JP2000107945A - Positioning method of reference position in wire cut electrical discharge machining - Google Patents

Positioning method of reference position in wire cut electrical discharge machining

Info

Publication number
JP2000107945A
JP2000107945A JP10277718A JP27771898A JP2000107945A JP 2000107945 A JP2000107945 A JP 2000107945A JP 10277718 A JP10277718 A JP 10277718A JP 27771898 A JP27771898 A JP 27771898A JP 2000107945 A JP2000107945 A JP 2000107945A
Authority
JP
Japan
Prior art keywords
movement
time
reference position
contact
coordinate value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10277718A
Other languages
Japanese (ja)
Other versions
JP4017764B2 (en
Inventor
Koji Yoneda
康治 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP27771898A priority Critical patent/JP4017764B2/en
Publication of JP2000107945A publication Critical patent/JP2000107945A/en
Application granted granted Critical
Publication of JP4017764B2 publication Critical patent/JP4017764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely position a reference position by storing the coordinate value of each time when the approaching movement is stopped and when the separating movement is stopped, and calculating the average coordinate value. SOLUTION: In a contact state, the operation of continuing separating movement is repeated also for the following segment time after a segment time is ended (step S108), and when non-contact state is judged, a motor is stopped after the segment time is ended (step S109), and the X-axial coordinate value at that time is stored (step S110). When reaching N-value, the contact detecting operation is ended (step S113). The average coordinate value of a number of stored X-axial coordinate values is calculated, the calculated average coordinate value is taken as the X-axial coordinate value of machining reference position (step 3114), and the positioning operation of the reference position related to X-axis is ended.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、間隔を置いて配置
した一対のガイド間にワイヤ電極を張架して軸方向に走
行移動させ、該ワイヤ電極に微小な放電間隙を介して被
加工物を対向配置し、前記放電間隙に加工液を介在させ
た状態でワイヤ電極と被加工物間に間歇的な電圧パルス
を印加して繰返し放電パルスを発生させると共に、両者
間にワイヤ電極の軸方向と略直交する方向の相対的な加
工送りを与えて所望輪郭形状の切断加工を行うワイヤカ
ット放電加工に於て、ワイヤ電極に対する被加工物の加
工基準位置、あるいは被加工物が載置される加工テーブ
ル面に対してワイヤ電極を垂直に張架する前記一対のガ
イドの垂直基準位置を、ワイヤ電極を所定の張力と速度
をもって走行移動させた状態で、ワイヤ電極と被加工物
間またはワイヤ電極と垂直出し用治具間の接触を検知し
て決定する位置決め方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a workpiece which is stretched between a pair of guides spaced apart from each other and travels in the axial direction by moving the workpiece through a small discharge gap. And a discharge pulse is generated by applying an intermittent voltage pulse between the wire electrode and the workpiece in a state in which the machining fluid is interposed in the discharge gap, and a discharge pulse is generated between the wire electrode and the workpiece. In wire-cut electric discharge machining in which a relative machining feed in a direction substantially orthogonal to the direction is given to perform cutting of a desired contour shape, a machining reference position of the workpiece with respect to the wire electrode or the workpiece is placed. The vertical reference position of the pair of guides for vertically extending the wire electrode with respect to the processing table surface is moved between the wire electrode and the workpiece or the wire electrode while the wire electrode is moved at a predetermined tension and speed. It relates positioning method of determining detects the contact between the verticality jig and.

【0002】[0002]

【従来の技術】図11はワイヤカット放電加工装置の概
略を示す構成図であり、1はベッド、2は該ベッド1上
に互いに直交するX及びY軸方向に移動可能に設けたX
Yクロステーブル、3,4は該XYクロステーブル2を
移動させるX軸及びY軸駆動モータ、5,6は各モータ
3,4の回転角を検出するロータリエンコーダ、7はX
Yクロステーブル2上に固定して設けた載物台であり、
該載物台7上に、被加工物8を取付ける加工テーブル面
がXY二軸平面と平行に形成されている。これ等XYク
ロステーブル2、モータ3,4、及びエンコーダ5,6
によって加工送り機構が構成され、必要に応じ、各エン
コーダ5,6により各軸移動量が検出されてフィードバ
ック制御される。
2. Description of the Related Art FIG. 11 is a schematic view showing the construction of a wire electric discharge machine, in which reference numeral 1 denotes a bed, and 2 denotes an X provided on the bed 1 so as to be movable in X and Y axes orthogonal to each other.
Y cross tables, 3 and 4, X-axis and Y-axis drive motors for moving the XY cross table 2, 5, 6 rotary encoders for detecting the rotation angles of the motors 3, 4, 7
It is a mounting table fixedly provided on the Y cross table 2,
A processing table surface on which the workpiece 8 is mounted is formed on the mounting table 7 in parallel with the XY biaxial plane. These XY cross table 2, motors 3, 4 and encoders 5, 6
A machining feed mechanism is formed by the encoder, and each encoder 5 and 6 detects the amount of movement of each axis and performs feedback control as necessary.

【0003】9はベッド1に起立させて設けたコラム、
10,11はコラム9からXYクロステーブル2上に伸
長させて設けた上下一対の上アームと下アームである。
12,13は加工部に加工液を噴射供給する上下一対の
ノズル装置であり、被加工物と対向する加工部のワイヤ
電極14を位置決めするダイス状の一対のガイド15,
16が該ノズル装置12,13内に夫々固定支持されて
いる。17は上アーム10に設けたXY二軸平面と直交
するZ軸の移動機構であり、該Z軸移動機構17の先端
部にX軸と平行なU軸及びY軸と平行なV軸方向に移動
可能にUVクロステーブル18が設けられる。該テーブ
ル18に上部ノズル装置12が固定支持され、下部ノズ
ル装置13は下アーム11の先端部に固定支持されてい
る。従って、上側のガイド15はU,V,及びZ軸方向
に移動可能であり、下側のガイド16は固定状態であ
る。19はUVクロステーブル18をZ軸方向に移動す
るZ軸駆動モータ、20は該モータ19の回転角を検出
するロータリエンコーダ、21,22はUVクロステー
ブル18のU軸駆動モータ及びV軸駆動モータ、23,
24は各モータ21,22の回転角を検出するロータリ
エンコーダであり、必要に応じ、各エンコーダ20,2
3,24により各軸移動量が検出されてフィードバック
制御される。
[0003] 9 is a column provided upright on the bed 1,
Reference numerals 10 and 11 denote a pair of upper and lower arms that extend from the column 9 on the XY cross table 2 and are provided.
Reference numerals 12 and 13 denote a pair of upper and lower nozzle devices for injecting and supplying a processing liquid to the processing portion, and a pair of dice-shaped guides 15 for positioning the wire electrodes 14 of the processing portion facing the workpiece.
16 are fixedly supported in the nozzle devices 12 and 13, respectively. Reference numeral 17 denotes a Z-axis moving mechanism provided on the upper arm 10 and orthogonal to the XY biaxial plane. The Z-axis moving mechanism 17 has a distal end in a U-axis parallel to the X-axis and a V-axis parallel to the Y-axis. A UV cross table 18 is provided so as to be movable. The upper nozzle device 12 is fixedly supported by the table 18, and the lower nozzle device 13 is fixedly supported by the tip of the lower arm 11. Therefore, the upper guide 15 is movable in the U, V, and Z axis directions, and the lower guide 16 is in a fixed state. 19 is a Z-axis drive motor for moving the UV cross table 18 in the Z-axis direction, 20 is a rotary encoder for detecting a rotation angle of the motor 19, 21 and 22 are U-axis drive motor and V-axis drive motor of the UV cross table 18 , 23,
Reference numeral 24 denotes a rotary encoder for detecting the rotation angle of each of the motors 21 and 22.
The amount of movement of each axis is detected by 3, 24, and feedback control is performed.

【0004】加工に際し、ワイヤ電極14は供給リール
25から繰出され、ローラ26に案内されて上側ガイド
15から被加工物8の加工スタート孔を挿通して下側ガ
イド16を通り、ローラ27を経て回収容器28に至る
走行経路に張架され、引っ張り駆動機構29とブレーキ
機構30の作動により所定の張力と速度をもって走行移
動する。31は加工電源であり、ワイヤ電極14に接触
して設けた通電子32と被加工物8に出力端子が接続さ
れ、被加工物8とワイヤ電極14間に所定パルス条件
(τon、τoff、Ip等)の電圧パルスを間歇的に
印加し、また、発生する放電状態を監視する。
At the time of processing, the wire electrode 14 is fed from a supply reel 25, guided by a roller 26, inserted through a processing start hole of the workpiece 8 from the upper guide 15, passes through the lower guide 16, and passes through a roller 27. It is stretched on a traveling route to the collection container 28 and travels with a predetermined tension and speed by the operation of the pulling drive mechanism 29 and the brake mechanism 30. Reference numeral 31 denotes a processing power source, an output terminal is connected to a conductive electrode 32 provided in contact with the wire electrode 14 and the workpiece 8, and a predetermined pulse condition (τon, τoff, Ip) is applied between the workpiece 8 and the wire electrode 14. ) Is intermittently applied, and the generated discharge state is monitored.

【0005】33はコンピュータであり、CPU33
a、ROM33b、RAM33c、入力インターフェイ
ス33d、出力インターフェイス33eから構成され
る。34は、CPU33aの指令に従いXY各軸ドライ
バ35、及びUVZ各軸ドライバ36にパルス分配し
て、各モータ3,4,19,21,22の動作を数値制
御するNC装置である。37はキーボード等の入力装置
であり、該入力装置37により電圧パルスのパルス条
件、ワイヤ電極の張力、速度等の走行条件、加工液の流
量、液圧等の供給条件等の各種加工条件、及び、その他
各種設定値、初期値等が入力設定される。38はCRT
等の表示装置であり、X,Y,Z,U,Vの各軸の現在
位置座標値、入力装置37により設定された各種加工条
件、設定値、初期値等、及び加工の進行状況等が数値表
示あるいはグラフィック表示される。
Reference numeral 33 denotes a computer, and a CPU 33
a, a ROM 33b, a RAM 33c, an input interface 33d, and an output interface 33e. Numeral 34 denotes an NC device that numerically controls the operation of each of the motors 3, 4, 19, 21, 22 by distributing pulses to the XY axis drivers 35 and the UVZ axis drivers 36 in accordance with instructions from the CPU 33a. Reference numeral 37 denotes an input device such as a keyboard, and various processing conditions such as pulse conditions of a voltage pulse, running conditions such as tension and speed of a wire electrode, supply conditions such as a flow rate of a working fluid, and a fluid pressure, and the like; , Other various set values, initial values, and the like are input and set. 38 is CRT
And the like, and the current position coordinate values of the X, Y, Z, U, and V axes, various processing conditions set by the input device 37, set values, initial values, and the progress of processing are displayed. Numeric display or graphic display.

