JP2012234806A - 燃料電池システム及びその制御方法 - Google Patents

燃料電池システム及びその制御方法 Download PDF

Info

Publication number
JP2012234806A
JP2012234806A JP2012095574A JP2012095574A JP2012234806A JP 2012234806 A JP2012234806 A JP 2012234806A JP 2012095574 A JP2012095574 A JP 2012095574A JP 2012095574 A JP2012095574 A JP 2012095574A JP 2012234806 A JP2012234806 A JP 2012234806A
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant gas
supply path
side electrode
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012095574A
Other languages
English (en)
Inventor
Mitsuisa Matsumoto
充功 松本
Takashi Koyama
貴嗣 小山
Kazuyoshi Miyajima
一嘉 宮島
Hitoshi Nishio
仁 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012095574A priority Critical patent/JP2012234806A/ja
Publication of JP2012234806A publication Critical patent/JP2012234806A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】簡単な構成及び工程で、大型の三方弁を不要にするとともに、所望の運転状態を確保することを可能にする。
【解決手段】燃料電池システム10は、複数の発電セル12が積層された燃料電池14を備える。燃料電池14に酸化剤ガスを供給する酸化剤ガス供給路36及び前記燃料電池14から前記酸化剤ガスを排出する酸化剤ガス排出路38に、それぞれ封止弁44、46が配置される。燃料電池システム10では、酸化剤ガス供給路36から分岐し、燃料電池14が収容される燃料電池室54内に開口する分岐供給路48と、前記分岐供給路48に配置される開閉弁52とを備える。
【選択図】図1

