JP2012236257A - Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle - Google Patents

Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle Download PDF

Info

Publication number
JP2012236257A
JP2012236257A JP2011107029A JP2011107029A JP2012236257A JP 2012236257 A JP2012236257 A JP 2012236257A JP 2011107029 A JP2011107029 A JP 2011107029A JP 2011107029 A JP2011107029 A JP 2011107029A JP 2012236257 A JP2012236257 A JP 2012236257A
Authority
JP
Japan
Prior art keywords
injection nozzle
workpiece
machining
axis
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011107029A
Other languages
Japanese (ja)
Inventor
Shigeji Yokomichi
茂治 横道
Tomoshige Ishiwata
朋茂 石綿
Wataru Murakami
渉 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elenix Inc
Original Assignee
Elenix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elenix Inc filed Critical Elenix Inc
Priority to JP2011107029A priority Critical patent/JP2012236257A/en
Publication of JP2012236257A publication Critical patent/JP2012236257A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for performing pore electric discharge machining, in each of which the length of a spout of an injection nozzle can be machined with high accuracy.SOLUTION: The method for performing pore electric discharge machining on a tip concave part of the spout of the injection nozzle comprises: a step 1 of detecting contact with a reference sphere 35 to set the starting point of a machining electrode D; a step 2 of mounting a reference object to be machined in a unit for clamping the object to be machined; a step 3 of detecting coordinates of a surface position of the reference object to be machined by using a contact detection means; a step 4 of storing data on the coordinates; a step 5 of mounting the injection nozzle being the object to be machined in the unit for clamping the object to be machined; a step 6 of detecting the coordinates of the surface position of a part to be machined of the injection nozzle; a step 7 of calculating a difference between the Z-axis coordinate of the surface position of the part to be machined which is detected at the step 6, and the Z-axis coordinate stored at the step 4 and correcting a feed rate on the basis of the calculated difference when the Z-axis of the tip concave part of the spout of the injection nozzle is machined, and executing the electric discharge machining; a step 8 of performing the steps 3-7 on a plurality of parts to be machined when the reference object to be machined has the plurality of parts to be machined.

Description

本発明は噴射ノズルの噴射口先端凹部の細孔放電加工方法および装置に関する。   TECHNICAL FIELD The present invention relates to a method and apparatus for fine hole electric discharge machining of a nozzle tip recess of an injection nozzle.

例えば、内燃機関の燃料噴射ノズルにおいて、噴射孔の長さと口径は燃料の噴射量や噴霧状態等の噴霧特性に大きな影響を及ぼす要因である。したがって、燃料噴射ノズルの噴射孔の長さと口径の加工にはより高い精度が要求されている。   For example, in a fuel injection nozzle of an internal combustion engine, the length and the diameter of the injection hole are factors that greatly affect the spray characteristics such as the fuel injection amount and the spray state. Therefore, higher accuracy is required for processing the length and diameter of the injection hole of the fuel injection nozzle.

燃料噴射ノズルの噴射孔の加工には、ドリル加工も可能ではあるが1mm以下の細径の噴射孔の加工の場合にはドリルの折損や噴射孔端部にバリが発生するなどの問題があり、そのような細径の噴射孔の加工にはドリル加工よりも細孔放電加工機による加工が適している。   Drilling of the fuel injection nozzle can be drilled, but there are problems such as breakage of the drill and burring at the end of the injection hole when processing a small injection hole with a diameter of 1 mm or less. For machining such a small-diameter injection hole, machining by a pore electric discharge machine is more suitable than drilling.

また、燃料噴射ノズルの先端部には噴射燃料の微粒子化や空気との混合を促進すべく、噴射孔の内径より大きい段付き穴または凹部が設けてある(例えば特許文献1)。   Further, a stepped hole or a recess larger than the inner diameter of the injection hole is provided at the tip of the fuel injection nozzle in order to promote atomization of the injected fuel and mixing with air (for example, Patent Document 1).

このような燃料噴射ノズルの段付き穴または凹部を従来の細孔放電加工機で加工する場合、噴射ノズル先端部の肉厚が変化した場合、段付き穴または凹部の噴射ノズル表面からの深さは一定となるが、段付き穴または凹部下側の噴射孔の長さが変化してしまうという問題がある。   When processing such a stepped hole or recess of a fuel injection nozzle with a conventional fine hole electric discharge machine, if the thickness of the tip of the injection nozzle changes, the depth of the stepped hole or recess from the surface of the injection nozzle However, there is a problem that the length of the injection hole below the stepped hole or the concave portion is changed.

図7、8は、上述の燃料噴射ノズル先端部に設けられた段付き穴または凹部の模式的な説明図である。   7 and 8 are schematic explanatory views of a stepped hole or a recess provided in the tip portion of the fuel injection nozzle described above.

例えば、図7に示す燃料噴射ノズル100の先端部の肉厚がtであり、燃料噴出側には口径Dで深さlの大径の段付き穴101が設けてあり、この段付き穴101の下に口径d(d<D)で長さがLの噴射孔103が燃料噴射ノズル100の内部(図示省略)に連通しているものとする。 For example, a wall thickness t 0 of the distal end portion of the fuel injection nozzle 100 shown in FIG. 7, the fuel injection side Yes in stepped bore 101 of larger diameter depth l 0 is provided in diameter D, with the stages It is assumed that an injection hole 103 having a diameter d (d <D) and a length L 0 is communicated with the inside (not shown) of the fuel injection nozzle 100 below the hole 101.

上述の燃料噴射ノズル100の段付き穴101を従来の細孔放電加工機により加工する場合、燃料噴射ノズル100の燃料噴出側の上面を加工基準面105として加工が行なわれる(例えば特許文献2)。   When the above-described stepped hole 101 of the fuel injection nozzle 100 is processed by a conventional fine hole electric discharge machine, the upper surface on the fuel injection side of the fuel injection nozzle 100 is processed as the processing reference surface 105 (for example, Patent Document 2). .