【0006】このようなワイヤカット放電加工装置に於
て、ワイヤ電極14を所定の張力、速度をもって走行移
動させ、ノズル12,13から放電間隙に加工液を噴射
供給しつつ、被加工物8とワイヤ電極14間に間歇的に
電圧パルスを印加して繰返し放電を発生させると共に、
両者間にモータ3,5の駆動制御による加工送りを与え
て所定輪郭形状の切断加工が行われる。加工送りは予め
ROM33bに格納されている加工プログラムに従って
CPU33aにより制御され、また加工中は放電状態が
監視され、検出された信号により加工状態の良否が判別
されて、電圧パルスの印加中止、パルス条件の変更、あ
るいはワイヤ電極の走行条件、加工液の供給条件の変更
等の制御が行われる。
In such a wire-cut electric discharge machine, the wire electrode 14 is moved with a predetermined tension and speed, and while the machining fluid is injected and supplied from the nozzles 12 and 13 into the discharge gap, the wire electrode 14 is connected to the workpiece 8. A voltage pulse is intermittently applied between the wire electrodes 14 to repeatedly generate a discharge,
A machining feed is provided between the two by the drive control of the motors 3 and 5, thereby cutting the predetermined contour shape. The machining feed is controlled by the CPU 33a in accordance with a machining program stored in the ROM 33b in advance. During the machining, the discharge state is monitored, and the quality of the machining state is determined based on the detected signal. , Or the change of the running condition of the wire electrode and the supply condition of the working fluid are performed.

【0007】一方、被加工物8の所定位置に良好な加工
を行うために、加工の開始に先立ち、ワイヤ電極14を
加工テーブル面に対して垂直(Z軸と平行)に位置決め
する上側ガイド15の垂直基準位置をUVクロステーブ
ル18を駆動制御して求めること、及び、求められた垂
直基準位置に上側ガイド15を配置した状態でワイヤ電
極14に対する被加工物8の加工基準位置をXYクロス
テーブル2を駆動制御して求めることが必要であり、垂
直基準位置の位置決め精度は加工面垂直度誤差あるいは
テーパ加工を行う際の加工面傾斜誤差を左右し、加工基
準位置の位置決め精度は被加工物上の加工位置誤差を左
右するから、これ等基準位置を精度良く求めることが肝
要である。そして、垂直基準位置を求める方法として
は、加工テーブル上に設置した垂直出し用治具とワイヤ
電極との接触を検知することにより求める方法が、また
加工基準位置を求める方法としては、被加工物の基準側
面や基準孔の内面とワイヤ電極との接触を検知すること
により求める方法が一般的に慣用されている。
On the other hand, in order to perform good machining at a predetermined position on the workpiece 8, an upper guide 15 for positioning the wire electrode 14 vertically (parallel to the Z axis) with respect to the machining table surface prior to the start of machining. Of the workpiece 8 with respect to the wire electrode 14 with the upper guide 15 disposed at the determined vertical reference position. 2 is required to be obtained by drive control. The positioning accuracy of the vertical reference position depends on the vertical error of the processing surface or the inclination error of the processing surface when performing the taper processing. Since the above processing position error is affected, it is important to accurately determine these reference positions. As a method of obtaining the vertical reference position, a method of detecting the contact between the vertical electrode jig installed on the processing table and the wire electrode is used, and a method of obtaining the processing reference position is as follows. In general, a method of detecting the contact between the wire electrode and the reference side surface or the inner surface of the reference hole is generally used.

【0008】このような接触検知法により各基準位置を
求めるには、図11に示すように接触検知装置39を設
け、先ず、加工テーブル上に垂直出し用治具を載置し、
接触検知装置39を垂直出し用治具と通電子32に接続
して垂直基準位置の位置決めを行い、次いで、垂直出し
用治具に代えて加工テーブル上に被加工物8を載置し、
接触検知装置39を被加工物8と通電子32に接続して
加工基準位置の位置決めを行う。
In order to obtain each reference position by such a contact detection method, a contact detection device 39 is provided as shown in FIG. 11, and first, a jig for vertical setting is placed on a working table,
The contact detection device 39 is connected to the vertical setting jig and the communication line 32 to position the vertical reference position, and then the workpiece 8 is placed on the processing table in place of the vertical setting jig.
The contact detection device 39 is connected to the workpiece 8 and the communication line 32 to position the processing reference position.

【0009】また、接触検知法による各基準位置の位置
決めは、予めROM33bに格納されている垂直基準位
置位置決めプログラム、及び加工基準位置位置決めプロ
グラムに従ってCPU33aの指令により行われる。そ
の態様は、従来から操作手順の異なる様々な方法が提案
されていて多様であり、冗長になるので個別的な詳しい
記述は省略するが、概ね、垂直出し用治具または被加工
物(以下、接触検知対象物と言う)とワイヤ電極14間
に低電圧(数V〜10数V程度)の直流または交流電圧
を印加した状態で、先ず、X軸モータ3を正転駆動制御
して接触検知対象物をワイヤ電極14に近接移動させ、
検出電圧の所定値以下への低下を判別した出力により接
触を検知し、接触検知信号をコンピュータ33に送り、
モータ3を逆転駆動制御して非接触状態に戻した後、再
び近接移動させて接触検知する操作を複数回行い、垂直
出しの場合は、モータ21を駆動制御して上側ガイド1
5を所定距離U軸方向に移動させてワイヤ電極14を傾
ける操作、あるいは更にモータ19を駆動制御して上側
ガイド15をZ軸方向に所定距離移動させる操作を組合
わせて前記接触検知を行い、接触が検知されたときのX
軸座標値、あるいは所定のサンプリング周期毎に検出し
たX軸座標値をコンピュータ33に取り込んでRAM3
3cに記憶し、接触検知信号データと座標値データを各
基準位置位置決めプログラムに従ってCPU33aによ
り演算処理してU軸の垂直基準位置またはX軸の加工基
準位置を算出し、次いで、Y軸に関しても同様に、Y軸
モータ4を正転逆転駆動制御しての接触検知の繰返し操
作、垂直出しの場合、この接触検知操作の際に上側ガイ
ド15をモータ22駆動制御により所定距離V軸方向に
移動させ、あるいは更にモータ19駆動制御により所定
距離Z軸方向に移動させる操作、及び検出Y軸座標値の
取り込みを行い、演算処理してV軸の垂直基準位置また
はY軸の加工基準位置を算出し、求められた垂直基準位
置のUV各軸座標値及び加工基準位置のXY各軸座標値
を表示装置38に表示する態様で行われる方法が多い。
Positioning of each reference position by the contact detection method is performed by a command from the CPU 33a according to a vertical reference position positioning program and a processing reference position positioning program stored in the ROM 33b in advance. In this aspect, various methods having different operation procedures have been conventionally proposed and are various, and detailed description thereof is omitted since the method becomes redundant. In the state where a low voltage (several volts to several tens of volts) of DC or AC voltage is applied between the wire electrode 14 and the wire electrode 14, first, the X-axis motor 3 is controlled to perform normal rotation driving to detect contact. Moving the object close to the wire electrode 14,
A contact is detected based on the output that is determined to decrease the detection voltage to a predetermined value or less, and a contact detection signal is sent to the computer 33.
After returning the motor 3 to the non-contact state by controlling the reverse rotation, the operation of detecting the contact by moving the motor 3 again again is performed a plurality of times.
5 is moved by a predetermined distance in the U-axis direction to tilt the wire electrode 14, or by further controlling the motor 19 to move the upper guide 15 by a predetermined distance in the Z-axis direction to perform the contact detection. X when contact is detected
The axis coordinate value or the X-axis coordinate value detected at every predetermined sampling period is taken into the computer 33 and stored in the RAM 3.
3c, the contact detection signal data and the coordinate value data are arithmetically processed by the CPU 33a according to the respective reference position positioning programs to calculate the vertical reference position on the U-axis or the processing reference position on the X-axis. In addition, in the case of repeated operation of contact detection by controlling the Y-axis motor 4 to rotate forward and reverse, or in the case of vertical positioning, the upper guide 15 is moved in the V-axis direction by a predetermined distance by drive control of the motor 22 during this contact detection operation. Or, furthermore, an operation of moving the motor 19 in the Z-axis direction by a predetermined distance by drive control, and taking in the detected Y-axis coordinate values, calculating the vertical reference position of the V-axis or the processing reference position of the Y-axis, In many cases, the UV coordinate values of the obtained vertical reference position and the XY coordinate values of the processing reference position are displayed on the display device 38.

【0010】また、図11では、接触検知対象物が載置
される載物台7をX軸及びY軸に移動させてワイヤ電極
14との接触を検知する構成であるが、この構成に限ら
ず、例えば載物台7をベッド1上に固定して設け、コラ
ム9をベッド1に設けたXYクロステーブル2上に設け
て、ワイヤ電極14側をX軸及びY軸に移動させる構成
としても良い。また、前記モータ3,4,19,21,
22としては、交流モータ、直流モータ、あるいはステ
ッピングモータ等が必要に応じて適宜用いられる。
FIG. 11 shows a configuration in which the stage 7 on which the contact detection target is placed is moved in the X-axis and the Y-axis to detect the contact with the wire electrode 14, but the present invention is not limited to this configuration. Instead, for example, the stage 7 may be fixedly provided on the bed 1, the column 9 may be provided on the XY cross table 2 provided on the bed 1, and the wire electrode 14 may be moved in the X-axis and the Y-axis. good. Further, the motors 3, 4, 19, 21,
As the motor 22, an AC motor, a DC motor, a stepping motor, or the like is used as appropriate.

【0011】そして、このような態様で行われる位置決
め方法に於て、接触検知対象物とワイヤ電極との相対的
な近接または離隔移動を制御するサーボ機構も多様であ
り、例えば、 電圧を常時検出しながら検出電圧が所定値以下に低下
して接触が検知されるまで接触検知対象物とワイヤ電極
との相対的な近接移動を継続し、接触が検知されたら直
ちに近接移動を停止すると共にその時の軸座標値を記憶
し、次いで両者を所定距離離隔させた後、再び近接移動
を開始して接触を検知すると共にその時の軸座標値を記
憶する操作を繰返し、所定回数接触が検知されたら、記
憶されている多数の軸座標値の平均をとって基準位置と
する。 加工時と同様にワイヤ電極を走行させた状態で、接触
検知対象物とワイヤ電極とを相対的に近接または離隔移
動させながら、所定のサンプリング周期(例えば10μ
sec)で電圧を検出して接触状態か非接触状態かを判別
し、接触状態判別出力と非接触状態判別出力とを分けて
夫々カウントし、接触状態判別出力のカウント数が所定
のプリセット値(例えば100,1000等)に達した
ら両者を離隔させる向きに単位長さ(例えば1μm)だ
け軸を移動させると共に両カウンタをクリアし、非接触
状態判別出力のカウント数が所定のプリセット値に達し
たら両者を近接される向きに単位長さだけ軸を移動させ
ると共に両カウンタをクリアする制御を継続して、接触
検知対象物とワイヤ電極とを付かず離れずの状態に保持
し、この状態で接触状態判別時の軸座標値または所定の
時間毎(例えば100msec)に検出した軸座標値を記憶
し、記憶された多数の軸座標値の平均をとる等の演算処
理を行って基準位置とする。(特開平9−136220
号公報参照)等、各種のサーボ機構が接触検知法による
位置決め方法に採用されている。
In the positioning method performed in such an embodiment, there are various servo mechanisms for controlling the relative approach or separation movement between the contact detection target and the wire electrode. While the detected voltage drops below a predetermined value and the contact is detected, the relative proximity movement between the contact detection target and the wire electrode is continued, and when the contact is detected, the proximity movement is stopped and the current movement is stopped. After storing the axis coordinate values and then separating them by a predetermined distance, the operation of starting approach movement again and detecting the contact and storing the axis coordinate value at that time is repeated. The average of a number of axis coordinate values obtained is taken as a reference position. While the wire electrode is running in the same manner as in the processing, while moving the contact detection target and the wire electrode relatively close to or away from each other, a predetermined sampling cycle (for example, 10 μm) is performed.
) to determine whether the contact state or the non-contact state, the contact state determination output and the non-contact state determination output are separately counted, and the count of the contact state determination output is a predetermined preset value ( (For example, 100, 1000, etc.), the axes are moved by a unit length (for example, 1 μm) in a direction to separate them, and both counters are cleared. When the count number of the non-contact state determination output reaches a predetermined preset value, The axes are moved by the unit length in the direction in which they are brought close to each other, and the control to clear both counters is continued, so that the contact detection target and the wire electrode are not separated and kept in a state where they are not separated from each other. An axis coordinate value at the time of state determination or an axis coordinate value detected at predetermined time intervals (for example, 100 msec) is stored, and arithmetic processing such as averaging a large number of stored axis coordinate values is performed to determine a reference position. You. (JP-A-9-136220)
Various types of servo mechanisms have been adopted for the positioning method based on the contact detection method.