Description

本発明は、電解質膜の両側にカソード側電極及びアノード側電極が設けられた電解質膜・電極構造体を有する発電セルを備えるとともに、前記カソード側電極に供給される酸化剤ガス及び前記アノード側電極に供給される燃料ガスの電気化学反応により発電する燃料電池を備える燃料電池システム及びその制御方法に関する。
例えば、固体高分子型燃料電池は、高分子イオン交換膜からなる電解質膜の両側に、それぞれアノード側電極及びカソード側電極を設けた電解質膜・電極構造体(MEA)を、一対のセパレータによって挟持している。
一方のセパレータと電解質膜・電極構造体との間には、アノード側電極に燃料ガスを供給するための燃料ガス流路が形成されるとともに、他方のセパレータと前記電解質膜・電極構造体との間には、カソード側電極に酸化剤ガスを供給するための酸化剤ガス流路が形成されている。さらに、各燃料電池を構成し、互いに隣接するセパレータ間には、電極範囲内に冷却媒体を流すための冷却媒体流路が形成されている。
この種の燃料電池では、特に燃料電池電気自動車に搭載される際に、燃料電池ボックス内に収容された状態で搭載される場合がある。その際、燃料電池ボックス内には、燃料電池を収容するための燃料電池室が形成されており、この燃料電池室内を換気するための換気装置が用いられている。この換気装置は、例えば、燃料電池の水素ラインから水素が進入したことを検出すると、その水素を換気ファンによって燃料電池ボックスの外部に排出する機能を有している。
また、車載用燃料電池では、車体床下やフロントボックス等の限定されたスペース内を燃料電池室として燃料電池を搭載する場合がある。このため、燃料電池が配置されるスペース内、すなわち、燃料電池室内では、上記の燃料電池ボックス内と同様に換気する必要がある。
そこで、例えば、特許文献1に開示されている燃料電池ボックス換気装置が知られている。この燃料電池ボックス換気装置は、図7に示すように、三方弁1、換気配管2、換気ファン3、排出口4、水素検出センサ5及び制御装置6によって構成されている。
そして、燃料電池ボックスBの内部の水素が、水素検出センサ5により検出されると、その検出値に応じて三方弁1がスーパーチャージャ7から燃料電池Vに供給されている空気を、換気配管2から前記燃料電池ボックスB内に放出させている。
特開2003−132916号公報
しかしながら、上記の特許文献1では、燃料電池ボックス換気装置により換気処理をしながら、燃料電池Vによる発電を継続する場合に、三方弁1では、発電側のエア流路、すなわち、前記燃料電池Vに供給されるエア流量が減少してしまう。
例えば、この種の三方弁1では、燃料電池Vと換気配管2とに分配されるエア流量が同量となり、燃料電池電気自動車の走行に影響を及ぼすおそれがある。
本発明は、この種の問題を解決するものであり、簡単な構成及び工程で、大型の三方弁を不要にするとともに、所望の運転状態を確保しながら、燃料電池ボックスの換気処理を行うことが可能な燃料電池システム及びその制御方法を提供することを目的とする。
本発明は、電解質膜の両側にカソード側電極及びアノード側電極が設けられた電解質膜・電極構造体を有する発電セルを備えるとともに、前記カソード側電極に供給される酸化剤ガス及び前記アノード側電極に供給される燃料ガスの電気化学反応により発電する燃料電池と、前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給路及び前記燃料電池から前記酸化剤ガスを排出する酸化剤ガス排出路に、それぞれ配置される封止弁とを備える燃料電池システム及びその制御方法に関するものである。
この燃料電池システムでは、酸化剤ガス供給路の封止弁よりも上流から分岐し、燃料電池が収容される燃料電池室内に開口する分岐供給路と、前記分岐供給路に配置される開閉弁とを備えている。
また、この燃料電池システムでは、燃料電池は、燃料電池ボックス内に形成される燃料電池室内に収容されることが好ましい。
さらに、この燃料電池システムでは、酸化剤ガス排出路には、燃料電池から排出される燃料ガスを希釈するための希釈装置が配置され、酸化剤ガス供給路と前記酸化剤ガス排出路とには、前記燃料電池をバイパスするバイパス路が設けられるとともに、前記バイパス路には、開閉弁が配設されることが好ましい。
さらにまた、この燃料電池システムの制御方法は、燃料電池が収容される燃料電池室内に水素が所定濃度以上になったか否かを検出する水素濃度検出工程と、前記燃料電池室内の水素の濃度が所定濃度以上になったことが検出された際、酸化剤ガス供給路及び酸化剤ガス排出路のそれぞれの封止弁を閉塞する一方、前記酸化剤ガス供給路の前記封止弁よりも上流から分岐する分岐供給路を開放して前記燃料電池室内に酸化剤ガスを供給する換気工程とを有している。所定濃度とは、水素による影響を回避することができる好ましい濃度をいう。
また、この制御方法では、換気工程が終了した後、封止弁を開放することにより、酸化剤ガス排出路に配設される希釈装置に酸化剤ガスを供給し、前記希釈装置内の燃料ガスを希釈する希釈工程を有することが好ましい。
