一実施態様は、硫化処理する工程が、硫化剤として水硫化ナトリウムを添加することを含む。   In one embodiment of the method for treating lead soot according to the present invention, the step of sulfiding includes adding sodium hydrosulfide as a sulfiding agent.

本発明の鉛滓の処理方法の一実施態様は、硫化処理する工程が、酸化還元電位を300〜350mVに制御しながら行うことを含む。   One embodiment of the method for treating lead soot according to the present invention includes that the step of sulfiding is performed while controlling the oxidation-reduction potential at 300 to 350 mV.

本発明の鉛滓の処理方法の一実施態様は、硫酸銅を除去して得られる硫化後液を、前記鉛滓中に戻す工程を更に含む。   One embodiment of the method for treating lead soot according to the present invention further includes a step of returning the post-sulfurization solution obtained by removing copper sulfate into the lead soot.

本発明の鉛滓の処理方法の一実施態様は、硫酸銅除去後の硫化後液にアルカリを加えてpH7〜12.5で中和し、水酸化亜鉛を生成させる工程を更に含む。   One embodiment of the method for treating lead soot according to the present invention further includes a step of adding an alkali to the post-sulfurized solution after removing copper sulfate and neutralizing at pH 7 to 12.5 to produce zinc hydroxide.

本発明によれば、鉛滓から生成される排液量を少なくでき、鉛滓から銅を除去することが可能な鉛滓の処理方法が提供できる。また処理途中に得られる硫化液を鉛滓の銅浸出工程にリサイクルすることで、処理工程で用いられる薬液量を低減できる。   ADVANTAGE OF THE INVENTION According to this invention, the waste liquid amount produced | generated from lead soot can be decreased, and the processing method of lead soot which can remove copper from lead soot can be provided. Moreover, the amount of chemical | medical solution used at a process process can be reduced by recycling the sulfide liquid obtained in the middle of a process to the copper leaching process of lead iron.

本発明の実施の形態に係る鉛滓の処理方法の一例を示す工程フロー図である。It is a process flowchart which shows an example of the processing method of the lead iron which concerns on embodiment of this invention.

本発明の実施の形態に係る鉛滓の処理方法は、図1に示すように、(1)脱銅浸出工程、(2)ろ過(固液分離)工程、(3)硫化工程、(4)ろ過(固液分離)工程、(5)中和工程、(6)ろ過(固液分離)工程及び(7)リサイクル工程を含む。以下に各工程の具体例を説明する。   As shown in FIG. 1, the method for treating lead soot according to the embodiment of the present invention includes (1) a copper removal leaching process, (2) a filtration (solid-liquid separation) process, (3) a sulfurization process, and (4). A filtration (solid-liquid separation) step, (5) a neutralization step, (6) a filtration (solid-liquid separation) step, and (7) a recycling step are included. Specific examples of each process will be described below.

(1)脱銅浸出(硫酸浸出)工程
脱銅浸出工程では、原料となる鉛滓中に水、硫酸、硫酸第二鉄を加え、空気を吹き込みながら、浸出液中に銅及び亜鉛を浸出させる。対象とする鉛滓の組成(重量%)は以下に制限されるものではないが、例えば、鉛12.5〜23.5%、亜鉛3.9〜9.11%、錫6.42〜14.6%、銅5.9〜17.3%程度の金属を含む。鉛滓の原料となる転炉ダスト中では、銅はCuSO4、Cu2S、Cuメタル、CuO、Cu2O等の形で存在し、亜鉛はZnSO4、ZnS等の形で存在する。本実施形態に係る脱銅浸出工程では、主として、反応式(1)〜(4)に従って銅が浸出すると考えられる。

CuO+H2SO4→CuSO4+H2O ・・・(1)
ZnO+H2SO4→ZnSO4+H2O ・・・(2)
Cu2O+H2SO4+Fe2(SO43→2CuSO4+2FeSO4+H2O・・・(3)
Cu+H2SO4→CuSO4+SO2+2H2O ・・・(4)

以下に示す条件に制限されるものではないが、ここでは例えば、鉛滓をスラリー濃度80〜200g/Lで供給し、液温50〜70℃、鉄濃度5〜15g/L、硫酸濃度(遊離硫酸濃度)100〜200g/L、空気吹き込み流量を0.25L/min/L以上として3〜15時間浸出することにより、銅の浸出率を90%以上とすることができる。
(1) Decopper leaching (sulfuric acid leaching) step In the decopper leaching step, water, sulfuric acid, and ferric sulfate are added to the raw lead soot, and copper and zinc are leached into the leachate while blowing air. The composition (% by weight) of the target lead iron is not limited to the following. For example, lead 12.5 to 23.5%, zinc 3.9 to 9.11%, tin 6.42 to 14 .6%, containing about 5.9 to 17.3% copper. In the converter dust used as a raw material for lead iron, copper exists in the form of CuSO 4 , Cu 2 S, Cu metal, CuO, Cu 2 O, etc., and zinc exists in the form of ZnSO 4 , ZnS, etc. In the copper removal leaching process according to the present embodiment, it is considered that copper is leached mainly according to the reaction formulas (1) to (4).

CuO + H 2 SO 4 → CuSO 4 + H 2 O (1)
ZnO + H 2 SO 4 → ZnSO 4 + H 2 O (2)
Cu 2 O + H 2 SO 4 + Fe 2 (SO 4 ) 3 → 2CuSO 4 + 2FeSO 4 + H 2 O (3)
Cu + H 2 SO 4 → CuSO 4 + SO 2 + 2H 2 O (4)

Although not limited to the conditions shown below, here, for example, lead soot is supplied at a slurry concentration of 80 to 200 g / L, a liquid temperature of 50 to 70 ° C., an iron concentration of 5 to 15 g / L, and a sulfuric acid concentration (free (Sulfuric acid concentration) 100-200 g / L, air bleed flow rate is 0.25 L / min / L or more and leaching for 3 to 15 hours, the copper leaching rate can be 90% or more.

(2)ろ過(固液分離)工程
脱銅浸出工程で得られた浸出液は、ろ過により固液分離され、浸出残渣と浸出後液(ろ液)に分離される。浸出残渣は、脱銅後鉛滓として鉛工程へ送られる。浸出後液は硫化工程へ送られる。
(2) Filtration (Solid-Liquid Separation) Step The leachate obtained in the copper removal leaching step is separated into solid and liquid by filtration, and separated into a leaching residue and a leached solution (filtrate). The leaching residue is sent to the lead process as lead soot after copper removal. After leaching, the liquid is sent to the sulfurization process.

(3)硫化工程
硫化工程では、固液分離後の浸出液(浸出後液)に硫化剤を加え、硫化処理することにより、硫化銅を生成させる。硫化剤としては、水硫化ナトリウム(水硫化ソーダ)、硫化水素ガス等が好適に用いられる。硫化剤として水硫化ナトリウムを用いる場合、反応式( 5)〜(6)に従って硫化銅が生成されると考えられる。

2NaSH + H2SO4 → 2H2S + Na2SO4 ・・・(5)
CuSO4 + H2S → CuS + H2SO4 ・・・(6)

硫化銅の生成効率を向上させるために、処理液中の酸化還元電位(ORP)(基準電極:銀-塩化銀電極)を制御しながら硫化処理を行うことが更に好ましい。例えば、水硫化ナトリウムを用いて浸出後液を処理する場合は、ORPを300〜350mV、より好ましくは300〜320mV、にするのが好ましい。ORPが300mV未満の場合、未反応の硫化水素ガスが漏出する場合がある。ORPが350mVより大きい場合、液中の銅濃度が上昇し、浸出工程でのCuの浸出率が低下する場合がある。
(3) Sulfurization step In the sulfidation step, a copper sulfide is generated by adding a sulfiding agent to the leaching solution after solid-liquid separation (liquid after leaching) and performing a sulfidation treatment. As the sulfiding agent, sodium hydrosulfide (sodium hydrosulfide), hydrogen sulfide gas or the like is preferably used. When sodium hydrosulfide is used as the sulfiding agent, it is considered that copper sulfide is generated according to the reaction formulas (5) to (6).

2NaSH + H 2 SO 4 → 2H 2 S + Na 2 SO 4 (5)
CuSO 4 + H 2 S → CuS + H 2 SO 4 (6)

In order to improve the production efficiency of copper sulfide, it is more preferable to perform the sulfuration treatment while controlling the oxidation-reduction potential (ORP) (reference electrode: silver-silver chloride electrode) in the treatment liquid. For example, when the liquid after leaching is treated with sodium hydrosulfide, the ORP is preferably 300 to 350 mV, more preferably 300 to 320 mV. When ORP is less than 300 mV, unreacted hydrogen sulfide gas may leak out. When ORP is larger than 350 mV, the copper concentration in the liquid increases, and the leaching rate of Cu in the leaching process may decrease.

(4)ろ過(固液分離)工程
硫化処理後に得られる硫化液は、ろ過により固液分離され、硫化残渣と硫化後液(ろ液)に分離される。硫化残渣中には、硫化工程で生成された硫酸銅が含まれるため、ろ過により硫化銅が硫化液から除去される。硫化後液の一部は中和工程へ送られる。
(4) Filtration (Solid-Liquid Separation) Step The sulfide solution obtained after the sulfidation treatment is separated into solid and liquid by filtration, and separated into a sulfide residue and a solution after sulfidation (filtrate). Since the sulfide residue contains copper sulfate produced in the sulfidation step, the copper sulfide is removed from the sulfide solution by filtration. A part of the liquid after sulfiding is sent to the neutralization step.

(5)中和工程
中和工程では、硫化後液の一部を抜き出し、抜き出した硫化後液に対してアルカリを加えて中和する。アルカリとしては、水酸化ナトリウム、水酸化カルシウム等が好適に用いられる。アルカリとして水酸化ナトリウムを用いる場合、反応式(7)〜(9)に従って水酸化亜鉛が生成されると考えられる。

CuSO4 + 2NaOH → Cu(OH)2 + Na2SO4 ・・・(7)
ZnSO4 + 2NaOH → Zn(OH)2 + Na2SO4 ・・・(8)
CdSO4 + 2NaOH → Cd(OH)2 + Na2SO4 ・・・(9)

本発明の実施の形態に係る鉛滓の処理方法では、硫化工程において水硫化ナトリウムを用いているため、硫化後液中にナトリウムが蓄積する。液中のナトリウム濃度が50g/L以上になると芒硝が発生し、配管等が詰まる場合がある。そのため、浸出前液中のNa濃度が30g/L以上になった場合、中和工程に液を抜き出し、浸出液を中和するのが好ましい。液中のNa濃度が30g/L以下で抜き出す場合、抜き出し量が増加し、硫酸、硫酸鉄、中和剤のコストが増加する場合がある。硫化後液の中和としては、例えば水酸化ナトリウムを添加して、pH7〜12.5、好ましくは、pH11〜12に調整しながら中和処理することにより、液中のナトリウム濃度を低下させることが好ましい。中和工程で得られる中和液は、ろ過工程へ送られる。
(5) Neutralization step In the neutralization step, a portion of the sulfidized solution is extracted and neutralized by adding alkali to the extracted sulfidized solution. As the alkali, sodium hydroxide, calcium hydroxide or the like is preferably used. When sodium hydroxide is used as the alkali, it is considered that zinc hydroxide is generated according to the reaction formulas (7) to (9).

CuSO 4 + 2NaOH → Cu (OH) 2 + Na 2 SO 4 (7)
ZnSO 4 + 2NaOH → Zn (OH) 2 + Na 2 SO 4 (8)
CdSO 4 + 2NaOH → Cd (OH) 2 + Na 2 SO 4 (9)

In the method for treating lead soot according to the embodiment of the present invention, sodium hydrosulfide is used in the sulfiding step, so that sodium accumulates in the solution after sulfiding. When the sodium concentration in the liquid is 50 g / L or more, salt cake is generated, and piping may be clogged. Therefore, when the Na concentration in the pre-leaching solution becomes 30 g / L or more, it is preferable to extract the solution in the neutralization step and neutralize the leachate. When the Na concentration in the liquid is extracted at 30 g / L or less, the extraction amount may increase, and the costs of sulfuric acid, iron sulfate, and neutralizing agent may increase. As neutralization of the solution after sulfidation, for example, sodium hydroxide is added, and neutralization treatment is performed while adjusting to pH 7 to 12.5, preferably pH 11 to 12, thereby reducing the sodium concentration in the solution. Is preferred. The neutralized solution obtained in the neutralization step is sent to the filtration step.

(6)ろ過(固液分離)工程
中和液は、ろ過により固液分離され、中和残渣と中和後液(ろ液)に分離される。中和残渣には水酸化亜鉛が含まれているため、配管等を介して亜鉛回収工程へ送られる。中和後液は所定の排水処理が施される。
(6) Filtration (Solid-Liquid Separation) Step The neutralized solution is separated into solid and liquid by filtration, and separated into a neutralized residue and a neutralized solution (filtrate). Since the neutralization residue contains zinc hydroxide, it is sent to the zinc recovery process via piping or the like. The neutralized solution is subjected to a predetermined waste water treatment.

(7)リサイクル工程
リサイクル工程では、工程(4)で得られる硫化後液を、脱銅浸出工程(工程(1))の浸出液として鉛滓中に戻す。このように、硫化後液を脱銅浸出工程の浸出液として使用することで、硫酸、硫酸第二鉄等の薬液の添加量を少なくできるため、処理プロセス全体の薬液使用量を低減できる。また、硫化後液の一部を抽出して工程(1)へ戻すことで、工程(6)の後に最終的に生成される中和後液の量も少なくなるため、排水処理の負担が低減できる。
(7) Recycling step In the recycling step, the post-sulfurization solution obtained in step (4) is returned to the lead soot as the leaching solution in the copper removal leaching step (step (1)). Thus, since the addition amount of chemical | medical solutions, such as a sulfuric acid and a ferric sulfate, can be decreased by using the post-sulfurization liquid as a leaching liquid of a copper removal leaching process, the chemical | medical solution usage-amount of the whole process can be reduced. In addition, by extracting a part of the post-sulfurization liquid and returning it to step (1), the amount of post-neutralization liquid finally produced after step (6) is also reduced, reducing the burden of wastewater treatment. it can.

以下、本発明の実施例を示すが、本発明はこの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<脱銅浸出工程>
原料として、銅16.5%、亜鉛7.0%、カドミウム0.5%、錫12.3%、鉛19.6%の組成を有する鉛滓を、スラリー濃度80〜200g/Lでタンクへ供給し、液温50〜70℃、鉄濃度5〜15g/L、硫酸100〜200g/Lの条件で、タンク内に空気を0.25L/min/Lで吹き込みながら3時間浸出処理を行った。得られた浸出液を、ろ過により浸出残渣と浸出後液に分離した。浸出開始時の液(浸出前液)と浸出処理してろ過した後の液(浸出後液)の成分組成をICP吸光分析法で測定した結果を表1に示す。
<Decopper leaching process>
As a raw material, lead soot having a composition of 16.5% copper, 7.0% zinc, 0.5% cadmium, 12.3% tin and 19.6% lead is transferred to a tank at a slurry concentration of 80 to 200 g / L. The leaching treatment was carried out for 3 hours while blowing air into the tank at 0.25 L / min / L under the conditions of a liquid temperature of 50 to 70 ° C., an iron concentration of 5 to 15 g / L, and sulfuric acid of 100 to 200 g / L. . The obtained leachate was separated into a leach residue and a solution after leaching by filtration. Table 1 shows the results of measuring the component composition of the liquid at the start of leaching (liquid before leaching) and the liquid after leaching treatment and filtration (liquid after leaching) by ICP absorption spectrometry.

Figure 0005324544
Figure 0005324544

<硫化工程>
脱銅浸出工程で得られた浸出後液に対して水硫化ナトリウム(25質量%)を加え、ORPを300〜320mVに制御しながら約5時間、硫化処理を行った。得られた硫化液に対してろ過を行い、硫化残渣と硫化液に分離した。硫化処理開始時の液(硫化前液)と硫化処理してろ過した後の液(硫化後液)の組成をICP吸光分析法で測定した結果を表2に示す。
<Sulfurization process>
Sodium hydrosulfide (25% by mass) was added to the liquid after leaching obtained in the copper removal leaching step, and sulfidation was performed for about 5 hours while controlling the ORP at 300 to 320 mV. The obtained sulfide solution was filtered to separate into sulfide residue and sulfide solution. Table 2 shows the results of measuring the composition of the liquid at the start of the sulfidation treatment (pre-sulfurization liquid) and the liquid after sulfidation treatment and filtration (post-sulfurization liquid) by ICP absorption spectrometry.

Figure 0005324544
Figure 0005324544

<中和工程>
硫化工程で得られた硫化後液をタンクから一部抜き出して、抜き出した硫化後液に水酸化ナトリウムを(25質量%)加えて、pHを11〜12に調整しながら中和処理を行った。得られた中和液に対してろ過を行い、中和残渣と中和後液に分離した。中和処理前の硫化後液(中和前液)と中和処理してろ過した後の液(中和後液)の組成をICP吸光分析法で測定した結果を表3に示す。
<Neutralization process>
A part of the post-sulfurization solution obtained in the sulfidation step was extracted from the tank, and sodium hydroxide (25% by mass) was added to the extracted post-sulfurization solution, and neutralization was performed while adjusting the pH to 11-12. . The resulting neutralized solution was filtered to separate into a neutralized residue and a neutralized solution. Table 3 shows the results of measuring the compositions of the post-sulfurization solution before neutralization (pre-neutralization solution) and the solution after neutralization and filtration (post-neutralization solution) by ICP absorption spectrometry.

Figure 0005324544
Figure 0005324544

<結果>
表1に示すように、鉛滓に対して脱銅浸出工程を実施することにより、銅の浸出率を94%、亜鉛の浸出率を71%とすることができた。表2に示すように、脱銅浸出工程後に所定の硫化工程を行うことにより、硫化処理後の液中の銅濃度を5g/L以下に低減できた。更に、表3に示すように、硫化工程後に中和工程を行うことで、液中の銅濃度を0.012g/Lにまで低減できた。
<Result>
As shown in Table 1, the copper leaching rate was 94% and the zinc leaching rate was 71% by performing the copper removal leaching process on the lead iron. As shown in Table 2, the copper concentration in the liquid after the sulfiding treatment could be reduced to 5 g / L or less by performing a predetermined sulfiding step after the copper removal leaching step. Furthermore, as shown in Table 3, the copper concentration in the liquid could be reduced to 0.012 g / L by performing the neutralization step after the sulfurization step.

本処理工程では、硫化工程で徐々に蓄積されるナトリウム分をその後の中和工程でブリードオフしている。これにより、中和後液中のナトリウム濃度を低減できるため、その後の亜鉛回収工程において、ナトリウム付着による配管等の詰まり等の異常の発生を抑制できる。また、硫化工程で得られた硫化後液は、鉄分と硫酸を含むため、硫化後液を脱銅浸出工程の浸出液として再利用することにより、脱銅浸出工程で添加する薬液の量を低減できる。   In this treatment process, the sodium content gradually accumulated in the sulfurization process is bleed-off in the subsequent neutralization process. Thereby, since the sodium density | concentration in the liquid after neutralization can be reduced, generation | occurrence | production of abnormalities, such as clogging of piping etc. by sodium adhesion, can be suppressed in a subsequent zinc collection | recovery process. Moreover, since the post-sulfurization solution obtained in the sulfidation step contains iron and sulfuric acid, the amount of chemical added in the decopper leaching step can be reduced by reusing the post-sulfurization solution as the leaching solution in the decopper leaching step. .

Claims (5)

鉛滓中に硫酸と硫酸第二鉄と空気を加え、浸出液中に銅を浸出させる工程と、
浸出液をろ過により固液分離する工程と、
固液分離後の浸出液に硫化剤を加えて硫化処理し、硫化銅を生成させる工程と、
硫化処理後に得られる硫化液をろ過により固液分離し、硫化液中から硫化銅を除去する工程と
を備える鉛滓の処理方法。
Adding sulfuric acid, ferric sulfate and air to the lead soot, and leaching copper into the leachate;
A step of separating the leachate by solid-liquid filtration,
A step of adding a sulfiding agent to the leachate after solid-liquid separation and sulfiding to produce copper sulfide;
A method for treating lead soot comprising: a step of solid-liquid separation of a sulfiding liquid obtained after sulfiding treatment and removing copper sulfide from the sulfiding liquid.
前記硫化処理する工程が、前記硫化剤として水硫化ナトリウムを添加することを含む請求項1に記載の鉛滓の処理方法。   The method for treating lead soot according to claim 1, wherein the sulfiding treatment includes adding sodium hydrosulfide as the sulfiding agent. 前記硫化処理する工程が、酸化還元電位を300〜350mVに制御しながら行うことを含む請求項1又は2に記載の鉛滓の処理方法。   The method for treating lead soot according to claim 1 or 2, wherein the sulfurating step is performed while controlling the oxidation-reduction potential to 300 to 350 mV. 前記硫酸銅を除去して得られる硫化後液を、前記鉛滓中に戻す工程を更に含む請求項1〜3のいずれか1項に記載の鉛滓の処理方法。   The processing method of the lead soot of any one of Claims 1-3 which further includes the process of returning the post-sulfurization liquid obtained by removing the said copper sulfate in the said lead soot. 前記硫酸銅除去後の硫化後液にアルカリを加えてpH7〜12.5で中和し、水酸化亜鉛を生成させる工程を更に含む請求項1〜4のいずれか1項に記載の鉛滓の処理方法。   The lead bran according to any one of claims 1 to 4, further comprising a step of adding an alkali to the post-sulfurized solution after removing the copper sulfate and neutralizing at pH 7 to 12.5 to produce zinc hydroxide. Processing method.
JP2010222526A 2010-09-30 2010-09-30 How to treat lead Active JP5324544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222526A JP5324544B2 (en) 2010-09-30 2010-09-30 How to treat lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222526A JP5324544B2 (en) 2010-09-30 2010-09-30 How to treat lead

Publications (2)

Publication Number Publication Date
JP2012077341A JP2012077341A (en) 2012-04-19
JP5324544B2 true JP5324544B2 (en) 2013-10-23

Family

ID=46237926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222526A Active JP5324544B2 (en) 2010-09-30 2010-09-30 How to treat lead

Country Status (1)

Country Link
JP (1) JP5324544B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821775B2 (en) * 2012-05-17 2015-11-24 住友金属鉱山株式会社 Processing method of copper smelting ash

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478637B2 (en) * 2004-09-29 2010-06-09 日鉱金属株式会社 Copper converter dust treatment method
JP2009242850A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Method for leaching lead slag by sulfuric acid

Also Published As

Publication number Publication date
JP2012077341A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP4921529B2 (en) Copper converter dust treatment method
JP5138737B2 (en) Method for producing waste acid gypsum
JP5176053B2 (en) Wet treatment method for zinc leaching residue
JP5439997B2 (en) Method for recovering copper from copper-containing iron
JP4852720B2 (en) Indium recovery method
JP2009161803A (en) Nonferrous refining dust treatment method
Lei et al. Enhanced recovery of copper from reclaimed copper smelting fly ash via leaching and electrowinning processes
CN102978397A (en) Removal method of arsenic from arsenic-containing waste liquid with high acidity
JP2013095962A (en) Method for recovering copper from sulphide mineral containing copper and iron
JP2019173107A (en) Method of recovering tellurium
JP2004307965A (en) Method for removing arsenic and antimony by separation from slag fuming dust
JP2012197492A (en) RECOVERING METHOD OF Cu, Co, AND Ni FROM LEACHATE OF In CONTAINING DRAINAGE SLUDGE
JP5628610B2 (en) Indium recovery method
JP2014501842A (en) Arsenic-containing material processing method
JP4079018B2 (en) Method for purifying cobalt aqueous solution
JP6202083B2 (en) Removal method of sulfurizing agent
CN103937975B (en) The method of extracting directly silver from zinc hydrometallurgy flotation of silver concentrate
US20040200730A1 (en) Hydrometallurgical copper recovery process
JP5324544B2 (en) How to treat lead
JP6233177B2 (en) Method for producing rhenium sulfide
JP4817005B2 (en) Copper converter dust treatment method
CN102560130A (en) Selective leaching technology of copper and zinc in scrap copper smelting slag
JP6724351B2 (en) How to remove sulfiding agent
RU2439177C2 (en) Processing method of sulphide-oxidated copper ores with copper and silver extraction
JP7415226B2 (en) Method for producing metal cadmium

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130718

R150 Certificate of patent or registration of utility model

Ref document number: 5324544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250