【0012】[0012]

【発明が解決しようとする課題】前記のサーボ機構に
よる位置決めは一般的に多用されている方法であるが、
ワイヤ電極を走行させた状態で位置決めを行う場合、ワ
イヤ電極は振動状態で接触検知対象物に接近することに
なり、接触が検知されたときワイヤ電極が振動振幅のど
の位置にあるか不明であるため、接触が検知された時点
での軸位置は接触検知対象物の表面位置を示してはおら
ず、接触検知時毎に検出した多数の軸座標値の平均化処
理をしても接触検知対象物の表面位置を示すことにはな
らない。
The above-described positioning by the servo mechanism is a commonly used method.
If positioning is performed with the wire electrode running, the wire electrode will approach the contact detection target in a vibrating state, and it is unknown where the wire electrode is at the vibration amplitude when contact is detected. Therefore, the axis position at the time when the contact is detected does not indicate the surface position of the contact detection target, and even if the averaging process of a large number of axis coordinate values detected at each time of the contact detection is performed, It does not indicate the surface position of.

【0013】一方、前記のサーボ機構による位置決め
によれば、次々と検出される軸座標値が次第にワイヤ電
極の振動中心に収束することになるため、ワイヤ電極を
加工時と同じ条件で走行させた状態で、ワイヤ電極の振
動によって位置決め精度を低下させることなく、高精度
に基準位置を位置決めすることができる。しかし、前記
のサーボ機構による位置決め方法では、電圧を検出し
て判別した接触状態判別出力と非接触状態判別出力とを
夫々別個のカウンタにカウントさせ、どちらか先にプリ
セット値に達したカウンタ出力により単位長さだけ軸を
移動させる機構であるから、接触・非接触状態判別のた
めの電圧サンプリング数が膨大になり、容量の大きいメ
モリを必要とすると共にデータ処理時間も長くなる。ま
た、サンプリング数が或る閾値を越えると状態不安定と
判断してエラー表示を出してしまう等、コンピュータ動
作が不安定になる。また、接触検知法による位置決め時
には、加工時の印加電圧に比べれば低いものの、10V
前後の電圧が印加されていて、接触・離隔時に微弱放電
が発生するから、電圧サンプリング数が多数(相対的に
接触回数が多数)になると、接触検知対象物の表面を傷
付けたり放電によるチップが表面に付着したりして、位
置決め精度を低下させることになる。従って、データ処
理に要する時間を短くし、またエラーの発生を避けてコ
ンピュータ動作を安定化し、また接触検知対象物表面の
損傷やチップの付着による位置決め精度の低下を防止す
るために、電圧サンプリング数はなるべく少なくするこ
とが望ましい。本発明は、このような問題点に鑑み、ワ
イヤ電極を加工時と同様の条件で走行させた状態で、接
触・非接触状態を少ない電圧サンプリング数で判別して
精度良く基準位置を位置決めすることのできる接触検知
法による位置決め方法の提供を目的とする。
On the other hand, according to the positioning by the servo mechanism, the axis coordinate values detected one after another gradually converge on the center of vibration of the wire electrode. In this state, the reference position can be positioned with high accuracy without lowering the positioning accuracy due to the vibration of the wire electrode. However, in the positioning method using the servo mechanism, the contact state determination output and the non-contact state determination output determined by detecting the voltage are counted by separate counters, respectively, and the counter output that reaches the preset value first is used. Since the mechanism moves the axis by the unit length, the number of voltage samplings for discriminating the contact / non-contact state becomes enormous, a memory having a large capacity is required, and the data processing time becomes longer. If the number of samplings exceeds a certain threshold, the operation of the computer becomes unstable, such as determining that the state is unstable and displaying an error. Also, at the time of positioning by the contact detection method, although it is lower than the applied voltage at the time of processing, 10 V
Since the voltage before and after is applied and a weak discharge occurs at the time of contact / separation, if the number of voltage samplings becomes large (the number of contacts is relatively large), the surface of the contact detection target may be damaged or the chip due to discharge may be damaged. For example, it may adhere to the surface and reduce the positioning accuracy. Therefore, in order to shorten the time required for data processing, to stabilize the operation of the computer by avoiding the occurrence of errors, and to prevent damage to the surface of the contact detection target and deterioration of the positioning accuracy due to chip attachment, the number of voltage samplings is reduced. Is desirably as small as possible. The present invention has been made in view of such a problem, and in a state in which a wire electrode is run under the same conditions as during processing, a contact / non-contact state is determined with a small number of voltage samplings to accurately position a reference position. It is an object of the present invention to provide a positioning method using a contact detection method that can be performed.

【0014】[0014]

【課題を解決するための手段】この目的を達成するた
め、本発明の第1の発明は、ワイヤ電極と被加工物間ま
たはワイヤ電極と垂直出し用治具間にX軸及びY軸方向
の相対的な近接移動または離隔移動を与える移動機構を
動作させるモータを一定のセグメント時間を単位時間と
して且つ該セグメント時間に移動する近接移動と離隔移
動の移動距離を同じに設定して駆動すると共に、所定電
圧印加状態の両者間の電圧を前記セグメント時間をサン
プリング周期として検出して接触状態か非接触状態かを
判別するようにし、先ず、X軸に関し、モータの正転駆
動による近接移動時にサンプリング周期毎に非接触状態
が判別されている間はセグメント時間の近接移動を繰返
して継続し、近接移動時に接触状態が判別された場合は
セグメント時間終了時にモータを停止し逆転駆動して離
隔移動を開始し、離隔移動時にサンプリング周期毎に接
触状態が判別されている間はセグメント時間の離隔移動
を繰返して継続し、離隔移動時に非接触状態が判別され
た場合はセグメント時間終了時にモータを停止し正転駆
動して近接移動を開始する態様で接触検知動作を行わ
せ、近接移動を停止した各時点と離隔移動を停止した各
時点のX軸座標値を記憶し、接触検知動作の終了を判断
する装置の出力により接触検知動作を終了し、記憶され
た多数のX軸座標値の平均座標値を演算し、算出された
平均座標値を加工基準位置のX軸座標値とし、または垂
直基準位置を求めるために用いるX軸座標値とし、次い
で、Y軸に関しても同様の操作を行って、加工基準位置
のY軸座標値または垂直基準位置を求めるために用いる
Y軸座標値を求めるようにしたことを特徴とする。
In order to achieve this object, a first aspect of the present invention is to provide an X-axis and Y-axis direction between a wire electrode and a workpiece or between a wire electrode and a vertical jig. A motor that operates a movement mechanism that provides relative proximity movement or separation movement is driven by setting the movement distance of the proximity movement and the separation movement to be the same as a certain segment time as a unit time and the same distance, and A voltage between both of the predetermined voltage application states is detected by using the segment time as a sampling period to determine whether the contact state is a contact state or a non-contact state. Each time the non-contact state is determined, the proximity movement of the segment time is repeated and continued, and if the contact state is determined during the proximity movement, the segment time ends. The motor is stopped and the motor is driven in reverse to start the separation movement, and the separation movement of the segment time is repeated while the contact state is determined for each sampling cycle during the separation movement, and the non-contact state is determined during the separation movement When the segment time is over, the motor is stopped at the end of the segment time and the contact detection operation is performed in such a manner that the motor is driven forward to start the proximity movement, and the X axis coordinates at each time when the proximity movement is stopped and at each time when the separation movement is stopped. The value is stored, the contact detection operation is terminated by the output of the device for judging the termination of the contact detection operation, the average coordinate value of many stored X-axis coordinate values is calculated, and the calculated average coordinate value is used as a processing reference. The X-axis coordinate value of the position or the X-axis coordinate value used for obtaining the vertical reference position, and then the same operation is performed for the Y-axis to obtain the Y-axis coordinate value of the machining reference position or the vertical reference position. Characterized in that so as to obtain a Y-axis coordinate value used for.

【0015】また、本発明の第2の発明は、モータを一
定のセグメント時間を単位時間として且つ該セグメント
時間に移動する前記近接移動距離をLg、離隔移動距離
をLbに設定して駆動すると共に、所定電圧印加状態の
前記両者間の電圧を前記セグメント時間をサンプリング
周期として検出して接触状態か非接触状態かを判別する
ようにし、X軸座標値の記憶を、近接移動を停止した各
時点のX軸座標値と離隔移動を停止した各時点のX軸座
標値とに夫々分けて記憶させるようにする他は、第1の
発明と同様の接触検知動作を行い、該動作終了後、記憶
された多数の近接移動停止時点のX軸座標値と離隔移動
停止時点のX軸座標値の夫々の平均座標値を演算し、算
出された両平均座標値の中点の座標値に、前記両平均座
標値間の距離をDmとして、Dm(Lb−Lg)/2
(Lb+Lg)を加算した座標値を加工基準位置のX軸
座標値とし、または垂直基準位置を求めるために用いる
X軸座標値とし、次いで、Y軸に関しても同様の操作を
行って、加工基準位置のY軸座標値または垂直基準位置
を求めるために用いるY軸座標値を求めるようにしたこ
とを特徴とする。
According to a second aspect of the present invention, the motor is driven by setting the approach movement distance to Lg and the separation movement distance to Lb while moving the motor at a fixed segment time as a unit time and moving at the segment time. In the predetermined voltage application state, the voltage between the two is detected by using the segment time as a sampling period to determine whether the state is the contact state or the non-contact state, and the storage of the X-axis coordinate value is performed at each time when the proximity movement is stopped. The contact detection operation is performed in the same manner as in the first invention, except that the X-axis coordinate value of the first embodiment and the X-axis coordinate value at each time when the separation movement is stopped are stored separately. The calculated average coordinate values of the X-axis coordinate values at the time of stopping the close movement and the X-axis coordinate values at the time of the separation movement stop are calculated, and the calculated coordinate values of the middle point of the average coordinate values are added to the two coordinate values. D is the distance between the average coordinate values As, Dm (Lb-Lg) / 2
The coordinate value obtained by adding (Lb + Lg) is used as the X-axis coordinate value of the processing reference position or the X-axis coordinate value used for obtaining the vertical reference position, and then the same operation is performed for the Y axis to obtain the processing reference position. , Or a Y-axis coordinate value used for obtaining a vertical reference position.