さらに、この制御方法では、換気工程は、燃料電池をバイパスして酸化剤ガス供給路と酸化剤ガス排出路とを繋ぐバイパス路に設けられた開閉弁を開放することにより、前記酸化剤ガス排出路に配設される希釈装置に酸化剤ガスを供給し、前記希釈装置内の燃料ガスを希釈する希釈工程を有することが好ましい。
さらにまた、この制御方法は、燃料電池が収容される燃料電池室内に水素が所定濃度以上になったか否かを検出する水素濃度検出工程と、前記燃料電池室内の水素の濃度が所定濃度以上になったことが検出された際、酸化剤ガス供給路及び酸化剤ガス排出路のそれぞれの封止弁を開放した状態で、前記酸化剤ガス供給路の前記封止弁よりも上流から分岐する分岐供給路を開放して前記燃料電池室内に前記酸化剤ガスを供給する換気工程とを有している。
本発明では、燃料電池室内の水素濃度が検出された際、酸化剤ガス供給路及び酸化剤ガス排出路のそれぞれの封止弁が閉塞される一方、前記酸化剤ガス供給路から分岐する分岐供給路を開放して前記燃料電池室内に酸化剤ガスが供給されている。
このため、封止弁の他、分岐供給路に配置される開閉弁を用いるだけでよく、大型の三方弁を不要にすることが可能になる。しかも、封止弁及び開閉弁を同時に開放させることができ、燃料電池の発電に必要な酸化剤ガス量を確保することが可能になる。従って、特に燃料電池電気自動車の走行に影響を与えることがない。これにより、簡単な構成及び工程で、所望の運転状態を確保することができる。
本発明の第1〜第3の実施形態に係る制御方法が適用される燃料電池システムの概略構成図である。 本発明の第1の実施形態に係る制御方法を説明するフローチャートである。 本発明の第2の実施形態に係る制御方法を説明するフローチャートである。 本発明の第3の実施形態に係る制御方法を説明するフローチャートである。 本発明の第4の実施形態に係る制御方法が適用される燃料電池システムの概略構成説明図である。 本発明の第4の実施形態に係る制御方法を説明するフローチャートである。 特許文献1に開示されている燃料電池ボックス換気装置の概略説明図である。
図1に示すように、本発明の第1〜第3の実施形態に係る制御方法が適用される燃料電池システム10は、例えば、燃料電池電気自動車等の燃料電池車両に搭載される車載用燃料電池システムを構成する。
燃料電池システム10は、複数の発電セル12が積層(スタック)される燃料電池14を備える。燃料電池14は、電解質膜・電極構造体(MEA)16が、カソード側セパレータ18及びアノード側セパレータ20間に挟持される。電解質膜・電極構造体16は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜22と、前記固体高分子電解質膜22を挟持するカソード側電極24及びアノード側電極26とを備える。
カソード側電極24及びアノード側電極26は、カーボンペーパ等からなるガス拡散層と、白金合金が表面に担持された多孔質カーボン粒子が前記ガス拡散層の表面に一様に塗布されて形成される電極触媒層とを有する。電極触媒層は、固体高分子電解質膜22の両面に形成されている。
カソード側セパレータ18の電解質膜・電極構造体16に向かう面には、酸化剤ガス通路28が形成される。アノード側セパレータ20の電解質膜・電極構造体16に向かう面には、燃料ガス通路30が形成される。互いに隣接するカソード側セパレータ18とアノード側セパレータ20との間には、冷却媒体通路(図示せず)が形成される。
燃料電池14には、酸化剤ガス供給装置32が接続される。酸化剤ガス供給装置32は、エアポンプ34を備え、前記エアポンプ34に酸化剤ガス供給路36の一端が接続される。酸化剤ガス供給路36の他端は、燃料電池14に接続されて酸化剤ガス通路28の入口側に連通する。燃料電池14には、酸化剤ガス通路28の出口側に連通して、酸化剤ガス排出路38の一端が接続される。この酸化剤ガス排出路38の他端は、希釈装置40に接続されるとともに、前記希釈装置40には、前記燃料電池14の燃料ガス通路30を循環する燃料ガスをパージするための水素パージライン42が接続される。
酸化剤ガス供給路36及び酸化剤ガス排出路38には、それぞれ封止弁44、46が配置される。封止弁44、46は、燃料電池14の停止時に閉じられることにより、前記燃料電池14への酸化剤ガスの流入及び排出を停止する。このため、特に起動停止による電極の酸化による劣化を抑制することができる。
酸化剤ガス供給路36から分岐供給路48が分岐する。この分岐供給路48は、封止弁44の上流側から分岐しており、燃料電池14に向かって開口する開口部50が形成される。分岐供給路48を流通する酸化剤ガス流量は、酸化剤ガス供給路36を流通する酸化剤ガス流量に比べて少流量に設定されるとともに、前記分岐供給路48には、開閉弁52が配置される。
燃料電池14は、燃料電池室54に配設される。この燃料電池室54は、例えば、燃料電池ボックス56内に形成される。燃料電池ボックス56内には、燃料電池14、分岐供給路48及び水素濃度を検出するための水素検出センサ58が、前記燃料電池ボックス56の重力方向上方に収容される。燃料電池ボックス56には、分岐供給路48と反対側の壁面上方側に、排気口60が形成される。排気口60は、酸化剤ガス供給路36よりも上方に、すなわち、燃料電池ボックス56の上方に配置される。
