JP2012250147A - 超音波強度監視装置及びこれを用いた超音波洗浄機 - Google Patents

超音波強度監視装置及びこれを用いた超音波洗浄機 Download PDF

Info

Publication number
JP2012250147A
JP2012250147A JP2011122901A JP2011122901A JP2012250147A JP 2012250147 A JP2012250147 A JP 2012250147A JP 2011122901 A JP2011122901 A JP 2011122901A JP 2011122901 A JP2011122901 A JP 2011122901A JP 2012250147 A JP2012250147 A JP 2012250147A
Authority
JP
Japan
Prior art keywords
ultrasonic
unit
intensity monitoring
ultrasonic intensity
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011122901A
Other languages
English (en)
Inventor
Yoshimasa Yamada
義正 山田
Yoshinobu Watanabe
儀信 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NACOM CO Ltd
IS Engineering Co Ltd
Original Assignee
NACOM CO Ltd
IS Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NACOM CO Ltd, IS Engineering Co Ltd filed Critical NACOM CO Ltd
Priority to JP2011122901A priority Critical patent/JP2012250147A/ja
Publication of JP2012250147A publication Critical patent/JP2012250147A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Abstract

【課題】洗浄槽の超音波強度を自動的に監視し、所定の閾値を外れた場合に速やかにこの事象を判定して超音波洗浄機の洗浄能力の経時変化や故障などに起因する瞬時異常を検出し、信頼度の高い管理を可能とする実用的な超音波強度監視装置を提供し、また、この超音波強度監視装置を具備して信頼度の高い洗浄性能を備えた超音波洗浄機を提供する。
【解決手段】超音波洗浄機用の超音波強度監視装置であって、洗浄槽2に設けられ該洗浄槽2を伝播した超音波を電気信号に変換する変換部4と、この変換部4で変換された電気信号の大きさを調整する調整部5と、この調整部5で調整された電気信号の大きさが所定の範囲内か否かを判定する判定部7とを具備し、電気信号の大きさは、該電気信号の瞬時的電圧,瞬時的電流,移動平均値若しくは単純平均値のいずれかである。
【選択図】図1

Description

本発明は、超音波強度監視装置及びこれを用いた超音波洗浄機に関するものである。
超音波振動を印加して洗浄液に浸漬した被洗浄物を洗浄する超音波洗浄機は、例えば精密電子部品、半導体デバイス若しくはシリコンウェハなどを洗浄するために利用されている。
このような超音波洗浄機では、純水が満たされた洗浄槽に洗浄機能ガスを溶解し、この洗浄槽に被洗浄物を浸漬して洗浄槽に超音波を印加することで洗浄が行われる。
この超音波洗浄の物理的機構は、この洗浄槽内の純水に溶解している洗浄用の機能ガス等による無数の気泡核が、超音波を印加することで気泡核内に圧力変動が生じて気泡が成長し、更にこの気泡が超音波の印加によって膨張圧縮し、気泡内が高温高圧状態になって崩壊して衝撃波が生じ、この衝撃波によって洗浄が行われると考えられている。
従来はこの気泡の崩壊を促進することで超音波洗浄能力の強化が図られることが多かったが、近年は、半導体プロセスの微細化の進展に伴い、超音波洗浄強度を精密に制御することで適切な超音波強度を維持することが要求され、超音波発振器の出力電力を一定にする技術(特許文献1)や、洗浄槽に生ずる超音波を検出してこの検出した信号を直流レベルに変換してフィードバックし超音波発振器の出力電力を制御する技術(特許文献2)が開示されている。
特開2006−314872号公報 特開2007−165695号公報
しかしながら、特許文献1では、超音波発生器の出力電力を一定に制御するだけであるため、そもそも洗浄槽内の超音波による音圧を所定の大きさにするのに困難があり、また、特許文献2の超音波洗浄では、洗浄槽内に気泡によるキャビテーションが頻繁に生ずると、気泡の圧壊によって個々のキャビテーションは極く短時間ではあるが極めて大きな圧力変動を生じ洗浄槽内の平均音響圧力が増大するが、こうした場合でも特許文献2の超音波洗浄では、検出した超音波信号を整流して直流レベルにしてしまうため、検出に常に時間遅れを生ずるとともに、洗浄槽内に生ずる超音波の瞬時変動を正確に把握し評価することが困難であるという問題がある。
即ち、上述のような半導体など精密部品の製造工程において、超音波強度の増大による被洗浄物の損傷や超音波強度の低下による清浄能力の低下は、上述の技術によっては監視することは困難であり、製品の製造効率及び製造品質に甚大な影響を与えることになる。
そのため、現状では、例えば、超音波強度を視覚的に表示できる、ロッド状の超音波モニタ装置などの測定器を作業者が超音波洗浄槽に浸漬して随時測定が行なわれているが、このような方法では人手がかかって製品の生産コストの増加を招くことになりやすいだけでなく、このような方法では測定条件が一定にし難いため測定品質が安定しないという問題がある。
本発明は、上述のような現状に鑑みなされたもので、洗浄槽の超音波強度を自動的に監視し、所定の閾値を外れた場合に速やかにこの事象を判定することで、超音波洗浄機の洗浄能力の経時変化や故障などに起因する異常を瞬時に検出し、より信頼度の高い管理を可能とする実用的な超音波強度監視装置を提供し、また、この超音波強度監視装置を具備して信頼度の高い洗浄性能を備えた超音波洗浄機を提供することを目的とする。
添付図面を参照して本発明の要旨を説明する。
洗浄液1が貯留される洗浄槽2に超音波振動を印加する超音波発生部3が設けられ、この超音波発生部3により超音波振動が印加された前記洗浄液1により被洗浄物を洗浄する超音波洗浄機用の超音波強度監視装置であって、前記洗浄槽2に設けられ該洗浄槽2を伝播した超音波を電気信号に変換する変換部4と、この変換部4で変換された前記電気信号の大きさを調整する調整部5と、この調整部5で調整された前記電気信号の大きさが所定の範囲内か否かを判定する判定部7とを具備し、前記電気信号の大きさは、該電気信号の瞬時的電圧,瞬時的電流,移動平均値若しくは単純平均値のいずれかであることを特徴とする超音波強度監視装置に係るものである。
また、請求項1記載の超音波強度監視装置において、前記調整部5は、前記変換部4で変換された前記電気信号の振幅及び直流レベルのいずれか若しくは双方を調整することを特徴とする超音波強度監視装置に係るものである。
また、請求項1,2いずれか1項に記載の超音波強度監視装置において、前記判定部7には、前記所定の範囲の上限閾値及び下限閾値を設定する閾値設定部21・22が設けられていることを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部7は、前記調整部5で調整された電気信号を所定の標本化周波数で標本化する標本化手段を備え、この標本化手段で標本化された標本化信号の大きさが前記所定の範囲外となる前記標本化信号の個数を求め、この個数が所定時間内に所定数に達するか否かを確知して前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部7は、前記調整部5で調整された電気信号を所定の標本化周波数で標本化する標本化手段と、この標本化手段で標本化された標本化信号の大きさを移動平均する移動平均手段とを備え、この移動平均手段で移動平均された移動平均値が前記所定の範囲外となる前記標本化信号の個数を求め、この個数が所定時間内に所定数に達するか否かを確知して前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部7には、第二上限閾値及び第二下限閾値が設定されており、前記調整部5で調整された電気信号の大きさが所定時間内に前記第二上限閾値以上若しくは前記第二下限閾値以下となる電気信号の大きさの単純平均値を求め、この単純平均値を前記所定時間ごとに求めて前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部7には、第二上限閾値及び第二下限閾値が設定されており、前記調整部5で調整された電気信号の大きさが所定時間内に前記第二上限閾値以上若しくは前記第二下限閾値以下となる電気信号の大きさの単純平均値を求め、前記判定部7では、この単純平均値を、前記所定時間より短い時間間隔ごとに前記電気信号の単純平均値を求めて前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置に係るものである。
また、請求項6,7いずれか1項に記載の超音波強度監視装置において、前記判定部7には、所定の標本化周波数で前記受信信号を標本化する標本化手段を備え、前記単純平均値は、この標本化手段で標本化された標本化信号の大きさが前記第二上限閾値以上若しくは第二下限閾値以下となる該標本化信号の前記所定時間内の単純平均値であることを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜8いずれか1項に記載の超音波強度監視装置において、前記調整部5は、前記変換部4で変換された電気信号を所定量減衰若しくは増幅させて適宜な振幅の電気信号に調整する可変利得増幅部9と、この可変利得増幅部9からの電気信号の周波数帯域を制限する帯域濾波部10とで構成されていることを特徴とする超音波強度監視装置に係るものである。
また、請求項9記載の超音波強度監視装置において、前記調整部5には、前記可変利得増幅部9若しくは前記帯域濾波部10の電気信号を所定の直流動作点電位に偏倚させる動作点電位偏倚部11が備えられていることを特徴とする超音波強度監視装置に係るものである。
また、請求項10記載の超音波強度監視装置において、前記直流動作点電位は、動作点電位設定部20で設定されることを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜11いずれか1項に記載の超音波強度監視装置において、前記判定部7による前記判定を報知する報知部6が具備されることを特徴とする超音波強度監視装置に係るものである。
また、請求項12記載の超音波強度監視装置において、前記報知部6には、ブザー等の鳴動部若しくはランプ等の表示部が設けられることを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜13いずれか1項に記載の超音波強度監視装置において、前記変換部4は、圧電素子が採用されていることを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜14いずれか1項に記載の超音波強度監視装置において、前記変換部4は、前記洗浄槽2の周壁に設けられることを特徴とする超音波強度監視装置に係るものである。
また、請求項1〜15いずれか1項に記載の超音波強度監視装置を具備した超音波洗浄機であって、前記変換部4の電気信号若しくは前記調整部5の電気信号及び前記判定部7の判定に基づいて前記超音波発生部3を制御する発振器制御部12が設けられていることを特徴とする超音波洗浄機に係るものである。
本発明は上述のように構成したから、洗浄槽に超音波の変換部を設けるだけで洗浄槽に生じた超音波を自動的に監視できると共に、検出した超音波信号が所定の閾値に達した場合に速やかにこの事象を判定できるため、超音波洗浄機の洗浄能力の経時変化や故障などに起因する異常の速やかな検出が可能となって、信頼度の高い超音波洗浄を可能とする、安価で汎用的な構成の実用的な超音波強度監視装置となり、この超音波強度監視装置を具備することで信頼度の高い洗浄性能を備えた超音波洗浄機になる。
実施例1に係る超音波洗浄機の構成図である。 実施例1に係る超音波強度監視装置の調整部の回路構成図である。 実施例1に係る超音波強度監視装置の調整部の簡易化した回路構成図である。 実施例1に係る超音波強度監視装置の判定部のブロック構成図である。 実施例1に係る超音波強度監視装置の判定手段を示すフローチャートである。 実施例2に係る超音波強度監視装置の判定手段を示すフローチャートである。 実施例3に係る超音波強度監視装置の判定手段を示すフローチャートである。 実施例4に係る超音波強度監視装置の判定手段を説明する動作図である。
好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。
本発明の超音波強度監視装置を用い、洗浄槽2の洗浄液1に被洗浄物を浸漬させ超音波洗浄を行うと、洗浄槽2に設けた超音波発生部3から超音波が発生して洗浄液1に印加され、この洗浄槽2を伝播した超音波は洗浄槽2に設けた変換部4でその超音波強度に対応した電気信号に変換される。
この変換された電気信号は、本発明の超音波強度監視装置の調整部5で電気信号が適宜の大きさに調整され、判定部7ではこの調整された電気信号の大きさを、この電気信号の瞬時的な電圧、瞬時的な電流,移動平均値若しくは単純平均値として求め、この電気信号の大きさが所定範囲内か否かを判定し、例えば、この所定範囲外になると、異常と判定され、この判定に基づいて、更に、例えば、ブザーやランプ等で異常を報知するようにすることで超音波洗浄機に異常が生じたことが直ちに確知することができる。
また、例えば、判定部7における閾値範囲の上限閾値及び下限閾値を夫々所定の値に設定する設定部8を設けると、調整部5で大きさを調節した電気信号に対して適宜に閾値を設定できるため、超音波洗浄機やその設置状況に応じた設定が可能となって極めて利便性が高いものとなる。
また、超音波を電気信号に変換する変換部4は、洗浄槽2の、例えば、周壁に設けるだけでよいため、既設の超音波洗浄機にも容易に後付け適用が可能であり、更に利便性が高く汎用性のある実用性に秀れたものとなる。
従って、本発明の超音波強度監視装置は、超音波をその強度に応じた電気信号に変換する変換部を洗浄槽に設けるだけで、超音波強度を監視し、検出した電気信号が所定の範囲内か否かを速やかに判定が可能であるため、例えば、超音波振動子などが経時劣化や故障による異常振動や発振停止、或いは、洗浄槽内での異常超音波の発生など超音波洗浄機の洗浄能力の経時変化や故障などに起因する異常を速やかに検出して信頼度の高い超音波洗浄を可能とする、安価で汎用性のある実用的な超音波強度監視装置となる。
また、超音波洗浄機に本発明の超音波強度監視装置を具備して、例えば、変換部4の電気信号若しくは調整部5の電気信号及び判定部7の判定に基づいて超音波発生部3の超音波制御部12を制御して、この超音波発生部3で発生する超音波信号の振幅若しくは周波数を制御することで、洗浄槽2内に印加される超音波による洗浄強度を制御することができるため、例えば、被洗浄物の損傷などに起因する障害を可及的に低減して信頼度の高い超音波洗浄が可能となる超音波洗浄機になる。
本発明の具体的な実施例1について図面に基づいて説明する。
実施例1は、洗浄液1が貯留される洗浄槽2に超音波振動を印加する超音波発生部3が設けられ、この超音波発生部3により超音波振動が印加された前記洗浄液1により被洗浄物を洗浄する超音波洗浄機用の超音波強度監視装置であって、前記洗浄槽2に設けられ該洗浄槽2を伝播した超音波を電気信号に変換する変換部4と、この変換部4で変換された前記電気信号の大きさを調整する調整部5と、この調整部5で調整された前記電気信号の大きさが所定の範囲内か否かを判定する判定部7とを具備し、前記電気信号の大きさは、該電気信号の瞬時的電圧,瞬時的電流,移動平均値若しくは単純平均値のいずれかであることを特徴とする超音波強度監視装置である。
図1の実施例1は、洗浄液1が貯留される洗浄槽2に超音波振動を印加する超音波発生部3を備えた超音波洗浄機15に本発明の超音波監視装置14を設けている。
具体的には、超音波洗浄機15は、洗浄槽2に超音波振動を印加する超音波発生部3が設けられ、この超音波発生部3は、超音波振動子16と超音波発振器17とから成り、超音波振動子16は洗浄槽2の底部に設けられた構成である。
この超音波洗浄機15は、洗浄槽2の底面部に設けた超音波発生部3で発生して洗浄槽2に印加された超音波が洗浄槽2の底面部を通して洗浄液1を励振して、この洗浄液1に微細気泡を生成させたり、この微細気泡を圧壊させることにより洗浄効果を活性化するが、超音波発生部3で発生した超音波は、この洗浄液1を励振すると共に、洗浄槽2自身の周壁を伝搬して振動させるため、この洗浄槽2の周壁では洗浄液1及び洗浄槽2からの振動が合成され平均化された状態となっていると考えられる。
従って、洗浄槽2の周壁に超音波をその強度に対応した電気信号に変換する変換部4として超音波センサ4を設けると、洗浄液1及び洗浄槽2の両者の振動が合成され平均化された超音波振動を検知することになるため、例えば、洗浄液1中に棒状の超音波センサを浸漬して超音波強度を測定する場合のように、洗浄槽2内に発生する定在波によって超音波センサを浸漬する場所(洗浄槽内の位置や深度)により検出される超音波強度が異なるという問題を回避できることになる。
この超音波センサ4は洗浄液1や洗浄槽2を伝搬した超音波の音響エネルギーの強度をそのエネルギーの強度に応じた大きさの電気信号に変換するデバイスであって、適宜選択できる。
よって、実施例1は、洗浄槽2の周壁、特に、外側面に超音波センサ4を設けることで、超音波センサ4を洗浄槽2に取り付ける際の超音波強度の位置依存性を著しく低減した点に特徴がある。
なお、図1では、超音波発生部3は、洗浄槽2の底面部の外側に設けた構成であるが、この超音波発生部3を洗浄槽2の内側の底面に配設して洗浄液1に浸漬させて超音波を発生するようにしてもよく、このようにすると簡易な構成の超音波洗浄機15になる。
実施例1の超音波監視装置14は、変換部4としての超音波センサ4をこの洗浄槽2の周壁に設け、超音波監視装置14本体は洗浄槽2とは別体となる構成である。従って、既設の超音波洗浄槽への取り付けが極めて容易に行うことができる。
図1の超音波監視装置14内のa〜dで表示した部分は各部間の接続点を表しており、この図1と対応する図2〜4(後記する)の部位には同じa〜dで該当部位を表示している。
この超音波強度監視装置14は、洗浄槽2の周壁に設けられた超音波センサ4からの信号を調整部5としての超音波受信部5に入力し、この超音波受信部5では、前記変換部4で変換された電気信号の振幅及び直流レベルのいずれか若しくは双方を調整することで超音波受信部5の出力信号を適宜な大きさの振幅及び直流レベルの信号に調整できる構成である。従って、検出した超音波信号のダイナッミクレンジに応じて大きさを調整し、この大きさを調整した信号を判定部7で所定の閾値と比較して所定の範囲の上限閾値より過大若しくは所定の下限閾値より過小であるような異常状態であると判定した際には、報知部6のブザー及び警報ランプで異常状態を報知できることになる。また、この超音波強度監視装置14には、超音波センサ4からの電気信号の大きさ、即ち、信号の振幅及びこの信号の直流レベルを調整する調整部5を具備し、また、上限閾値及び下限閾値を夫々所定の値に設定する閾値設定部21・22が具備されているため、調整部5における電気信号の大きさ、即ち、電気信号の振幅及びこの信号の直流レベルを調整して適宜な大きさに調整して、この調整した信号に応じて閾値設定もでき、極めて融通性の高い設定が可能となり、種々の洗浄槽に適用可能である。
また、超音波センサ4は圧電素子であり、この超音波センサ4は洗浄槽2の周壁に接合部材を介して設けられている。実施例1では、この超音波センサ4は洗浄槽2の周壁の外壁に接合部材を介して設けたが、超音波センサ4は洗浄槽2の周壁の内壁、底壁などでもよいし、また、接合部材は他の接合部材、方法を採用しても良い。
この超音波センサ4としては超音波を電気信号に変換する圧電素子を用いることもできるが、超音波の強度によって誘電率や屈折率が変化する音響光変換効果を有する物質を利用し、このような効果を有する物質にレーザ光を当てこの光を変調させて光伝送することでもよく、この場合、極めて耐電磁環境特性に優れた超音波強度監視装置にすることができる。
実施例1の超音波センサ4は圧電素子によって検出した超音波を電気信号に変換し、この電気信号を信号ケーブル18によって超音波受信部5に信号伝送するが、実施例1では、この信号ケーブル18として撚対線が遮蔽されたシールド体付きのケーブルを用いてシールド処理することで外来からの同相雑音成分を抑制してSN比を向上させるように構成している。
このような外来雑音や定常的な微細気泡の生成消滅によって誤判定を避けるために、後述する超音波強度監視装置14の判定部7は、所定の閾値範囲を越える信号が所定期間継続することで異常信号と判定し、それ以外は正常と判定するように構成している。
即ち、実施例1の超音波強度監視装置14は、洗浄槽2の周壁に設けられてこの洗浄槽2及び洗浄液1を伝播した超音波振動を電気信号に変換する超音波センサ4と、この超音波センサ4で変換された電気信号に対し所定量の減衰若しくは増幅を行って振幅を調整すると共に、この振幅を調整した信号の直流レベルを調整可能に構成した超音波受信部5と、この超音波受信部5で調整された受信信号の大きさが所定期間継続して所定閾値範囲内か否かを判定する判定部7と、超音波受信部5における減衰若しくは増幅を所定値に設定すると共に、判定部7における所定閾値範囲を示す上限閾値及び下限閾値を所定値に設定する設定部8と、判定部7による判定を報知する報知部6を具備した構成である。なお、この受信信号の大きさとは、受信信号の瞬時的な大きさを意味する。
更に、詳細には、超音波受信部5は、超音波センサ4で変換された電気信号を所定量の減衰若しくは増幅を行って適宜な振幅の信号に調整する可変利得増幅部9と、この利得調整された信号の周波数帯域を制限する帯域濾波部10とが備えられることで、適宜な振幅に調整される共に所定の周波数範囲に周波数帯域が制限された帯域制限信号に整形して、この整形された信号を次段に供給する。
この可変利得増幅部9は、この可変利得増幅部9の増幅率若しくは減衰率を可変設定する利得設定部19を備えた構成であり、この利得設定部19は上述の設定部8に設けられている。具体的には、この利得設定部19は、後記する図2に示す演算増幅器OP1及びOP2で構成された可変利得増幅部9の負帰還回路部分の可変抵抗器VR1、若しくは、図3に示す演算増幅器OP1及びOP2で構成された可変利得増幅部9の負帰還回路部分の可変抵抗器VR1及びVR2である。
実施例1では、これらの可変抵抗器VR1やVR2にツマミを設けて、外部から作業者がこのツマミを廻して操作し、可変利得増幅部9の増幅率を可変可能としたが、例えば、予め抵抗値の異なる複数の抵抗器を設けてこれらの複数の抵抗器をC−MOS半導体スイッチ等によって切り替えて可変利得増幅部9が所望の増幅率若しくは減衰率に可変制御するように構成してもよい。
また、帯域濾波部10の周波数濾波特性は、概ね超音波信号である10kHz〜50kHzの帯域の周波数は通過させ、この周波数以外では概ね3dB/octで減衰する帯域濾波部によって実現している。この帯域濾波部10の通過帯域は、受信する超音波信号の周波数帯域にから適宜に決定する。
更に、超音波受信部5には、このように振幅が調整されると共に帯域が制限された帯域制限信号の直流レベルを、所定の直流動作点電位に偏倚させる動作点電位偏倚部11が設けられている。
この動作点電位偏倚部11は、上述の可変利得増幅部9及び帯域濾波部10の次段に設けられて、この可変利得増幅部9及び帯域濾波部10からの帯域制限信号を動作点電位設定部20で設定される直流動作点電位に偏倚させ、この直流動作点電位に偏倚された帯域制限信号を次段の判定部7に入力する構成であり、この動作点電位が偏倚された帯域制限信号が判定部7でその大きさが判定される。このように動作点電位を所定の直流動作点電位に偏倚すると、後述するAD変換器の電源として正電源のみ、例えば5V単一電源を用い、直流動作点電位を2.5Vとなるよう構成すると、負電源を必要としないため、回路構成の簡易化、経済化が可能になる。
上記の可変利得増幅部9、帯域濾波部10及び動作点電位偏倚部11は、具体的には、アナログ回路で構成されており、この具体的回路構成を図2及び図3に示す。この図2、3のいずれでも良好な超音波受信特性を有すことを確認している。
図2の超音波受信部5は、これらのアナログ回路部分の原理的な回路構成を示しており、可変利得増幅部9の入力部を演算増幅器OP1によって差動増幅器構成とすることで同相雑音除去性能を高めて高SN比を実現しながら入力信号を一定の割合で減衰させ、次段の演算増幅器OP2をシングルエンド構成にして可変利得増幅部9を構成し、更に、この可変利得増幅部9の増幅率は利得設定部19として設けた可変抵抗器VR1及びVR2によって調整可能とした構成としている。更に、このOP2の後段に高域通過フィルタ及び低域通過フィルタを演算増幅器OP3で構成した帯域濾波部10を設けて振幅調整された入力信号を帯域制限し、更に次段に設けた演算増幅器OP4で動作点電位偏倚部11を構成し、この演算増幅器OP4の正相入力側に可変抵抗VR2による動作点電位設定部20を設けた構成である。この可変抵抗VR2にもツマミを設けて外部からこのツマミを廻して受信超音波信号の動作点電位を調整できるようにしている。なお、図2において、R1〜R11は固定抵抗器、C1〜C4はコンデンサである。
また、図3の超音波受信部5は、図2の可変利得増幅部9と帯域濾波部10とを簡易化して統合した別実施例の超音波受信部5の構成であり、上述した図2の演算増幅器等の電子部品の個数を低減して簡易化を図っている。
具体的には、図3は、超音波センサ4と接続する信号ケーブル18として撚対線を用いて外来雑音を低減した状態にすることで、演算増幅器OP1を簡易なシングルエンド構成とし、この演算増幅器OP1で構成した可変利得増幅部9の増幅率を、利得設定部9として設けた可変抵抗器VR1及びVR2によって可変可能とし、更に、帯域濾波部10を構成する演算増幅器OP1の逆相入力にVR3で構成される動作点電位設定部20によって設定される動作点電位を加算する構成である。また、この可変抵抗VR3にもツマミを設けて外部からこのツマミを廻して受信超音波信号の動作点電位を調整できるようにしている。なお、図3において、R1〜R7は固定抵抗器、C1〜C5はコンデンサである。
超音波受信部5を構成する、可変利得増幅部9、帯域濾波部10及び動作点電位偏倚部11は以上のように構成したが、更に、入力段である可変利得増幅部9に対数圧縮機能を設けて、所謂、対数アンプ化して、超音波受信部5の受信可能の超音波強度範囲を拡大してもよい。
この実施例1では、上述の利得設定部19、動作点電位設定部20及び上限閾値設定部21及び下限閾値設定部22は設定部8に纏められて、この超音波強度監視装置14の外部からツマミを操作して可変設定できるように構成することで、超音波受信部5の利得や動作点電位を手軽に調整可能したが、これらの設定部9は、例えば、タッチパネルから各種設定データを入力して設定することでもよいし、また、パソコン等の外部コンソールから設定できるように構成してもよい。
また、実施例1の判定部7は、上述のように振幅及び動作点電位が偏倚された帯域制限信号を超音波受信部5からの信号を入力信号とし、この入力信号の瞬時的大きさが予め設定した上限閾値以上若しくは下限閾値以下に所定期間の間、継続することで異常信号と判定し、そうでなければ正常と判定する。
この判定部7の主たる機能、即ち、判定機能そのものは、例えば、演算増幅器で電圧比較器を構成し、所定電圧値以外の信号が所定時間継続することを検出する回路を構成することも可能であるが、実施例1ではAD変換してディジタル処理することによりパラメータ変更や処理方法の変更などが容易に行えるようにして洗浄機の設置環境に適合する調整を容易に行えるように構成している。
図4は、実施例1の判定部7のブロック構成図である。この判定部7は、CPU、ROM/RAM等のメモリ及び、AD変換器等を内蔵した1チップのマイクロコントローラICなどで構成される制御回路23に搭載されるファームウェアで実現され、超音波受信部5からの所定の動作点電位に偏倚された帯域制限信号(以下、この超音波受信部5からの信号を受信信号という。)を所定の標本化周波数fで標本化した後、量子化及び符号化し、この符号化された信号に対して上記判定部7に係る処理をディジタル信号処理する構成であり、この判定部7により判定結果は、駆動部を介して警報ランプや警報ブザー等を駆動して警報を発出し、また各種インタフェースI/Fを介して外部装置と接続できる構成である。
即ち、この判定部7は、超音波受信部5で調整された受信信号を所定の標本化周波数で標本化する標本化手段を備え、この標本化手段で標本化された標本化信号の大きさが所定の範囲外となる標本化信号の個数を求め、この個数が所定時間内に所定数に達するか否かを確知して前記電気信号の大きさが所定の範囲か否かを判定し、洗浄槽2の超音波強度を監視する。
詳細には、この受信信号をAD変換器で所定の標本化周波数の標本化パルスによって標本化する標本化手段を具備し、この標本化後、量子化及び符号化したディジタル受信信号(以下、このディジタル受信信号も単に受信信号という。)を生成し、次いで、この判定部7で、この受信信号の大きさ(詳細には、各標本化して符号化した時点での受信信号の瞬時的な大きさ)が予め設定した上限閾値及び下限閾値で設定される所定の閾値範囲を越えた受信信号の個数が所定時間内に予め設定した所定数に達することで異常信号とし、それ以外は正常と判定するように構成されている。
また、この上限閾値及び下限閾値は、可変抵抗器を備えた分圧回路によって所定の基準電圧を分圧する上限閾値設定部21、下限閾値設定部22で夫々適宜に設定可能な構成であり、更にこの設定された上限閾値及び下限閾値を上記したマイクロコントローラに内蔵ざれたAD変換器に入力してディジタル符号化して処理する構成である。
この判定部7の判定は、図5に示す判定手順によりソフトウェア処理される。
この判定手順の実行にあたり、予め各種パラメータの設定や各種変数の初期化が行われる。パラメータの設定では、所定の監視周期に相当する標本数N(例えば、N=5,000)、上限閾値Bを越える標本点数の閾値NNmax(例えば、NNmax=21)、下限閾値C以下になる標本点数の閾値MMmin(例えば、MMmin=21)、更に、上限閾値設定部21で設定された上限閾値B及び下限閾値設定部22で設定された下限閾値CのAD変換器からの読取りなど各種パラメータの設定を行うことであり、変数の初期化では、この判定処理で用いる内部変数の初期化が行われる。
図5の判定手順は、これらのパラメータ設定及び初期化後、所定の標本化周波数f(例えば、100kHz)で標本化される標本点の順番を任意の標本化時点を起点として整数iで表し、このi番目の標本点の受信信号の大きさをXとして、標本点iがこの起点から所定の標本数N(上記のN=5,000)に達する毎に、このN個の標本点のうち、予め設定した数であるNNmax(上記のNNmax=21)番目に大きい標本値Xの最大値XXmax及び予め設定した数であるMMmin(上記のMMmin=21)番目に小さい標本値Xの最小値XXmin夫々を探索し、このNNmax番目に大きい最大値XXmaxと、MMmin番目に小さい最小値XXminとの差、XXmax(NNmax)−XXmin(MMmin)をAとして、この差Aが予め設定した所定の上限閾値Bと下限閾値Cの間に存在するか否かを判定することで、洗浄槽2の超音波強度が正常か、異常を判定する。この信号判定は、標本点iが起点から所定の標本数Nに達するまでを一周期とするフレームとして、このフレーム毎に上記の判定動作を繰り返し行うものである。
この受信信号の閾値判定は、上記標本点の最大値XXmaxが所定の上限閾値Bを越えたか否か、或いは、標本値Xの最小値XXminが下限閾値Cを越えたか否かを判定することでもよく、この標本化された受信信号が所定の期間内に、予め設定された所定閾値範囲を越える受信信号の数が所定数に達するか否かを判定するだけで正常、異常を判定できることになり、従って、この判定に係る処理量は少なく、高速処理が容易に行えることになる。
なお、上限閾値設定部21及び下限閾値設定部22は、夫々所定の基準電圧を可変抵抗で分圧する構成であり、この夫々の可変抵抗にツマミが設けられて、上述の設定部8に設けた構成である。
このように実施例1の判定手段は、所定閾値を越える標本点の数を所定期間の間に計数し、この計数結果が予め設定した数に達するか否かで異常の有無を判定する構成であるため、例えば、従来のように超音波測定器によって長時間測定が不要であり、超音波強度の確度の高い判定を高速化で容易に達成できると共に、ハードウェア及びソフトウェアの簡易な構成の安価な超音波強度監視装置14を実現できることになる。
また、以上の判定手段における標本化周波数f、標本数N、予め設定した数NNmax、上限閾値B及び下限閾値Cなどは、洗浄槽の特性にあわせて適宜に設定が可能である。
報知部6はブザー等の鳴動部及びランプ等の表示部を備え、この判定部7の判定結果を受けてブザーを鳴動させたり、警報ランプを点灯させたりする構成である。
実施例1においては、超音波強度監視装置14の外部に警報ブザー及び警報ランプが接続され、報知部6に超音波強度監視装置14からの警報信号が入力すると、警報ブザーが鳴動し、警報ランプが点滅することで洗浄槽の超音波が設定した閾値範囲外の強度となっていることを周囲の作業者に報知するように構成している。尚、警報ブザーや警報ランプに限らず、一斉放送して作業者に異常状態の周知を図る構成も可能である。
また、更に、この制御回路23からの信号を他の装置に伝送して装置類の制御に用いても良く、この制御回路23からの上述の報知情報や受信超音波信号を超音波発生部3の停止制御や超音波出力制御に用いることも可能である。
実施例1は、以上の構成の超音波強度監視装置14を超音波洗浄機15に具備すると共に、この超音波洗浄機15に、超音波強度監視装置14の変換部4で検出した超音波信号としての電気信号や超音波受信部5で帯域制限などが施された受信信号と、この受信信号に対する判定部7の判定とから、超音波洗浄機15に設けられる超音波発生部3の超音波信号を制御する発振器制御部12を設けて、超音波発生部3で発生する超音波信号の振幅若しくは周波数を制御する構成である。
具体的には、この発振器制御部12は、超音波強度監視装置14で受信した受信信号と、この受信信号に対する判定部7の判定結果とから、超音波洗浄機15に設けられる超音波発振器17の振幅若しくは周波数を制御して、超音波振動子16で発生する超音波の強度や振動周波数を制御する構成とすることで、洗浄槽2内に印加される超音波による洗浄強度を制御して、被洗浄物の損傷などに起因する障害を可及的に低減して信頼度の高い超音波洗浄を可能としている。
即ち、実施例1の超音波洗浄機15は、超音波強度監視装置14で受信した受信信号と、この受信信号に対する判定部7の判定結果とから、超音波洗浄機15に設けられる超音波発振器17を制御する発振器制御部12を備え、超音波強度監視装置14で検出され、強度調整され更に帯域制限された電気信号を平均化処理して直流制御電圧を発生させ、発振器制御部12では、この平均化された直流制御電圧及び、判定部7で判定された超音波監視情報を使って、超音波発振器17で発生する信号の出力振幅を可変制御する構成である。
実施例1では、この直流制御電圧と超音波監視情報とによって超音波発振器17の出力電圧を可変制御する構成であるが、超音波発振器17を電圧制御発振器の構成としてこの直流制御電圧を超音波発振器17の出力周波数の可変制御に用いてもよい。
また、直流制御電圧の生成は、超音波強度監視装置14で処理された受信超音波の電気信号を使って発振器制御部12で行うことでもよい。
なお、この発振器制御部12は設けない場合や、この発振器制御部12への直流制御電圧と超音波監視情報の入力が無くなった場合には、従来どおりの超音波洗浄が可能であり、実施例1の超音波強度監視装置14によって超音波洗浄状態の自動監視を行うことでもよい。
また、洗浄槽2は金属製の上部が開口した容体であり、この洗浄槽2には洗浄液1としての水が被洗浄物が浸漬し得る程度に満たされている。尚、金属製に限らず、ガラス製や樹脂製等、他の材質から成る洗浄槽2を採用しても良い。また、洗浄液1として水以外の液体を採用しても良い。
この洗浄槽2に超音波発生部3が設けられており、具体的にはこの洗浄槽2の底面外側には超音波振動子16が設けられている。この超音波振動子16は、例えばセラミックスなどから成る圧電素子に超音波発振器17から所定周波数の交流電圧を加えることで、周波数が10kHz〜50kHz程度の範囲内の超音波を発生するものである。また、発振出力は0.3k〜4kW程度に設定される。この超音波振動子16は、上記の発振周波数及び発振出力を被洗浄物に応じて適宜の値に設定し得るように構成されている。
実施例1は以上のように構成したから、洗浄槽2の洗浄液1に被洗浄物を浸漬させ超音波洗浄を行う際、洗浄槽2に設けた超音波発生部3から超音波が発生して洗浄液1に印加され、この洗浄液1や洗浄槽2を伝播した超音波振動は洗浄槽2に設けた超音波センサ4で感知され、この超音波センサ4で感知された超音波が電気信号に変換される。
この電気信号に変換された超音波は、超音波受信部5で減衰若しくは増幅して適宜な振幅に調整されると共に周波数帯域が制限された帯域制限信号になる。
この帯域制限信号を所定の直流電圧、具体的には、AD変換機の電源電圧の約1/2に相当する電圧分だけ動作点を偏倚させて、この動作点が偏倚された帯域制限信号を受信信号とし、この受信信号をAD変換してディジタル信号を生成し、このディジタル信号を所定の上限閾値及び下限閾値と比較し、この上限閾値以上若しくは下限閾値以下となるこのディジタル信号の個数が所定期間中に予め設定した数に達するか否かで検出した超音波の強度の正常、異常を判定し、異常時には報知部6でブザーやランプ等で異常を報知するようにするため、超音波洗浄機15に生じた異常が直ちに分かることになる。
また、超音波センサ4を洗浄槽2に設けるだけで既存の超音波洗浄機15にも容易に後付け適用が可能であり、また、常時超音波強度の監視ができて極めて汎用性及び実用性に秀れたものとなる。
従って、例えば、超音波振動子16などが経時劣化や故障による異常振動や発振停止、或いは洗浄槽内での異常超音波の発生などによって、検出した超音波信号が所定の上限閾値以上若しくは下限閾値以下になると直ちに異常をして、報知部6により異常を直ちに報知することで、実時間レベルで超音波洗浄機15の異常が検出可能な超音波監視装置14となる。
更に、この超音波監視装置14を設けると共に、この超音波監視装置14で生成される受信信号及び判定情報で超音波発生部3を制御するので、被洗浄物の清浄度の過少、過大若しくは損傷等を可及的に低減して高品質の超音波洗浄が可能な超音波洗浄機15となる。
なお、実施例1では、洗浄槽2に超音波センサ4を1個だけ設けた構成であるが、複数個の超音波センサ4を洗浄槽2の要所に設け、判定部7を時分割処理させることにより異常検出精度を高めるとともに信頼度を向上させることも可能である。
また、更に、洗浄槽2を複数設け、その夫々に超音波センサ4を1個以上設け、実施例1の超音波強度監視装置14の判定部7を同様に時分割処理させることで多数の超音波センサ4からの電気信号を多重処理することで統合された超音波強度監視装置14にすることも可能である。
また、判定部7の制御部23には表示部を設けて、上述の報知情報だけでなく、例えば、受信超音波の信号強度を表示するインジケーターを設けることで、一目で受信超音波の状態を把握できて利便性が向上させることができる。
この実施例2の超音波強度監視装置14は、実施例1の超音波強度監視装置14による判定部7を図5の判定手段に替えて、図6示す判定手段を用いて超音波強度の監視を行う超音波強度監視装置14であり、他の構成は実施例1と同じである。
この実施例2の判定部7は、超音波受信部5からの受信信号を移動平均する移動平均算出手段を備え、この移動平均された受信信号の大きさが所定の閾値範囲内か否かを判定するように構成されている。
具体的には、判定部7は、超音波受信部5で調整された受信信号を所定の標本化周波数で標本化する標本化手段と、この標本化手段で標本化された標本化信号の大きさを移動平均する移動平均手段とを備え、この移動平均手段で移動平均された移動平均値が所定の範囲外となる標本化信号の個数を求め、この個数が所定時間内に所定数に達するか否かを確知して前記電気信号(受信信号)の大きさが所定の範囲か否かを判定し、洗浄槽2の超音波強度を監視する。
詳細には、この実施例2の判定部7は、実施例1と同じく、超音波受信部5によって電圧偏倚され且つ帯域制限された受信信号をAD変換器など所定の標本化周波数で標本化する標本化手段を具備し、この標本化後、量子化及び符号化してディジタル受信信号を生成する。次いで、このディジタル受信信号の大きさの移動平均を求める移動平均算出手段を具備し、受信信号を移動平均した信号の大きさが予め設定した上限閾値以上若しくは前記下限閾値以下になる個数を求め、この個数が所定期間に所定数に達するか否かを判定するように構成されている。この判定手段を図6に示す。
この移動平均は、所定期間の間隔を定め、この間隔内の平均を連続して求める方法であって、具体的には、超音波受信部5で調整された受信信号をAD変換器でディジタル化した受信信号の現時点iの大きさXと、このi時点直前の連続した複数個数(N−1)のデータXi−jとを用い、次式1によって、この複数個数Nの信号の大きさの平均<X>を逐次求めることで得ている。
Figure 2012250147
なお、この個数Nは、超音波受信部4の受信信号に重畳している各種雑音成分を消去して平滑化できればよく、Nは2以上の適宜の値に設定すればよいが、実施例2では、NはN=3〜100とすると、処理速度の高速化と平滑化とを両立して実現できることを確認した。
この判定部7の判定は、図6に示す手順によりソフトウェア処理される。この図6の手順は、実施例1の判定手段を示す図5のデータ取得時点で移動平均処理を加えたものといえ、実施例2の移動平均処理はサブルーチンで行い、その後は実施例1の図5の判定手段と同じである。
このように移動平均処理を行うことによって、実施例1に較べて、判定部7の前段に配置される帯域濾波部10の構成を簡易にすることが可能になると共に、この判定部7における判定を安定且つ確実に迅速に行うことができることになる。
この実施例3は、実施例1の超音波強度監視装置14による判定部の判定手段(図5)に替えて、判定部7は、超音波受信部5からの受信信号の大きさの平均をこの受信信号の強度とし、この受信信号の大きさの平均が所定の範囲内か否かを判定して超音波強度の監視を行っている。
具体的には、実施例1同様に、判定部7は、動作点電位偏倚部11で所定の動作点電位に偏倚された受信信号をAD変換器で所定の標本化周波数の標本化パルスによって標本化する標本化手段を具備し、この標本化後、量子化及び符号化してディジタル化した受信信号を生成する。この実施例3の判定部7は、更に、第二上限閾値及び第二下限閾値が設定され、超音波受信部5で調整された受信信号の大きさが所定時間内に前記第二上限閾値以上若しくは前記第二下限閾値以下となる受信信号の大きさの単純平均値を求め、この単純平均値を前記所定時間ごとに求めて前記受信信号の大きさが所定の範囲内か否かを判定し、超音波強度の監視を行なっている。
また、この第二上限閾値及び第二下限閾値は、共に動作点電位偏倚部11で設定された直流動作点電位、即ち、実施例1と同じ2.5Vに設定しており、超音波受信部5からの受信信号はこの直流動作点電位(2.5V)と等しい第二上限閾値及び第二下限閾値と大小を比較し、大きくなる方をプラス側、小さくなる方をマイナス側としている。従って、この実施例3の判定では、直流動作点電位に対する受信信号のプラス側の平均及びマイナス側の単純平均を夫々所定時間ごとに周期的に求めていることになる。
この判定部7の処理は、図7に示す判定手段をソフトウェアで実現している。
なお、以下の判定手段の説明では、この所定時間Tは、T×f=Nとなるような標本数Nで表示している。但し、fは標本化周波数である。
この判定手段の実行にあたり、予め各種パラメータの設定や各種変数の初期化が行われる。パラメータの設定では、所定の監視周期に相当する標本数N(例えば、N=5,000)、第二上限閾値Xht(例えば、2.5V)、第二下限閾値Xlt(例えば、2.5V)、更に、上限閾値設定部21で設定された上限閾値B及び下限閾値設定部22で設定された下限閾値CのAD変換器からの読取りなど各種パラメータの設定を行うことであり、変数の初期化では、この判定手段で用いる内部変数の初期化が行われる。
図7の判定手段は、これらのパラメータ設定及び初期化後、所定の標本化周波数f(例えば、100kHz)で標本化される標本点の順番を任意の標本化時点を起点として整数iで表し、このi番目の標本点である受信信号の標本値をXとして、標本点iがこの起点から所定の標本数N(上記のN=5,000)に達するまでの間に、取得したデータXiが第二上限閾値Xht(例えば、2.5V)以上になったデータ値の加算X及びその標本数Nの数を求めると共に、取得したデータXが第二下限閾値Xlt(例えば、2.5V)以下になったデータ値の加算X及びその標本数の数Nを求める。次いで、所定の標本数Nに達した際、X/Nを算出してこの所定標本数の期間内における所定の第二上限閾値を以上となる受信信号の平均<X>を求め、同様にX/Nを算出してこの所定期間N内における第二下限閾値を以下となる受信信号の平均<X>を求め、この上限側の平均<X>と下限側の平均<X>の差分、<X>−<X>をAとして、この差Aが予め設定した所定の上限閾値Bと下限閾値Cの間に存在するか否かを判定することで、洗浄槽2の超音波強度が正常か、異常を判定する。この判定は、標本点iが起点から所定の標本数Nに達するまでを一周期とするフレームとして、このフレーム毎に上記の判定動作を周期的に繰り返し行う。
なお、実施例3で用いている標本数Nは、1,000〜20,000個の範囲の適宜な値にすればよい。
この実施例3の判定手段によれば、超音波洗浄槽の異常の検出を極めて簡単且つ確実に行える。また、このソフトウェア処理に関する変数の数が少なく、また、処理量も低いため、ハード及びソフトウェアの負担が少なくて済むため、簡易で安価な構成にできる。
実施例3の超音波強度監視装置14による判定部7の判定手段(図7)による単純平均が予め設定した所定時間ごとに周期的に求めるのに対し、この実施例4の判定部7では、この所定時間より短い所定の時間間隔ごとにこの所定時間内の信号の大きさの単純平均値を求めてこの信号の大小を判定する。
この平均値算出は、所定時間幅を有する監視期間をこの所定時間幅より短い所定の時間間隔ごとに生成して、その監視期間内の受信信号の瞬時的な大きさを順次平均して求められる構成でもある。
詳細には、判定部7には、第二上限閾値及び第二下限閾値が設定されており、調整部5で調整された電気信号の大きさが所定時間内に第二上限閾値以上若しくは第二下限閾値以下となる電気信号の大きさの単純平均値を求め、判定部7では、この単純平均値を、前記所定時間より短い時間間隔ごとに前記電気信号の単純平均値を求めて前記電気信号の大きさが所定の範囲か否かを判定する。
また、判定部7には、所定の標本化周波数で前記受信信号を標本化する標本化手段を備え、前記単純平均値は、この標本化手段で標本化された標本化信号の大きさが前記第二上限閾値以上若しくは第二下限閾値以下となる該標本化信号の前記所定時間内の単純平均値である。
図8は、この実施例4の判定手段の動作を示す動作図であり、このように逐次遅延された夫々の期間内の前記受信信号の振幅の大きさの平均値の算出及び判定を多重処理して超音波強度の監視を行うことを示したものであり、各期間内の平均算出方法及び判定手段自体は、図7と同じである。
この実施例4も実施例3同様に、判定部7は、動作点電位偏倚部11で所定の動作点電位に偏倚された受信信号をAD変換器でディジタル化する。このため、以下の判定手順の説明では、この所定時間Tは、T×f=Nとなるような標本数Nで表示する。また、同様に、前記所定時間Tより短い時間間隔はこの遅延時間τであり、τ×f=nとなる標本数nで表示する。
具体的には、予め設定した所定時間Tを1/Ndvに等分割して互いに時間τ(τ=T/Ndv)だけ位相が異なる所定時間Tを有する監視期間を順次生成すると共に、この夫々の期間内で第二上限閾値以上若しくは第二下限閾値以下となる受信信号の大きさの平均を求めて、夫々の期間ごとにこの平均が前記上限閾値以上若しくは前記下限閾値以下になるか否かを多重処理して判定する構成である。
この遅延時間τは分割数Ndvを適宜に選んで所定時間T以内の適宜な時間に複数回設定することができるが、簡単のため実施例4では、遅延時間τは所定時間Tの1/2とし、この平均する所定時間Tの標本点Nを5,000標本点とし、遅延時間τの標本数nを2,500標本点とし、逐次遅延させながら所定時間Tの期間内における受信信号の大きさの平均を求め、次いで、この夫々の平均が予め設定した上限閾値以上若しくは前記下限閾値以下になるか否かを順次判定するように構成している。
なお、実施例4で用いている標本数Nは、1,000〜20,000個の範囲の適宜な値にすればよい。また、遅延時間τの標本数nは500〜10,000個の範囲の適宜な値にすればよいが、実施例4では、遅延時間τの標本数nは所定時間Tの標本点Nの1/2とし、図8のように所定時間Tの標本点Nを5,000、遅延時間τの標本数nを2,500として監視期間を一定時間ずらしながら、各期間において受信した受信超音波信号の強度の判定を行っている。
この実施例4のように構成することで、瞬時的な雑音などを確実に低減できるため実施例3と同等の高い雑音除去能力と安定性を有すると共に、判定処理の迅速化が可能になった。
1 洗浄液
2 洗浄槽
3 超音波発生部
4 変換部(超音波センサ)
5 調整部(超音波受信部)
6 報知部
7 判定部
9 可変利得増幅部
10 帯域濾波部
11 動作点電位偏倚部
12 発振器制御部
20 動作点電位設定部
21 上限閾値設定部
22 下限閾値設定部

Claims (16)

  1. 洗浄液が貯留される洗浄槽に超音波振動を印加する超音波発生部が設けられ、この超音波発生部により超音波振動が印加された前記洗浄液により被洗浄物を洗浄する超音波洗浄機用の超音波強度監視装置であって、前記洗浄槽に設けられ該洗浄槽を伝播した超音波を電気信号に変換する変換部と、この変換部で変換された前記電気信号の大きさを調整する調整部と、この調整部で調整された前記電気信号の大きさが所定の範囲内か否かを判定する判定部とを具備し、前記電気信号の大きさは、該電気信号の瞬時的電圧,瞬時的電流,移動平均値若しくは単純平均値のいずれかであることを特徴とする超音波強度監視装置。
  2. 請求項1記載の超音波強度監視装置において、前記調整部は、前記変換部で変換された前記電気信号の振幅及び直流レベルのいずれか若しくは双方を調整することを特徴とする超音波強度監視装置。
  3. 請求項1,2いずれか1項に記載の超音波強度監視装置において、前記判定部には、前記所定の範囲の上限閾値及び下限閾値を設定する閾値設定部が設けられていることを特徴とする超音波強度監視装置。
  4. 請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部は、前記調整部で調整された電気信号を所定の標本化周波数で標本化する標本化手段を備え、この標本化手段で標本化された標本化信号の大きさが前記所定の範囲外となる前記標本化信号の個数を求め、この個数が所定時間内に所定数に達するか否かを確知して前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置。
  5. 請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部は、前記調整部で調整された電気信号を所定の標本化周波数で標本化する標本化手段と、この標本化手段で標本化された標本化信号の大きさを移動平均する移動平均手段とを備え、この移動平均手段で移動平均された移動平均値が前記所定の範囲外となる前記標本化信号の個数を求め、この個数が所定時間内に所定数に達するか否かを確知して前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置。
  6. 請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部には、第二上限閾値及び第二下限閾値が設定されており、前記調整部で調整された電気信号の大きさが所定時間内に前記第二上限閾値以上若しくは前記第二下限閾値以下となる電気信号の大きさの単純平均値を求め、この単純平均値を前記所定時間ごとに求めて前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置。
  7. 請求項1〜3いずれか1項に記載の超音波強度監視装置において、前記判定部には、第二上限閾値及び第二下限閾値が設定されており、前記調整部で調整された電気信号の大きさが所定時間内に前記第二上限閾値以上若しくは前記第二下限閾値以下となる電気信号の大きさの単純平均値を求め、前記判定部では、この単純平均値を、前記所定時間より短い時間間隔ごとに前記電気信号の単純平均値を求めて前記電気信号の大きさが所定の範囲か否かを判定することを特徴とする超音波強度監視装置。
  8. 請求項6,7いずれか1項に記載の超音波強度監視装置において、前記判定部には、所定の標本化周波数で前記受信信号を標本化する標本化手段を備え、前記単純平均値は、この標本化手段で標本化された標本化信号の大きさが前記第二上限閾値以上若しくは第二下限閾値以下となる該標本化信号の前記所定時間内の単純平均値であることを特徴とする超音波強度監視装置。
  9. 請求項1〜8いずれか1項に記載の超音波強度監視装置において、前記調整部は、前記変換部で変換された電気信号を所定量減衰若しくは増幅させて適宜な振幅の電気信号に調整する可変利得増幅部と、この可変利得増幅部からの電気信号の周波数帯域を制限する帯域濾波部とで構成されていることを特徴とする超音波強度監視装置。
  10. 請求項9記載の超音波強度監視装置において、前記調整部には、前記可変利得増幅部若しくは前記帯域濾波部の電気信号を所定の直流動作点電位に偏倚させる動作点電位偏倚部が備えられていることを特徴とする超音波強度監視装置。
  11. 請求項10記載の超音波強度監視装置において、前記直流動作点電位は、動作点電位設定部で設定されることを特徴とする超音波強度監視装置。
  12. 請求項1〜11いずれか1項に記載の超音波強度監視装置において、前記判定部による前記判定を報知する報知部が具備されることを特徴とする超音波強度監視装置。
  13. 請求項12記載の超音波強度監視装置において、前記報知部には、ブザー等の鳴動部若しくはランプ等の表示部が設けられることを特徴とする超音波強度監視装置。
  14. 請求項1〜13いずれか1項に記載の超音波強度監視装置において、前記変換部は、圧電素子が採用されていることを特徴とする超音波強度監視装置。
  15. 請求項1〜14いずれか1項に記載の超音波強度監視装置において、前記変換部は、前記洗浄槽の周壁に設けられることを特徴とする超音波強度監視装置。
  16. 請求項1〜15いずれか1項に記載の超音波強度監視装置を具備した超音波洗浄機であって、前記変換部の電気信号若しくは前記調整部の電気信号及び前記判定部の判定に基づいて前記超音波発生部を制御する発振器制御部が設けられていることを特徴とする超音波洗浄機。
JP2011122901A 2011-05-31 2011-05-31 超音波強度監視装置及びこれを用いた超音波洗浄機 Withdrawn JP2012250147A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122901A JP2012250147A (ja) 2011-05-31 2011-05-31 超音波強度監視装置及びこれを用いた超音波洗浄機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122901A JP2012250147A (ja) 2011-05-31 2011-05-31 超音波強度監視装置及びこれを用いた超音波洗浄機

Publications (1)

Publication Number Publication Date
JP2012250147A true JP2012250147A (ja) 2012-12-20

Family

ID=47523488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122901A Withdrawn JP2012250147A (ja) 2011-05-31 2011-05-31 超音波強度監視装置及びこれを用いた超音波洗浄機

Country Status (1)

Country Link
JP (1) JP2012250147A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144443A (ja) * 2013-01-30 2014-08-14 Citizen Holdings Co Ltd 超音波洗浄装置
KR20160048285A (ko) * 2014-10-23 2016-05-04 동아대학교 산학협력단 초음파 세척기의 발진 출력 제어 방법 및 그 장치
JP2016133309A (ja) * 2015-01-15 2016-07-25 オタリ株式会社 超音波音圧測定装置、端末プログラム、超音波音圧測定システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144443A (ja) * 2013-01-30 2014-08-14 Citizen Holdings Co Ltd 超音波洗浄装置
KR20160048285A (ko) * 2014-10-23 2016-05-04 동아대학교 산학협력단 초음파 세척기의 발진 출력 제어 방법 및 그 장치
KR101704488B1 (ko) * 2014-10-23 2017-02-10 동아대학교 산학협력단 초음파 세척기의 발진 출력 제어 방법 및 그 장치
JP2016133309A (ja) * 2015-01-15 2016-07-25 オタリ株式会社 超音波音圧測定装置、端末プログラム、超音波音圧測定システム

Similar Documents

Publication Publication Date Title
JP7283681B2 (ja) 異物検出を備える超音波レンズクリーニングシステム
US6851313B2 (en) Vibratory level sensor
US11512582B2 (en) Bearing fault detection for surface pumping units
JP2012531589A (ja) 機械発振器の共振パラメータの特定
JP6307684B1 (ja) 高音圧音場の音圧分析装置及び方法、超音波洗浄機、超音波処理機
JP2012250147A (ja) 超音波強度監視装置及びこれを用いた超音波洗浄機
JP4906897B2 (ja) クラック検知支援装置、及び、クラック検知支援方法
JP6071594B2 (ja) 超音波洗浄装置
JP6229852B2 (ja) 電磁流量計
JP6337752B2 (ja) 乳幼児泣き声検出装置
JP6793299B2 (ja) 信号検出装置及び信号検出方法
JP3998589B2 (ja) 音圧測定装置及び圧測定方法
CN111398671B (zh) 超声波功率检测回授控制装置及其方法
JP6432308B2 (ja) 計測装置及び計測レンジ切換方法
JP2002519629A (ja) 共振器が共振する周波数を決定するための方法及び装置
KR102656638B1 (ko) 초음파 측정기를 구비한 초음파 세척장치
CN109682958B (zh) 一种用于血栓弹力图仪的加速度传感器信号补偿方法
JP2009106851A (ja) 超音波振動子の特性検出装置を内蔵した超音波洗浄装置
JP2011016081A (ja) 超音波強度監視装置
RU152833U1 (ru) Устройство контроля работоспособности пьезоэлектрического преобразователя
JP2005241545A (ja) ドップラー式超音波流量計、その受信電圧レベル制御装置/方法、プログラム
JP2008249331A (ja) 渦流量計
KR100719778B1 (ko) 초음파세척기의 과열방지장치 및 그 방법
TWI730729B (zh) 超音波功率檢測裝置及其方法
JP2008256528A (ja) 超音波測定装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805