【0016】本発明では一定のセグメント時間中に電圧
のサンプリングが一回行われて接触・非接触状態が判別
され、近接移動中は接触状態が判別されるまで、離隔移
動中は非接触状態が判別されるまで、X軸モータ3また
はY軸モータ4をセグメント時間駆動する操作を繰返
す。電圧をサンプリングする時点としては、セグメント
時間の中間時点、あるいは前半または後半の適宜の時点
をサンプリング時点とすることが可能である。また、モ
ータの停止制御に関しては、近接移動中に接触状態が判
別されたとき、及び離隔移動中に非接触状態が判別され
たときに、当該判別が行われたセグメント時間の終了時
点にモータを停止させる態様に限らず、該セグメント時
間の次ぎのセグメント時間の終了時点にモータを停止さ
せる場合もある。また、このようなサーボ機構では、モ
ータに対する指令値は一定のセグメント時間に移動する
距離L(μm)として与えられるから、セグメント時間
をTa(msec)とすると、軸の移動速度V=L/Ta
(μm/msec)は設定される距離Lに比例し、また、軸
移動の分解能が設定される距離Lによって決定される。
In the present invention, the sampling of the voltage is performed once during a certain segment time to determine the contact / non-contact state, and the non-contact state is determined during the close movement until the contact state is determined during the close movement. Until determined, the operation of driving the X-axis motor 3 or the Y-axis motor 4 for the segment time is repeated. As a time point for sampling the voltage, an intermediate time point of the segment time, or an appropriate time point in the first half or the second half can be set as the sampling time. Regarding the stop control of the motor, when the contact state is determined during the proximity movement, and when the non-contact state is determined during the separation movement, the motor is stopped at the end of the segment time in which the determination is performed. The motor is not limited to being stopped, but may be stopped at the end of the segment time following the segment time. Further, in such a servo mechanism, the command value for the motor is given as a distance L (μm) for moving at a constant segment time. Therefore, assuming that the segment time is Ta (msec), the axis moving speed V = L / Ta
(Μm / msec) is proportional to the set distance L, and the resolution of the axial movement is determined by the set distance L.

【0017】[0017]

【発明の実施の形態】図1は、近接移動の速度Vgと離
隔移動の速度Vbを同じに設定して接触検知動作を行う
第1の発明の一実施例の操作手順を示すフローチャート
である。S101〜S114はステップ番号を示す。先
ず、セグメント時間Ta、該セグメント時間に移動する
近接移動と離隔移動の移動距離L、記憶座標値数N値を
設定し、カウントする座標値記憶回数nを0にクリヤし
てリセットした後、X軸モータ3を正転駆動して近接移
動を開始すると共にセグメント時間の計測を開始し(ス
テップS101)、当該セグメント時間中の所定の時点
に電圧をサンプリングして接触・非接触状態を判別し
(ステップS102)、非接触の場合は当該セグメント
時間の終了を待って(ステップS103)、次ぎのセグ
メント時間も近接移動を継続させる操作を繰返し、ステ
ップS102で接触状態が判別された場合は、セグメン
ト時間の終了を待って(ステップS104)、モータを
停止すると共にその時のX軸座標値をRAM33cに記
憶し(ステップS105)、次いで、X軸モータ3を逆
転駆動して離隔移動を開始すると共にセグメント時間の
計測を開始し(ステップS106)、当該セグメント時
間中の所定の時点に電圧をサンプリングして接触・非接
触状態を判別し(ステップS107)、接触状態の場合
は当該セグメント時間の終了を待って(ステップS10
8)、次ぎのセグメント時間も離隔移動を継続させる操
作を繰返し、ステップS107で非接触状態が判別され
た場合は、セグメント時間の終了を待って(ステップS
109)、モータを停止すると共にその時のX軸座標値
をRAM33cに記憶し(ステップS110)、カウン
ト数nに1を加算して(ステップS111)、該カウン
ト数nが設定値Nに達したか否かを判別し(ステップS
112)、未だN値に達していない場合は、ステップS
101乃至S112の操作を繰返し、N値に達した場合
は接触検知動作を終了させる(ステップS113)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart showing an operation procedure of an embodiment of the first invention in which a contact detection operation is performed by setting a speed Vg of a proximity movement and a speed Vb of a separation movement to be the same. S101 to S114 indicate step numbers. First, the segment time Ta, the moving distance L of the proximity movement and the separation movement moving at the segment time, the number N of stored coordinate values are set, and the number n of stored coordinate values is cleared to 0 and reset. The shaft motor 3 is driven to rotate forward to start the proximity movement and start measuring the segment time (step S101). At a predetermined time during the segment time, the voltage is sampled to determine the contact / non-contact state ( (Step S102) In the case of non-contact, the operation of waiting for the end of the segment time is repeated (Step S103), and the operation of continuing the proximity movement for the next segment time is repeated. If the contact state is determined in Step S102, the segment time is determined. (Step S104), the motor is stopped, and the X-axis coordinate value at that time is stored in the RAM 33c (step S104). 05) Then, the X-axis motor 3 is driven in the reverse direction to start the separation movement and to start the measurement of the segment time (step S106), and the voltage is sampled at a predetermined time during the segment time to make contact / non-contact. The state is determined (step S107). If the state is the contact state, the end of the segment time is waited (step S10).
8) The operation of continuing the separation movement for the next segment time is repeated, and if the non-contact state is determined in step S107, the end of the segment time is waited (step S107).
109) Stop the motor and store the X-axis coordinate value at that time in the RAM 33c (step S110), add 1 to the count number n (step S111), and check whether the count number n has reached the set value N. Is determined (step S
112), if the N value has not yet been reached, step S
The operations from 101 to S112 are repeated, and when the N value is reached, the contact detection operation is terminated (step S113).

【0018】ここで、このような手順で行われる接触検
知動作の一例を、図2に基づいて説明する。図2は、セ
グメント時間Ta=2msec、セグメント時間に移動する
距離L=1μmに設定し、2msecのサンプリング周期で
各セグメントの中間時点に電圧をサンプリングして接触
・非接触状態を判別しながら、X軸方向の接触検知を行
った場合の軸移動の態様を模式的に示すグラフであり、
縦軸はX軸の軸座標(μm)を、横軸は時間(msec)を
示す。先ず十分に離隔した位置からモータ3を正転駆動
して近接移動(前進)を開始し、このグラフの場合、第
5セグメントの移動が終了(10msec経過)するまでは
各セグメントに於て非接触状態が判別されて前進を続
け、第6セグメントの中間時点(11msec経過時点)に
サンプリングした電圧により接触状態が判別されて、時
点a(第6セグメント終了時点)でモータが停止して近
接移動が停止する。
Here, an example of a contact detection operation performed in such a procedure will be described with reference to FIG. FIG. 2 shows that the segment time Ta is set to 2 msec, the distance L to be moved during the segment time is set to 1 μm, and a voltage is sampled at an intermediate point in each segment at a sampling period of 2 msec to determine the contact / non-contact state. It is a graph schematically showing the mode of axis movement when performing contact detection in the axial direction,
The vertical axis indicates the X-axis coordinate (μm), and the horizontal axis indicates time (msec). First, the motor 3 is driven to rotate forward from a sufficiently distant position to start a proximity movement (forward movement). In the case of this graph, non-contact is made in each segment until the movement of the fifth segment is completed (elapse of 10 msec). The state is discriminated and the vehicle continues to move forward. The contact state is discriminated by the voltage sampled at the intermediate point in time of the sixth segment (11 msec elapse), and at time a (end of the sixth segment), the motor stops and the proximity movement starts. Stop.

【0019】モータの停止は、接触状態で“1”を出力
し非接触状態で“0”を出力する接触・非接触状態判別
出力信号とセグメント時間の終了信号との論理積出力に
より制御され、近接移動時は該論理積出力が“1”で停
止し、“0”でモータ駆動が継続され、離隔移動時は該
論理積出力が“0”で停止し、“1”でモータ駆動が継
続される。
The stop of the motor is controlled by a logical product output of a contact / non-contact state discrimination output signal which outputs "1" in a contact state and "0" in a non-contact state, and a segment time end signal. At the time of proximity movement, the logical product output stops at "1", and at "0", motor driving is continued. At the time of remote movement, the logical product output stops at "0", and at "1", motor driving continues. Is done.

【0020】また、時点aでは軸のX軸座標位置(上下
のガイドを結ぶ直線の接触検知対象物と対向する部位の
X軸座標位置)は未だ接触検知対象物表面位置に到達し
ていないが、走行状態にあるワイヤ電極は数Hz〜数K
Hzの周波数、数μm程度の振幅で常時振動しているた
め、接触検知対象物表面がワイヤ電極の振動振幅の範囲
内に入れば接触が検知される可能性がある。しかし、電
圧サンプリング時点にワイヤ電極が振幅のどの位置にあ
るかは不確定であるから、接触検知対象物表面がワイヤ
電極の振動振幅の範囲内にあっても必ず接触が検知され
るとは限らず、軸の座標位置が接触検知対象物の表面位
置と丁度一致した状態で、接触状態が判別される確率が
概ね50%である。
At the time point a, the X-axis coordinate position of the axis (the X-axis coordinate position of a portion facing the contact detection object of a straight line connecting the upper and lower guides) has not yet reached the contact detection object surface position. The wire electrode in the running state is several Hz to several K.
Since the frequency of Hz and the amplitude of several μm are constantly vibrating, there is a possibility that the contact is detected if the surface of the contact detection target falls within the range of the vibration amplitude of the wire electrode. However, since the position of the wire electrode in the amplitude at the time of voltage sampling is uncertain, contact is not always detected even if the contact detection target surface is within the range of the vibration amplitude of the wire electrode. However, the probability that the contact state is determined in a state where the coordinate position of the axis exactly matches the surface position of the contact detection target is approximately 50%.