封止弁44、46、開閉弁52及び水素検出センサ58は、制御部62に接続される。なお、燃料電池14には、図示しないが、燃料ガス供給装置及び冷却媒体供給装置が接続される。
このように構成される燃料電池システム10において、本発明の第1の実施形態に係る制御方法を、図2に示すフローチャートに沿って、以下に説明する。
先ず、燃料電池システム10が搭載されている燃料電池電気自動車(図示せず)の通常走行時には、封止弁44、46が開放される(ステップS1)。このため、酸化剤ガス供給装置32では、エアポンプ34の駆動作用下に、酸化剤ガス供給路36から燃料電池14の酸化剤ガス通路28に酸化剤ガス(空気)が供給される。一方、図示しない燃料ガス供給装置では、高圧水素タンク等から燃料電池14の燃料ガス通路30に燃料ガス(水素ガス)が供給される。
従って、各発電セル12では、カソード側電極24に供給される酸化剤ガス中の酸素と、アノード側電極26に供給される燃料ガス中の水素とが、電気化学的に反応して発電が行われる。このため、燃料電池14から図示しない走行モータに電力が供給されて走行が行われる。
燃料電池14から排出される酸化剤ガスは、酸化剤ガス排出路38から希釈装置40に供給される。一方、燃料ガスは、燃料電池14から排出された後、再度、新たな燃料ガスに混合されて前記燃料電池14に循環供給される。そして、所定の時間又は所定の不純物濃度となった際に、水素パージライン42から希釈装置40に排出されて、空気による希釈が行われ、外部に排出される。
制御部62では、水素検出センサ58により燃料電池ボックス56内の燃料電池室54に所定濃度以上の水素濃度が発生したか否かを検出している(ステップS2)。そして、所定濃度以上の水素濃度が検知されると(ステップS2中、YES)、ステップS3に進む。
このステップS3では、封止弁44、46が閉塞される一方、開閉弁52が開放される。従って、エアポンプ34から酸化剤ガス供給路36に供給される酸化剤ガスは、分岐供給路48に導入されて開口部50から燃料電池室54に吹き出される。これにより、燃料電池室54に進入した水素は、酸化剤ガスにより排気口60から室外に排出されて、燃料電池ボックス56内の換気が行われる。
燃料電池室54の換気が完了すると(ステップS4中、YES)、ステップS5に進んで、開閉弁52が閉塞される。そして、燃料電池電気自動車の運転が停止することにより(ステップS6中、YES)、制御が終了する。
一方、ステップS2において、所定濃度以上の水素濃度が検知されない場合は(ステップS2中、NO)、ステップS7に進んで、イグニッションがオフされたか否かが判断される。イグニッションがオフされると(ステップS7中、YES)、ステップS8に進んで、システム停止処理の制御が行われる。例えば、希釈装置40内に残留する水素の排出処理やディスチャージ処理等が行われる。ディスチャージ処理とは、負荷を繋ぐことによるスタック内の残留ガスの消費をいう。その後、ステップS9に進んで、封止弁44、46が閉塞され、車両の停止により(ステップS6中、YES)、制御が終了する。
なお、ステップS3では、燃料電池ボックス56内の換気を行うために、エアポンプ34により供給される酸化剤ガス流量を増加させることが望ましい。また、ステップS4における換気完了の判断は、水素検出センサ58による検出水素濃度やタイマーによる経過時間等により判断することができる。
この場合、第1の実施形態では、燃料電池室54内の所定濃度以上の水素濃度が検出された際、酸化剤ガス供給路36及び酸化剤ガス排出路38のそれぞれの封止弁44、46が閉塞される。一方、酸化剤ガス供給路36から分岐する分岐供給路48の開閉弁52が開放されて、前記分岐供給路48から燃料電池室54に酸化剤ガスが供給されている。
このため、燃料電池システム10では、封止弁44、46の他、分岐供給路48に配置される開閉弁52を設けるだけでよく、例えば、大型の三方弁を不要にすることが可能になる。しかも、封止弁44、46及び開閉弁52は同時に開放させることができ、燃料電池14には、大流量側に設定される酸化剤ガス供給路36を介して、発電に必要な酸化剤ガス量を確保することが可能になる。一方、開閉弁52は、開放させておくことにより、燃料電池ボックス56内に換気用の空気を、常時、少量だけ供給しておくこともできる。
従って、特に燃料電池電気自動車の走行に影響を与えることがない。これにより、燃料電池システム10では、簡単な構成及び工程で、所望の運転状態を確保することができるという効果が得られる。
次に、本発明の第2の実施形態に係る制御方法について、図3に示すフローチャートに沿って、以下に説明する。
なお、第1の実施形態に係る制御方法と同一の工程については、その詳細な説明は省略する。また、以下に説明する第3以降の実施形態においても同様に、その詳細な説明は省略する。
通常走行時に、所定濃度以上の水素濃度が検知されると(ステップS101〜S102中、YES)、燃料電池ボックス56内の換気処理が行われる(ステップS103、S104)。そして、換気が完了した後(ステップS104中、YES)、ステップS105に進む。