実開昭57−158973号公報Japanese Utility Model Publication No. 57-158773 特開平03−221323号公報Japanese Patent Laid-Open No. 03-221323

従来の細孔放電加工機により前記燃料噴射ノズル100の段付き穴101を加工する際、図8に示すように燃料噴射ノズル100の先端部の肉厚tがα増減して、肉厚tから、t(=t+α)に増加、または、t(=t−α)に減少した場合、燃料噴出側の上面を加工基準面105として加工が行われるめ、段付き穴101の深さは一定(l=l=l)となるが、小径の噴射孔103の長さは、L(=L+α)>L、または、L(=L−α)<Lとなり、燃料噴射ノズルにおいて燃料噴射量や噴霧特性に大きく影響する噴射孔の長さLを高精度に加工することができない。すなわち、燃料噴射ノズルの噴射孔の加工方向と反対側の内面を基準とする噴射孔の長さLを高精度に加工することができなかった。 When the stepped hole 101 of the fuel injection nozzle 100 is processed by the conventional fine hole electric discharge machine, the thickness t 0 of the tip of the fuel injection nozzle 100 is increased or decreased by α as shown in FIG. When increasing from 0 to t 1 (= t 0 + α) or decreasing to t 2 (= t 0 −α), the upper surface on the fuel ejection side is processed as the processing reference surface 105, so a stepped hole The depth of 101 is constant (l 0 = l 1 = l 2 ), but the length of the small-diameter injection hole 103 is L 1 (= L 1 + α)> L 0 or L 2 (= L 2 −α) <L 0 , and the length L 0 of the injection hole that greatly affects the fuel injection amount and the spray characteristics in the fuel injection nozzle cannot be processed with high accuracy. That is, it was not possible to process the length L 0 of the machining direction opposite inner surface of the reference injection hole of the injection hole of the fuel injection nozzle with high accuracy.

本発明は上述の如き問題を解決するために成されたものであり、本発明の課題は、噴射孔の出口側に噴射孔の内径より大きい段付き穴または凹部を設けた燃料噴射ノズルの噴射孔の長さを高精度に加工することができる細孔放電加工方法および装置を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to inject a fuel injection nozzle having a stepped hole or a recess larger than the inner diameter of the injection hole on the outlet side of the injection hole. It is an object of the present invention to provide a pore electric discharge machining method and apparatus capable of machining a hole length with high accuracy.

上述の課題を解決する手段として請求項1に記載の噴射ノズルの噴射口先端凹部の放電加工方法は、次の工程からなることを特徴とするものである。
1.X、Yテーブル上の被加工物クランプ装置に設けたZ軸座標設定用の基準球と電極先端との接触を接触検出手段により検出して電極先端の原点を設定する。
2.噴射ノズルの基準となる基準加工物を前記被加工物クランプ装置に装着する。
3.基準加工物の加工部を加工位置へ移動位置決めし、前記接触検出手段を用いてこの基準加工物の加工部の表面位置の接触位置の座標を検出する。
4.前記工程3で検出した座標データを記憶する。
5.被加工物クランプ装置から基準加工物を取り外して、被加工物である噴射ノズルを装着する。
6.噴射ノズルの加工部を加工位置へ移動位置決めし、前記接触検出手段を用いてこの噴射ノズルの加工部の表面位置の座標を検出する。
7.工程6で検出した加工部の表面位置のZ軸座標と、前記工程4で記憶したZ軸座標との差を求め、この差に基づいて噴射ノズルの噴射口先端凹部のZ軸加工送り量を補正して放電加工を実施する。
8.前記基準加工物に複数個所の加工部がある場合、その複数個所の加工部に対して前記工程3〜7を実行する。
As a means for solving the above-mentioned problems, the electric discharge machining method for the injection nozzle tip recess according to claim 1 is characterized by comprising the following steps.
1. Contact between the Z-axis coordinate setting reference sphere provided in the workpiece clamping device on the X and Y tables and the electrode tip is detected by the contact detection means to set the origin of the electrode tip.
2. A reference workpiece serving as a reference for the injection nozzle is mounted on the workpiece clamping device.
3. The processing part of the reference workpiece is moved and positioned to the processing position, and the coordinates of the contact position of the surface position of the processing part of the reference workpiece are detected using the contact detection means.
4). The coordinate data detected in step 3 is stored.
5. The reference workpiece is removed from the workpiece clamping device, and an injection nozzle that is the workpiece is mounted.
6). The processing portion of the injection nozzle is moved and positioned to the processing position, and the coordinates of the surface position of the processing portion of the injection nozzle are detected using the contact detection means.
7). The difference between the Z-axis coordinate of the surface position of the machining part detected in step 6 and the Z-axis coordinate stored in step 4 is obtained, and based on this difference, the Z-axis machining feed amount of the injection nozzle tip recess is determined. Correct and perform electrical discharge machining.
8). If the reference workpiece has a plurality of machining portions, the steps 3 to 7 are performed on the machining portions at the plurality of locations.

請求項2に記載の細穴放電加工方法は、請求項1に記載の細穴放電加工方法において、前記噴射ノズルが燃料噴射ノズルであることを特徴とするものである。   A fine hole electric discharge machining method according to a second aspect is the fine hole electric discharge machining method according to the first aspect, wherein the injection nozzle is a fuel injection nozzle.

請求項3に記載の噴射ノズルの噴射口先端凹部の細孔放電加工装置は、Z軸方向に昇降位置決め自在な加工電極と被加工物クランプ装置に装着された被加工物とをXY軸方向に相対的に移動位置決め自在に設けた細孔放電加工装置において、前記加工物クランプ装置に前記加工電極の先端との接触を接触検出手段により検出して加工電極先端の基準位置である原点を設定するための基準球を設け、前記原点と、前記被加工物クランプ装置に装着された被加工物の加工位置表面とまたは基準加工物の加工位置の表面と前記加工電極とが接触した際に検出した位置座標データとを記憶する接触検出データ記憶手段とを設け、前記被加工物の加工位置表面のZ軸座標と前記基準加工物の表面位置のZ軸座標の差を求める比較演算手段を設け、該比較演算手段で求めた差に基づいて、前記噴射ノズルの噴射口先端凹部のZ軸加工送り量を補正して加工することを特徴とするものである。   A fine hole electric discharge machining apparatus for an injection nozzle tip recess of an injection nozzle according to claim 3, wherein a machining electrode that can be moved up and down in the Z-axis direction and a workpiece mounted on the workpiece clamping device are arranged in the XY-axis direction. In the fine hole electric discharge machining apparatus provided so as to be relatively movable and positionable, contact with the tip of the machining electrode is detected by the contact detection means in the workpiece clamping device, and an origin which is a reference position of the machining electrode tip is set. A reference sphere is provided for detecting when the origin contacts the processing position surface of the workpiece mounted on the workpiece clamping device or the processing position surface of the reference workpiece and the processing electrode. Contact detection data storage means for storing position coordinate data, and a comparison operation means for obtaining a difference between the Z-axis coordinates of the processing position surface of the workpiece and the Z-axis coordinates of the surface position of the reference workpiece, The comparison Based on the difference obtained by the calculation means, is characterized in that the processing to correct the Z-axis machining feed amount of injection port tip recess of the injection nozzle.

請求項4に記載の噴射ノズルの噴射口先端凹部の細孔放電加工装置は、請求項3記載の噴射ノズルの噴射口先端凹部の細孔放電加工装置において、前記噴射ノズルが燃料噴射ノズルであることを特徴とするものである。   The fine hole electric discharge machining apparatus for the injection nozzle tip recess of the injection nozzle according to claim 4, wherein the injection nozzle is a fuel injection nozzle. It is characterized by this.

本願発明の噴射ノズルの噴射口先端凹部の細孔放電加工方法および装置によれば、噴射孔の出口側に噴射孔の内径より大きい段付き穴または凹部を設けた燃料噴射ノズルの噴射孔の長さを高精度に加工することができる。   According to the method and apparatus for forming a discharge hole at the tip of the injection nozzle of the injection nozzle according to the present invention, the length of the injection hole of the fuel injection nozzle provided with a stepped hole or a recess larger than the inner diameter of the injection hole on the outlet side of the injection hole Can be processed with high accuracy.

また、加工電極先端の基準位置であるZ軸座標と基準加工物の加工部の表面位置のZ軸座標とを予め記憶しておけば被加工物ごとに基準加工物の加工位置の測定が不要となり、加工時間を短縮することができる。   In addition, if the Z-axis coordinate that is the reference position of the tip of the machining electrode and the Z-axis coordinate of the surface position of the machining part of the reference workpiece are stored in advance, it is not necessary to measure the machining position of the reference workpiece for each workpiece. Thus, the processing time can be shortened.

本願発明に係る細穴放電加工装置の正面図。The front view of the fine hole electric discharge machining apparatus which concerns on this invention. 本願発明に係る細穴放電加工装置を一部破断した右側面図。The right view which fractured | ruptured the thin hole electric discharge machining apparatus which concerns on this invention partially. ターンテーブルに装着される被加工物クランプ装置の説明図。Explanatory drawing of the workpiece clamp apparatus with which a turntable is mounted | worn. ターンテーブルを傾斜させて基準加工物の加工部の座標を測定している図。The figure which measures the coordinate of the process part of a reference | standard workpiece by inclining a turntable. 燃料噴射ノズル先端部の段付き穴または凹部の形状例で、図5(a)は、段付き穴が内径が一定の座繰り孔、図5(b)は表面側に開いた漏斗状の凹部を有する例。FIG. 5A shows an example of the shape of a stepped hole or recess at the tip of the fuel injection nozzle. FIG. 5A shows a countersink hole having a constant inner diameter, and FIG. 5B shows a funnel-like recess opened on the surface side. Example with 本願発明に係る細穴放電加工装置CNC制御装置の構成の説明図。Explanatory drawing of a structure of the fine hole electric discharge machining apparatus CNC control apparatus which concerns on this invention. 燃料噴射ノズル先端部に設けられた段付き穴または凹部の模式的な説明図である。It is typical explanatory drawing of the stepped hole or recessed part provided in the fuel injection nozzle front-end | tip part. 従来の細孔放電加工機により燃料噴射ノズルの段付き穴を加工する場合の説明図。Explanatory drawing in the case of processing the stepped hole of a fuel injection nozzle with the conventional fine hole electric discharge machine.

以下、本発明の実施の形態を図面によって説明する。     Embodiments of the present invention will be described below with reference to the drawings.

図1、図2は本発明に係る6軸制御(X,Y,Z,A,B,W)の細穴放電加工装置の一実施の形態を示したものである。   1 and 2 show an embodiment of a 6-axis control (X, Y, Z, A, B, W) fine hole electric discharge machining apparatus according to the present invention.

図1、図2を参照するに、総括的に示す細穴放電加工装置1の基台3上には、図示省略の駆動手段及びY軸駆動モータMYによりY軸方向に移動位置決め可能なY軸テーブル5が設けてある。   Referring to FIGS. 1 and 2, a Y-axis that can be moved and positioned in the Y-axis direction by a driving means (not shown) and a Y-axis driving motor MY is provided on a base 3 of a thin hole electric discharge machining apparatus 1 that is generally shown. A table 5 is provided.

前記Y軸テーブル5には受け皿7を一体的に固定して設け、この受け皿7上に絶縁体である石定盤9を設けると共に、この石定盤9上にL字形のブラケット部材11が一体的に設けてある。   A tray 7 is integrally fixed to the Y-axis table 5, and a stone surface plate 9 that is an insulator is provided on the plate 7, and an L-shaped bracket member 11 is integrally formed on the stone surface plate 9. Is provided.

上述のブラケット部材11上には、電気伝導度の小さい純水などの加工液13を入れるための加工槽15が取り付てあり、この加工槽15内に被加工物の燃料噴射ノズル37を固定するためのチルト可能なのターンテーブル装置17が設けてある(図3、4参照)。   On the bracket member 11, a processing tank 15 for containing a processing liquid 13 such as pure water having a low electrical conductivity is mounted, and a fuel injection nozzle 37 for a workpiece is fixed in the processing tank 15. A tiltable turntable device 17 is provided (see FIGS. 3 and 4).

上述のターンテーブル装置17は、Z軸(図1の上下方向)に平行な軸心を回転中心とするA軸と、A軸に直交(Y軸に平行)する軸心を回転中心とするB軸(チルト軸)とを備えている。   The turntable device 17 described above has an A axis centering on an axis parallel to the Z axis (vertical direction in FIG. 1) and a center axis B orthogonal to the A axis (parallel to the Y axis) B. And an axis (tilt axis).

上述のB軸駆動部としてのB軸回転軸19は、前記L字形ブラケット部材11の底部から前記加工槽15の後側(図2において右側)の壁面に沿って上方に延伸するB軸取付部(図示省略)を回転自在に軸支している。このB軸回転軸19は前記加工槽15の後側壁面を貫通して加工槽15内部のほぼ中央部まで延伸させて設けてある。   The B-axis rotation shaft 19 as the B-axis drive unit described above extends upward from the bottom of the L-shaped bracket member 11 along the rear wall (right side in FIG. 2) of the processing tank 15. (Not shown) is rotatably supported. The B-axis rotation shaft 19 is provided so as to extend through the rear side wall surface of the processing tank 15 to a substantially central portion inside the processing tank 15.

前記B軸回転軸19の左端の上部には、減速機(図示省略)を介して前記ターンテーブル装置17が回転可能に取付けてある。B軸回転軸19の回転駆動は前記加工槽15の外部に設けたB軸駆動モータMBで行われ、またターンテーブル装置17の回転駆動は、B軸回転軸19の軸心に沿って設けた外部に開口しためくら穴23を介してA軸駆動モータMAにより回転駆動ができるように設けてある。   The turntable device 17 is rotatably attached to the upper left end of the B-axis rotation shaft 19 via a speed reducer (not shown). The rotation drive of the B-axis rotation shaft 19 is performed by a B-axis drive motor MB provided outside the processing tank 15, and the rotation drive of the turntable device 17 is provided along the axis of the B-axis rotation shaft 19. It is provided so that it can be rotated by an A-axis drive motor MA through a blind hole 23 that opens to the outside.

前記ターンテーブル装置17の裏面には、環状の通電リング(図示省略)が設けてあり、ターンテーブル装置17はこの通電リングを介して放電電源(図示省略)に接続してある。   An annular energization ring (not shown) is provided on the back surface of the turntable device 17, and the turntable device 17 is connected to a discharge power source (not shown) via the energization ring.

上記構成において、CNC制御装置61の制御の下にA軸駆動モータMAを適宜に回転駆動させれば、ターンテーブル装置17をA軸中心に適宜な角度回転させることができる。   In the above configuration, if the A-axis drive motor MA is appropriately rotated under the control of the CNC controller 61, the turntable device 17 can be rotated at an appropriate angle about the A-axis.

また、同様にB軸駆動モータMBを適宜に正転または逆転駆動させれば、ターンテーブル装置17をB軸を中心に時計方向または反時計方向へチルト(Tilt;傾斜)させることができる。さらに、前記Y軸駆動モータMYを適宜に回転駆動することにより、ターンテーブル装置17をY軸方向の任意の位置に位置決めすることができる。   Similarly, if the B-axis drive motor MB is appropriately rotated forward or reversely, the turntable device 17 can be tilted (tilt) clockwise or counterclockwise about the B-axis. Furthermore, the turntable device 17 can be positioned at an arbitrary position in the Y-axis direction by appropriately rotating the Y-axis drive motor MY.

前記加工槽15の後方(図2において右方)の前記基台3上には、図1を前側から見て左右に立設した一対の支柱21(a,b)と、この一対の支柱21(a,b)の上部に水平に懸架した梁部材25cからなる門型フレーム23が設けてある。   On the base 3 at the rear of the processing tank 15 (right side in FIG. 2), a pair of support columns 21 (a, b) erected on the left and right as viewed from the front side, and the pair of support columns 21 A portal frame 23 composed of a beam member 25c suspended horizontally is provided above (a, b).

門型フレームの梁部材25cには、蛇腹27に保護されたX軸ガイドレール(図示省略)が設けてあり、このX軸ガイドレールにX軸駆動モータMXに駆動されるX軸キャリッジ29が前記Y軸に直交するX軸方向に移動位置決め自在に設けてある。   The beam member 25c of the portal frame is provided with an X-axis guide rail (not shown) protected by a bellows 27, and an X-axis carriage 29 driven by an X-axis drive motor MX is provided on the X-axis guide rail. It can be moved and positioned in the X-axis direction orthogonal to the Y-axis.

前記X軸キャリッジ29には、Z軸駆動モータ(図示省略)によりZ軸(加工軸)の任意の位置に移動位置決め可能なZ軸キャリッジ31が設けてある。   The X-axis carriage 29 is provided with a Z-axis carriage 31 that can be moved and positioned at an arbitrary position on the Z-axis (processing axis) by a Z-axis drive motor (not shown).

なお、前記X軸キャリッジ29はX軸駆動モータMXによりX軸の任意の位置へ位置決め自在である。また、前記Z軸キャリッジ31には、前記X軸キャリッジ29に対して適宜な高さにZ軸キャリッジ31を昇降移動させるW軸モータMWが設けてある。   The X-axis carriage 29 can be positioned at any position on the X-axis by an X-axis drive motor MX. The Z-axis carriage 31 is provided with a W-axis motor MW that moves the Z-axis carriage 31 up and down to an appropriate height with respect to the X-axis carriage 29.

前記Z軸キャリッジ31には、中実または中空の棒状加工電極Dが回転自在に軸支されており、そして、これらの棒状電極Dを回転させるためのモータ(図示省略)が設けてある。また、前記中空の棒状電極、すなわちパイプ電極に対しては、加工液(純水等)を供給する加工液供給手段(図示省略)が設けてある。   The Z-axis carriage 31 is rotatably supported by solid or hollow rod-like machining electrodes D, and a motor (not shown) for rotating these rod-like electrodes D is provided. Further, a processing liquid supply means (not shown) for supplying a processing liquid (pure water or the like) is provided for the hollow rod-shaped electrode, that is, the pipe electrode.

前記ターンテーブル装置17には、図3に示すような被加工材クランプ装置33が装着してあり、また、この被加工材クランプ装置には、前記加工電極Dの先端の基準位置である原点(X、Y、Z)を設定するための基準球35が設けてある。   A workpiece clamping device 33 as shown in FIG. 3 is mounted on the turntable device 17, and the workpiece clamping device includes an origin (a reference position of the tip of the machining electrode D). A reference sphere 35 for setting X, Y, Z) is provided.

図3、4に示す如く、上述の被加工材クランプ装置33は、先端の噴射孔の形状が図5a、図5bに示す様な基準加工物37’または燃料噴射ノズル37を装着するためのクランプ機構を有している。燃料噴射ノズル37の先端の段付き孔または凹部の形状には、例えば、図5aに示す円形の座繰り穴101や、図5bに示す様な漏斗状の凹部102など種々の形状がある。なお、基準加工物37’とは、被加工物である前記燃料噴射ノズル37の基準となるように規定の寸法に正確な加工された燃料噴射ノズルである。   As shown in FIGS. 3 and 4, the workpiece clamping device 33 described above has a clamp for mounting a reference workpiece 37 ′ or a fuel injection nozzle 37 whose tip injection hole shape is as shown in FIGS. 5a and 5b. It has a mechanism. The shape of the stepped hole or recess at the tip of the fuel injection nozzle 37 includes various shapes such as a circular counterbore 101 shown in FIG. 5a and a funnel-like recess 102 as shown in FIG. 5b. The reference workpiece 37 ′ is a fuel injection nozzle that is precisely processed to a specified dimension so as to be a reference for the fuel injection nozzle 37 that is a workpiece.

被加工材クランプ装置33のベース39には、燃料噴射ノズル37または基準加工物37’の基部37aの内径部に嵌合する位置決めピン41と、基部37aの外径部に嵌合する環状部材43とが設けてある。   On the base 39 of the workpiece clamping device 33, a positioning pin 41 fitted to the inner diameter portion of the base portion 37a of the fuel injection nozzle 37 or the reference workpiece 37 ′ and an annular member 43 fitted to the outer diameter portion of the base portion 37a. Are provided.

前記環状部材43の上面部には、環状部材43の外径より小径の雄ねじを部を備えたキャップ取付部45が突出するように設けてある。そして、このキャップ取付部45の雄ねじ部に螺合する環状のキャップ47が設けてある。なお、キャップ47の下端部は前記環状部材43の上面部に当接係合自在となっている。   On the upper surface portion of the annular member 43, a cap mounting portion 45 having a male screw having a diameter smaller than the outer diameter of the annular member 43 is provided so as to protrude. An annular cap 47 that is screwed into the male thread portion of the cap mounting portion 45 is provided. Note that the lower end portion of the cap 47 is abuttingly engageable with the upper surface portion of the annular member 43.

上記構成において、燃料噴射ノズル37を被加工材クランプ装置33に装着固定する際には、まず、燃料噴射ノズル37の内径部を前記位置決めピン41に挿入し、キャップ47をキャップ取付部45の雄ねじ部に螺合させることにより装着固定する。この際、キャップ47の内側には前記燃料噴射ノズル37を被加工材クランプ装置33のベース39の方へ押圧付勢するスプリング49が弾装してあるので、燃料噴射ノズル37がベース39の方へ押圧されて確実に固定することができる。   In the above configuration, when mounting and fixing the fuel injection nozzle 37 to the workpiece clamping device 33, first, the inner diameter portion of the fuel injection nozzle 37 is inserted into the positioning pin 41, and the cap 47 is inserted into the male screw of the cap mounting portion 45. It is mounted and fixed by screwing into the part. At this time, a spring 49 that presses and urges the fuel injection nozzle 37 toward the base 39 of the workpiece clamping device 33 is elastically mounted on the inner side of the cap 47. Can be fixed securely.

なお、前記燃料噴射ノズル37には前記スプリング49に係合する係合段部が形成してある。また、前記被加工材クランプ装置33のベース39と燃料噴射ノズル37との間にはZ軸方向の高さを調整可能な適宜な板厚のリング状のスペーサ51が挿入可能である。   The fuel injection nozzle 37 is formed with an engaging step portion that engages with the spring 49. Further, a ring-shaped spacer 51 having an appropriate plate thickness capable of adjusting the height in the Z-axis direction can be inserted between the base 39 of the workpiece clamping device 33 and the fuel injection nozzle 37.

再度、図1を参照するに、前記門型フレーム23の支柱21bには、前述の6個の制御軸(X,Y,Z,A,B,W)他を制御可能なCNC制御装置61が設けてある。このCNC制御装置61は、前記X軸駆動モータMX 、Y軸駆動モータMY およびZ軸駆動モータ(図示省略)とを制御して前記加工電極Dを被加工物である燃料噴射ノズル37に対して3次元(X,Y,Z)の位置決めをすることができる。   Referring to FIG. 1 again, the support 21b of the portal frame 23 is provided with a CNC control device 61 capable of controlling the above-described six control axes (X, Y, Z, A, B, W) and the like. It is provided. The CNC control device 61 controls the X-axis drive motor MX, the Y-axis drive motor MY, and the Z-axis drive motor (not shown) so that the machining electrode D is applied to the fuel injection nozzle 37 that is a workpiece. Three-dimensional (X, Y, Z) positioning can be performed.

図6に示す示す如く、前述のCNC制御装置61に備わるCPU63のデータバス65には、キーボードなどのデータ入力手段67、LCDなどの表示手段69および加工プログラムメモリ71などが接続してあり、さらに、前記加工電極Dの先端が前記基準球35と、前記燃料噴射ノズル37または基準加工物37’とが接触した際の座標(X,Y,Z,A,B,W)を検出する接触検出手段73が接続されている。   As shown in FIG. 6, a data input means 67 such as a keyboard, a display means 69 such as an LCD, a machining program memory 71 and the like are connected to the data bus 65 of the CPU 63 provided in the CNC control device 61 described above. Contact detection for detecting the coordinates (X, Y, Z, A, B, W) when the tip of the machining electrode D contacts the reference sphere 35 and the fuel injection nozzle 37 or the reference workpiece 37 ′. A means 73 is connected.

また、前記CNC制御装置61には、前記加工電極Dの先端と前記燃料噴射ノズル37または基準加工物37’とが接触した際のZ軸座標を記憶する接触検出データ記憶手段75と、前記被加工物である燃料噴射ノズル37の加工部の表面位置のZ軸座標と前記基準加工物の加工部の表面位置のZ軸座標の差を求める比較演算手段77とが前記CPU63に接続してある。   The CNC control device 61 includes a contact detection data storage means 75 for storing Z-axis coordinates when the tip of the machining electrode D and the fuel injection nozzle 37 or the reference workpiece 37 ′ are in contact with each other. The CPU 63 is connected with a comparison calculation means 77 for obtaining a difference between the Z-axis coordinate of the surface position of the processing portion of the fuel injection nozzle 37 which is a workpiece and the Z-axis coordinate of the surface position of the processing portion of the reference workpiece. .

上記構成の噴射ノズルの噴射口先端凹部の細孔放電加工装置1で、例えば内燃機関の燃料噴射ノズル37の噴射口先端の座繰り穴101を加工する場合について説明する。   A case will be described in which, for example, the counterbore hole 101 at the tip of the injection port of the fuel injection nozzle 37 of the internal combustion engine is machined by the fine hole electric discharge machining apparatus 1 at the nozzle tip recess of the injection nozzle having the above-described configuration.

図3に示すように、加工槽15内のターンテーブル装置17上に装着された被加工材クランプ装置33のベース39に立設された位置決めピン41に基準加工物37’を挿入し、前記ベース39に設けた環状部材43の雄ねじ部にキャップ47を螺合することにより基準加工物37’を確実に固定してから、例えば、次の工程で加工する。   As shown in FIG. 3, a reference workpiece 37 ′ is inserted into a positioning pin 41 erected on a base 39 of a workpiece clamping device 33 mounted on a turntable device 17 in a processing tank 15, and the base The reference workpiece 37 ′ is securely fixed by screwing the cap 47 into the male thread portion of the annular member 43 provided in 39, and then, for example, processed in the next step.

(1)前記CNC制御装置61の制御の下にX軸駆動モータMXとY軸駆動モータMYを作動させて、被加工材クランプ装置33に設けた基準球35のZ軸方向の軸心と加工電極DのZ軸方向の軸心を一致させると共に、前記Z軸駆動モータを制御して前記加工電極Dを基準球35に接触する位置まで下降させて、この加工電極Dと基準球35の接触を接触検出手段73により検出して加工電極Dの先端の基準位置である原点(X,Y,Z)を設定する。 (1) By operating the X-axis drive motor MX and the Y-axis drive motor MY under the control of the CNC control device 61, the axis of the reference sphere 35 provided in the workpiece clamping device 33 and the machining in the Z-axis direction The axis of the electrode D in the Z-axis direction is made coincident, and the Z-axis drive motor is controlled to lower the machining electrode D to a position where it comes into contact with the reference sphere 35, so that the machining electrode D contacts the reference sphere 35. Is detected by the contact detection means 73, and the origin (X, Y, Z) which is the reference position of the tip of the machining electrode D is set.

(2)噴射ノズルの37の基準となる基準加工物37’を前記被加工物クランプ装置に装着する。 (2) A reference workpiece 37 'serving as a reference for the injection nozzle 37 is mounted on the workpiece clamping device.

(3)基準加工物37’の加工部を加工位置へ移動位置決めし、前記接触検出手段を用いてこの基準加工物37’の加工部表面の接触位置の座標(X,Y,Z,A,B,W)を検出する。 (3) The processing portion of the reference workpiece 37 ′ is moved and positioned to the processing position, and the contact position coordinates (X, Y, Z, A, B, W) is detected.

(4)前記基準加工物37’の加工部表面の接触位置座標(X,Y,Z,A,B,W)データを接触検出データ記憶手段75に記憶する。 (4) Contact position coordinate (X, Y, Z, A, B, W) data on the surface of the processed part of the reference workpiece 37 ′ is stored in the contact detection data storage means 75.

(5)被加工物クランプ装置33から基準加工物37’を取り外して、被加工物である燃料噴射ノズル37を装着する。 (5) The reference workpiece 37 'is removed from the workpiece clamping device 33, and the fuel injection nozzle 37, which is the workpiece, is mounted.

(6)前記燃料噴射ノズル37の加工部を加工位置へ移動位置決めし、前記接触検出手段を用いてこの噴射ノズルの加工部の表面の位置座標(X,Y,Z,A,B,W)を検出する。   (6) The processing portion of the fuel injection nozzle 37 is moved and positioned to the processing position, and the position coordinates (X, Y, Z, A, B, W) of the surface of the processing portion of the injection nozzle using the contact detection means. Is detected.

(7)検出した噴射ノズルの加工部の表面位置のZ軸座標と、前記基準加工物の加工部の表面位置のZ軸座標との差を求め、この差に基づいて噴射ノズルの噴射口先端凹部のZ軸加工送り量を補正して放電加工を実施する。 (7) A difference between the detected Z-axis coordinate of the surface position of the processing portion of the injection nozzle and the Z-axis coordinate of the surface position of the processing portion of the reference workpiece is obtained, and the tip of the injection nozzle of the injection nozzle is determined based on this difference. Electric discharge machining is performed by correcting the Z-axis machining feed amount of the recess.

(8)前記基準加工物に複数個所の加工部がある場合、その複数個所の加工部に対して前記工程(3)〜(7)を実行する。 (8) When the reference workpiece has a plurality of machining portions, the steps (3) to (7) are performed on the machining portions at the plurality of locations.

なお、上記構成の噴射ノズルの噴射口先端凹部の細孔放電加工装置1で、例えば内燃機関の燃料噴射ノズル37の噴射口先端の座繰り穴101を加工した場合、この座繰り穴101の加工後に加工電極Dを交換して噴射孔103を加工しても、噴射孔103を先に加工した後に座繰り穴101を加工しても構わない。   Note that when the countersink hole 101 at the tip of the injection port of the fuel injection nozzle 37 of the internal combustion engine is processed, for example, in the fine hole electric discharge machining apparatus 1 at the recess at the tip of the injection nozzle of the above-described configuration, The processing hole D may be replaced later to process the injection hole 103, or the counterbore hole 101 may be processed after the injection hole 103 is processed first.

本願発明の噴射ノズルの噴射口先端凹部の細孔放電加工方法および装置によれば、噴射孔103の出口側に噴射孔103の内径より大きい座繰り穴101または凹部を設けた燃料噴射ノズル37の噴射孔103の長さLを高精度に加工することができる。 According to the method and apparatus for processing the fine hole electric discharge at the injection nozzle tip recess of the injection nozzle of the present invention, the fuel injection nozzle 37 having a counterbore 101 or a recess larger than the internal diameter of the injection hole 103 on the outlet side of the injection hole 103 it can be processed length L 0 of the injection hole 103 with high accuracy.

なお、加工電極Dの交換には本願出願人の出願である特開平8−290332号公報に記載の如き電極交換装置を使用することができる。   For exchanging the machining electrode D, an electrode exchanging device as described in JP-A-8-290332, which is an application of the present applicant, can be used.

1 細穴放電加工装置
3 基台
5 Y軸テーブル
7 受け皿
9 石定盤
11 ブラケット部材
13 加工液
15 加工槽
17 ターンテーブル装置
19 B軸回転軸
21a、21b 支柱
23 門型フレーム
25 梁部材c
27 蛇腹
29 X軸キャリッジ
31 Z軸キャリッジ
33 被加工材クランプ装置
35 基準球
37 燃料噴射ノズル
37’ 基準加工物
39 ベース
41 位置決めピン
43 環状部材
45 キャップ取付部
47 キャップ
49 スプリング
51 スペーサ
61 CNC制御装置
63 CPU
65 データバス
67 データ入力手段
69 表示手段
71 加工プログラムメモリ
73 接触検出手段
75 接触検出データ記憶手段
77 比較演算手段
100 燃料噴射ノズル
101 座繰り穴
102 漏斗状の凹部
103 噴射孔
105 加工基準面
D 加工電極
、L、L 噴射孔の長さ
MA A軸駆動モータ
MB B軸駆動モータ
MX X軸駆動モータ
MW W軸モータ
、t、t 先端部の肉厚
DESCRIPTION OF SYMBOLS 1 Fine hole electric discharge machining device 3 Base 5 Y-axis table 7 Sauce tray 9 Stone surface plate 11 Bracket member 13 Processing liquid 15 Processing tank 17 Turntable device 19 B axis | shaft rotating shaft 21a, 21b Post 23 Gate type frame 25 Beam member c
27 Bellows 29 X-axis Carriage 31 Z-axis Carriage 33 Workpiece Material Clamping Device 35 Reference Ball 37 Fuel Injection Nozzle 37 ′ Reference Workpiece 39 Base 41 Positioning Pin 43 Ring Member 45 Cap Mounting Portion 47 Cap 49 Spring 51 Spacer 61 CNC Control Device 63 CPU
65 Data bus 67 Data input means 69 Display means 71 Processing program memory 73 Contact detection means 75 Contact detection data storage means 77 Comparison calculation means 100 Fuel injection nozzle 101 Countersink hole 102 Funnel-shaped recess 103 Injection hole 105 Processing reference surface D Processing electrode
L 0 , L 1 , L 2 injection hole length MA A-axis drive motor MB B-axis drive motor MX X-axis drive motor MW W-axis motor Thickness of tip of t 0 , t 1 , t 2

Claims (4)

次の工程からなることを特徴とする噴射ノズルの噴射口先端凹部の細孔放電加工方法。
1.X、Yテーブル上の被加工物クランプ装置に設けたZ軸座標設定用の基準球と電極先端との接触を接触検出手段により検出して電極先端の原点を設定する。
2.噴射ノズルの基準となる基準加工物を前記被加工物クランプ装置に装着する。
3.基準加工物の加工部を加工位置へ移動位置決めし、前記接触検出手段を用いてこの基準加工物の加工部の表面位置の接触位置の座標を検出する。
4.前記工程3で検出した座標データを記憶する。
5.被加工物クランプ装置から基準加工物を取り外して、被加工物である噴射ノズルを装着する。
6.噴射ノズルの加工部を加工位置へ移動位置決めし、前記接触検出手段を用いてこの噴射ノズルの加工部の表面位置の座標を検出する。
7.工程6で検出した加工部の表面位置のZ軸座標と、前記工程4で記憶したZ軸座標との差を求め、この差に基づいて噴射ノズルの噴射口先端凹部のZ軸加工送り量を補正して放電加工を実施する。
8.前記基準加工物に複数個所の加工部がある場合、その複数個所の加工部に対して前記工程3〜7を実行する。
A method for forming an electric discharge hole in a recess at the tip of an injection nozzle of an injection nozzle, comprising the following steps.
1. Contact between the Z-axis coordinate setting reference sphere provided in the workpiece clamping device on the X and Y tables and the electrode tip is detected by the contact detection means to set the origin of the electrode tip.
2. A reference workpiece serving as a reference for the injection nozzle is mounted on the workpiece clamping device.
3. The processing part of the reference workpiece is moved and positioned to the processing position, and the coordinates of the contact position of the surface position of the processing part of the reference workpiece are detected using the contact detection means.
4). The coordinate data detected in step 3 is stored.
5. The reference workpiece is removed from the workpiece clamping device, and an injection nozzle that is the workpiece is mounted.
6). The processing portion of the injection nozzle is moved and positioned to the processing position, and the coordinates of the surface position of the processing portion of the injection nozzle are detected using the contact detection means.
7). The difference between the Z-axis coordinate of the surface position of the machining part detected in step 6 and the Z-axis coordinate stored in step 4 is obtained, and based on this difference, the Z-axis machining feed amount of the injection nozzle tip recess is determined. Correct and perform electrical discharge machining.
8). If the reference workpiece has a plurality of machining portions, the steps 3 to 7 are performed on the machining portions at the plurality of locations.
請求項1に記載の噴射ノズルの噴射口先端凹部の細孔放電加工方法において、前記噴射ノズルが燃料噴射ノズルであることを特徴とする噴射ノズルの噴射口先端凹部の細孔放電加工方法。 2. The method of fine pore electric discharge machining of an injection nozzle tip recess of an injection nozzle according to claim 1, wherein the injection nozzle is a fuel injection nozzle. Z軸方向に昇降位置決め自在な加工電極と被加工物クランプ装置に装着された被加工物とをXY軸方向に相対的に移動位置決め自在に設けた細孔放電加工装置において、前記加工物クランプ装置に前記加工電極の先端との接触を接触検出手段により検出して加工電極先端の基準位置である原点を設定するための基準球を設け、前記原点と、前記被加工物クランプ装置に装着された被加工物の加工位置表面とまたは基準加工物の加工位置の表面と前記加工電極とが接触した際に検出した位置座標データとを記憶する接触検出データ記憶手段とを設け、前記被加工物の加工位置表面のZ軸座標と前記基準加工物の表面位置のZ軸座標の差を求める比較演算手段を設け、該比較演算手段で求めた差に基づいて、前記噴射ノズルの噴射口先端凹部のZ軸加工送り量を補正して加工することを特徴とする噴射ノズルの噴射口先端凹部の細孔放電加工装置。 In the fine-hole electric discharge machining apparatus in which a machining electrode which can be positioned up and down in the Z-axis direction and a workpiece mounted on the workpiece clamping apparatus are relatively movable and positioned in the XY-axis direction, the workpiece clamping apparatus Provided with a reference sphere for detecting a contact with the tip of the machining electrode by a contact detection means and setting an origin which is a reference position of the tip of the machining electrode. The reference sphere is attached to the workpiece and the workpiece clamping device. Contact detection data storage means for storing position coordinate data detected when the processing electrode of the processing position of the workpiece or the surface of the processing position of the reference workpiece and the processing electrode comes into contact with each other; Comparison operation means for obtaining a difference between the Z-axis coordinate of the processing position surface and the Z-axis coordinate of the surface position of the reference workpiece is provided, and based on the difference obtained by the comparison operation means, Z Pore discharge machining apparatus of the injection inlet apical recess of the injection nozzle, characterized in that machining by correcting the machining feed amount. 請求項3に記載の噴射ノズルの噴射口先端凹部の細孔放電加工装置において、前記噴射ノズルが燃料噴射ノズルであることを特徴とする噴射ノズルの噴射口先端凹部の細孔放電加工装置。 4. The apparatus for fine pore electric discharge machining of an injection nozzle tip recess of an injection nozzle according to claim 3, wherein the injection nozzle is a fuel injection nozzle.
JP2011107029A 2011-05-12 2011-05-12 Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle Pending JP2012236257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107029A JP2012236257A (en) 2011-05-12 2011-05-12 Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107029A JP2012236257A (en) 2011-05-12 2011-05-12 Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle

Publications (1)

Publication Number Publication Date
JP2012236257A true JP2012236257A (en) 2012-12-06

Family

ID=47459640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107029A Pending JP2012236257A (en) 2011-05-12 2011-05-12 Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle

Country Status (1)

Country Link
JP (1) JP2012236257A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801438A1 (en) * 2013-05-10 2014-11-12 Fanuc Corporation Method for measuring reference point of inclined rotating table in wire electric discharge machine and measuring jig
CN107900457A (en) * 2017-11-14 2018-04-13 如皋千骏工具有限公司 A kind of electric saw sawtooth spindle drive systems
EP3418838A1 (en) * 2017-06-21 2018-12-26 Fanuc Corporation Wire electrical discharge machining system and relative positional relationship calculating method
EP3597340A1 (en) * 2015-10-16 2020-01-22 Medical Microinstruments S.P.A. Machining fixture and method of manufacturing
KR20200027393A (en) * 2018-08-31 2020-03-12 주식회사 큐비콘 Method for correcting position of multi nozzle for 3D printer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256682A (en) * 1990-03-08 1991-11-15 Toyoda Mach Works Ltd Robot control device
JPH05220627A (en) * 1992-02-10 1993-08-31 Canon Inc Electric discharge machine
JP2000107945A (en) * 1998-09-30 2000-04-18 Sodick Co Ltd Positioning method of reference position in wire cut electrical discharge machining
JP2001214837A (en) * 2000-01-27 2001-08-10 Aisan Ind Co Ltd Fuel injection valve
JP2003311541A (en) * 2002-04-22 2003-11-05 Seibu Electric & Mach Co Ltd Thin hole electric discharge machining device detachably mounted in wire electric discharge machine
JP2007196371A (en) * 2006-01-05 2007-08-09 General Electric Co <Ge> Methods and apparatus for fabricating components by using electric-discharge machining
JP2011501366A (en) * 2007-10-24 2011-01-06 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction heating method for metal workpieces

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03256682A (en) * 1990-03-08 1991-11-15 Toyoda Mach Works Ltd Robot control device
JPH05220627A (en) * 1992-02-10 1993-08-31 Canon Inc Electric discharge machine
JP2000107945A (en) * 1998-09-30 2000-04-18 Sodick Co Ltd Positioning method of reference position in wire cut electrical discharge machining
JP2001214837A (en) * 2000-01-27 2001-08-10 Aisan Ind Co Ltd Fuel injection valve
JP2003311541A (en) * 2002-04-22 2003-11-05 Seibu Electric & Mach Co Ltd Thin hole electric discharge machining device detachably mounted in wire electric discharge machine
JP2007196371A (en) * 2006-01-05 2007-08-09 General Electric Co <Ge> Methods and apparatus for fabricating components by using electric-discharge machining
JP2011501366A (en) * 2007-10-24 2011-01-06 ゼナジー・パワー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Induction heating method for metal workpieces

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801438A1 (en) * 2013-05-10 2014-11-12 Fanuc Corporation Method for measuring reference point of inclined rotating table in wire electric discharge machine and measuring jig
CN104139317A (en) * 2013-05-10 2014-11-12 发那科株式会社 METHOD FOR MEASURING REFERENCE POINT OF INCLINED ROTATING shaft IN WIRE ELECTRIC DISCHARGE MACHINE AND MEASURING JIG
US9212887B2 (en) 2013-05-10 2015-12-15 Fanuc Corporation Method for measuring reference point of inclined rotating table in wire electric discharge machine and measuring jig
EP3597340A1 (en) * 2015-10-16 2020-01-22 Medical Microinstruments S.P.A. Machining fixture and method of manufacturing
EP3418838A1 (en) * 2017-06-21 2018-12-26 Fanuc Corporation Wire electrical discharge machining system and relative positional relationship calculating method
TWI663010B (en) * 2017-06-21 2019-06-21 日商發那科股份有限公司 Wire electrical discharge machining system and relative positional relationship calculating method
US10512980B2 (en) 2017-06-21 2019-12-24 Fanuc Corporation Wire electrical discharge machining system and relative positional relationship calculating method
CN107900457A (en) * 2017-11-14 2018-04-13 如皋千骏工具有限公司 A kind of electric saw sawtooth spindle drive systems
KR20200027393A (en) * 2018-08-31 2020-03-12 주식회사 큐비콘 Method for correcting position of multi nozzle for 3D printer
KR102164931B1 (en) 2018-08-31 2020-10-13 주식회사 큐비콘 Method for correcting position of multi nozzle for 3D printer

Similar Documents

Publication Publication Date Title
JP5460039B2 (en) Small hole electric discharge machine
JP2012236257A (en) Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle
JP4846432B2 (en) Displacement and run-out measuring device for spindle device in machine tool
JP5705907B2 (en) Wire electrical discharge machine for taper machining
CN102240835B (en) Electrochemical machining method and device for oil nozzle spray orifice of diesel motor
JPWO2014020700A1 (en) EDM method
JP2001287119A (en) Method and device for electric discharge machining of fine hole
WO2021153685A1 (en) Narrow-hole electric discharge machine
CN108515279A (en) It laser machines Quick Response Code and automates line laser cutting machine
JPWO2018047363A1 (en) Small hole electric discharge machine
CN107848052B (en) For surpassing the electrode vertical correction method of discharging pore processor
CN104646806A (en) Tube body perforating tooling
EP2894001B1 (en) Tank raising/lowering device for electrical discharge machine
CN103551946A (en) Glass circular hole chamfering machine
JP2017092246A (en) Substrate carrying apparatus, substrate treatment system, and substrate carrying method
CN110181134A (en) A kind of Fine and Deep Hole electric machining apparatus and method
JP5219602B2 (en) Small hole electric discharge machine
CN103962660A (en) Multi-station discharge micropore machining equipment and machining method thereof
CN203918146U (en) A kind of multistation electric discharge capillary processing equipment
US9724774B2 (en) Program creating device for wire electric discharge machine
CN204893121U (en) Play flexible parts machining check out test set
JP2015009292A (en) Fine hole electric discharge machining device, and fine hole electric discharge machining method using the machining device
CN204976070U (en) Inclination adds clamping apparatus
KR102204457B1 (en) Fine drill processing machine using automatic ultrasonic cleaning
CN209532323U (en) A kind of ball-type slow wire feeding attitude reference device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124