【0021】次いで、時点aでモータが逆転駆動制御さ
れて離隔移動が開始され、第7セグメントの中間時点
(13msec経過時点)でサンプリングした電圧により非
接触状態が判別され、時点b(第7セグメント終了時
点)でモータが停止して離隔移動が停止する。次いで、
モータが正転駆動制御されて再び近接移動が開始され、
第10セグメントの移動が終了(20msec経過)するま
では各セグメントに於て非接触状態が判別されて前進を
続け、第11セグメントの中間時点(21msec経過時
点)でサンプリングした電圧により接触状態が判別さ
れ、時点c(第11セグメント終了時点)でモータが停
止して近接移動が停止する。次いで、モータが逆転駆動
制御されて再び離隔移動が開始され、第13セグメント
の移動が終了(26msec経過)するまでは各セグメント
に於て接触状態が判別されて後退を続け、第14セグメ
ントの中間時点(27msec経過時点)でサンプリングし
た電圧により非接触状態が判別され、時点d(第14セ
グメント終了時点)でモータが停止して離隔移動が停止
され、次いで、モータが正転駆動制御されて再び近接移
動が開始される。以後同様にして、各時点e,g,i,
k,mでは近接移動が停止されて離隔移動が開始され、
また各時点f,h,j,lでは離隔移動が停止されて近
接移動が開始される如く接触検知動作が推移して行く。
Next, at time point a, the motor is controlled to rotate in the reverse direction to start the separation movement, and the non-contact state is determined based on the voltage sampled at the intermediate time point of the seventh segment (13 msec elapse). At the end point), the motor stops and the separation movement stops. Then
The motor is controlled to rotate in the forward direction, and the proximity movement starts again,
Until the movement of the tenth segment is completed (elapse of 20 msec), the non-contact state is determined in each segment, and the forward movement is continued. The contact state is determined by the voltage sampled at the intermediate time of the eleventh segment (elapse of 21 msec). Then, at time point c (end point of the eleventh segment), the motor stops and the proximity movement stops. Then, the motor is controlled to rotate in the reverse direction and the separation movement is started again. Until the movement of the thirteenth segment is completed (elapse of 26 msec), the contact state is determined in each segment and the backward movement is continued. At the time point (27 msec elapse time), the non-contact state is determined based on the voltage sampled. At time d (14th segment end time point), the motor is stopped and the separation movement is stopped. Proximity movement is started. Thereafter, similarly, each time point e, g, i,
At k and m, the proximity movement is stopped and the separation movement is started,
Further, at each of the time points f, h, j, and l, the contact detection operation changes so that the separation movement is stopped and the proximity movement is started.

【0022】また、このような接触検知動作を行いなが
ら、前記a乃至mの各時点(モータ停止時点)に於ける
X軸の各座標値がコンピュータ33に取り込まれてRA
M33cに記憶される。
Further, while performing such a contact detection operation, each coordinate value of the X axis at each of the points a to m (motor stop point) is taken into the computer 33 and RA
It is stored in M33c.

【0023】また、離隔移動停止毎にカウントを行い、
カウント数が所定のプリセット値(N値、例えば50
0、1000等)に達したら、カウンタ出力により接触
検知動作を終了させる。あるいは、前述の特開平9−1
36220号公報に記載されるように、RAM33cに
記憶するX軸座標値をワイヤ電極の振幅を考慮して適宜
有効座標データと無効座標データとに分けて記憶し、記
憶した全ての座標データの標準偏差と有効座標データの
数に基づいて有効座標データ率をファジイ推論により求
め、この有効座標データ率が所定値に達した時に接触検
知動作を終了させるようにしても良い。
A count is performed each time the separation movement is stopped.
The count number is a predetermined preset value (N value, for example, 50
(0, 1000, etc.), the contact detection operation is terminated by the counter output. Alternatively, the above-mentioned Japanese Patent Application Laid-Open No. 9-1
As described in Japanese Patent Publication No. 36220, the X-axis coordinate value stored in the RAM 33c is divided into valid coordinate data and invalid coordinate data as appropriate in consideration of the amplitude of the wire electrode, and is stored as a standard. The effective coordinate data rate may be obtained by fuzzy inference based on the deviation and the number of effective coordinate data, and the contact detection operation may be terminated when the effective coordinate data rate reaches a predetermined value.

【0024】このようにして、ステップS113で接触
検知動作が終了したら、CPU33aにより、RAM3
3cに記憶された多数のX軸座標値の平均座標値(有効
座標値と無効座標値に分類した場合は有効座標値の平均
座標値)を演算し、算出された平均座標値を加工基準位
置のX軸座標値とし、または垂直基準位置を求めるため
に用いるX軸座標値として(ステップS114)、X軸
に関する基準位置の位置決め操作を終了する。
When the contact detection operation is completed in step S113 in this way, the CPU 33a causes the RAM 3
An average coordinate value of a large number of X-axis coordinate values stored in 3c (or an average coordinate value of effective coordinate values when classified into an effective coordinate value and an invalid coordinate value) is calculated, and the calculated average coordinate value is used as a machining reference position. Or the X-axis coordinate value used for obtaining the vertical reference position (step S114), the positioning operation of the reference position with respect to the X-axis ends.

【0025】X軸に関して位置決め操作が終了したら、
Y軸に関しても同様の操作を行い、加工基準位置のY軸
座標値または垂直基準位置を求めるために用いるY軸座
標値を求めて基準位置の位置決めを終了する。
When the positioning operation for the X axis is completed,
The same operation is performed for the Y axis, the Y axis coordinate value of the processing reference position or the Y axis coordinate value used for obtaining the vertical reference position is obtained, and the positioning of the reference position is completed.

【0026】図3は、図2に示すように近接(前進)と
離隔(後退)移動を繰返す軸移動を平均化したグラフで
あり、Xgは近接移動停止時点の各X軸座標値の平均座
標値、Xbは離隔移動停止時点の各X軸座標値の平均座
標値を示し、この平均座標値XgとXbの間に接触検知
対象物の表面が存在する。また、RAM33cに記憶し
た座標値数が多数であるから、平均座標値XgとXb間
の距離Dmは軸移動の平均ストロークに略一致する。一
方、本発明ではモータを一定のセグメント時間を単位時
間として駆動しているため、電圧サンプリングにより近
接移動時に接触状態が離隔移動時に非接触状態が夫々判
別されてからモータが停止するまでの時間(以下、モー
タ停止遅れ時間と言う)、軸位置が行過ぎることになる
が、近接移動時と離隔移動時のモータ停止遅れ時間は等
しく、また、この第1の発明では近接移動速度Vgと離
隔移動速度Vbとが等しいから、近接移動時の前記行過
ぎ量Dgと離隔移動時の前記行過ぎ量Dbは等しくな
り、この前進時と後退時の等しい行過ぎ量が平均ストロ
ークDmの多くの部分を形成する。このように、この第
1の発明では近接移動と離隔移動が同じ条件で行われ
て、接触検知対象物の表面は、Xg点から後退の向きに
Dg離れた座標点とXb点から前進の向きにDb離れた
座標点との間にあることになるから、接触検知対象物の
表面位置(基準位置)を各平均座標値XbとXgの中
点、即ちRAM33cに記憶した近接移動停止時点と離
隔移動停止時点の多数のX軸座標値の平均座標値と見る
ことができ、セグメント時間の軸移動量Lを小さく設定
することにより分解能を高めて位置決め精度を高めるこ
とが可能であり、第1の発明によれば、少ない電圧サン
プリング数で接触検知動作を制御して基準位置の位置決
めを高精度に行うことができる。
FIG. 3 is a graph obtained by averaging the axial movements which repeat the approaching (forward) and separating (retreating) movements as shown in FIG. 2. Xg is the average coordinate of each X-axis coordinate value at the time of stopping the approaching movement. The value Xb indicates the average coordinate value of each X-axis coordinate value at the time when the separation movement is stopped, and the surface of the contact detection target exists between the average coordinate values Xg and Xb. Further, since the number of coordinate values stored in the RAM 33c is large, the distance Dm between the average coordinate values Xg and Xb substantially matches the average stroke of the axial movement. On the other hand, in the present invention, since the motor is driven with a fixed segment time as a unit time, the time from when the contact state is determined by the voltage sampling to the contact state at the time of the close movement and the non-contact state at the time of the separation movement is determined until the motor stops. Hereinafter, this will be referred to as a motor stop delay time), but the axis position will be too long. However, the motor stop delay time during the close movement and the separation movement are equal, and in the first invention, the close movement speed Vg and the separation movement Since the speed Vb is equal, the overshoot amount Dg at the time of approaching movement is equal to the overshoot amount Db at the time of separating movement, and the same overshoot amount at the time of forward movement and at the time of backward movement makes a large part of the average stroke Dm. Form. As described above, in the first invention, the proximity movement and the separation movement are performed under the same conditions, and the surface of the contact detection target is moved forward from the coordinate point Dg away from the point Xg and from the point Xb. In this case, the surface position (reference position) of the contact detection target is located at the middle point between the average coordinate values Xb and Xg, that is, the proximity movement stop time stored in the RAM 33c. It can be regarded as an average coordinate value of a large number of X-axis coordinate values at the time of the movement stop, and by setting the axis movement amount L of the segment time small, it is possible to increase the resolution and improve the positioning accuracy. According to the present invention, the reference position can be positioned with high accuracy by controlling the contact detection operation with a small number of voltage samplings.

【0027】一方、接触検知動作に於て、前進時と後退
時の速度が同じに設定されるとは限らず、例えば、接触
を検知する近接移動時は比較的低速で慎重に接近させ
(前述の図2の場合は前進時、後退時共に0.5μm/
msec)、接触後、短絡状態を長引かせることは、接触検
知対象物の損傷やワイヤ電極の断線を招く虞があり好ま
しくないから、短絡状態をなるべく早く解消するために
離隔移動速度Vbを近接移動速度Vgよりも速く設定す
ることがある。第2の発明は、このように近接移動速度
Vgと離隔移動速度Vbが異なる場合の基準位置の位置
決め方法に係わる発明である。
On the other hand, in the contact detection operation, the speed at the time of forward movement and the speed at the time of retreat are not always set to the same speed. In the case of FIG. 2 of FIG.
msec), it is not preferable to prolong the short-circuit state after the contact because the contact detection target may be damaged or the wire electrode may be disconnected. Therefore, the separation moving speed Vb is moved close to the short-circuit state as soon as possible. The speed may be set faster than the speed Vg. The second invention is an invention relating to a method of positioning a reference position when the approach speed Vg and the separation speed Vb are different from each other.