ステップS105では、換気工程が終了した後、開閉弁52が閉塞される一方、封止弁44、46が開放される。このため、エアポンプ34から酸化剤ガス供給路36に供給される酸化剤ガスは、燃料電池14に供給された後、酸化剤ガス排出路38を通って希釈装置40に供給される。従って、希釈装置40内に残存する燃料ガスを希釈して前記希釈装置40から排出させることができる。
希釈装置40の残留水素が排出された後、ステップS106に進んで、封止弁44、46が閉塞される。さらに、車両停止により(ステップS107中、YES)、制御が終了する。
一方、ステップS102で所定濃度以上の水素濃度が検知されない際には(ステップS102中、NO)、ステップS108及びステップS109に進む。ここで、所定のシステム停止処理が行われた後、ステップS106以降に進む。
このように、第2の実施形態では、燃料電池室54の換気工程が終了した後、希釈装置40内の残留水素の排出処理が遂行されるという効果が得られる他、上記の第1の実施形態と同様の効果が得られる。
次いで、本発明の第3の実施形態に係る制御方法について、図4に示すフローチャートに沿って、以下に説明する。
第3の実施形態では、燃料電池電気自動車が走行を継続しながら、燃料電池室54の換気工程を行う方法について説明する。先ず、所定濃度以上の水素濃度が検知されると(ステップS151〜S152中、YES)、封止弁44、46が開放された状態で、すなわち、燃料電池14に酸化剤ガス(及び燃料ガス)が供給されて発電が継続された状態で、燃料電池ボックス56内の換気処理が行われる(ステップS153、S154)。
そして、換気が完了した後(Sステップ154中、YES)、ステップS155に進む。このステップS155では、換気工程が完了した後、開閉弁52が閉塞されて、通常運転が継続される。
一方、換気が完了していないと判断されると(ステップS154中、NO)、ステップS156に進む。このステップS156において、換気完了ではないという判断が所定回数以上カウントされると(ステップS156中、YES)、ステップS157に進み、開閉弁52の開放が継続される。このため、燃料電池電気自動車が走行を継続している間、燃料電池室54の換気工程も継続される。
これにより、第3の実施形態では、燃料電池システム10では、簡単な構成及び工程で、燃料電池室54の換気を行いながら、所望の運転状態を確保することができる等の効果が得られる。
図5は、本発明の第4の実施形態に係る制御方法が適用される燃料電池システム80の概略構成説明図である。なお、第1の実施形態に係る燃料電池システム10と同一の構成要素には、同一の参照符号を付してその詳細な説明は省略する。
燃料電池システム80では、酸化剤ガス供給路36と酸化剤ガス排出路38とに燃料電池14をバイパスするバイパス路82が設けられる。バイパス路82には、バイパス弁として開閉弁84が配設される。
このように構成される燃料電池システム80において、本発明の第4の実施形態に係る制御方法を、図6に示すフローチャートに沿って、以下に説明する。
燃料電池システム80による通常走行時には、封止弁44、46が開放される一方、開閉弁84が閉塞される(ステップS201)。そして、制御部62により所定濃度以上の水素濃度が検知されると(ステップS202中、YES)、ステップS203に進む。ステップS203では、封止弁44、46が閉塞される一方、開閉弁52、84が開放される。
従って、分岐供給路48から燃料電池室54に酸化剤ガスが供給され、燃料電池ボックス56内の換気処理が行われる一方、バイパス路82に酸化剤ガスが供給される。この酸化剤ガスは、燃料電池14をバイパスして希釈装置40に供給されて、前記希釈装置40内の残留水素の希釈排出処理が行われる。
換気処理が完了すると(ステップS204中、YES)、ステップS205に進んで、開閉弁52、84が閉塞される。さらに、ステップS206では、車両停止処理により(ステップS206中、YES)、制御が終了する。一方、所定濃度以上の水素濃度が検知されない際には(ステップS202中、NO)、ステップS207以降の処理が行われる。
このように、燃料電池システム80では、バイパス路82を設けることによって、燃料電池ボックス56内の換気処理と希釈装置40内の残留水素希釈処理とが両立される等、上記の第2の実施形態に係る制御方法と同様の効果が得られる。なお、燃料電池システム80では、上記の第3の実施形態に係る制御方法を行うことができる。
10、80…燃料電池システム 12…発電セル
14…燃料電池 16…電解質膜・電極構造体
22…固体高分子電解質膜 24…カソード側電極
26…アノード側電極 28…酸化剤ガス通路
30…燃料ガス通路 34…エアポンプ
36…酸化剤ガス供給路 38…酸化剤ガス排出路
40…希釈装置 42…水素パージライン
44、46…封止弁 48…分岐供給路
50…開口部 52、84…開閉弁
54…燃料電池室 56…燃料電池ボックス
58…水素検出センサ 82…バイパス路

Claims (7)

  1. 電解質膜の両側にカソード側電極及びアノード側電極が設けられた電解質膜・電極構造体を有する発電セルを備えるとともに、前記カソード側電極に供給される酸化剤ガス及び前記アノード側電極に供給される燃料ガスの電気化学反応により発電する燃料電池と、
    前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給路及び前記燃料電池から前記酸化剤ガスを排出する酸化剤ガス排出路に、それぞれ配置される封止弁と、
    を備える燃料電池システムであって、
    前記酸化剤ガス供給路の前記封止弁よりも上流から分岐し、前記燃料電池が収容される燃料電池室内に開口する分岐供給路と、
    前記分岐供給路に配置される開閉弁と、
    を備えることを特徴とする燃料電池システム。
  2. 請求項1記載の燃料電池システムにおいて、前記燃料電池は、燃料電池ボックス内に形成される前記燃料電池室内に収容されることを特徴とする燃料電池システム。
  3. 請求項1又は2記載の燃料電池システムにおいて、前記酸化剤ガス排出路には、前記燃料電池から排出される前記燃料ガスを希釈するための希釈装置が配置され、
    前記酸化剤ガス供給路と前記酸化剤ガス排出路とには、前記燃料電池をバイパスするバイパス路が設けられるとともに、
    前記バイパス路には、開閉弁が配設されることを特徴とする燃料電池システム。
  4. 電解質膜の両側にカソード側電極及びアノード側電極が設けられた電解質膜・電極構造体を有する発電セルを備えるとともに、前記カソード側電極に供給される酸化剤ガス及び前記アノード側電極に供給される燃料ガスの電気化学反応により発電する燃料電池と、
    前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給路及び前記燃料電池から前記酸化剤ガスを排出する酸化剤ガス排出路に、それぞれ配置される封止弁と、
    を備える燃料電池システムの制御方法であって、
    前記燃料電池が収容される燃料電池室内に水素が所定濃度以上になったか否かを検出する水素濃度検出工程と、
    前記燃料電池室内の水素の濃度が所定濃度以上になったことが検出された際、前記酸化剤ガス供給路及び前記酸化剤ガス排出路のそれぞれの前記封止弁を閉塞する一方、前記酸化剤ガス供給路の前記封止弁よりも上流から分岐する分岐供給路を開放して前記燃料電池室内に前記酸化剤ガスを供給する換気工程と、
    を有することを特徴とする燃料電池システムの制御方法。
  5. 請求項4記載の制御方法において、前記換気工程が終了した後、前記封止弁を開放することにより、前記酸化剤ガス排出路に配設される希釈装置に前記酸化剤ガスを供給し、前記希釈装置内の前記燃料ガスを希釈する希釈工程を有することを特徴とする燃料電池システムの制御方法。
  6. 請求項4記載の制御方法において、前記換気工程は、前記燃料電池をバイパスして前記酸化剤ガス供給路と前記酸化剤ガス排出路とを繋ぐバイパス路に設けられた開閉弁を開放することにより、前記酸化剤ガス排出路に配設される希釈装置に前記酸化剤ガスを供給し、前記希釈装置内の前記燃料ガスを希釈する希釈工程を有することを特徴とする燃料電池システムの制御方法。
  7. 電解質膜の両側にカソード側電極及びアノード側電極が設けられた電解質膜・電極構造体を有する発電セルを備えるとともに、前記カソード側電極に供給される酸化剤ガス及び前記アノード側電極に供給される燃料ガスの電気化学反応により発電する燃料電池と、
    前記燃料電池に前記酸化剤ガスを供給する酸化剤ガス供給路及び前記燃料電池から前記酸化剤ガスを排出する酸化剤ガス排出路に、それぞれ配置される封止弁と、
    を備える燃料電池システムの制御方法であって、
    前記燃料電池が収容される燃料電池室内に水素が所定濃度以上になったか否かを検出する水素濃度検出工程と、
    前記燃料電池室内の水素の濃度が所定濃度以上になったことが検出された際、前記酸化剤ガス供給路及び前記酸化剤ガス排出路のそれぞれの前記封止弁を開放した状態で、前記酸化剤ガス供給路の前記封止弁よりも上流から分岐する分岐供給路を開放して前記燃料電池室内に前記酸化剤ガスを供給する換気工程と、
    を有することを特徴とする燃料電池システムの制御方法。
JP2012095574A 2011-04-22 2012-04-19 燃料電池システム及びその制御方法 Pending JP2012234806A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095574A JP2012234806A (ja) 2011-04-22 2012-04-19 燃料電池システム及びその制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011096102 2011-04-22
JP2011096102 2011-04-22
JP2012095574A JP2012234806A (ja) 2011-04-22 2012-04-19 燃料電池システム及びその制御方法

Publications (1)

Publication Number Publication Date
JP2012234806A true JP2012234806A (ja) 2012-11-29

Family

ID=47434902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095574A Pending JP2012234806A (ja) 2011-04-22 2012-04-19 燃料電池システム及びその制御方法

Country Status (1)

Country Link
JP (1) JP2012234806A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134929A (ja) * 2016-01-26 2017-08-03 スズキ株式会社 燃料電池システム
JP7382428B2 (ja) 2022-02-03 2023-11-16 本田技研工業株式会社 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134929A (ja) * 2016-01-26 2017-08-03 スズキ株式会社 燃料電池システム
JP7382428B2 (ja) 2022-02-03 2023-11-16 本田技研工業株式会社 燃料電池システム

Similar Documents

Publication Publication Date Title
JP5743792B2 (ja) 燃料電池システム
WO2007117018A1 (ja) 燃料電池運転システム及び燃料電池運転システムにおける弁の凍結防止方法
JP5940891B2 (ja) 燃料電池システムの換気方法
JP5504293B2 (ja) 燃料電池システムの運転停止方法および燃料電池システム
JP5383737B2 (ja) 燃料電池システム及びその発電停止方法
US8691460B2 (en) Method of stopping operation of fuel cell system
JP2015056387A (ja) 燃料電池システム及びその運転方法
JP2010153218A (ja) 可逆セルの運転切り替え方法
US8936885B2 (en) Fuel cell system
JP5665684B2 (ja) 燃料電池システム
JP2008210705A (ja) 燃料電池用気泡除去システム及びこれを備えた燃料電池システム
JP5872315B2 (ja) 燃料電池システムの起動方法および起動装置
JP2010108756A (ja) 燃料電池システムおよび燃料電池システムのパージ制御方法
JP2012234806A (ja) 燃料電池システム及びその制御方法
JP6389835B2 (ja) 燃料電池システムの出力加速時における圧力制御方法
JP2005108698A (ja) 燃料電池システム
JP4397686B2 (ja) 燃料電池の反応ガス供給装置
JP5583536B2 (ja) 燃料電池システムの運転停止方法
JP6023403B2 (ja) 燃料電池システム及びその運転停止方法
JP2009134977A (ja) 燃料電池システム
JP5480086B2 (ja) 燃料電池システムの運転停止方法
JP2008288038A (ja) 燃料電池の掃気方法、加湿器、及び燃料電池システム
JP2009164050A (ja) 燃料電池システム
JP4643968B2 (ja) 燃料電池システム
JP2008181811A (ja) 燃料電池システム及びそのパージ方法