【0028】第2の発明の一実施例について説明する。
図4は、第2の発明の一実施例の操作手順を示すフロー
チャートであり、S201〜S214はステップ番号を
示す。図4のフローチャートの図1のフローチャートと
の相違点は、初期設定に於て、セグメント時間Taに移
動する距離が、近接移動時(前進)の移動距離Lgと離
隔移動時(後退)の移動距離Lbとに分けて別個に設定
されること、近接移動停止時点の各座標値と離隔移動停
止時点の各座標値が夫々別個にRAM33c(メモリA
とB)に記憶されること(ステップS205及びステッ
プS210)、及びステップS214に於けるデータの
演算処理内容が異なっていることであり、その他の操作
手順は図1と同様である。そして、図4に於けるステッ
プS214では、CPU33aにより、メモリAに記憶
された多数の近接移動停止時点のX軸(またはY軸)座
標値の平均座標値Xg(またはYg)と、メモリBに記
憶された多数の離隔移動停止時点のX軸(またはY軸)
座標値の平均座標値Xb(またはYb)とを演算し(有
効座標値と無効座標値に分類した場合は有効座標値の平
均座標値を演算)、算出された両平均座標値Xg(また
はYg)、Xb(またはYb)の中点の座標値に、Dm
(Lb−Lg)/2(Lb+Lg)を加算する演算処理
を行い、得られた座標値を加工基準位置のX軸(または
Y軸)座標値とし、または垂直基準位置を求めるために
用いるX軸(またはY軸)座標値とする。
An embodiment of the second invention will be described.
FIG. 4 is a flowchart showing an operation procedure according to an embodiment of the second invention, and S201 to S214 show step numbers. The difference between the flowchart of FIG. 4 and the flowchart of FIG. 1 is that, in the initial setting, the distance moved during the segment time Ta is the movement distance Lg during the proximity movement (forward) and the movement distance during the separation movement (retreat). Lb and separately set, and each coordinate value at the time of stopping the proximity movement and each coordinate value at the time of stopping the separation movement are separately stored in the RAM 33c (memory A).
And B) (steps S205 and S210), and the content of the data arithmetic processing in step S214 is different. Other operation procedures are the same as those in FIG. Then, in step S214 in FIG. 4, the CPU 33a stores the average coordinate value Xg (or Yg) of the X-axis (or Y-axis) coordinate values at the time of stopping the proximity movement stored in the memory A and the memory B. The stored X-axis (or Y-axis) at the time of the separation movement stop
The average coordinate value Xb (or Yb) of the coordinate values is calculated (if the effective coordinate value and the invalid coordinate value are classified, the average coordinate value of the effective coordinate values is calculated), and the calculated average coordinate values Xg (or Yg) are calculated. ), The coordinate value of the midpoint of Xb (or Yb) is Dm
An arithmetic process of adding (Lb−Lg) / 2 (Lb + Lg) is performed, and the obtained coordinate value is used as the X-axis (or Y-axis) coordinate value of the machining reference position, or the X-axis used to determine the vertical reference position (Or Y axis) coordinate values.

【0029】ここで、第2の発明に於て、Vg<Vbの
場合の接触検知動作の一例を図5に基づいて説明する。
図5は、セグメント時間Ta=2msec、近接移動時のセ
グメント時間に移動する距離Lg=1μm、離隔移動時
のセグメント時間に移動する距離Lb=5μmに設定
し、2msecのサンプリング周期で各セグメントの中間時
点に電圧をサンプリングして接触・非接触状態を判別し
ながら、X軸方向の接触検知を行った場合の軸移動の態
様を模式的に示すグラフであり、縦軸はX軸の軸座標
(μm)を、横軸は時間(msec)を示す。図5の場合も
図2の場合と同様の手順で接触検知動作が行われ、各時
点a,c,e,gに於て近接移動が停止して離隔移動が
開始され、各時点b,d,f,hに於て離隔移動が停止
して近接移動が開始される。また、近接移動停止時点の
各座標値がメモリAに記憶され(ステップS205)、
離隔移動停止時点の各座標値がメモリBに記憶される
(ステップS210)。そして、この場合、Vg:Vb
=Lg:Lb=1:5の速度比で近接及び離隔移動が行
われるから、近接移動に要する時間よりも離隔移動に要
する時間が平均して1/5に短くなり、Vg=Vbであ
る図2の場合よりも接触(短絡)が速やかに解消され
る。
Here, in the second invention, an example of a contact detection operation when Vg <Vb will be described with reference to FIG.
FIG. 5 shows that the segment time Ta is set to 2 msec, the distance Lg to move to the segment time at the time of proximity movement is set to 1 μm, and the distance to move to the segment time at the time of separation movement Lb is set to 5 μm. FIG. 6 is a graph schematically showing an aspect of axis movement when contact detection in the X-axis direction is performed while determining a contact / non-contact state by sampling a voltage at a time point, and a vertical axis represents an axis coordinate of the X axis ( μm), and the horizontal axis indicates time (msec). In the case of FIG. 5 as well, the contact detection operation is performed in the same procedure as in FIG. 2, the approach movement is stopped at each of the time points a, c, e, and g, and the separation movement is started, and each of the time points b and d. , F, h, the separation movement is stopped and the proximity movement is started. Further, each coordinate value at the time of stopping the proximity movement is stored in the memory A (step S205),
Each coordinate value at the time when the separation movement is stopped is stored in the memory B (step S210). In this case, Vg: Vb
= Lg: Lb = 1: 5, the proximity and separation movements are performed, so that the time required for the separation movement is shorter than the time required for the proximity movement by 1/5 on average, and Vg = Vb. Contact (short circuit) is eliminated more quickly than in the case of 2.

【0030】また、図7は、第2の発明に於て、Vg>
Vbの場合の接触検知動作の一例を示すグラフであり、
セグメント時間Ta=2msec、近接移動時のセグメント
時間に移動する距離Lg=5μm、離隔移動時のセグメ
ント時間に移動する距離Lb=1μmに設定し、2msec
のサンプリング周期で各セグメントの中間時点に電圧を
サンプリングして接触・非接触状態を判別しながら、X
軸方向の接触検知を行った場合の軸移動の態様を模式的
に示す。図7の場合も図2の場合と同様の手順で接触検
知動作が行われ、各時点a,c,e,g,iに於て近接
移動が停止して離隔移動が開始され、各時点b,d,
f,hに於て離隔移動が停止して近接移動が開始され
る。また、近接移動停止時点の各座標値がメモリAに記
憶され(ステップS205)、離隔移動停止時点の各座
標値がメモリBに記憶される(ステップS210)。
FIG. 7 shows that Vg> in the second invention.
It is a graph which shows an example of the contact detection operation in the case of Vb,
The segment time Ta = 2 msec, the distance Lg = 5 μm to move at the segment time when moving close, and the distance Lb = 1 μm to move at the segment time when moving away, 2 msec
The voltage is sampled at the midpoint of each segment at the sampling cycle of X to determine the contact / non-contact state.
7 schematically shows an aspect of axial movement when contact detection in the axial direction is performed. In the case of FIG. 7 as well, the contact detection operation is performed in the same procedure as in FIG. 2, the approach movement is stopped at each of the time points a, c, e, g, and i, and the separation movement is started. , D,
The separation movement is stopped at f and h, and the proximity movement is started. Further, the respective coordinate values at the time of stopping the proximity movement are stored in the memory A (step S205), and the respective coordinate values at the time of stopping the separation movement are stored in the memory B (step S210).

【0031】図6は図5に示す軸移動を平均化したグラ
フ、図8は図7に示す軸移動を平均化したグラフであ
り、近接移動停止時点の各X軸座標値の平均座標値Xg
と離隔移動停止時点の各X軸座標値の平均座標値Xbの
間に接触検知対象物の表面が存在し、また、平均座標値
XgとXb間の距離Dmは軸移動の平均ストロークに略
一致し、近接移動時と離隔移動時のモータ停止遅れ時間
は等しい。ここまではVg=Vbの第1の発明の場合と
同様である。しかし、前記行過ぎ量は軸移動の速度に比
例するから、Vg≠Vb(Lg≠Lb)である第2の発
明では、近接移動時の前記行過ぎ量Dgと離隔移動時の
前記行過ぎ量Dbが異なることになり、前進時行過ぎ量
Dgと後退時行過ぎ量Dbの比はLg/Lbとなって、
軸移動の平均ストロークDmの多くの部分がこの前進時
と後退時の各行過ぎ量により形成される。従って、接触
検知対象物の表面位置(基準位置)は、Xg点とXb点
間(平均ストロークDm)の中点から速度比(Lg/L
b)に応じて偏ることになるから、Xg点とXb点間D
mをLg:Lbの比で内分した座標点を基準位置と見做
すことができる。そして、第2の発明では、この内分点
を、Xg点とXb点の中点の座標値に、補正量Rxとし
てDm(Lb−Lg)/2(Lb+Lg)を加算するこ
とにより求めるようにし、この補正量Rxを加算するこ
とにより、第1の発明のようにXg点とXb点間の中点
を基準位置とした場合に生じる速度比に応じた偏り分の
誤差を解消して高精度の位置決めを可能とする。尚、こ
の発明に於て、軸移動の座標の正負の向きは、ワイヤ電
極が接触検知対象物に近付く向きを正の向きとする。
FIG. 6 is a graph obtained by averaging the axis movement shown in FIG. 5, and FIG. 8 is a graph obtained by averaging the axis movement shown in FIG. 7. The average coordinate value Xg of each X-axis coordinate value at the time of stopping the proximity movement is shown.
And the surface of the contact detection target exists between the average coordinate values Xb of the X-axis coordinate values at the time when the separation movement is stopped, and the distance Dm between the average coordinate values Xg and Xb is substantially equal to the average stroke of the axial movement. Therefore, the motor stop delay time at the time of approach movement and the time of separation movement are equal. The operation up to this point is the same as that of the first invention in which Vg = Vb. However, since the overshoot amount is proportional to the speed of the axis movement, in the second invention in which Vg ≠ Vb (Lg ≠ Lb), the overshoot amount Dg at the time of approaching movement and the overshoot amount at the time of separation movement are provided. Db is different, and the ratio of the overtravel amount Dg at the time of forward movement and the overtravel amount Db at the time of retreat is Lg / Lb.
A large part of the average stroke Dm of the axial movement is formed by the respective overshoot amounts at the time of the forward movement and the backward movement. Therefore, the surface position (reference position) of the contact detection target is set at a speed ratio (Lg / L) from the middle point between the points Xg and Xb (average stroke Dm).
b), the deviation between points Xg and Xb
A coordinate point obtained by internally dividing m in a ratio of Lg: Lb can be regarded as a reference position. In the second invention, the subdivision point is obtained by adding Dm (Lb−Lg) / 2 (Lb + Lg) as the correction amount Rx to the coordinate value of the midpoint between the points Xg and Xb. By adding the correction amount Rx, the error of the deviation corresponding to the speed ratio generated when the midpoint between the points Xg and Xb is set as the reference position as in the first invention is eliminated, and the accuracy is improved. Enables positioning. In the present invention, the positive and negative directions of the coordinate of the axial movement are defined as the positive direction in which the wire electrode approaches the contact detection target.

【0032】このように、第2の発明によれば、近接移
動速度Vgと離隔移動速度Vbとが異なる場合にも、少
ない電圧サンプリング数で接触検知動作を制御し、記憶
座標値の平均座標値(Xg点とXb点間の中点)と接触
検知対象物表面位置との間の誤差を補正して基準位置の
位置決めを高精度に行うことができる。また、セグメン
ト時間の軸移動量Lg、Lbを小さく設定して分解能を
高めることにより位置決め精度の向上が可能である。ま
た、図5、図6の例では5Lg=Lbの場合について、
図7、図8の例ではLg=5Lbの場合について説明し
たが、前進時と後退時の速度比はこれに限定されるもの
ではなく、10Lg=Lb、Lg=10Lb等適宜の速
度比が採用される。
As described above, according to the second aspect, even when the approaching speed Vg and the separating speed Vb are different, the contact detection operation is controlled with a small number of voltage samplings, and the average coordinate value of the stored coordinate values is obtained. An error between (the midpoint between the Xg point and the Xb point) and the surface position of the contact detection target can be corrected, and the reference position can be positioned with high accuracy. Further, the positioning accuracy can be improved by setting the axis movement amounts Lg and Lb of the segment time small and increasing the resolution. In addition, in the example of FIGS. 5 and 6, when 5Lg = Lb,
In the examples of FIGS. 7 and 8, the case where Lg = 5 Lb has been described, but the speed ratio between forward and backward is not limited to this, and an appropriate speed ratio such as 10 Lg = Lb, Lg = 10 Lb is adopted. Is done.

【0033】図9は、第2の発明の方法を用い、図10
に示すA乃至Gの7種の速度比で、2.5mmφのピン
ゲージの径を、0.2mmφのワイヤ電極によりピンゲ
ージの両側から接触検知して測定した値の誤差(測定値
−2.5mm)を示すグラフであり、◇印は各平均座標
値XgとXbの中点をピンゲージ表面位置とした場合の
誤差を、□印は第2の発明により前記中点に補正量Rx
を加算して誤差を補正した場合の誤差を示す。尚、3mm
/minの軸移動速度は、2msecのセグメント時間に0.1
μm移動する速度を意味する。図9から、Xg点とXb
点の中点をピンゲージ表面位置とすると、前進時の速度
Vgと後退時の速度Vbとの速度比が大きくなるのにし
たがって誤差が増大し、前記中点に補正量Rxを加算す
ることにより、前進時と後退時の速度比の増大による誤
差増大傾向が解消されて、A乃至Gのいずれの速度比に
於ても略一定の誤差となっていることが分かる。従っ
て、第2の発明によれば、前記中点に補正量Rxを加算
することにより、前進時と後退時の速度の違いにより生
じる誤差を解消して高精度の位置決めを行うことができ
る。
FIG. 9 shows an example using the method of the second invention and FIG.
Error of the value measured by detecting the contact of the diameter of the pin gauge of 2.5 mmφ from both sides of the pin gauge with the wire electrode of 0.2 mmφ at the seven speed ratios A to G shown in (1). Is a graph showing the error when the middle point of each of the average coordinate values Xg and Xb is set as the pin gauge surface position, and the square mark shows the correction amount Rx according to the second invention.
Are added to correct the error. 3mm
/ min axis movement speed is 0.1 in 2msec segment time.
It means the speed of moving μm. From FIG. 9, Xg point and Xb
Assuming that the midpoint of the point is the pin gauge surface position, the error increases as the speed ratio between the forward speed Vg and the backward speed Vb increases, and the correction amount Rx is added to the midpoint. It can be seen that the tendency of the error to increase due to the increase in the speed ratio between the forward and backward movements is eliminated, and that any of the speed ratios A to G has a substantially constant error. Therefore, according to the second aspect of the invention, by adding the correction amount Rx to the middle point, it is possible to eliminate an error caused by a difference in speed between when moving forward and when moving backward, and perform highly accurate positioning.

【0034】[0034]

【発明の効果】以上詳述したとおり、本発明の第1の発
明によれば、近接移動時の移動速度Vgと離隔移動時の
移動速度Vbが等しい場合に、接触検知動作を少ない電
圧サンプリング数で適確に制御して、基準位置の位置決
めを高精度に行うことができる。また、本発明の第2の
発明によれば、近接移動時の移動速度Vgと離隔移動時
の移動速度Vbが相違する場合に、接触検知動作を少な
い電圧サンプリング数で適確に制御し、記憶座標値の平
均座標値と接触検知対象物表面位置との間の誤差を補正
して基準位置の位置決めを高精度に行うことができる。
As described above in detail, according to the first aspect of the present invention, when the moving speed Vg at the time of approaching movement and the moving speed Vb at the time of moving away from each other are equal, the contact detection operation can be performed with a small voltage sampling number. , And the reference position can be positioned with high accuracy. Further, according to the second aspect of the present invention, when the moving speed Vg at the time of approaching movement and the moving speed Vb at the time of moving away from each other are different, the contact detection operation is appropriately controlled with a small number of voltage samplings and stored. An error between the average coordinate value of the coordinate values and the surface position of the contact detection target can be corrected, and the reference position can be positioned with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の一実施例の操作手順を示すフロー
チャート。
FIG. 1 is a flowchart showing an operation procedure according to an embodiment of the first invention.

【図2】第1の発明により接触検知を行った際の軸移動
の態様を模式的に示すグラフ。
FIG. 2 is a graph schematically showing an aspect of axial movement when contact detection is performed according to the first invention.

【図3】図2に示す軸移動を平均化したグラフ。FIG. 3 is a graph obtained by averaging the axial movement shown in FIG. 2;

【図4】第2の発明の一実施例の操作手順を示すフロー
チャート。
FIG. 4 is a flowchart showing an operation procedure according to an embodiment of the second invention.

【図5】第2の発明により接触検知を行った際の軸移動
の態様を模式的に示すグラフ。
FIG. 5 is a graph schematically showing an aspect of axial movement when contact detection is performed according to the second invention.

【図6】図5に示す軸移動を平均化したグラフ。FIG. 6 is a graph obtained by averaging the axis movement shown in FIG. 5;

【図7】第2の発明により接触検知を行った際の軸移動
の態様を模式的に示すグラフ。
FIG. 7 is a graph schematically showing an aspect of axial movement when contact detection is performed according to the second invention.

【図8】図7に示す軸移動を平均化したグラフ。FIG. 8 is a graph obtained by averaging the axis movement shown in FIG. 7;

【図9】実験結果を示すグラフ。FIG. 9 is a graph showing experimental results.

【図10】図9のグラフに於ける前進時と後退時の速度
及び速度比の条件を示す表。
FIG. 10 is a table showing conditions of speed and speed ratio at the time of forward and backward movement in the graph of FIG. 9;

【図11】ワイヤカット放電加工装置の概略を示す構成
図。
FIG. 11 is a configuration diagram schematically showing a wire electric discharge machine.

【符号の説明】[Explanation of symbols]

1………………ベッド 2………………XYクロステーブル 3,4…………X軸及びY軸駆動モータ 5,6…………ロータリエンコーダ 7………………載物台 8………………被加工物 9………………コラム 10,11……上アームと下アーム 12,13……上下一対の加工液噴射ノズル装置 14……………ワイヤ電極 15,16……上下一対のガイド 17……………Z軸移動機構 18……………UVクロステーブル 19……………Z軸駆動モータ 20……………ロータリエンコーダ 21,22……U軸及びV軸駆動モータ 23,24……ロータリエンコーダ 25……………ワイヤ電極供給リール 26,27……ローラ 28……………ワイヤ電極回収容器 29……………引っ張り駆動機構 30……………ブレーキ機構 31……………加工電源 32……………通電子 33……………コンピュータ 34……………NC装置 35……………XY各軸ドライバ 36……………UVZ各軸ドライバ 37……………入力装置 38……………表示装置 39……………接触検知装置 1 bed 2 XY cross table 3 4 X-axis and Y-axis drive motor 5 6 Rotary encoder 7 Table 8 Workpiece 9 Workpiece column 11, Upper arm and lower arm 12, 13 A pair of upper and lower working fluid jetting nozzle devices 14 Wire electrodes 15, a pair of upper and lower guides 17 Z-axis moving mechanism 18 UV cross table 19 Z-axis drive motor 20 Rotary encoder 21, 22 U-axis and V-axis drive motors 23, 24 Rotary encoder 25 Wire electrode supply reels 26, 27 Roller 28 Wire electrode collection container 29 Pull drive mechanism 30 …………… Brake mechanism 31 ………… … Processing power supply 32… Electrical communication 33 ………… Computer 34 …………………………………………………………………………… NC device 35 ………………… XY axis drivers 36 ………… UVZ axis drivers 37 …… ...... Input device 38 Display device 39 Contact detection device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 間隔を置いて配置した一対のガイド間に
張架したワイヤ電極に対する被加工物の加工基準位置ま
たは被加工物が載置される加工テーブル面に対してワイ
ヤ電極を垂直に張架する前記一対のガイドの垂直基準位
置を、ワイヤ電極を所定の張力と速度をもって走行移動
させた状態で、ワイヤ電極と被加工物間またはワイヤ電
極と垂直出し用治具間に接触検知用の電圧を印加し、両
者間にX軸及びY軸方向の相対的な近接移動または離隔
移動を与える移動機構を動作させて、前記電圧の高低変
化から両者の接触・非接触を検知することにより決定す
るワイヤカット放電加工に於ける基準位置の位置決め方
法に於て、 前記移動機構を動作させるモータを一定のセグメント時
間を単位時間として且つ該セグメント時間に移動する前
記近接移動と離隔移動の移動距離を同じに設定して駆動
すると共に、該セグメント時間をサンプリング周期とし
て前記電圧を検出して接触状態か非接触状態かを判別す
るようにし、 先ず、X軸に関し、モータの正転駆動による前記近接移
動時に前記サンプリング周期毎に非接触状態が判別され
ている間はセグメント時間の近接移動を繰返して継続
し、前記近接移動時に接触状態が判別された場合はセグ
メント時間終了時にモータを停止し逆転駆動して前記離
隔移動を開始し、前記離隔移動時に前記サンプリング周
期毎に接触状態が判別されている間はセグメント時間の
離隔移動を繰返して継続し、前記離隔移動時に非接触状
態が判別された場合はセグメント時間終了時にモータを
停止し正転駆動して前記近接移動を開始する態様で接触
検知動作を行わせ、 前記近接移動を停止した各時点と前記離隔移動を停止し
た各時点のX軸座標値を記憶し、 前記接触検知動作の終了を判断する装置の出力により前
記接触検知動作を終了し、 前記記憶された多数のX軸座標値の平均座標値を演算
し、算出された平均座標値を前記加工基準位置のX軸座
標値とし、または前記垂直基準位置を求めるために用い
るX軸座標値とし、 次いで、Y軸に関しても同様の操作を行って、前記加工
基準位置のY軸座標値または前記垂直基準位置を求める
ために用いるY軸座標値を求める、 ことを特徴とするワイヤカット放電加工に於ける基準位
置の位置決め方法。
1. A wire electrode is stretched perpendicularly to a processing reference position of a workpiece with respect to a wire electrode stretched between a pair of spaced guides or a processing table surface on which the workpiece is placed. The vertical reference position of the pair of guides to be bridged is a state for detecting contact between the wire electrode and the workpiece or between the wire electrode and the vertical jig in a state where the wire electrode is traveled and moved with a predetermined tension and speed. A voltage is applied, and a moving mechanism for providing relative approach movement or separation movement between the two in the X-axis and Y-axis directions is operated, and the contact is determined by detecting the contact / non-contact between the two from the change in the voltage. In a method of positioning a reference position in wire-cut electric discharge machining, a motor that operates the moving mechanism is moved in a predetermined segment time as a unit time and the proximity time is moved in the segment time. At the same time, the moving distance and the moving distance are set to be the same and driven, and the segment time is used as a sampling period to detect the voltage to determine the contact state or the non-contact state. When the non-contact state is determined for each sampling period during the close movement by the forward rotation drive, the close movement of the segment time is repeated and continued, and when the contact state is determined during the close movement, the segment time ends. At the time, the motor is stopped and reversely driven to start the separation movement, and during the separation movement, while the contact state is determined for each sampling cycle, the separation movement of the segment time is repeated and continued. When the contact state is determined, the motor is stopped at the end of the segment time, and the contact detection operation is performed in such a manner that the motor is driven forward and the approach movement is started. Storing the X-axis coordinate values at each time point at which the approaching movement is stopped and at each time point at which the separating movement is stopped, and terminating the contact detection operation by an output of a device for determining the end of the contact detection operation; An average coordinate value of a large number of stored X-axis coordinate values is calculated, and the calculated average coordinate value is used as an X-axis coordinate value of the machining reference position, or as an X-axis coordinate value used for obtaining the vertical reference position. Next, the same operation is performed on the Y axis to obtain the Y axis coordinate value of the machining reference position or the Y axis coordinate value used for obtaining the vertical reference position. Positioning method of the reference position.
【請求項2】 間隔を置いて配置した一対のガイド間に
張架したワイヤ電極に対する被加工物の加工基準位置ま
たは被加工物が載置される加工テーブル面に対してワイ
ヤ電極を垂直に張架する前記一対のガイドの垂直基準位
置を、ワイヤ電極を所定の張力と速度をもって走行移動
させた状態で、ワイヤ電極と被加工物間またはワイヤ電
極と垂直出し用治具間に接触検知用の電圧を印加し、両
者間にX軸及びY軸方向の相対的な近接移動または離隔
移動を与える移動機構を動作させて、前記電圧の高低変
化から両者の接触・非接触を検知することにより決定す
るワイヤカット放電加工に於ける基準位置の位置決め方
法に於て、 前記移動機構を動作させるモータを一定のセグメント時
間を単位時間として且つ該セグメント時間に移動する前
記近接移動距離をLg、離隔移動距離をLbに設定して
駆動すると共に、該セグメント時間をサンプリング周期
として前記電圧を検出して接触状態か非接触状態かを判
別するようにし、 先ず、X軸に関し、モータの正転駆動による前記近接移
動時に前記サンプリング周期毎に非接触状態が判別され
ている間はセグメント時間の近接移動を繰返して継続
し、前記近接移動時に接触状態が判別された場合はセグ
メント時間終了時にモータを停止し逆転駆動して前記離
隔移動を開始し、前記離隔移動時に前記サンプリング周
期毎に接触状態が判別されている間はセグメント時間の
離隔移動を繰返して継続し、前記離隔移動時に非接触状
態が判別された場合はセグメント時間終了時にモータを
停止し正転駆動して前記近接移動を開始する態様で接触
検知動作を行わせ、 前記近接移動を停止した各時点のX軸座標値と前記離隔
移動を停止した各時点のX軸座標値とを夫々分けて記憶
し、 前記接触検知動作の終了を判断する装置の出力により前
記接触検知動作を終了し、 前記記憶された多数の前記近接移動停止時点のX軸座標
値と前記離隔移動停止時点のX軸座標値の夫々の平均座
標値を演算し、算出された両平均座標値の中点の座標値
に、前記両平均座標値間の距離をDmとして、Dm(L
b−Lg)/2(Lb+Lg)を加算した座標値を前記
加工基準位置のX軸座標値とし、または前記垂直基準位
置を求めるために用いるX軸座標値とし、 次いで、Y軸に関しても同様の操作を行って、前記加工
基準位置のY軸座標値または前記垂直基準位置を求める
ために用いるY軸座標値を求める、 ことを特徴とするワイヤカット放電加工に於ける基準位
置の位置決め方法。
2. A wire electrode is stretched perpendicularly to a working reference position of a workpiece with respect to a wire electrode stretched between a pair of spaced guides or a working table surface on which the workpiece is placed. The vertical reference position of the pair of guides to be bridged is a state for detecting contact between the wire electrode and the workpiece or between the wire electrode and the vertical jig in a state where the wire electrode is traveled and moved with a predetermined tension and speed. A voltage is applied, and a moving mechanism for providing relative approach movement or separation movement between the two in the X-axis and Y-axis directions is operated, and the contact is determined by detecting the contact / non-contact between the two from the change in the voltage. In a method of positioning a reference position in wire-cut electric discharge machining, a motor that operates the moving mechanism is moved in a predetermined segment time as a unit time and the proximity time is moved in the segment time. The driving distance is set to Lg, the separation moving distance is set to Lb, and the driving is performed. The segment time is used as a sampling cycle to detect the voltage to determine whether the contact state or the non-contact state. When the non-contact state is determined for each sampling period during the proximity movement by the forward rotation drive of the motor, the proximity movement of the segment time is repeated and continued, and when the contact state is determined during the proximity movement, the segment time is determined. At the end, the motor is stopped and reversely driven to start the separation movement, and during the separation movement, while the contact state is determined for each sampling cycle, the separation movement of the segment time is repeated and continued, and at the time of the separation movement When the non-contact state is determined, the contact detection operation is performed in a mode in which the motor is stopped at the end of the segment time and the motor is driven forward to start the approach movement. The X-axis coordinate value at each time when the proximity movement is stopped and the X-axis coordinate value at each time when the separation movement is stopped are separately stored, and the output of the device for determining the end of the contact detection operation The contact detection operation is terminated by calculating the average coordinate value of each of the stored X-axis coordinate values at the time of stopping the proximity movement and the X-axis coordinate value at the time of stopping the separation movement. The distance between the two average coordinate values is defined as Dm, and the distance between the two average coordinate values is defined as Dm (L
The coordinate value obtained by adding (b−Lg) / 2 (Lb + Lg) is used as the X-axis coordinate value of the machining reference position or the X-axis coordinate value used for obtaining the vertical reference position. Performing an operation to determine a Y-axis coordinate value of the machining reference position or a Y-axis coordinate value used for determining the vertical reference position. A method of positioning a reference position in wire-cut electric discharge machining.
JP27771898A 1998-09-30 1998-09-30 Reference position positioning method in wire cut electric discharge machining Expired - Fee Related JP4017764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27771898A JP4017764B2 (en) 1998-09-30 1998-09-30 Reference position positioning method in wire cut electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27771898A JP4017764B2 (en) 1998-09-30 1998-09-30 Reference position positioning method in wire cut electric discharge machining

Publications (2)

Publication Number Publication Date
JP2000107945A true JP2000107945A (en) 2000-04-18
JP4017764B2 JP4017764B2 (en) 2007-12-05

Family

ID=17587362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27771898A Expired - Fee Related JP4017764B2 (en) 1998-09-30 1998-09-30 Reference position positioning method in wire cut electric discharge machining

Country Status (1)

Country Link
JP (1) JP4017764B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062724A (en) * 2001-08-27 2003-03-05 Brother Ind Ltd Wire electric discharge machine, method and program for determining reference position
EP1388386A2 (en) 2002-08-06 2004-02-11 Fanuc Ltd Wire contact/non contact boundary position detecting apparatus of wire cut discharge machine
JP4850316B1 (en) * 2011-04-11 2012-01-11 三菱電機株式会社 EDM machine
JP2012236257A (en) * 2011-05-12 2012-12-06 Elenix Inc Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle
EP3115140A1 (en) 2015-07-08 2017-01-11 Fanuc Corporation Wire electrical discharge machine
WO2018092196A1 (en) * 2016-11-15 2018-05-24 三菱電機株式会社 Wire electric discharge machine and method of determining reference position

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062724A (en) * 2001-08-27 2003-03-05 Brother Ind Ltd Wire electric discharge machine, method and program for determining reference position
EP1388386A2 (en) 2002-08-06 2004-02-11 Fanuc Ltd Wire contact/non contact boundary position detecting apparatus of wire cut discharge machine
EP1388386A3 (en) * 2002-08-06 2004-11-24 Fanuc Ltd Wire contact/non contact boundary position detecting apparatus of wire cut discharge machine
US7054712B2 (en) 2002-08-06 2006-05-30 Fanuc Ltd Wire contact/noncontact boundary position detecting apparatus of wire cut discharge machine
US9459610B2 (en) 2011-04-11 2016-10-04 Mitsubishi Electric Corporation Electric discharge machine with contact detector and position detector
JP4850316B1 (en) * 2011-04-11 2012-01-11 三菱電機株式会社 EDM machine
WO2012140723A1 (en) * 2011-04-11 2012-10-18 三菱電機株式会社 Electrical discharge machining device
CN103476529A (en) * 2011-04-11 2013-12-25 三菱电机株式会社 Electrical discharge machining device
JP2012236257A (en) * 2011-05-12 2012-12-06 Elenix Inc Method and device for performing pore electric discharge machining on tip concave part of spout of injection nozzle
EP3115140A1 (en) 2015-07-08 2017-01-11 Fanuc Corporation Wire electrical discharge machine
KR20170007149A (en) * 2015-07-08 2017-01-18 화낙 코퍼레이션 Wire electrical discharge machine
KR101867674B1 (en) * 2015-07-08 2018-06-15 화낙 코퍼레이션 Wire electrical discharge machine
US10024644B2 (en) 2015-07-08 2018-07-17 Fanuc Corporation Wire electrical discharge machine
WO2018092196A1 (en) * 2016-11-15 2018-05-24 三菱電機株式会社 Wire electric discharge machine and method of determining reference position
JP6342073B1 (en) * 2016-11-15 2018-06-13 三菱電機株式会社 Wire electric discharge machine and method for determining reference position

Also Published As

Publication number Publication date
JP4017764B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
KR0171509B1 (en) Wire discharge machining device and method thereof
CN111687503B (en) Wire electric discharge machine and wire electric discharge machining method
WO1997018052A1 (en) Method and instrument for determining position where wire electrode is in contact with workpiece
JP2000107945A (en) Positioning method of reference position in wire cut electrical discharge machining
KR930002471B1 (en) Wire electrode vertically setting method and device for wire cut electric discharge machine
US6747237B2 (en) Method of and device for adjusting perpendicularity of wire of wire-cut electric discharge machine
US4703144A (en) EDM control system to maximize efficiency by controlling the gap width
JPS63267121A (en) Wire-cut electric discharge machining device
US20050072760A1 (en) Wire electric discharge machine
US4366360A (en) Method of and apparatus for determining relative position of a tool member to a workpiece in a machine tool
US7113884B1 (en) Positioning apparatus for an electrical discharge machine and a method therefor
JP2016212798A (en) Numerical controller equipped with workpiece installation error correcting function using machining starting hole
JP4678711B2 (en) Die-sinker EDM
WO2006078096A1 (en) Method for automatically measuring electrode attrition rate of electric discharge machine drill
CN111745241B (en) Wire electric discharge machine and end face position determining method
KR940003986Y1 (en) Wire cutting electronic discharging machine
JP6997119B2 (en) Wire electric discharge machine
JPH09174339A (en) Method and device for wire electric corrosion
JPH0478411B2 (en)
JP2667183B2 (en) Machining error correction control method in Die-sinker EDM
JPS60108229A (en) Electric-discharge machining device
JP3335741B2 (en) Small hole electric discharge machine
JPH0138615B2 (en)
KR100594857B1 (en) Method for measuring the setting error of the work piece of electric discharge machine drill apparatus
JP3691892B2 (en) Method of vertically extending wire electrodes in a wire-cut electric discharge machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees