JP2012232292A - Absorption tower, and biological deodorization apparatus using the same - Google Patents

Absorption tower, and biological deodorization apparatus using the same Download PDF

Info

Publication number
JP2012232292A
JP2012232292A JP2012094675A JP2012094675A JP2012232292A JP 2012232292 A JP2012232292 A JP 2012232292A JP 2012094675 A JP2012094675 A JP 2012094675A JP 2012094675 A JP2012094675 A JP 2012094675A JP 2012232292 A JP2012232292 A JP 2012232292A
Authority
JP
Japan
Prior art keywords
gas
liquid
absorption tower
contact layer
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012094675A
Other languages
Japanese (ja)
Other versions
JP5966555B2 (en
Inventor
Tomomi Hatsutani
智美 初谷
Sakae Fukunaga
栄 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012094675A priority Critical patent/JP5966555B2/en
Publication of JP2012232292A publication Critical patent/JP2012232292A/en
Application granted granted Critical
Publication of JP5966555B2 publication Critical patent/JP5966555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide an absorption tower and a biological deodorization apparatus in which the shape of a sponge material can be kept for a long period of time, and the advantage thereof as a porous material is used, and the absorption efficiency of an odorous substance or the like can be maintained for a long period time.SOLUTION: The absorption tower includes: a gas-liquid contact layer; a liquid supply device supplying a liquid to the gas-liquid contact layer; and a gas-supplying part supplying a gas to the gas-liquid contact layer, wherein a prescribed component included in the gas is absorbed into the liquid at the gas-liquid contact layer. The gas-liquid contact layer includes: two or more porous materials of a plate or sheet shape being parallel by a standing position; and two or more insertion members disposed to be brought into contact with the porous material alternately, and sandwiching the porous material. The insertion members have an unevenness surface profile, and form a gap in which the gas can pass by the unevenness at a space with the porous material. The biological deodorization apparatus includes the absorption tower, the gas-liquid contact layer retains a microorganism that can decompose an odorous substance, the liquid is water, and the odorous substance included in the gas is absorbed by the water and is decomposed by using the microorganism.

Description

本発明は、多孔質体を用いて気体中の物質を気液接触によって液体に吸収する吸収塔、及び、吸収塔の多孔質体に微生物を担持して気体中の悪臭物質を微生物の作用によって除去する生物脱臭装置に関する。   The present invention relates to an absorption tower that absorbs a substance in a gas into a liquid by gas-liquid contact using a porous body, and a microorganism that is supported on the porous body of the absorption tower and converts a malodorous substance in the gas by the action of the microorganism. The present invention relates to a biological deodorization apparatus to be removed.

粒状又は片状の充填材や多孔質体を用いて気液接触により気体中に含まれる物質を吸収する吸収塔は様々な用途に用いられ、その代表的なものに脱臭装置がある。中でも、生物脱臭装置は、臭気物質を分解可能な微生物を担持した充填材に水を通過させると共に、気相中の臭気物質を水に溶解させて微生物による分解を進行させるので、化学薬剤を殆ど使用する必要がなく、低コストであるため、広く普及している(例えば、下記非特許文献1)。生物脱臭装置の性能を決める要素には、臭気物質の吸収効率及びその微生物による分解効率があり、臭気物質の吸収効率は、充填材の表面積、特に濡れ面積に大きく支配される。従って、吸収効率を上げるためには、比表面積が大きい親水性の充填材を使用することが望ましい。又、微生物が充填材表面に繁殖することを考慮すると、微生物による分解効率の点からも比表面積が大きい充填材の使用が好ましい。しかし、比表面積が大きい充填材として、細かい粒子の充填材を堆積させて用いた場合、通気性が悪く、微生物の繁殖による目詰まりも生じ易い。このため、生物脱臭装置では、目詰まり防止及び通気性確保のためにある程度以上の大きさ(具体的には5cm程度以上)の充填材が用いられ、吸収効率及び分解効率はある程度犠牲にせざるを得ない。その結果、生物脱臭装置は、コストは安くても、吸収効率及び分解効率の低さを補うために広い敷地を要するという評価がされてきた。   Absorption towers that absorb a substance contained in a gas by gas-liquid contact using a granular or piece-like filler or a porous material are used for various applications, and a typical example is a deodorizing apparatus. Among them, the biological deodorization apparatus allows water to pass through a filler carrying microorganisms capable of decomposing odorous substances, and dissolves odorous substances in the gas phase in water to promote decomposition by microorganisms. Since it does not need to be used and is low-cost, it is widely used (for example, Non-Patent Document 1 below). Factors that determine the performance of the biological deodorization apparatus include absorption efficiency of odorous substances and decomposition efficiency by microorganisms. The absorption efficiency of odorous substances is largely controlled by the surface area of the filler, particularly the wetted area. Therefore, in order to increase the absorption efficiency, it is desirable to use a hydrophilic filler having a large specific surface area. In consideration of the propagation of microorganisms on the surface of the filler, it is preferable to use a filler having a large specific surface area from the viewpoint of the efficiency of decomposition by microorganisms. However, when a fine particle filler is used as a filler having a large specific surface area, the air permeability is poor and clogging due to the propagation of microorganisms is likely to occur. For this reason, in biological deodorization devices, a filler of a certain size (specifically, about 5 cm or more) is used to prevent clogging and ensure air permeability, and the absorption efficiency and decomposition efficiency must be sacrificed to some extent. I don't get it. As a result, the biological deodorization apparatus has been evaluated to require a large site in order to compensate for the low absorption efficiency and low decomposition efficiency even though the cost is low.

このような欠点を克服する手段として、下記特許文献1では、多孔質のスポンジを吸収塔の充填材として用いた生物脱臭装置を開示している。この文献では、スポンジの充填形態について開示されていない。下記特許文献2では、圧縮強度の大きい粒状充填材と吸水性充填材とを混合して充填する生物脱臭装置が記載され、ポリプロピレン粒状体と親水性ポリウレタンフォームとの混合充填を例示する。   As means for overcoming such drawbacks, Patent Document 1 below discloses a biological deodorization apparatus using a porous sponge as a filler for an absorption tower. This document does not disclose a sponge filling form. In the following Patent Document 2, a biological deodorization apparatus is described in which a granular filler having a high compressive strength and a water-absorbing filler are mixed and filled, and an example of mixed filling of polypropylene granules and hydrophilic polyurethane foam is illustrated.

一方、廃水処理の分野においては、スポンジを利用した処理技術の開発が進められており、スポンジシートを折り曲げて、屈曲部を丸棒及び支持板で支持した廃水処理装置(下記特許文献3)や、スポンジ塊をシートや線材で繋いて吊り下げて汚水の濾過に使用する散水濾床装置(下記特許文献4,5)などが提案されている。   On the other hand, in the field of wastewater treatment, development of treatment technology using a sponge has been advanced, and a wastewater treatment apparatus (Patent Document 3 below) in which a sponge sheet is bent and a bent portion is supported by a round bar and a support plate, In addition, a sprinkling filter bed apparatus (Patent Documents 4 and 5 below) that hangs a sponge lump with a sheet or a wire and suspends the sponge lump and uses it for filtering sewage has been proposed.

特公平6−91934号公報Japanese Patent Publication No. 6-91934 特許第3922920号Japanese Patent No. 3922920 特許第2620300号Japanese Patent No. 2620300 特許第3443725号Japanese Patent No. 3443725 特許第3586745号Japanese Patent No. 3586745

建設省都市局下水道部監修、「下水道施設計画・設計指針と解説」(1994年版)、社団法人日本下水道協会発行Supervised by the Ministry of Construction City Bureau Sewerage Department, "Sewerage Facility Planning and Design Guidelines and Explanations" (1994 edition), published by Japan Sewerage Association

一般的には、スポンジを吸収塔の充填材として使用する場合、キューブ状のスポンジ塊を積み上げて使用する。この場合、ある程度の大きさのキューブを用いることによって目詰まりを防止しつつ通気性を確保できるように構成することは可能であるので、多孔質による比表面積の大きさを活用して生物脱臭装置の効率を改善することが期待できる。しかし、実際には、例えば上記特許文献1の生物脱臭装置等においてキューブ状スポンジを積み上げて長く使用すると、吸水及び微生物の繁殖による重みによって下層のスポンジが押し潰され、スポンジ層の高さが低くなり(所謂、沈み込み)、その結果、通気が困難になる。この点に関し、上記特許文献2の生物脱臭装置では沈み込みは抑制されるが、圧縮強度を有する充填材によって却って吸水性充填材の占める容積が制限されるために、期待されるほどの効率向上は困難である。   In general, when a sponge is used as a packing material for an absorption tower, a cube-like sponge lump is stacked and used. In this case, since it is possible to make it possible to ensure air permeability while preventing clogging by using a cube of a certain size, the biological deodorization device utilizing the size of the specific surface area due to the porous Can be expected to improve efficiency. However, in actuality, for example, when a cube-like sponge is stacked and used for a long time in the biological deodorization apparatus of Patent Document 1, for example, the lower sponge is crushed by weight due to water absorption and microbial propagation, and the height of the sponge layer is low. (So-called sinking), and as a result, ventilation becomes difficult. In this regard, in the biological deodorization apparatus of Patent Document 2, sinking is suppressed, but the volume occupied by the water-absorbing filler is limited by the filler having compressive strength, so that the expected efficiency improvement is achieved. It is difficult.

又、特許文献3の構成では、スポンジの重量増加による負荷が局所に集中するため、沈み込みの抑制は充分でなく、長期的な強度の問題は解消されない。特許文献4,5の構成では、製作工程が非常に煩雑で手間がかかるため、実施には経済的困難等が伴い、実用に不向きである。   Moreover, in the structure of patent document 3, since the load by the weight increase of sponge concentrates locally, suppression of subduction is not enough and the problem of long-term intensity | strength is not solved. In the configurations of Patent Documents 4 and 5, the manufacturing process is very complicated and time-consuming, so implementation is accompanied by economical difficulties and is not suitable for practical use.

本発明の課題は、上述の問題を解決し、スポンジ材の利点を活かしつつ、長期使用に伴う潰れを抑制して吸収効率の低下を防止可能な吸収塔を実用に供し易い構成で提供することである。   An object of the present invention is to provide an absorption tower that can solve the above-described problems and that can effectively use the advantages of a sponge material and suppress collapse due to long-term use and prevent a decrease in absorption efficiency in a configuration that is easy to use in practice. It is.

又、本発明の課題は、スポンジ材の利点を活かしつつ、長期使用に伴う潰れを抑制して吸収効率及び微生物による臭気物質の分解効率の低下を防止可能な生物脱臭装置を実用に供し易い構成で提供することである。   Another object of the present invention is to provide a biological deodorization apparatus that can prevent the deterioration of absorption efficiency and decomposition efficiency of odorous substances caused by microorganisms by utilizing the advantage of sponge material and suppressing crushing associated with long-term use. Is to provide in.

更に、本発明の課題は、軽量化や使用条件に応じた設計変更に対応し易い構成を有する吸収塔及びそれを用いた生物脱臭装置を提供することである。   Furthermore, the subject of this invention is providing the absorption tower which has a structure which is easy to respond to weight reduction and the design change according to use conditions, and a biological deodorizing apparatus using the same.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、板状のスポンジ材と、スポンジ材を挟持する差込部材とを用いることによって、スポンジ材の潰れを抑制して吸収効率の低下を防止可能であることを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have conducted extensive research and as a result, suppressed the collapse of the sponge material by using a plate-like sponge material and an insertion member that sandwiches the sponge material. The inventors have found that it is possible to prevent a decrease in absorption efficiency, and have completed the present invention.

本発明の一態様によれば、吸収塔は、気液接触層と、前記気液接触層に液体を供給する液体供給装置と、前記気液接触層にガスを供給するガス供給部とを有し、前記気液接触層における前記液体と前記ガスとの接触によって前記ガスに含まれる所定成分を前記液体に吸収させる吸収塔であって、前記気液接触層は、立位で並列する複数の平板状又はシート状の多孔質材と、前記複数の多孔質材と交互に当接配置されて前記多孔質材を挟持する複数の差込部材とを有し、前記差込部材は、凹凸した表面形状を有し、前記凹凸によって前記多孔質材との間に前記ガスが通過可能な間隙を形成することを要旨とする。   According to an aspect of the present invention, the absorption tower includes a gas-liquid contact layer, a liquid supply device that supplies liquid to the gas-liquid contact layer, and a gas supply unit that supplies gas to the gas-liquid contact layer. And an absorption tower that allows the liquid to absorb a predetermined component contained in the gas by contact between the liquid and the gas in the gas-liquid contact layer, wherein the gas-liquid contact layer includes a plurality of standing in parallel It has a flat plate-like or sheet-like porous material, and a plurality of insertion members that are alternately placed in contact with the plurality of porous materials to sandwich the porous material, and the insertion members are uneven. The gist is to form a gap that has a surface shape and allows the gas to pass between the porous material and the porous material.

前記多孔質材は、孔径500μm〜3mmの連続気孔を有し、空孔率が90容積%以上のスポンジ材を用いることができる。前記差込部材は剛性素材製で保形性を有する。   As the porous material, a sponge material having continuous pores having a pore diameter of 500 μm to 3 mm and a porosity of 90% by volume or more can be used. The insertion member is made of a rigid material and has shape retention.

又、本発明の一態様によれば、生物脱臭装置は、上記吸収塔を有し、前記気液接触層は、臭気物質を分解可能な微生物を保持し、前記液体は水であり、前記所定成分としてガスに含まれる臭気物質を水に吸収して前記微生物を用いて分解する。   According to another aspect of the present invention, a biological deodorization apparatus includes the absorption tower, the gas-liquid contact layer holds microorganisms capable of decomposing odorous substances, the liquid is water, The odorous substance contained in the gas as a component is absorbed in water and decomposed using the microorganism.

上記生物脱臭装置において、前記多孔質材として、ポリウレタンエーテルフォーム製のスポンジ材を使用でき、前記微生物には、硫黄酸化細菌又はアンモニア酸化細菌を使用できる。   In the biological deodorization apparatus, a sponge material made of polyurethane ether foam can be used as the porous material, and sulfur oxidizing bacteria or ammonia oxidizing bacteria can be used as the microorganism.

本発明によれば、実用に供し易い構成を用いて、スポンジ材の長期使用に伴う潰れを抑制して吸収効率の低下を防止可能な吸収塔が提供可能であり、これを用いて微生物を担持させることにより、スポンジ材の利点を活かして臭気物質の吸収効率及び微生物による分解効率を長期間維持可能な生物脱臭装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide an absorption tower that can prevent crushing associated with long-term use of a sponge material and prevent a decrease in absorption efficiency by using a configuration that is easy to put to practical use, and can be used to carry microorganisms. By doing so, it is possible to provide a biological deodorization apparatus that can maintain the absorption efficiency of odorous substances and the decomposition efficiency by microorganisms for a long period by taking advantage of the sponge material.

本発明における差込部材及びスポンジ材の例を説明するための説明図。Explanatory drawing for demonstrating the example of the insertion member and sponge material in this invention. 本発明に係る吸収塔の第1の実施形態を示す上面図(a)、鉛直方向断面図(b)、(b)におけるA−A線断面図(c)、(b)におけるB−B線断面図(d)。The top view (a) which shows 1st Embodiment of the absorption tower concerning this invention, AA sectional view (c) in a vertical direction sectional view (b), (b), BB line in (b) Sectional drawing (d). 本発明に係る吸収塔の第2の実施形態を示す鉛直方向断面図。The vertical direction sectional view showing a 2nd embodiment of the absorption tower concerning the present invention. 本発明に係る吸収塔の第3の実施形態を示す上面図(a)、鉛直方向断面図(b)、(b)におけるA−A線断面図(c)、(b)におけるB−B線断面図(d)。A top view (a) which shows a 3rd embodiment of an absorption tower concerning the present invention, a vertical direction sectional view (b), AA line sectional view in (b) (c), a BB line in (b) Sectional drawing (d). 本発明に係る吸収塔の第4の実施形態を示す鉛直方向断面図。The vertical direction sectional view showing a 4th embodiment of the absorption tower concerning the present invention. 本発明に係る吸収塔の第5の実施形態を示す上面図(a)、鉛直方向断面図(b)、(b)におけるA−A線断面図(c)、(b)におけるB−B線断面図(d)。Top view (a) which shows 5th Embodiment of the absorption tower which concerns on this invention, AA sectional view (c) in a vertical direction sectional view (b), (b), BB line in (b) Sectional drawing (d). 本発明に係る吸収塔の第6の実施形態を示す鉛直方向断面図。The vertical direction sectional view showing the 6th embodiment of the absorption tower concerning the present invention. 本発明に係る吸収塔の第7の実施形態を示す鉛直方向断面図。The vertical direction sectional view showing a 7th embodiment of the absorption tower concerning the present invention. 本発明に係る吸収塔の第8の実施形態を示す鉛直方向断面図。The vertical direction sectional view showing the 8th embodiment of the absorption tower concerning the present invention. 図9の吸収塔を構成する各部の要素を示し、(a)〜(c)は側面図、(d)は下面図、(e)は(b)におけるA−A線断面図、(f)は(b)におけるB−B線断面図。The element of each part which comprises the absorption tower of FIG. 9 is shown, (a)-(c) is a side view, (d) is a bottom view, (e) is the sectional view on the AA line in (b), (f) FIG. 4B is a sectional view taken along line BB in FIG. 図9の吸収塔の構成要素を示し、(a)は主要構造の側面図、(b)は架台の側面図。The component of the absorption tower of FIG. 9 is shown, (a) is a side view of main structure, (b) is a side view of a mount frame.

ガス中の物質を液体に吸収させる気液接触を行うために多孔質体を用いる場合、ガスの通過を容易にするためには、ある程度以上の大きさの気孔を有する必要があるので、吸収塔での使用に適する多孔質体は、柔軟で弾性変形し易いスポンジ状となる。スポンジは、保水によって重くなり、又、微生物を繁殖させて担持した場合には微生物の重量が増加するので、吸収塔に使用されるスポンジ材は、時間の経過に伴って重量が増加する。これにより、荷重が大きくなる下部ほどスポンジは潰れ易くなり、材料疲労等に伴ってスポンジの潰れ及び目詰まりが進行するため、長期使用は困難になる。   When a porous body is used to perform gas-liquid contact for absorbing a substance in a gas into a liquid, it is necessary to have pores of a certain size or larger in order to facilitate the passage of the gas. The porous body suitable for use in the above becomes a sponge that is flexible and easily elastically deformed. The sponge becomes heavier due to water retention, and when the microorganisms are propagated and supported, the weight of the microorganisms increases. Therefore, the weight of the sponge material used in the absorption tower increases with time. As a result, the lower the portion where the load becomes larger, the sponge is easily crushed, and the sponge is crushed and clogged with material fatigue and the long-term use becomes difficult.

本発明においては、平板状又はシート状の多孔質材と剛性素材製の保形性差込部材とを使用し、複数の多孔質材間に複数の差込部材を介在させて立位の多孔質材を差込部材によって挟持する。具体的には、鉛直方向に立設する複数の平板状又はシート状の多孔質材と複数の板状差込部材とを交互に並列配置して互いに当接させることによって多孔質材を差込部材で挟持し、これらを一体として気液接触層を構成する。差込部材は、凹凸した表面形状を有し、凸部において多孔質材と当接し、凹部において多孔質材との間にガスが通過可能な間隙が形成される。差込部材によって挟持される多孔質材は、差込部材の凸部によって支持されるため、含水及び微生物の繁殖による重量増加に対する耐久性が得られるので、多孔質材としてスポンジ素材を用いても、潰れ・沈み込み等の形状変化が抑制される。差込部材の凹部における間隙によってガスの流通及び気液接触が促進される。   In the present invention, a plate-like or sheet-like porous material and a rigid material shape-retaining insert member are used, and a plurality of insert members are interposed between a plurality of porous members, and a standing porous material The material is sandwiched between the insertion members. Specifically, the porous material is inserted by alternately arranging a plurality of flat plate-like or sheet-like porous materials standing in the vertical direction and a plurality of plate-like insertion members in parallel. The gas-liquid contact layer is formed by sandwiching these members together. The insertion member has an uneven surface shape, abuts against the porous material at the convex portion, and forms a gap through which gas can pass between the porous material and the concave portion. Since the porous material sandwiched by the insertion member is supported by the convex portion of the insertion member, durability against an increase in weight due to moisture content and propagation of microorganisms can be obtained, so even if a sponge material is used as the porous material In addition, shape changes such as crushing and sinking are suppressed. Gas flow and gas-liquid contact are promoted by the gap in the recess of the insertion member.

以下、本発明に係る吸収塔及び生物脱臭装置について詳細に記載する。   Hereinafter, the absorption tower and biological deodorization apparatus according to the present invention will be described in detail.

本発明の吸収塔及び生物脱臭装置は、気液接触するための多孔質体として複数の板状又はシート状の多孔質材を使用し、空孔率が高いスポンジ材が好適に用いられる。複数の差込部材を用いて複数のスポンジ材を挟持して一体化することによって吸収塔の気液接触層を形成する。   In the absorption tower and biological deodorization apparatus of the present invention, a plurality of plate-like or sheet-like porous materials are used as the porous body for gas-liquid contact, and a sponge material having a high porosity is preferably used. A gas-liquid contact layer of the absorption tower is formed by sandwiching and integrating a plurality of sponge materials using a plurality of insertion members.

気液接触層を構成する多孔質材は、優れた通液性及び通気性を発揮するために、具体的には、液相に対する親和性及び耐性を有し、孔径500μm〜3mm程度の連続気孔を有するスポンジ材が好ましい。好適な接触効率を得るために、空孔率が90容積%程度以上の発泡材が好適に使用され、空孔率の高さによって柔質で弾性を示す素材となる。但し、自重に耐える保形性を保持するためには、空孔率は概して97容積%程度が上限となる。多孔質材には様々な天然又は合成発泡材があり、吸収塔や生物脱臭装置に用いる多孔質材は、成形が容易で軽量であることが望ましいことから、発泡プラスチックによるスポンジ材が適しており、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンやポリウレタン、ポリエステル等のプラスチックの発泡材が挙げられる。液相として水を使用する吸収塔においては、親水性を有する多孔質材が用いられ、生物脱臭装置においては、更に、微生物を担持・繁殖可能な素材で構成された多孔質材であることが要点となる。従って、親水性ポリウレタン、メラミン、ポリエステル等の発泡材の使用が好ましく、加水分解による劣化等を考慮すると、ポリウレタンエーテルフォームが最適である。   In order to exhibit excellent liquid permeability and air permeability, the porous material constituting the gas-liquid contact layer specifically has affinity and resistance to the liquid phase and has continuous pores having a pore diameter of about 500 μm to 3 mm. A sponge material having In order to obtain suitable contact efficiency, a foam material having a porosity of about 90% by volume or more is preferably used, and becomes a material that is flexible and elastic depending on the height of the porosity. However, in order to maintain the shape retaining property that can withstand its own weight, the upper limit of the porosity is generally about 97% by volume. Porous materials include various natural or synthetic foam materials. For porous materials used in absorption towers and biological deodorization devices, foaming plastic sponge materials are suitable because they are easy to mold and lightweight. Examples thereof include polyolefin foams such as polyethylene and polypropylene, and foamed plastics such as polyurethane and polyester. In an absorption tower that uses water as the liquid phase, a porous material having hydrophilicity is used, and in a biological deodorization device, the porous material is further composed of a material capable of supporting and propagating microorganisms. The key point. Accordingly, it is preferable to use a foaming material such as hydrophilic polyurethane, melamine, or polyester, and polyurethane ether foam is optimal in view of degradation due to hydrolysis.

立設したスポンジ材の側面を差込部材によって挟持してスポンジ材の潰れを好適に抑制するためには、スポンジ材は、厚さが10〜50mm程度の平板状又はシート状であることが好ましく、立設状態での多孔質材の高さは50〜300cm程度が好ましい。スポンジ材が過度に厚いと、厚みの中央部における窪みが生じ易くなる。スポンジ材が高過ぎると、スポンジ最下部において荷重が差込部材の支持を上回って潰れが起こり易くなる。   In order to suppress the collapse of the sponge material by sandwiching the side surface of the standing sponge material with the insertion member, the sponge material is preferably a flat plate or a sheet having a thickness of about 10 to 50 mm. The height of the porous material in the standing state is preferably about 50 to 300 cm. If the sponge material is excessively thick, a depression at the center of the thickness tends to occur. If the sponge material is too high, the load at the bottom of the sponge exceeds the support of the plug-in member, and crushing easily occurs.

差込部材は、保形性(強度)を有する剛質素材を用いて、表面が凹凸した形状に形成され、その強度は、含水したスポンジ材の重量負荷によって変形しない耐久性を備えていればよい。差込部材は軽量で薄形に成形できることが望ましく、その好ましい素材としては、例えば、塩化ビニル、FRP、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリスチレン、ABS等のポリマー樹脂類や、ステンレス鋼、アルミニウム等の腐食し難い金属材などが挙げられるが、これらに限定されず、水に対する耐久性、耐腐食性を有する硬質素材から好適なものを適宜選択して使用してよい。   The insertion member is formed in a shape with an uneven surface using a rigid material having shape retention (strength), and its strength is durable so as not to be deformed by the weight load of the water-containing sponge material. Good. The insertion member is desirably lightweight and can be molded into a thin shape. Preferred materials thereof include, for example, polymer resins such as vinyl chloride, FRP, polyethylene, polypropylene, polycarbonate, polystyrene, and ABS, and corrosion of stainless steel, aluminum, and the like. Examples thereof include, but are not limited to, metal materials that are difficult to be used, and suitable materials selected from hard materials having durability against water and corrosion resistance may be used.

差込部材の形状は、差込部材の主体部分が真直であるか屈曲するかによって2つに分類することができ、第1は、薄い平板を湾曲又は屈折させた屈曲板状、つまり、主体部が屈曲した形状であり、第2は、平板表面に突起を設けた直板状、つまり、主体部が真直ぐに伸びた形状である。図1の(a)は、平板を所定周期で波形に湾曲させた差込部材1aを、図1の(b)は、所定周期で蛇腹形に屈折させた差込部材1bを、図1の(c)は、平板表面に所定間隔で複数の突起pを設けた(或いは窪みを形成した)差込部材1cを例示する。差込部材1cを鉛直に立設すると、突起pは、水平断面が長方形の四角棒状突起であって鉛直方向に伸長し、隣接する突起との間に鉛直方向に伸長する溝が構成され、溝の水平断面は長方形である。差込部材1a〜1cの何れも表面形状が規則的に凹凸するので、スポンジ材3と差込部材1a〜1cとを交互に並列させると、差込部材1a〜1cの凸部においてスポンジ材3と当接して、スポンジ材間の平板状空間を差込部材が占めて互いに平行に配置される。   The shape of the insertion member can be classified into two types depending on whether the main part of the insertion member is straight or bent, and the first is a bent plate shape in which a thin flat plate is bent or refracted, that is, the main body The second shape is a bent shape, and the second is a straight plate shape having protrusions on the flat plate surface, that is, a shape in which the main portion extends straight. 1A shows an insertion member 1a obtained by bending a flat plate into a waveform at a predetermined cycle, and FIG. 1B shows an insertion member 1b bent in a bellows shape at a predetermined cycle. (C) illustrates the insertion member 1c provided with a plurality of protrusions p (or formed with depressions) at a predetermined interval on the flat plate surface. When the insertion member 1c is erected vertically, the protrusion p is a rectangular bar-shaped protrusion having a rectangular horizontal cross section and extends in the vertical direction, and a groove extending in the vertical direction is formed between adjacent protrusions. The horizontal cross section is rectangular. Since the surface shape of each of the insertion members 1a to 1c is regularly uneven, when the sponge material 3 and the insertion members 1a to 1c are alternately arranged in parallel, the sponge material 3 is formed at the convex portions of the insertion members 1a to 1c. And the insertion member occupies a flat space between the sponge members and is arranged in parallel with each other.

気液接触層における気液接触効率を高めるためには、スポンジ材間に差込部材が占める空間をできる限り小さく構成することが望ましく、実用的にはこの空間の幅(スポンジ材間の距離)を10mm程度以下、好ましくは3〜7mm程度に薄く構成するとよい。差込部材1a〜cの凹部においてスポンジ材3との間に間隙が形成され、鉛直方向の通気が可能である。この通気用の間隙は、過剰に広いと、ガスや水の逃げ道となって気液接触効率を低下させる恐れがあるので、突起p間の溝の幅及び深さ(通気幅)が0.25〜2.5cm程度となるように構成することが好ましい。凹部の断面形状は、正方形、長方形、台形等の矩形や三角形を含む多角形、半円、半楕円、波形などの様々な形状から適宜選択してよい。図1(c)の棒状突起Pを角柱状突起に変更して突起間の溝の形状を碁盤目等の各種網目状としても良い。   In order to improve the gas-liquid contact efficiency in the gas-liquid contact layer, it is desirable to make the space occupied by the insertion member between the sponge materials as small as possible. Practically, the width of this space (distance between the sponge materials) The thickness may be as thin as about 10 mm or less, preferably about 3 to 7 mm. A gap is formed between the insertion member 1a-c and the sponge material 3 in the recesses, and ventilation in the vertical direction is possible. If the air gap is excessively wide, gas or water escapes and the gas-liquid contact efficiency may be reduced. Therefore, the width and depth of the groove between the protrusions p (the air width) is 0.25. It is preferable to configure so as to be about ˜2.5 cm. The cross-sectional shape of the recess may be appropriately selected from various shapes such as a rectangle such as a square, a rectangle, and a trapezoid, and a polygon including a triangle, a semicircle, a semi-ellipse, and a waveform. The rod-like protrusions P in FIG. 1C may be changed to prismatic protrusions so that the grooves between the protrusions may have various mesh shapes such as grids.

差込部材の凸部が規則的に位置することによって、スポンジ材は、差込部材の凸部によって全体として均等にバランス良く支持される。スポンジ材を強固に挟持するには、差込部材とスポンジ材との接触面積が多いことが好ましく、この点では、差込部材の凸部が平面でスポンジ材と当接する図1(c)の差込部材1cが最適である。曲面でスポンジ材と当接する場合は、スポンジ材が僅かに弾性変形する程度に押圧することによって接触面積が増え、又、スポンジ材の歪みの局所集中を抑制できるので、これらを考慮すると、図1(a)のような湾曲面で接触する差込部材1aは好適である。尚、図1(a)では、差込部材1aの湾曲が互いに並行するように配置されているが、スポンジ材を中心として両側の差込部材の湾曲が面対称になるように向きを変更すると、スポンジ材は対称に挟持されるので、支持の確度及び密接性が得られ易い。   When the convex portions of the insertion member are regularly positioned, the sponge material is supported by the convex portions of the insertion member evenly and in a balanced manner as a whole. In order to firmly hold the sponge material, it is preferable that the contact area between the insertion member and the sponge material is large. In this respect, the convex portion of the insertion member is in contact with the sponge material in FIG. 1 (c). The insertion member 1c is optimal. When the curved surface is in contact with the sponge material, the contact area is increased by pressing the sponge material to an extent that it is slightly elastically deformed, and local concentration of distortion of the sponge material can be suppressed. The plug-in member 1a that makes contact with the curved surface as shown in FIG. In FIG. 1 (a), the insertion members 1a are arranged so that the curves of the insertion members 1a are parallel to each other. However, when the orientation is changed so that the curves of the insertion members on both sides are symmetrical with respect to the sponge material. Since the sponge material is sandwiched symmetrically, it is easy to obtain the accuracy and closeness of support.

スポンジ材の数をnとした時、差込部材の数がn±1の範囲内であると、これらを交互に配置でき、n+1である時にはスポンジ材の両末端が差込部材で挟持され、n−1である時には図1のように末端がスポンジ材の配列となり、この場合の両端のスポンジ材は、片面を吸収塔の側壁内面によって挟持することができる。差込部材の一部を、例えば、凹凸のない平板状差込部材によって代替することも可能である。部分的にスポンジ材間の差込部材を欠いた配列(差込部材の数<n−1)であっても利用は可能であるが、差込部材を欠いた部分はスポンジの潰れ抑止効果がないので、スポンジ材及び差込部材が交互に位置することが望ましい。差込部材は、厚さ方向に貫通する細孔を設けて、差込部材を介した両側間の通気が可能なように構成しても良い。この場合は、差込部材の強度が不足しないように細孔の寸法、数及び分布に留意すると良い。   When the number of sponge materials is n, if the number of insertion members is within a range of n ± 1, these can be alternately arranged, and when n + 1, both ends of the sponge material are sandwiched between insertion members, When n−1, the ends are arranged in a sponge material as shown in FIG. 1. In this case, the sponge materials at both ends can be sandwiched on one side by the inner wall of the absorption tower. It is also possible to substitute a part of the insertion member with, for example, a flat insertion member having no unevenness. Although it can be used even in an arrangement in which the insertion members between the sponge materials are partially missing (number of insertion members <n−1), the portion lacking the insertion members has an effect of suppressing the collapse of the sponge. Therefore, it is desirable that the sponge material and the insertion member are alternately positioned. The insertion member may be configured to be provided with pores penetrating in the thickness direction so as to allow ventilation between both sides via the insertion member. In this case, it is preferable to pay attention to the size, number and distribution of the pores so that the strength of the insertion member is not insufficient.

上述のように交互に立設配置した複数の差込部材と複数のスポンジ材とを一組のユニットとして、吸収塔又は生物脱臭装置の気液接触層を構成する。差込部材の高さは、スポンジ材と実質的に同等であることが好ましく、スポンジ材より差込部材の高さが高い場合は、気液接触を阻害するガスの逃げ道とならないように留意し、差を20cm程度以下とすることが望ましい。差込部材及びスポンジ材を一組のユニットに拘束するための拘持具を使用しても良いが、吸収塔又は生物脱臭装置の気液接触層としての空間に差込部材及びスポンジ材を纏めて装着した時にこれらが装置内壁面に密接した状態で嵌合固定されるように吸収塔の内部構造を設計することによって、拘持具を用いずに差込部材及びスポンジ材を密接固定することができる。立設配置した差込部材及びスポンジ材は、スポンジ材が僅かに弾性変形する程度に水平方向に押圧すると、差込部材の凸部とスポンジ材との密接性が高まり、スポンジ材の弾性反発によって差込部材による挟持が強固になる。従って、吸収塔又は生物脱臭装置の気液接触層を構成する空間の幅を、スポンジ材の幅及び差込部材が占有する平板状空間の幅(スポンジ材間の距離)の合計量より若干小さく設定すると、スポンジ材及び差込部材を吸収塔又は生物脱臭装置に装着した時にこれらが互いに圧接されて強固に挟持され、使用時の重量負荷によるスポンジ材の潰れを好適に抑制できるので好ましい。   The gas-liquid contact layer of the absorption tower or the biological deodorization apparatus is configured by using a plurality of insertion members and a plurality of sponge materials alternately arranged as described above as a set of units. The height of the insertion member is preferably substantially the same as that of the sponge material. If the height of the insertion member is higher than that of the sponge material, care should be taken not to cause a gas escape path that hinders gas-liquid contact. The difference is desirably about 20 cm or less. A holding tool for restraining the plug member and the sponge material in a set of units may be used, but the plug member and the sponge material are collected in a space as a gas-liquid contact layer of an absorption tower or a biological deodorization device. By designing the internal structure of the absorption tower so that these are fitted and fixed in close contact with the inner wall surface of the device, the insertion member and sponge material can be fixed closely without using a holding tool. Can do. When the insertion member and the sponge material arranged upright are pressed in the horizontal direction to such an extent that the sponge material is slightly elastically deformed, the closeness between the convex portion of the insertion member and the sponge material increases, and the elastic repulsion of the sponge material causes The clamping by the insertion member becomes strong. Therefore, the width of the space constituting the gas-liquid contact layer of the absorption tower or biological deodorization device is slightly smaller than the total amount of the width of the sponge material and the width of the flat space occupied by the insertion member (distance between the sponge materials). If it sets, when a sponge material and an insertion member are attached to an absorption tower or a biological deodorizing device, they are pressed against each other and firmly sandwiched, and the collapse of the sponge material due to a weight load during use can be suitably suppressed.

上記構成において、立設されるスポンジ材及び差込部材を水平方向に貫通する支持棒を設けると、差込部材に横架される支持棒によってスポンジ材が垂下保持され、荷重がスポンジ材の最下部に集中して潰れるのを防止できるので、スポンジ材の厚さ及び高さを増大させることが可能である。従って、上述の適正範囲より厚い又は高いスポンジ材を使用する場合には、支持棒を設けることによって対処できる。支持棒がスポンジ材の上部を貫通するように構成すると好適である。支持棒は、差込部材と同様に、剛性及び耐水性を有する素材で製造すると良く、例えば、各種プラスチックやステンレス鋼等の耐蝕性金属、セラミックス等が挙げられる。支持棒によって支持されるスポンジ材の荷重が支持面においてなるべく均等に分散することが好ましいので、例えば、断面が円形又は楕円形の支持棒を使用し、これに対応する貫通孔をスポンジ材及び差込部材に設けるとよい。支持棒の太さは5〜25mm程度が好ましく、20〜80cm程度の間隔で垂直にスポンジ材及び差込部材を貫通するように平行に配置すると好適である。或いは、スポンジ材と差込部材とを局所的に接着剤で接合することによって支持棒の代わりとすることも可能である。   In the above configuration, when a support rod that penetrates the standing sponge material and the insertion member in the horizontal direction is provided, the sponge material is suspended by the support rod that is horizontally mounted on the insertion member, and the load is the maximum of the sponge material. Since it can prevent collapsing in the lower part, it is possible to increase the thickness and height of the sponge material. Therefore, when using a sponge material thicker or higher than the above-mentioned appropriate range, it can be dealt with by providing a support bar. It is preferable that the support bar is configured to penetrate the upper part of the sponge material. The support bar is preferably made of a material having rigidity and water resistance, like the insertion member, and examples thereof include various plastics, corrosion-resistant metals such as stainless steel, ceramics, and the like. Since it is preferable that the load of the sponge material supported by the support rod is distributed as evenly as possible on the support surface, for example, a support rod having a circular or oval cross section is used, and the corresponding through hole is formed between the sponge material and the difference. It may be provided on the insert member. The thickness of the support rod is preferably about 5 to 25 mm, and it is preferable that the support rod is arranged in parallel so as to penetrate the sponge material and the insertion member vertically at intervals of about 20 to 80 cm. Alternatively, it is possible to replace the support rod by locally joining the sponge material and the insertion member with an adhesive.

以下に、上述のスポンジ材及び差込部材のユニットを気液接触層(微生物担持層)として使用する吸収塔の実施形態について説明する。以下の記載においては、吸収塔を生物脱臭装置として用いる実施形態として説明し、液相として水を用い、臭気物質を分解する微生物をスポンジ材に担持させて、臭気物質を特定物質として吸収して微生物によって分解するが、スポンジ材に微生物を担持させずに、使用する液相及びスポンジ材の素材を、ガス中の所定成分の吸収に適した液体及びこれに耐性を有する素材に変更すれば、吸収塔として汎用可能な使用形態となる。   Hereinafter, an embodiment of an absorption tower using the above-described sponge material and plug-in unit as a gas-liquid contact layer (microorganism support layer) will be described. In the following description, an absorption tower will be described as an embodiment using a biological deodorization device, water is used as a liquid phase, a microorganism that decomposes an odorous substance is supported on a sponge material, and the odorous substance is absorbed as a specific substance. If it is decomposed by microorganisms, but the sponge material is not loaded with microorganisms, the liquid phase used and the material of the sponge material are changed to a liquid suitable for absorption of predetermined components in the gas and a material resistant to this, It can be used as a general absorption tower.

図2は、吸収塔の第1の実施形態を示し、吸収塔10は、上述のような差込部材1及びスポンジ材3からなる2組の多孔質ユニット5A,5Bを気液接触層として有する。図2の(a)は、吸収塔10の上面図、(b)は鉛直方向断面図、(c)は、(b)におけるA−A線断面図、(d)は、(b)におけるB−B線断面図である。この実施形態では、差込部材1として、図1(a)の差込部材1aを使用しているが、これに限定されず、必要に応じて他の差込部材に変更して良い。   FIG. 2 shows a first embodiment of the absorption tower, and the absorption tower 10 has two sets of porous units 5A and 5B composed of the insertion member 1 and the sponge material 3 as described above as gas-liquid contact layers. . 2A is a top view of the absorption tower 10, FIG. 2B is a vertical sectional view, FIG. 2C is a sectional view taken along line AA in FIG. 2B, and FIG. FIG. In this embodiment, although the insertion member 1a of Fig.1 (a) is used as the insertion member 1, it is not limited to this, You may change to another insertion member as needed.

吸収塔10は、内部に気液接触層及び循環水貯留槽を構成するための箱形の本体槽11と、水Wを循環させるためのポンプ13、循環ライン15及びディストリビュータ17を有し、ポリ塩化ビニル製の差込部材1及びポリウレタンエーテルフォーム製のスポンジ材3からなる2組の多孔質ユニット5A,5Bを上下に配置して本体槽11内に装着することによって縦型配置の二段式気液接触層が構成される。ディストリビュータ17は、下方に向けて水を散布するための多数の穴が設けられた管を用いて構成され、多孔質ユニット5Aの上方に水平に配置され、スポンジ材3の上面全体に散水できるように、必要に応じて管を分岐させて多孔質ユニット5Aの上方全体に張り巡らせることにより局所散水を防止する。本体槽11の底部は、水Wが貯留されて循環水貯留槽を構成する。本体槽11の外に付設されるポンプ13を駆動することによって、底部の水Wは、本体槽11底部の側壁を貫通する貫通口19から槽外へ送出されてポンプ13から循環ライン15を介して本体槽11の頂部に供給され、本体槽11内のディストリビュータ17から多孔質ユニット5Aに散布される。散布された水は、各ユニットのスポンジ材3と差込部材1との隙間及びスポンジ材3中の空孔を通り、多孔質ユニット5Bの下部から排出されて本体槽11の底部に落下する。   The absorption tower 10 has a box-shaped main body tank 11 for constituting a gas-liquid contact layer and a circulating water storage tank, a pump 13 for circulating water W, a circulation line 15 and a distributor 17 inside. Two sets of porous units 5A and 5B composed of a vinyl chloride insertion member 1 and a polyurethane ether foam sponge material 3 are arranged vertically and mounted in the main body tank 11 so as to be vertically arranged. A gas-liquid contact layer is formed. The distributor 17 is configured using a pipe provided with a large number of holes for spraying water downward, and is disposed horizontally above the porous unit 5A so that the entire upper surface of the sponge material 3 can be sprinkled with water. In addition, local watering is prevented by branching the pipe as needed and stretching it over the entire porous unit 5A. The bottom of the main body tank 11 stores the water W and constitutes a circulating water storage tank. By driving the pump 13 attached outside the main body tank 11, the water W at the bottom is sent out of the tank through the through-hole 19 penetrating the side wall of the bottom of the main body tank 11 and from the pump 13 through the circulation line 15. Is supplied to the top of the main body tank 11 and sprayed from the distributor 17 in the main body tank 11 to the porous unit 5A. The sprayed water passes through the gap between the sponge material 3 and the insertion member 1 of each unit and the holes in the sponge material 3, is discharged from the lower part of the porous unit 5 </ b> B, and falls to the bottom of the main body tank 11.

多孔質ユニット5Bの下方には、本体槽11の側壁を貫通する通気口21が、底部に貯留される水Wの水位より上方の位置に設けられる。臭気物質を含むガスGは、通気口21から本体槽11内に導入され、多孔質ユニット5Bの下側から供給されて上方へ向かって気液接触層を通過する。従って、本体槽11内において、気液接触層を通過する水Wの移動方向とガスGの移動方向は逆である。ガスGは、気液接触層を通過する間にスポンジ材3の気孔に拡散して、臭気物質はスポンジ材3に含まれる水に吸収される。これにより浄化されたガスG’は、本体槽11の頂部中央に設けられる通気口23から排出される。通気口23は、ディストリビュータ17より上方位置であれば、本体槽11の頂部周縁部や側壁に設けても良い。   Below the porous unit 5B, a vent 21 penetrating the side wall of the main body tank 11 is provided at a position above the water level of the water W stored in the bottom. The gas G containing an odorous substance is introduced into the main body tank 11 from the vent hole 21, supplied from the lower side of the porous unit 5B, and passes upward through the gas-liquid contact layer. Therefore, in the main body tank 11, the moving direction of the water W passing through the gas-liquid contact layer and the moving direction of the gas G are opposite. The gas G diffuses into the pores of the sponge material 3 while passing through the gas-liquid contact layer, and the odorous substance is absorbed by the water contained in the sponge material 3. The gas G ′ thus purified is discharged from the vent 23 provided at the center of the top of the main body tank 11. As long as the vent 23 is located above the distributor 17, the vent 23 may be provided on the peripheral edge of the top or the side wall of the main body tank 11.

この実施形態においては、本体槽11内部で多孔質ユニット5A,5Bの各々を支持するための通水性、通気性の支持板25A,25Bを有する。支持板25A,25Bは、多孔質ユニットの荷重に耐える強度及び耐水性を備える素材で製造され、その形状は、網目状薄板状、スリットを有するスクリーン状、貫通孔を穿設した厚板等のような通水/通気穴を有する様々な形状から必要に応じて適宜選択して使用すればよい。   In this embodiment, the main body tank 11 has water-permeable and air-permeable support plates 25A and 25B for supporting the porous units 5A and 5B. The support plates 25A and 25B are manufactured of a material having strength and water resistance that can withstand the load of the porous unit. The shape of the support plates 25A and 25B is, for example, a mesh-like thin plate shape, a screen shape having slits, or a thick plate having through holes. What is necessary is just to select suitably from various shapes which have such a water flow / ventilation hole as needed.

本体槽11の一側壁に開閉可能な扉を設けて差込部材1及びスポンジ材3を側面から挿入可能に構成することによって、多孔質ユニット5A,5Bの装着及び取外しが容易になる。更に、本体槽11の側壁内側に、支持板25A,25Bを支持するための突起又は水平方向の案内溝を設けて、支持板を突起上又は案内溝内を水平方向に摺動させることによって槽内への装着・取り外しができるように構成すると、装置の組み立て・メンテナンス等において有利である。   By providing a door that can be opened and closed on one side wall of the main body tank 11 so that the insertion member 1 and the sponge material 3 can be inserted from the side surface, the porous units 5A and 5B can be easily mounted and removed. Further, a protrusion or a horizontal guide groove for supporting the support plates 25A and 25B is provided inside the side wall of the main body tank 11, and the support plate is slid in the horizontal direction on the protrusion or in the guide groove. If it is configured so that it can be mounted and removed, it is advantageous in assembling and maintaining the apparatus.

装着された多孔質ユニット5A,5Bは、本体槽11内に嵌合され、各ユニットの両端に位置するスポンジ材3の外側面は、本体槽11の側壁に密接して支持され、各スポンジ材3の両端縁及び各差込部材1の両端縁も本体槽11の側壁に密接する。この際、スポンジ材3の幅及び差込部材1が占有する平板状空間の幅の合計が、本体槽11の内部空間の横幅より若干大きくなるように設定すると、槽内に嵌入したスポンジ材3及び差込部材1は互いに水平方向に圧接されて密接性が高まり、ガスの逃げ道をなくすことができる。これに関連して、本体槽11は、スポンジ材3の弾性反発力に抗して多孔質ユニットを収容可能な耐久強度があればよい。   The mounted porous units 5A and 5B are fitted in the main body tank 11, and the outer surfaces of the sponge material 3 located at both ends of each unit are supported in close contact with the side walls of the main body tank 11, and each sponge material is 3 and both end edges of each insertion member 1 are also in close contact with the side wall of the main body tank 11. At this time, if the sum of the width of the sponge material 3 and the width of the flat space occupied by the insertion member 1 is set to be slightly larger than the lateral width of the internal space of the main body tank 11, the sponge material 3 fitted into the tank is inserted. And the insertion member 1 is press-contacted with each other in the horizontal direction, so that the closeness is increased and the gas escape path can be eliminated. In this connection, the main body tank 11 only needs to have a durable strength that can accommodate the porous unit against the elastic repulsion of the sponge material 3.

差込部材1及びスポンジ材3の並列方向は、多孔質ユニット5Aと多孔質ユニット5Bとでは垂直に交差するように配置され、これにより、水及びガスの逃げ道の形成が抑制され、それにより気液接触効率の低下が防止される。この実施形態を応用して、3組以上の多孔質ユニットを上下方向に配置して多段構成とする場合には、差込部材1及びスポンジ材3の並列方向が上下の多孔質ユニットにおいて互いに垂直になるようにすると良い。このように差込部材1及びスポンジ材3の並列方向をユニット毎に交互にする場合、本体槽11の内部の水平断面形状は正方形となる。単独の多孔質ユニットを用いる一段構成、又は、複数の多孔質ユニットにおける差込部材1及びスポンジ材3の並列方向を同一にする多段構成などでは、本体槽11内部の水平断面形状は長方形であっても良い。   The parallel direction of the plug-in member 1 and the sponge material 3 is arranged so that the porous unit 5A and the porous unit 5B intersect perpendicularly, thereby suppressing the formation of water and gas escape passages. A decrease in liquid contact efficiency is prevented. When this embodiment is applied and three or more sets of porous units are arranged in a vertical direction to form a multistage configuration, the parallel direction of the insertion member 1 and the sponge material 3 is perpendicular to each other in the vertical porous units. It is good to become. Thus, when the parallel direction of the insertion member 1 and the sponge material 3 is alternated for each unit, the horizontal cross-sectional shape inside the main body tank 11 is a square. In a one-stage configuration using a single porous unit or a multi-stage configuration in which the parallel direction of the insertion member 1 and the sponge material 3 in the plurality of porous units is the same, the horizontal cross-sectional shape inside the main body tank 11 is rectangular. May be.

臭気物質を分解可能な微生物をスポンジ材3に供給し、本体槽11底部に貯溜される水Wに微生物の成育に必要な栄養塩を添加して循環させると、微生物はスポンジ材3の表面、気孔中や差込部材1の表面で成育・繁殖し、微生物が担持された気液接触層となる。あるいは、予めスポンジ材に微生物培養液を浸透させて微生物を付着させ、これを用いて多孔質ユニットを構成して本体槽11に装着しても良い。多孔質ユニット5A,5Bを水が流下する際にガスGとの接触によって水に溶解した臭気物質は、水中を拡散してスポンジ材3上の微生物に取り込まれて分解されるとともに微生物のエネルギー源となる。本体槽11底部に貯留される水Wにも、スポンジ材3で繁殖する微生物が含まれ、微生物による分解は、底部に貯留される水Wにおいても進行する。従って、気液接触層で微生物による分解を受けずに水中に残存したまま底部に落下する臭気物質は、本体槽11底部の水W中で分解されるか、あるいは、ディストリビュータ17へ還流され、多孔質ユニット5Aに再度供給されて分解される。臭気物質としては、例えば、硫化水素、メチルメルカプタン、硫化メチル、二硫化メチル等の水溶性イオウ化合物や、アンモニア、トリメチルアミン等の水溶性窒素化合物が挙げられる。このような臭気物質の分解に有効な微生物としては、硫黄酸化細菌、アンモニア酸化細菌(硝化細菌)等が挙げられ、例えば、廃水処理に用いられる活性汚泥等に含まれる微生物を適宜採取して利用できる。   When microorganisms capable of decomposing odorous substances are supplied to the sponge material 3 and nutrients necessary for the growth of the microorganisms are added to the water W stored in the bottom of the main body tank 11 and circulated, the microorganisms are formed on the surface of the sponge material 3. It grows and propagates in the pores or on the surface of the insertion member 1 and becomes a gas-liquid contact layer on which microorganisms are supported. Alternatively, a microorganism culture solution may be infiltrated into a sponge material in advance to attach microorganisms, and a porous unit may be configured using this to be attached to the main body tank 11. The odorous substance dissolved in the water by the contact with the gas G when the water flows down the porous units 5A and 5B diffuses in the water, is taken in and decomposed by the microorganisms on the sponge material 3, and is also an energy source for the microorganisms. It becomes. The water W stored at the bottom of the main body tank 11 also contains microorganisms that propagate on the sponge material 3, and the decomposition by the microorganisms proceeds also in the water W stored at the bottom. Therefore, the odorous substance falling to the bottom while remaining in the water without being decomposed by microorganisms in the gas-liquid contact layer is decomposed in the water W at the bottom of the main body tank 11 or returned to the distributor 17 to be porous. It is supplied again to the quality unit 5A and decomposed. Examples of odorous substances include water-soluble sulfur compounds such as hydrogen sulfide, methyl mercaptan, methyl sulfide, and methyl disulfide, and water-soluble nitrogen compounds such as ammonia and trimethylamine. Examples of microorganisms effective for decomposing such odorous substances include sulfur-oxidizing bacteria and ammonia-oxidizing bacteria (nitrifying bacteria). For example, microorganisms contained in activated sludge used for wastewater treatment are appropriately collected and used. it can.

図2の吸収塔10を、ガスG中に含まれる特定物質を物理化学的に吸収する吸収塔として使用する場合は、循環させる水W及びスポンジ材3の素材を、特定物質を吸収し易い液体媒体、及び、液体に耐性を有する素材に変更することができる。例えば、二酸化炭素を吸収する吸収塔の場合にはアルカノールアミンを吸収剤として含有する水溶液に変更すると好適である。吸収された特定物質は分解されないので、ガスの浄化処理を連続して行うには、吸収された特定物質を液体媒体から回収して液体媒体を再生する必要がある。このため、液体媒体を再生するための再生手段を併設して、吸収塔10の底部に貯留する液体が再生手段を介して頂部のディストリビュータ17に還流するように循環させると、吸収塔で吸収された特定物質は再生手段によって回収され、再生された液体を用いて浄化処理を連続して実施できる。二酸化炭素の回収塔として使用する場合は、液体媒体を加熱する加熱装置と気液接触層とを有する再生塔が設けられる。   When the absorption tower 10 of FIG. 2 is used as an absorption tower that physicochemically absorbs a specific substance contained in the gas G, the water W to be circulated and the material of the sponge material 3 are liquids that easily absorb the specific substance. It can be changed to a medium and a material resistant to liquid. For example, in the case of an absorption tower that absorbs carbon dioxide, it is preferable to change to an aqueous solution containing alkanolamine as an absorbent. Since the absorbed specific substance is not decomposed, in order to continuously perform the gas purification process, it is necessary to recover the absorbed specific substance from the liquid medium and regenerate the liquid medium. For this reason, when a regenerating means for regenerating the liquid medium is provided and the liquid stored in the bottom of the absorption tower 10 is circulated to the top distributor 17 through the regenerating means, it is absorbed by the absorption tower. The specific substance is recovered by the regenerating means, and the purification treatment can be continuously performed using the regenerated liquid. When used as a carbon dioxide recovery tower, a regeneration tower having a heating device for heating a liquid medium and a gas-liquid contact layer is provided.

図3は、吸収塔の第2の実施形態を示し、この実施形態では、図2におけるポンプ13を水中ポンプ13’に変更している。詳細には、吸収塔30の本体槽31は、底部側面から横方向に突出する拡張部33が設けられ、横方向に延伸した循環水貯留槽が構成される。拡張部33内に水中ポンプ13’が据え置かれ、水中ポンプ13’によって吸引される水Wは、拡張部33の上壁部を貫通する管を通じて循環ライン15へ送出される。この構成は、吸収塔30からの水漏れ事故の防止に有効である。拡張部33の上壁部に開閉可能な扉を設けて水中ポンプ13’の出し入れを容易にすると、メンテナンスに有利である。上記構成以外については、図2の吸収塔10と同じであるので、その説明は省略する。   FIG. 3 shows a second embodiment of the absorption tower, in which the pump 13 in FIG. 2 is changed to a submersible pump 13 '. Specifically, the main body tank 31 of the absorption tower 30 is provided with an extended portion 33 that protrudes in the lateral direction from the bottom side surface to constitute a circulating water storage tank that extends in the lateral direction. The submersible pump 13 ′ is installed in the extension portion 33, and the water W sucked by the submersible pump 13 ′ is sent to the circulation line 15 through a pipe that penetrates the upper wall portion of the extension portion 33. This configuration is effective in preventing a water leak accident from the absorption tower 30. If an openable / closable door is provided on the upper wall portion of the extension portion 33 to facilitate taking in and out of the submersible pump 13 ', it is advantageous for maintenance. Since the configuration other than the above is the same as the absorption tower 10 of FIG. 2, the description thereof is omitted.

図4は、吸収塔の第3の実施形態を示し、この吸収塔40では、図2の吸収塔10における多孔質ユニット5A,5Bの差込部材1を図1(c)の差込部材1cに変更した多孔質ユニット5A’,5B’を用いている。差込部材1cを用いた場合、スポンジ材3と差込部材1cとの間隙の幅が一定になるので、ガスや水の逃げ道の形成を防止するための寸法調節等を行い易い。上記構成以外については、図2の吸収塔10と同じであるので、その説明は省略する。   FIG. 4 shows a third embodiment of the absorption tower. In this absorption tower 40, the insertion member 1 of the porous units 5A and 5B in the absorption tower 10 of FIG. 2 is replaced with the insertion member 1c of FIG. The porous units 5A ′ and 5B ′ changed to the above are used. When the insertion member 1c is used, the width of the gap between the sponge material 3 and the insertion member 1c is constant, so that it is easy to adjust the dimensions to prevent the formation of gas and water escape passages. Since the configuration other than the above is the same as the absorption tower 10 of FIG. 2, the description thereof is omitted.

図5は、吸収塔の第4の実施形態を示し、この実施形態では、吸収塔50内をガスGが流れる方向が、図2の吸収塔10におけるガスGの流れと逆である。つまり、臭気物質を含むガスGの供給源は、本体槽11の頂部中央の通気口23に接続され、ガスGは、通気口23から本体槽11内に導入されて、多孔質ユニット5Aの上側から下方へ向かって流れる。ガスGが気液接触層を通過する間に臭気物質が水に吸収され、浄化されたガスG’は、本体槽11の底部の通気口21から排出される。この吸収塔50では、気液接触層における水Wの流れとガスGの流れが同方向であるので、流通抵抗が少なく、目詰まりが生じ難くなる。上記構成以外については、図2の吸収塔10と同じであるので、その説明は省略する。   FIG. 5 shows a fourth embodiment of the absorption tower. In this embodiment, the flow direction of the gas G in the absorption tower 50 is opposite to the flow of the gas G in the absorption tower 10 of FIG. That is, the supply source of the gas G containing the odorous substance is connected to the vent 23 at the center of the top of the main body tank 11, and the gas G is introduced into the main body tank 11 from the vent 23 to the upper side of the porous unit 5A. It flows downward from. While the gas G passes through the gas-liquid contact layer, the odorous substance is absorbed by the water, and the purified gas G ′ is discharged from the vent 21 at the bottom of the main body tank 11. In this absorption tower 50, since the flow of water W and the flow of gas G in the gas-liquid contact layer are in the same direction, the flow resistance is small and clogging is less likely to occur. Since the configuration other than the above is the same as the absorption tower 10 of FIG. 2, the description thereof is omitted.

図6は、吸収塔の第5の実施形態を示し、この吸収塔60では、図2の吸収塔10における各多孔質ユニット5A,5Bの差込部材1及びスポンジ材3を水平方向に貫通する支持棒61を有する多孔質ユニット65A,65Bを用いている。この実施形態では、支持棒61は断面が円形のステンレス鋼製丸棒であり、50cm程度の一定間隔で並行する支持棒61が差込部材1及びスポンジ材3を垂直に貫通するように、支持棒61の径に対応する円筒形の貫通孔が各多孔質ユニット65A,65Bの差込部材1及びスポンジ材3の上部に設けられる。支持棒61の長さは、本体槽11の内部の横幅にほぼ等しく、支持棒61を挿通させた差込部材1及びスポンジ材3を本体槽11に嵌入することによって、多孔質ユニット5A,5Bは本体槽11内に密接嵌合され、支持棒61は、差込部材1によって水平に支持されると共にスポンジ材3を垂下保持するので、差込部材1による挟持と相まってスポンジ材3の沈み込み及び潰れを好適に防止する。上記構成以外については、図2の吸収塔10と同じであるので、その説明は省略する。   FIG. 6 shows a fifth embodiment of the absorption tower. In this absorption tower 60, the insertion member 1 and the sponge material 3 of each porous unit 5A, 5B in the absorption tower 10 of FIG. 2 are penetrated in the horizontal direction. Porous units 65A and 65B having a support bar 61 are used. In this embodiment, the support bar 61 is a stainless steel round bar having a circular cross section, and the support bars 61 that are parallel to each other at a constant interval of about 50 cm support the insertion member 1 and the sponge material 3 vertically. Cylindrical through-holes corresponding to the diameter of the rod 61 are provided in the upper part of the insertion member 1 and the sponge material 3 of each porous unit 65A, 65B. The length of the support bar 61 is substantially equal to the inner width of the main body tank 11, and the porous unit 5 </ b> A, 5 </ b> B is inserted by inserting the insertion member 1 and the sponge material 3 through which the support bar 61 is inserted into the main body tank 11. Is closely fitted in the main body tank 11 and the support rod 61 is horizontally supported by the insertion member 1 and holds the sponge material 3 in a suspended state. Therefore, the sponge material 3 sinks together with the sandwiching by the insertion member 1. And preventing collapse. Since the configuration other than the above is the same as the absorption tower 10 of FIG. 2, the description thereof is omitted.

図7は、吸収塔の第6の実施形態を示し、この吸収塔70では、図2の吸収塔10における循環水貯留槽の水位を一定に保つために必要に応じて水を補給するシステム、及び、水中の微生物を活性化するために空気を供給するシステムを設けている。詳細には、本体槽11は、その側壁底部から延伸する導管71、及び、通気口21より下方で循環水貯留槽の水Wの水位より上方に設けられる給水管73を有し、導管71には液面レベルを検知するレベル計75が接続され、レベル計75はポンプ77と電気的に接続されている。レベル計75は、循環貯留槽の水Wの水位を導管71内において検知し、循環水貯溜槽の水Wが蒸発等により減少したときにポンプ77を自動的に駆動して水を補給し、水位が戻ればポンプ77を停止するように、検知した水位に基づいてポンプ77は電気的に制御される。更に、本体槽11の底部に散気管79が設置され、ブロワ81から散気管79へ空気を送ることによって、循環水貯溜槽の水W中に空気が供給され、微生物による臭気物質の分解が促進される。上記構成以外については、図2の吸収塔10と同じであるので、その説明は省略する。   FIG. 7 shows a sixth embodiment of the absorption tower, and in this absorption tower 70, a system for replenishing water as necessary to keep the water level of the circulating water storage tank in the absorption tower 10 of FIG. And the system which supplies air in order to activate the microorganisms in water is provided. Specifically, the main body tank 11 includes a conduit 71 extending from the bottom of the side wall, and a water supply pipe 73 provided below the vent 21 and above the water level of the water W in the circulating water storage tank. Is connected to a level meter 75 for detecting the liquid level, and the level meter 75 is electrically connected to a pump 77. The level meter 75 detects the water level of the water W in the circulation storage tank in the conduit 71, and when the water W in the circulation water storage tank decreases due to evaporation or the like, the pump 77 is automatically driven to replenish water. The pump 77 is electrically controlled based on the detected water level so that the pump 77 is stopped when the water level returns. Further, an air diffuser 79 is installed at the bottom of the main body tank 11, and air is supplied from the blower 81 to the air diffuser 79 so that air is supplied into the water W of the circulating water storage tank, and the decomposition of odorous substances by microorganisms is promoted. Is done. Since the configuration other than the above is the same as the absorption tower 10 of FIG. 2, the description thereof is omitted.

図8は、吸収塔の第7の実施形態を示し、この吸収塔90は、図2の吸収塔10の支持板25Aを省略して、支持板25Bのみで多孔質ユニット5A,5Bの両方を支持するように構成している。これは、差込部材1が、上部の多孔質ユニットの荷重に耐え得る強度を有し、支持板25Bが、多孔質ユニット5A,5Bの両荷重に耐えるに十分な強度である場合に有効な実施形態である。上記構成以外については、図2の吸収塔10と同じであるので、その説明は省略する。   FIG. 8 shows a seventh embodiment of the absorption tower. In this absorption tower 90, the support plate 25A of the absorption tower 10 of FIG. 2 is omitted, and both the porous units 5A and 5B are formed by the support plate 25B alone. It is configured to support. This is effective when the insertion member 1 has sufficient strength to withstand the load of the upper porous unit, and the support plate 25B has sufficient strength to withstand both loads of the porous units 5A and 5B. It is an embodiment. Since the configuration other than the above is the same as the absorption tower 10 of FIG. 2, the description thereof is omitted.

図2〜8に示す吸収塔の本体槽11,31は、例えば鋼材などの耐久強度を有する構造材料で製作されるが、本発明の気液接触層(つまり多孔質ユニット)を頑強な材料で包囲する必要はなく、供給されるガス及び吸収液が適切に気液接触層に導入されるように案内されればよい。つまり、柔軟なシート材等で形成した外被を用いて気液接触層を包むように吸収塔を構成してもよい。気液接触層を包囲する外被が柔軟な素材であると、気液接触層の側面に外被が密着するように締め付けることによって、ガスが気液接触層を通過せずに外側から迂回するのを防止し易いので、短絡による気液接触効率の低下を容易に防ぐことができ、非常に有効である。又、軟質シート製の外被を用いた場合、吸収塔の設計変更に対応し易く、吸収塔を設置する環境及び条件に応じて適宜応用でき、軽量化及び材料費の削減も可能である。   The main tanks 11 and 31 of the absorption tower shown in FIGS. 2 to 8 are made of a structural material having durable strength such as steel, but the gas-liquid contact layer (that is, the porous unit) of the present invention is made of a robust material. It is not necessary to enclose, and it is only necessary to guide the supplied gas and absorption liquid to be appropriately introduced into the gas-liquid contact layer. That is, the absorption tower may be configured so as to wrap the gas-liquid contact layer using a jacket formed of a flexible sheet material or the like. When the envelope surrounding the gas-liquid contact layer is a flexible material, the gas is bypassed from the outside without passing through the gas-liquid contact layer by tightening the envelope so that the outer surface is in close contact with the side surface of the gas-liquid contact layer Therefore, it is possible to easily prevent a decrease in gas-liquid contact efficiency due to a short circuit, which is very effective. In addition, when a jacket made of a soft sheet is used, it is easy to cope with the design change of the absorption tower, and it can be applied as appropriate according to the environment and conditions for installing the absorption tower, and it is possible to reduce the weight and reduce the material cost.

外被は、処理対象のガスによって劣化せず、ガス及び液体に対して非透過性の素材を用いて製造される軟質シートによって作成され、液体及びガスを各々導入・排出するための2つの開口を有する形状、つまり、管状に形成される。軟質シートの素材として、例えば、ポリエチレン、ポリプロピレン、EVA、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリチレンテレフタレート、セロハン等の樹脂や、塩酸ゴム等のエラストマー等が挙げられる。軟質シートの厚さは、柔軟性及び曲げ易さ等の点から、0.03〜3mm程度であると好ましい。単独のシートではガスに対する耐久性に問題がある場合は、2種以上のシートを重ねて用いると良く、例えば、アンモニアに対する耐久性が低いポリ塩化ビニリデンシートや硫化水素に対する耐久性に懸念があるポリ塩化ビニルシートは、高密度ポリエチレンなどのガスに対する耐久性に優れたシートを内側に重ねて使用することによって、それらのガス透過性の低さを活かすことができる。或いは、積層フィルムのシートを用いれば、組み立て作業が煩雑にならずに済む。光透過性のシート、つまり、透明又は半透明のシートを用いると、内部の観察が可能であるので、多孔質ユニットの状態を把握し易い点で有用であり、使用条件に応じた設計変更の要否判断に関しても有利である。   The jacket is made of a soft sheet manufactured using a material that does not deteriorate with the gas to be treated and is impermeable to gas and liquid, and has two openings for introducing and discharging liquid and gas, respectively. In other words, it is formed into a tubular shape. Examples of the material for the soft sheet include resins such as polyethylene, polypropylene, EVA, polyvinyl chloride, polyvinylidene chloride, polyethylene terephthalate, and cellophane, and elastomers such as hydrochloric acid rubber. The thickness of the flexible sheet is preferably about 0.03 to 3 mm from the viewpoints of flexibility and bendability. If there is a problem with durability against gas with a single sheet, it is better to use two or more sheets in layers, for example, polyvinylidene chloride sheet with low durability against ammonia or polysulfuric acid with concern about durability against hydrogen sulfide. The vinyl chloride sheet can make use of the low gas permeability of the sheet by using a sheet excellent in gas resistance such as high-density polyethylene on the inside. Or if the sheet | seat of a laminated | multilayer film is used, an assembly operation will not be complicated. The use of a light-transmitting sheet, that is, a transparent or translucent sheet, is useful in that it is easy to grasp the state of the porous unit because the inside can be observed. It is also advantageous regarding necessity determination.

外被の内周が多孔質ユニットの外周より僅かに小さいと、多孔質ユニットを外被内に挿入した時に、多孔質ユニットの差込部材及びスポンジ材が互いに押圧されてしっかり挟持されると共に、多孔質ユニットの側面が外被と密接するので、ガスが多孔質ユニットと外被との隙間を通過するのが抑制される。但し、外被に引っ張り応力が加わって外被の耐久性が低下する虞があるので、これを回避するには、内周が多孔質ユニットの外周と同程度又はそれより大きい外被を使用し、紐や金属線等の条部材で外被の外側から気液接触層の周囲に締着する方法がある。これによって、気液接触層の側面に周回状の密接状態が形成されて封止される。この際、温熱によって外被の柔軟性を高めてから巻締めると、外被と多孔質ユニットの側面との密閉性が向上する。更に、外被−多孔質ユニット間の密閉性を高め易い形態として、多孔質ユニットと外被との間にガスケットとして機能する弾性部材を介在させる方法がある。具体的には、図9〜図11に示すように、スポンジ等の弾力性の素材で形成した弾性変形可能な環状のクッション9に多孔質ユニットを嵌入して外被7内に挿入し、条部材8を用いて外被7をクッション9上で巻き締める。この場合、クッション9は、多孔質ユニットを周回して外被と多孔質ユニットと間でガスケットの様に機能して弾性圧着によって閉塞性を高めると共に、差込部材1及びスポンジ材3を一体に固定して多孔質ユニット5A,5Bの拘持具としても作用する。   When the inner circumference of the outer jacket is slightly smaller than the outer circumference of the porous unit, when the porous unit is inserted into the outer jacket, the insertion member and the sponge material of the porous unit are pressed against each other and firmly held, Since the side surface of the porous unit is in intimate contact with the jacket, the gas is prevented from passing through the gap between the porous unit and the jacket. However, since there is a possibility that the outer casing may be deteriorated due to tensile stress applied to the outer casing, to avoid this, use an outer casing whose inner circumference is the same as or larger than the outer circumference of the porous unit. There is a method of fastening around the gas-liquid contact layer from the outside of the jacket with a strip member such as a string or a metal wire. Thus, a circular close contact state is formed on the side surface of the gas-liquid contact layer and sealed. At this time, if the outer shell is made flexible by warming and then tightened, the sealing between the outer jacket and the side surface of the porous unit is improved. Furthermore, as a form in which the sealing property between the jacket and the porous unit is easily improved, there is a method in which an elastic member functioning as a gasket is interposed between the porous unit and the jacket. Specifically, as shown in FIGS. 9 to 11, a porous unit is inserted into an elastically deformable annular cushion 9 formed of a resilient material such as sponge and inserted into the outer cover 7. The outer jacket 7 is wound on the cushion 9 using the member 8. In this case, the cushion 9 circulates around the porous unit and functions like a gasket between the outer cover and the porous unit to increase the closing property by elastic pressure bonding, and the insertion member 1 and the sponge material 3 are integrated with each other. It also functions as a holding tool for the porous units 5A and 5B by being fixed.

クッション9は、処理対象のガスGや水によって劣化しない弾力性の素材を用いて調製される。弾力性の素材としては、天然ゴム及び各種合成ゴム等のエラストマー、ウレタンエラストマー等の熱可塑性エラストマー、発泡ポリウレタン等の発泡プラスチック(独立又は連続気泡型)等が挙げられ、このような弾力性素材から、処理するガスに対する耐久性を有するものを適宜選択することができる。スポンジ材3と同じ素材を用いてもよく、費用の点において有利である。或いは、ガスGによって劣化しない樹脂等のフィルムによってクッション9を被覆すると、クッション9自体はガスGに対する耐久性が低くても良い。ガス及び液体に対して非透過性の弾力性素材でクッション9を形成すると、外被−多孔質ユニット間の密閉性が極めて高くなる。巻締めに用いる条部材8としては、例えば、綿、麻等の植物繊維による紐、ナイロン、ポリ塩化ビニル等の樹脂による紐、鉄線や銅線等の金属線等が挙げられるが、これらに限定されず、外皮がクッション9に密着するように締付けられるものであればよい。   The cushion 9 is prepared using an elastic material that does not deteriorate due to the gas G or water to be processed. Examples of elastic materials include elastomers such as natural rubber and various synthetic rubbers, thermoplastic elastomers such as urethane elastomers, and foamed plastics (independent or open-cell type) such as polyurethane foam. Those having durability against the gas to be treated can be appropriately selected. The same material as the sponge material 3 may be used, which is advantageous in terms of cost. Alternatively, when the cushion 9 is covered with a film such as a resin that does not deteriorate due to the gas G, the cushion 9 itself may have low durability against the gas G. When the cushion 9 is formed of an elastic material that is impermeable to gas and liquid, the sealing property between the jacket and the porous unit becomes extremely high. Examples of the strip member 8 used for winding include, but are not limited to, strings made of vegetable fibers such as cotton and hemp, strings made of resin such as nylon and polyvinyl chloride, and metal wires such as iron wires and copper wires. What is necessary is just to clamp | tighten so that an outer_layer | skin may closely_contact | adhere to the cushion 9.

以下、図9〜11を参照して、軟質シート製の外被に気液接触層が内包される第8の実施形態に係る吸収塔100について具体的に説明する。   Hereinafter, with reference to FIGS. 9-11, the absorption tower 100 which concerns on 8th Embodiment by which a gas-liquid contact layer is included in the envelope made from a soft sheet | seat is demonstrated concretely.

図9に示す吸収塔100は、組み立て式に構成され、図10及び図11に示すような構成部品を用いて組み立てられる。具体的には、図10(a)に示す頂部部分101、(b)の中央部分103、及び、(c)の底部部分105を組み合わせることによって、図11の(a)に示すような吸収塔の主要構造107が構成され、頂部部分101を支持するために、図11(b)のような架台109が用いられる。この吸収塔100の構成は、図2の吸収塔10と機能的に同等であり、図2の本体槽31の代わりに、透明のポリ塩化ビニルシートで形成される管状の外被7と、その開口に接続される頂部部分101及び底部部分105とを用いて、気液接触層を内包する。気液接触層として、鉛直方向に積上げた2組の多孔質ユニット5A,5Bを用いるが、必要に応じて、多孔質ユニットの数を増加して積上げ段数を増加してもよい。又、図中の差込部材1は、波形の差込部材1aとして記載するが、他の形状であってもよい。   The absorption tower 100 shown in FIG. 9 is constructed in an assembling manner, and is assembled using components as shown in FIGS. 10 and 11. Specifically, by combining the top portion 101 shown in FIG. 10 (a), the central portion 103 in (b), and the bottom portion 105 in (c), an absorption tower as shown in FIG. 11 (a). In order to support the top portion 101, a gantry 109 as shown in FIG. 11B is used. The structure of the absorption tower 100 is functionally equivalent to the absorption tower 10 of FIG. 2, and instead of the main body tank 31 of FIG. 2, a tubular jacket 7 formed of a transparent polyvinyl chloride sheet, and its The gas-liquid contact layer is included using the top portion 101 and the bottom portion 105 connected to the opening. Although two sets of porous units 5A and 5B stacked in the vertical direction are used as the gas-liquid contact layer, the number of stacked units may be increased by increasing the number of porous units as necessary. Moreover, although the insertion member 1 in a figure is described as the waveform insertion member 1a, another shape may be sufficient.

図10(b)の中央部分103は、気液接触によるガス吸収を行う部分であり、2組の多孔質ユニット5A,5Bで構成される気液接触層と、気液接触層を内包してその側面を覆う管状の外被7とを有し、多孔質ユニット5A,5Bの各々を構成する差込部材1及びスポンジ材3は、側面を周回するクッション9によって拘持される。図10(a)の頂部部分101は、導水管111、ディストリビュータ17及び通気口23を有し、外被7の上部開口に接続された状態において、頂部部分101は、多孔質ユニット5A,5Bへの給水、及び、処理後ガスG’の排気を行う。図10(c)の底部部分105は、導気管113を取付けた貯水槽115及び支持台117を有し、多孔質ユニット5A,5Bを支持台117に載せて外被7の下部を支持台117の外周に密着させた状態において、底部部分105は、多孔質ユニット5A,5BへガスGを供給し、気液接触後の水を収容する。貯水槽115内にはポンプ13が設置され、ポンプ13と頂部部分101の導水管11とを循環ラインによって接続することで、貯水槽115と多孔質ユニット5A,5Bとの水Wの循環が可能となる。   A central portion 103 in FIG. 10B is a portion that absorbs gas by gas-liquid contact, and includes a gas-liquid contact layer composed of two sets of porous units 5A and 5B and a gas-liquid contact layer. The insertion member 1 and the sponge material 3 that have a tubular outer covering 7 that covers the side surface and constitute each of the porous units 5A and 5B are held by a cushion 9 that goes around the side surface. 10A has a water conduit 111, a distributor 17, and a vent 23, and the top portion 101 is connected to the porous units 5A and 5B in a state where it is connected to the upper opening of the jacket 7. And the treated gas G ′ are exhausted. The bottom portion 105 in FIG. 10C includes a water storage tank 115 and a support base 117 to which the air guide tube 113 is attached. The porous units 5A and 5B are placed on the support base 117, and the lower portion of the jacket 7 is supported on the support base 117. The bottom portion 105 supplies the gas G to the porous units 5A and 5B and accommodates the water after the gas-liquid contact. A pump 13 is installed in the water storage tank 115, and the water W can be circulated between the water storage tank 115 and the porous units 5A and 5B by connecting the pump 13 and the water conduit 11 of the top portion 101 by a circulation line. It becomes.

クッション9は、図10の(e),(f)に示すように、多孔質ユニットを嵌装可能なように、多孔質ユニットの側面形状に対応した正方形の孔部を有する四角環帯状又は四角管状に形成される。クッション9の外周の4つの角は丸く面取りされ、これは、外被7を被せる作業が容易で、角部が破損し難くなる点で有用な形状である。クッション9の孔部を多孔質ユニットの水平断面より僅かに小さく形成すると、嵌入した多孔質ユニットの側面とクッション9の内周との密着性を得易い。クッション9の形状は上記の形状に限られず、孔部が正方形であれば、外周が円形の環帯状又は管状であってもよい。クッション9の厚さ(軸方向長さ)が1〜10cm程度であると、気密性及び締着作業性の点で好ましい。又、軸方向(鉛直方向)に沿った断面が円形又は楕円形である四角環のクッションも使用可能であるが、この実施形態のように断面が長方形のクッション9は、外周が平面であり、巻き締め作業をし損じ難い点で有利である。クッション9の外周に条部材を受ける案内溝を設けると、巻き締め作業が容易になる。クッション9の幅(水平方向)は5mm〜5cm程度が好ましい。クッションを形成する弾力性素材が高い変形性又は伸縮性を備える場合は、アニュラス又はトーラス体(ドーナツ形)等の丸い内径でも、多孔質ユニットの四角い外周に内径を対応させることができる。   As shown in FIGS. 10 (e) and 10 (f), the cushion 9 has a quadrangular ring or square shape having a square hole corresponding to the side surface shape of the porous unit so that the porous unit can be fitted therein. It is formed in a tubular shape. The four corners of the outer periphery of the cushion 9 are rounded and chamfered, and this is a useful shape in that it is easy to cover the outer cover 7 and the corners are not easily damaged. If the hole of the cushion 9 is formed slightly smaller than the horizontal cross section of the porous unit, it is easy to obtain adhesion between the side surface of the inserted porous unit and the inner periphery of the cushion 9. The shape of the cushion 9 is not limited to the above shape, and may be an annular band or a tube having a circular outer periphery as long as the hole is square. The thickness (axial length) of the cushion 9 is preferably about 1 to 10 cm from the viewpoint of airtightness and fastening workability. In addition, a square ring cushion having a circular or elliptical cross section along the axial direction (vertical direction) can also be used, but the cushion 9 having a rectangular cross section as in this embodiment has a flat outer periphery, It is advantageous in that the winding work is difficult to fail. When a guide groove for receiving the strip member is provided on the outer periphery of the cushion 9, the winding work is facilitated. The width (horizontal direction) of the cushion 9 is preferably about 5 mm to 5 cm. When the elastic material forming the cushion is highly deformable or stretchable, the inner diameter can be made to correspond to the square outer circumference of the porous unit even with a round inner diameter such as an annulus or a torus body (donut shape).

多孔質ユニットを載置するための支持台117は、通水性及び通気性の支持板119と、脚部121とを有し、脚部121は、上側が開放された箱形に形成され、支持板119は水平に支持されるように脚部121の内側に固定される。脚部121の側壁の下部に、導気管113を貫通させる孔と、脚部121の内外を連通する通水孔123とを有する。支持板119の形状は、多孔質ユニットの水平断面に対応した大きさの正方形であり、多孔質ユニットの荷重に耐える強度の耐水性素材を用いて、網目状、スリットを有するスクリーン状、貫通孔を穿設した厚板状等から適宜選択した形態に製造される。支持板119の位置は、貯水槽115の上縁と同程度の高さに設定されるので、支持板119上に載置される多孔質ユニット5A,5Bは、貯水槽内の水位より常に上に維持される。脚部121の上部は、支持板119より上方に延伸して多孔質ユニットの位置決め手段として作用し、支持板119上に載せた多孔質ユニット5A,5Bの横方向の位置ずれを防止するする。脚部121は、底面がない四角管状であっても良い。又、4本の棒脚やフレームに横板を渡して管状に構成しても良く、この場合、横板の下端が水面下に浸る程度の長さに短縮して、脚部121の下端にスリット又は窓を有するような構成であっても良い。   The support base 117 for mounting the porous unit has a water-permeable and air-permeable support plate 119 and a leg part 121. The leg part 121 is formed in a box shape with the upper side opened and supported. The plate 119 is fixed inside the leg portion 121 so as to be supported horizontally. The lower part of the side wall of the leg part 121 has a hole through which the air guide tube 113 penetrates and a water passage hole 123 that communicates the inside and outside of the leg part 121. The shape of the support plate 119 is a square having a size corresponding to the horizontal cross section of the porous unit, and using a water-resistant material having a strength that can withstand the load of the porous unit, a mesh shape, a screen shape having slits, and a through hole It is manufactured in a form appropriately selected from a thick plate or the like having a perforated hole. Since the position of the support plate 119 is set to the same height as the upper edge of the water storage tank 115, the porous units 5A and 5B placed on the support plate 119 are always above the water level in the water storage tank. Maintained. The upper part of the leg part 121 extends upward from the support plate 119 and acts as a positioning unit for the porous unit, thereby preventing lateral displacement of the porous units 5A and 5B placed on the support plate 119. The leg 121 may be a square tube without a bottom surface. In addition, the horizontal plate may be formed in a tubular shape by passing the horizontal plate over the four rod legs or the frame. In this case, the lower end of the horizontal plate is shortened so as to be immersed below the water surface, A configuration having a slit or a window may be used.

頂部部分101は、通気口23を有する天板125と、天板125の下面に固着される四角管状のダクト127と、ダクト127の一側面を貫通する導水管111と、ダクト127の下端に水平に取付けられるディストリビュータ17とを有する。この実施形態におけるディストリビュータ17は、平板状に成形された通水性の多孔質材で構成され、導水管111から供給される水は多孔質材に浸透して全体から分散して落下する。ディストリビュータ17は、ダクト127に取り付けずに、多孔質ユニット5Aの上に載せた状態で用いてもよい。或いは、ディストリビュータ17として、図2の吸収塔で用いる有穴管や、底部全体に多数の小さい通水孔を有する浅い角形容器を用いてもよい。架台109は、直方体形のフレーム129と、頂部部分101を係止するための1対の係止部材131と、屋根133とを有し、係止部材131は、同じ高さでフレーム129の側柱部に水平且つ平行に固着される。   The top portion 101 is horizontal to the top plate 125 having the air vents 23, the square tubular duct 127 fixed to the lower surface of the top plate 125, the water conduit 111 penetrating one side surface of the duct 127, and the lower end of the duct 127. And a distributor 17 attached to the main body. The distributor 17 in this embodiment is formed of a water-permeable porous material formed into a flat plate shape, and water supplied from the water conduit 111 penetrates into the porous material and is dispersed and dropped from the whole. The distributor 17 may be used in a state where it is placed on the porous unit 5 </ b> A without being attached to the duct 127. Alternatively, the distributor 17 may be a perforated pipe used in the absorption tower of FIG. 2 or a shallow rectangular container having a large number of small water passage holes in the entire bottom. The gantry 109 has a rectangular parallelepiped frame 129, a pair of locking members 131 for locking the top portion 101, and a roof 133, and the locking members 131 are on the side of the frame 129 at the same height. The column is fixed horizontally and in parallel.

吸収塔100は、以下のように組み立てられる。先ず、中央部分103と底部部分105とが組み立てられる。具体的には、気液接触層を支持するための支持台117を貯水槽115内に据え付け、クッション9によって拘持された多孔質ユニット5A,5Bを縦に積み上げて、支持台117の支持板119上に気液接触層として載置する。   The absorption tower 100 is assembled as follows. First, the central portion 103 and the bottom portion 105 are assembled. Specifically, a support base 117 for supporting the gas-liquid contact layer is installed in the water storage tank 115, and the porous units 5A and 5B held by the cushion 9 are stacked vertically to support the support plate 117. Place on 119 as a gas-liquid contact layer.

次に、多孔質ユニット5A,5Bに外被7を被せる。外被7の下端が水中に浸り、且つ、外皮7の上端が多孔質ユニットより上方に伸びて頂部部分101との接続に使用可能な余分が生じるように、上下方向に外被7を位置決めして、紐、金属線等の条部材8を用いて外被7をクッション9上に巻き締める。外被−多孔質ユニット間のガスケットとしての役割においては、クッション9は、気液接触層全体に少なくとも1つあればよく、多孔質ユニットの拘持具としては、ユニット当たり少なくとも1つのクッション9があればよい。この実施形態では、1つの多孔質ユニットを複数のクッション9で拘持する。このように締着部分を複数重ねると、各クッション上の締着による封止が完全でなくても、全体として満足な閉塞性が得られる。複数のクッション9を用いる場合、クッション9の幅(水平方向)は同一でも異なってもよく、異なる幅によって密閉効率が異なっても全体として良好な密閉性が得られればよい。尚、最下位のクッション9aは、多孔性ユニット5Bの下端を囲む支持台117の上端部に嵌装し、これによって外被7と支持台117とが密封接続され、支持台117と外被7との隙間からガスGが漏れるのを防止できる。   Next, the jacket 7 is put on the porous units 5A and 5B. Position the outer cover 7 in the vertical direction so that the lower end of the outer cover 7 is submerged in the water and the upper end of the outer cover 7 extends above the porous unit so that there is a surplus that can be used for connection with the top portion 101. Then, the outer cover 7 is wound around the cushion 9 using a strip member 8 such as a string or a metal wire. In the role as a gasket between the jacket and the porous unit, it is sufficient that at least one cushion 9 is provided in the entire gas-liquid contact layer. As a holding tool of the porous unit, at least one cushion 9 is provided per unit. I just need it. In this embodiment, one porous unit is held by a plurality of cushions 9. When a plurality of fastening portions are stacked in this way, satisfactory closing performance can be obtained as a whole even if sealing by fastening on each cushion is not complete. When a plurality of cushions 9 are used, the widths (horizontal directions) of the cushions 9 may be the same or different, and it is only necessary to obtain good sealing performance as a whole even if the sealing efficiency differs depending on the different widths. The lowermost cushion 9a is fitted to the upper end portion of the support base 117 surrounding the lower end of the porous unit 5B, whereby the outer cover 7 and the support base 117 are hermetically connected, and the support base 117 and the outer cover 7 are sealed. It is possible to prevent the gas G from leaking through the gap.

更に、頂部部分101を図11の(a)に示すように組み立てる。このために、頂部部分101の位置を固定する必要があるので、図11の(b)に示すような架台109を設置して、組み立てられた中央部分103及び底部部分105が架台109の中央に位置するように配置する。頂部部分101の天板125を係止部材131上に架けて頂部部分101を架台109で支持することによって頂部部分101の位置が固定される。係止部材131上に支持された頂部部分101は、ディストリビュータ17が多孔質ユニット5Aの直上に配置される高さに位置する。この後、多孔質ユニット5A,5Bに締着された外被7は、条部材8によって頂部部品101と接続される。具体的には、ダクト127の下部にはクッション9bが嵌装され、外被7の上端でダクト127の下部を包囲して、条部材8で外被7をクッション9b上に巻き締めることによって、図9のように外被7は頂部部分101と密封接続される。   Further, the top portion 101 is assembled as shown in FIG. For this reason, since the position of the top portion 101 needs to be fixed, a gantry 109 as shown in FIG. 11B is installed, and the assembled central portion 103 and bottom portion 105 are placed at the center of the gantry 109. Arrange to position. The position of the top portion 101 is fixed by placing the top plate 125 of the top portion 101 on the locking member 131 and supporting the top portion 101 with the mount 109. The top portion 101 supported on the locking member 131 is positioned at a height at which the distributor 17 is disposed immediately above the porous unit 5A. Thereafter, the outer cover 7 fastened to the porous units 5 </ b> A and 5 </ b> B is connected to the top part 101 by the strip member 8. Specifically, a cushion 9b is fitted to the lower part of the duct 127, the lower end of the duct 127 is surrounded by the upper end of the outer cover 7, and the outer cover 7 is wound on the cushion 9b by the strip member 8. As shown in FIG. 9, the outer jacket 7 is hermetically connected to the top portion 101.

この実施形態の架台109は直方体形のフレームで構成されるので、中央部分103と底部部分105との組み立て作業を架台109中で行うと効率的であるが、この架台には限定されない。例えば、頂部部分101を吊下げる形態のスタンドを用いて頂部部分101の位置を固定しても良く、中央部分103と底部部分105とを組み立てた後にスタンドを設置することができる。又、係止部材131の高さを変更・調節可能な架台109又はスタンドを使用すると、多孔質ユニットの高さ(積み上げ段数、差込部材1及びスポンジ材3の高さ)の変更に対応でき、外被7の長さを適正に調整するだけで、変更した吸収塔を組み立てられる。   Since the gantry 109 of this embodiment is constituted by a rectangular parallelepiped frame, it is efficient to assemble the center portion 103 and the bottom portion 105 in the gantry 109, but is not limited to this gantry. For example, the position of the top portion 101 may be fixed using a stand that suspends the top portion 101, and the stand can be installed after the center portion 103 and the bottom portion 105 are assembled. In addition, if the mount 109 or the stand that can change / adjust the height of the locking member 131 is used, it is possible to respond to changes in the height of the porous unit (the number of stacked stages, the height of the plug-in member 1 and the sponge material 3). By simply adjusting the length of the outer jacket 7, the changed absorption tower can be assembled.

貯水槽115にポンプ13を設置して、ポンプ13と導水管111とを循環ラインで接続することによって基本的な組み立ては終了する。更に、図9のように、貯水槽115の水位を検知するレベル計75を架台109に付設して、検出される水位に応じてポンプ13の駆動を制御するようにポンプ13と電気的に接続すると、処理中の貯水槽115内の水位を所定レベルに維持することができる。レベル計の代わりにレベルスイッチを用いると、水位を所定レベル以下に下がるのを防止できるので、ポンプの空運転を防止できる。   The basic assembly is completed by installing the pump 13 in the water storage tank 115 and connecting the pump 13 and the water conduit 111 with a circulation line. Further, as shown in FIG. 9, a level meter 75 for detecting the water level of the water storage tank 115 is attached to the gantry 109 and is electrically connected to the pump 13 so as to control the driving of the pump 13 according to the detected water level. Then, the water level in the water storage tank 115 being processed can be maintained at a predetermined level. If a level switch is used instead of the level meter, it is possible to prevent the water level from dropping below a predetermined level, so that the pump can be prevented from idling.

図9の様に組み立てられた吸収塔100において、水を貯水槽115に投入し、微生物をスポンジ材3上に担持すれば、生物脱臭処理が可能な状態となる。微生物の担持は、前述と同様に、組み立て前のスポンジ材3に予め施しても、組み立て後に水の循環を利用して行っても可能である。ポンプ13を駆動すると、貯水槽115から汲み上げられる水Wは、循環ラインを通って導水管111からディストリビュータ17に供給され、多孔質ユニット5A上全体に分配して散水される。多孔質ユニット5A,5B中を流下した水は、支持板119を通って貯水槽115に落下する。水の循環によって、スポンジ材3に担持される微生物は繁殖する。一方、ガスGは、ブロワ又はファン(図示略)等を用いて導気管113から支持台117の内側へ導入されると、支持板119を通って多孔質ユニット5A,5B中を上昇し、流下する水Wとの気液接触において、ガスに含まれる臭気物質が水に吸収される。浄化されたガスG’は、ダクト127内を通って通気口23から排出される。通気口23に吸引用ブロワ等を接続してダクト127からの排気を促進しても良い。   In the absorption tower 100 assembled as shown in FIG. 9, when water is introduced into the water storage tank 115 and microorganisms are supported on the sponge material 3, a biological deodorization process is possible. Similarly to the above, the microorganisms can be supported in advance on the sponge material 3 before assembly or by using water circulation after assembly. When the pump 13 is driven, the water W pumped up from the water storage tank 115 is supplied to the distributor 17 from the water conduit 111 through the circulation line, and is distributed and sprayed over the entire porous unit 5A. The water flowing down through the porous units 5A and 5B passes through the support plate 119 and falls into the water storage tank 115. The microorganisms carried on the sponge material 3 are propagated by the circulation of water. On the other hand, when the gas G is introduced into the inside of the support base 117 from the air guide tube 113 using a blower or a fan (not shown), the gas G passes through the support plate 119 and rises in the porous units 5A and 5B. In the gas-liquid contact with the water W, the odorous substance contained in the gas is absorbed by the water. The purified gas G ′ passes through the duct 127 and is discharged from the vent 23. Exhaust from the duct 127 may be promoted by connecting a suction blower or the like to the vent 23.

外被7は、クッション9a,9bを介して支持台117及びダクト127に巻き締められて密着するので、ガスの流れは外被7によって規制される。つまり、支持台117から供給されるガスGは、多孔質ユニット5A,5B中を確実に通過してダクト127へ至るように外被7によって案内される。従って、支持台117、外被7及びダクト127は、図2の本体槽11と同様に機能し、内包される気液接触層に適確にガスが導入される。   Since the jacket 7 is wound and tightly attached to the support base 117 and the duct 127 via the cushions 9 a and 9 b, the gas flow is restricted by the jacket 7. That is, the gas G supplied from the support base 117 is guided by the jacket 7 so as to surely pass through the porous units 5A and 5B and reach the duct 127. Accordingly, the support base 117, the outer jacket 7, and the duct 127 function in the same manner as the main body tank 11 of FIG. 2, and gas is appropriately introduced into the gas-liquid contact layer contained therein.

第8の実施形態は、図5の吸収塔のように、ガスを吸収塔100上部の通気口23から供給して下方に向かって流れるように変更することも可能である。   In the eighth embodiment, as in the absorption tower of FIG. 5, the gas can be changed to be supplied from the vent 23 at the top of the absorption tower 100 and flow downward.

第8の実施形態のように吸収塔を構成すると、軽量化や材料費の低減が可能であり、又、設計変更が行い易いので、吸収塔の設置条件に応じた変更が可能であり、適用性が高い。架台109の役割は、頂部部分101を支持することのみであるので、支持機能のみに特化するように構造を単純化したり、逆に、必要に応じて他の機能を付加してもよい。例えば、遮光板や遮光フィルムで側面を覆って遮光性を付与したり、太陽光パネルを用いて屋根133を構成してポンプ等の駆動エネルギーの供給に利用しても良い。又、外観のデザイン変更に関して極めて自由度が高く、例えば、架台のフレームに様々な装飾を施しても、本質的な機能には何等影響がない。   If the absorption tower is configured as in the eighth embodiment, the weight can be reduced and the material cost can be reduced, and since the design can be easily changed, the change can be made according to the installation conditions of the absorption tower. High nature. Since the role of the gantry 109 is only to support the top portion 101, the structure may be simplified so as to specialize only in the support function, or conversely, other functions may be added as necessary. For example, the side surface may be covered with a light-shielding plate or a light-shielding film to provide light-shielding properties, or a roof 133 may be configured using a solar panel and used for supplying driving energy such as a pump. In addition, the degree of freedom in changing the design of the appearance is extremely high. For example, even if various decorations are applied to the frame of the gantry, the essential functions are not affected at all.

上述の実施形態から必要に応じて複数の実施形態を適宜選択して組み合わせて使用することもできる。   A plurality of embodiments can be appropriately selected from the above-described embodiments as necessary and used in combination.

以下、実施例を参照して、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

(実施例)
図2に示す吸収塔10に準じた装置において、孔径2mm程度の連続気泡を有する空孔率約95容積%のポリウレタンエーテルフォームで形成された厚さ25mm、高さ430mm及び長さ190mmのスポンジ材3、及び、厚さ0.5mmのポリ塩化ビニル製平板を振幅10mm、周期(谷から谷までの距離)70mmで波形に湾曲させた形状の差込部材1を用いて多孔質ユニット5Aを構成し、ユニット5Bは省略して吸収塔10に装着した。ここでは、スポンジ材3を4枚、差込部材1を3枚用いたので、多孔質ユニットの平面図は正方形にはならない。
(Example)
In the apparatus according to the absorption tower 10 shown in FIG. 2, a sponge material having a thickness of 25 mm, a height of 430 mm, and a length of 190 mm formed of polyurethane ether foam having a porosity of about 95% by volume and having open cells with a pore diameter of about 2 mm. 3 and the porous unit 5A is formed by using the insertion member 1 having a curved shape of a polyvinyl chloride flat plate having a thickness of 0.5 mm and an amplitude of 10 mm and a period (distance from valley to valley) of 70 mm. However, the unit 5B was omitted and attached to the absorption tower 10. Here, since four sponge materials 3 and three insertion members 1 are used, the plan view of the porous unit is not square.

微生物として活性汚泥から硫化物で馴養した硫黄酸化細菌を含む微生物群を底部の水Wに供給し、本体槽11底部に貯溜される水Wに微生物の成育に必要な栄養塩として塩化アンモニウム、リン酸カリウム及び硫酸マグネシウムを添加してポンプで循環させて多孔質ユニットに散布しながら、臭気物質として濃度800ppmの硫化水素を含むガスGを多孔質ユニット5Aの全容積10Lに対して2L/分の供給速度で通気口21から本体槽11内に導入した。通気口23から排出されるガスG’の硫化水素濃度を測定したところ、平均36ppm(32ppm及び40ppm)であった。スポンジ材3は、嵌入時と同じ高さを維持しており、潰れや沈み込みを生じることなく好適に挟持されていた。同じ水Wに浸したスポンジ材3と同等のスポンジキューブに存在する硫黄酸化細菌をStarkey寒天培地を用いて測定(参照:土壌微生物実験法研究会編、 「新編土壌微生物実験法」(1992)、322〜325,394頁、株式会社養賢堂発行)したところ、スポンジ1cm3あたり1.9×107cfu(コロニー数)であった。従って、吸収塔10では、スポンジ材3の潰れや沈み込みは防止され、スポンジ材3に硫黄酸化細菌を高密度に担持させることができ、生物脱臭に有効であることが明らかである。 A group of microorganisms containing sulfur-oxidizing bacteria acclimatized with sulfide from activated sludge as microorganisms is supplied to the bottom water W, and ammonium chloride, phosphorus as nutrient salts necessary for the growth of the microorganisms in the water W stored at the bottom of the main body tank 11 While adding potassium acid and magnesium sulfate, circulating with a pump and spraying it on the porous unit, the gas G containing hydrogen sulfide having a concentration of 800 ppm as an odor substance is 2 L / min with respect to the total volume of 10 L of the porous unit 5A. It introduce | transduced in the main body tank 11 from the vent 21 at the supply speed. When the hydrogen sulfide concentration of the gas G ′ discharged from the vent 23 was measured, the average was 36 ppm (32 ppm and 40 ppm). The sponge material 3 maintained the same height as when it was inserted, and was suitably sandwiched without causing crushing or sinking. Sulfur-oxidizing bacteria present in sponge cubes equivalent to sponge material 3 soaked in the same water W were measured using Starkey agar medium (see: Soil Microbial Experimental Method Study Group, “New Soil Microbial Experimental Method” (1992), 322-325, page 394, published by Yokendo Co., Ltd.), it was 1.9 × 10 7 cfu (number of colonies) per 1 cm 3 of sponge. Therefore, in the absorption tower 10, it is clear that the sponge material 3 is prevented from being crushed and sinking, and the sponge material 3 can be loaded with sulfur-oxidizing bacteria at a high density, which is effective for biological deodorization.

(参考例)
上記多孔質ユニット5Aの代わりに、外径30mm及び長さ30mmの中空円筒状のプラスチック充填材を10L充填して吸収塔10に装着したこと以外は実施例と同様にして上述の操作を行い、通気口23から排出されるガスG’の硫化水素濃度を測定したところ、平均67ppm(64ppm及び70ppm)であった。
(Reference example)
Instead of the porous unit 5A, the above operation was performed in the same manner as in Example except that 10 L of a hollow cylindrical plastic filler having an outer diameter of 30 mm and a length of 30 mm was packed and attached to the absorption tower 10. When the hydrogen sulfide concentration of the gas G ′ discharged from the vent 23 was measured, the average was 67 ppm (64 ppm and 70 ppm).

(比較例)
差込部材1を使用せずに、スポンジ材として1辺が20mmの立方体のものを用いて上記多孔質ユニット5Aと同じ容積に積み上げたこと以外は実施例と同様にして上述の操作を行ったところ、1ヶ月後にスポンジ材は沈み込みを生じ、最下部は潰れのために通気が困難になっていた。
(Comparative example)
The above-described operation was performed in the same manner as in Example except that the insertion member 1 was not used and the sponge material was a cube having a side of 20 mm and was stacked in the same volume as the porous unit 5A. However, the sponge material subducted after one month, and the bottom part was crushed, making it difficult to vent.

多孔質体の形状が長期間保持されることにより吸収効率の低下を防止可能な吸収塔が提供され、スポンジ材の利点を活かして臭気物質の吸収効率及び微生物による分解効率を長期間維持可能な生物脱臭装置を提供でき、排ガス処理や環境浄化において使用する処理装置のメンテナンス頻度の低減や耐用年数の増加、操作性の向上に有用である。   Absorption tower that can prevent the decrease in absorption efficiency by maintaining the shape of the porous material for a long time is provided, and the absorption efficiency of odorous substances and the decomposition efficiency by microorganisms can be maintained for a long time by taking advantage of sponge material A biological deodorization device can be provided, which is useful for reducing the frequency of maintenance, increasing the service life, and improving the operability of the treatment device used in exhaust gas treatment and environmental purification.

1,1a,1b,1c:差込部材、 3:スポンジ材、
5A,5B,5A’,5B’,65A,65B:多孔質ユニット、
7:外被、 8:条部材、 9,9a,9b:クッション、
10,30,40,50,60,70,90,100:吸収塔、 11,31:本体槽、
13,77:ポンプ、 15:循環ライン、 17:ディストリビュータ、
19:貫通口、 21,23:通気口、 25A,25B,91,119:支持板、
33:拡張部、 61:支持棒、71:導管、 73:給水管、
75:レベル計、 79:散気管、 81:ブロア、
101:頂部部品、 103:中央部品、 105:底部部品、 107:主要構造、
109:架台、 111:導水管、 113:導気管、 115:貯水槽、
117:支持台、 121:脚部、 123:通水穴、 125:天板、
127:ダクト、 129:フレーム、 131:係止部材、 133:屋根、
G,G’:ガス、 W:水。
1, 1a, 1b, 1c: Insertion member, 3: Sponge material,
5A, 5B, 5A ′, 5B ′, 65A, 65B: porous unit,
7: outer cover, 8: strip member, 9, 9a, 9b: cushion,
10, 30, 40, 50, 60, 70, 90, 100: absorption tower, 11, 31: main body tank,
13, 77: pump, 15: circulation line, 17: distributor,
19: Through-hole, 21, 23: Vent, 25A, 25B, 91, 119: Support plate,
33: expansion part, 61: support rod, 71: conduit, 73: water supply pipe,
75: Level meter, 79: Diffuser, 81: Blower,
101: Top part, 103: Center part, 105: Bottom part, 107: Main structure,
109: frame, 111: water conduit, 113: air conduit, 115: water tank,
117: Support stand 121: Leg part 123: Water passage hole 125: Top plate
127: Duct, 129: Frame, 131: Locking member, 133: Roof,
G, G ′: Gas, W: Water.

Claims (18)

気液接触層と、前記気液接触層に液体を供給する液体供給装置と、前記気液接触層にガスを供給するガス供給部とを有し、前記気液接触層における前記液体と前記ガスとの接触によって前記ガスに含まれる所定成分を前記液体に吸収させる吸収塔であって、
前記気液接触層は、立位で並列する複数の平板状又はシート状の多孔質材と、前記複数の多孔質材と交互に当接配置されて前記多孔質材を挟持する複数の差込部材とを有し、前記差込部材は、凹凸した表面形状を有し、前記凹凸によって前記多孔質材との間に前記ガスが通過可能な間隙を形成することを特徴とする吸収塔。
A liquid supply device that supplies a liquid to the gas-liquid contact layer; a gas supply unit that supplies a gas to the gas-liquid contact layer; and the liquid and the gas in the gas-liquid contact layer An absorption tower that allows the liquid to absorb a predetermined component contained in the gas by contact with the gas,
The gas-liquid contact layer includes a plurality of flat plate-like or sheet-like porous materials arranged in parallel in a standing position, and a plurality of insertions that are alternately placed in contact with the plurality of porous materials to sandwich the porous material. And the insertion member has an uneven surface shape, and the unevenness forms a gap through which the gas can pass between the porous material and the insertion member.
前記多孔質材は、孔径500μm〜3mmの連続気孔を有し、空孔率が90容積%以上のスポンジ材である請求項1記載の吸収塔。   The absorption tower according to claim 1, wherein the porous material is a sponge material having continuous pores having a pore diameter of 500 μm to 3 mm and a porosity of 90% by volume or more. 前記差込部材は剛性素材製で保形性を有し、前記多孔質材の全体に渡って挟持するために前記多孔質材と実質的に同等の高さ及び長さを有する請求項1又は2に記載の吸収塔。   The said insertion member is made of a rigid material, has shape retention, and has a height and a length substantially the same as those of the porous material in order to sandwich the entire porous material. 2. The absorption tower according to 2. 前記差込部材は、波形又は蛇腹形に湾曲又は屈折した板状部材、及び、表面に突起又は溝を有する直板部材からなる群より選択される少なくとも一種であり、前記間隙は、鉛直方向に伸長する請求項1〜3の何れかに記載の吸収塔。   The insertion member is at least one selected from the group consisting of a plate-like member curved or bent in a corrugated or bellows shape, and a straight plate member having a protrusion or groove on the surface, and the gap extends in the vertical direction. The absorption tower according to any one of claims 1 to 3. 前記複数の多孔質材及び前記複数の差込部材は、前記多孔質材及び前記差込部材が交互に当接配置される多孔質ユニットを複数組構成し、前記複数の多孔質ユニットが縦方向に配置される請求項1〜4の何れかに記載の吸収塔。   The plurality of porous materials and the plurality of insertion members constitute a plurality of porous units in which the porous materials and the insertion members are alternately contacted and arranged, and the plurality of porous units are in the vertical direction. The absorption tower according to claim 1, which is disposed in 前記複数組の多孔質ユニットにおいて、前記多孔質材及び前記差込部材の並列方向は、上下の多孔質ユニットにおいて垂直になるように配置される請求項5に記載の吸収塔。   6. The absorption tower according to claim 5, wherein in the plurality of sets of porous units, the parallel direction of the porous material and the insertion member is arranged so as to be vertical in the upper and lower porous units. 前気液体供給装置は、前記気液接触層に液体を散布するディストリビュータと、前記気液接触層から排出される液体を前記ディストリビュータに還流させる循環ラインとを有し、前記気液接触層において、前記液体と前記ガスとは逆方向に移動する請求項1〜6の何れかに記載の吸収塔。   The pre-air liquid supply device has a distributor for spraying the liquid to the gas-liquid contact layer, and a circulation line for returning the liquid discharged from the gas-liquid contact layer to the distributor, in the gas-liquid contact layer, The absorption tower according to claim 1, wherein the liquid and the gas move in opposite directions. 更に、前記気液接触層を通過した液を貯留する貯留槽と、前記貯留槽の液面レベルを検知するレベル計と、前記レベル計に検知される液面レベルに基づいて前記貯留槽に液体を補給するためのポンプとを有する請求項1〜7の何れかに記載の吸収塔。   Furthermore, a storage tank that stores the liquid that has passed through the gas-liquid contact layer, a level meter that detects a liquid level in the storage tank, and a liquid in the storage tank based on the liquid level detected by the level gauge The absorption tower according to claim 1, further comprising a pump for replenishing water. 更に、前記気液接触層が内部に装着される箱形の槽を有する請求項1〜8の何れかに記載の吸収塔。   Furthermore, the absorption tower in any one of Claims 1-8 which has a box-shaped tank with which the said gas-liquid contact layer is mounted | worn inside. 更に、前記気液接触層を内包する柔軟な外被を有し、前記外被は2つの開口を有し、前記液体及び前記ガスは、各々、前記2つの開口のうちの何れか一方から供給されて他方から排出される請求項1〜8の何れかに記載の吸収塔。   Furthermore, it has a flexible jacket containing the gas-liquid contact layer, the jacket has two openings, and the liquid and the gas are supplied from either one of the two openings, respectively. The absorption tower according to claim 1, which is discharged from the other. 前記外被は、気体及び液体に対して非透過性の軟質シートで管状に形成され、前記外被の2つの開口は、前記気液接触層の上方及び下方に位置し、上方の開口から前記液体供給装置によって液体が供給され、下方の開口から前記ガス供給部によってガスが供給されて前記外被によって前記気液接触層へ案内される請求項10に記載の吸収塔。   The envelope is formed in a tubular shape with a soft sheet that is impermeable to gas and liquid, and the two openings of the envelope are located above and below the gas-liquid contact layer, The absorption tower according to claim 10, wherein liquid is supplied by a liquid supply device, gas is supplied from the lower opening by the gas supply unit, and is guided to the gas-liquid contact layer by the jacket. 前記外被は、光に対して透過性のシート材で形成される請求項10又は11に記載の吸収塔。   The absorption tower according to claim 10 or 11, wherein the jacket is formed of a sheet material that is transmissive to light. 前記外被と前記気液接触層の側面との間は閉塞されてガスの流通が抑制される請求項10〜12の何れかに記載の吸収塔。   The absorption tower according to any one of claims 10 to 12, wherein a space between the outer cover and a side surface of the gas-liquid contact layer is blocked to suppress a gas flow. 前記外被は、条部材を用いて前記気液接触層の周囲に締着されて前記外被と前記気液接触層とが周回状に密接して閉塞される請求項10〜13の何れかに記載の吸収塔。   14. The outer cover is fastened around the gas-liquid contact layer using a strip member, and the outer cover and the gas-liquid contact layer are tightly closed in a circular manner. The absorption tower according to 1. 更に、前記気液接触層の側面を周回する弾性部材を有し、前記外被は、条部材によって前記弾性部材上に締着されて、前記弾性部材による弾性圧着によって前記気液接触層と前記外被との間の密閉性が高まる請求項14に記載の吸収塔。   Furthermore, it has an elastic member that goes around the side surface of the gas-liquid contact layer, and the jacket is fastened on the elastic member by a strip member, and the gas-liquid contact layer and the The absorption tower according to claim 14, wherein airtightness between the outer cover and the outer cover is improved. 前記弾性部材は、前記気液接触層を嵌装可能な孔部を有する環帯状又は管状の形状であり、前記穴部に気液接触層を嵌装することによって前記複数の多孔質材及び複数の差込部材が一体に固定される請求項15に記載の吸収塔。   The elastic member has an annular band shape or a tubular shape having a hole portion into which the gas-liquid contact layer can be fitted, and the gas-liquid contact layer is fitted into the hole portion to thereby form the plurality of porous materials and the plurality of porous members. The absorption tower according to claim 15, wherein the insertion members are integrally fixed. 請求項1〜16の何れかに記載の吸収塔を有し、前記気液接触層は、臭気物質を分解可能な微生物を保持し、前記液体は水であり、前記所定成分としてガスに含まれる臭気物質を水に吸収して前記微生物を用いて分解する生物脱臭装置。   It has an absorption tower in any one of Claims 1-16, The said gas-liquid contact layer hold | maintains the microorganisms which can decompose | disassemble an odor substance, The said liquid is water, and is contained in gas as the said predetermined component A biological deodorization apparatus that absorbs odorous substances in water and decomposes them using the microorganisms. 前記多孔質材は、ポリウレタンエーテルフォーム製であり、前記微生物は、硫黄酸化細菌又はアンモニア酸化細菌を含む請求項17記載の生物脱臭装置。   The biological deodorization apparatus according to claim 17, wherein the porous material is made of polyurethane ether foam, and the microorganism includes sulfur-oxidizing bacteria or ammonia-oxidizing bacteria.
JP2012094675A 2011-04-18 2012-04-18 Absorption tower and biological deodorization apparatus using the same Active JP5966555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094675A JP5966555B2 (en) 2011-04-18 2012-04-18 Absorption tower and biological deodorization apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011092180 2011-04-18
JP2011092180 2011-04-18
JP2012094675A JP5966555B2 (en) 2011-04-18 2012-04-18 Absorption tower and biological deodorization apparatus using the same

Publications (2)

Publication Number Publication Date
JP2012232292A true JP2012232292A (en) 2012-11-29
JP5966555B2 JP5966555B2 (en) 2016-08-10

Family

ID=47433185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094675A Active JP5966555B2 (en) 2011-04-18 2012-04-18 Absorption tower and biological deodorization apparatus using the same

Country Status (1)

Country Link
JP (1) JP5966555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111463A1 (en) * 2014-01-27 2015-07-30 三菱重工業株式会社 Gas-liquid contactor and co2 recovery device
JP5958594B1 (en) * 2015-04-15 2016-08-02 富士電機株式会社 Exhaust gas treatment device and maintenance method of exhaust gas treatment device
CN109865396A (en) * 2019-04-03 2019-06-11 陈炳桦 A kind of exhaust gas source gas sampling purification device for chemical and medicine industry workshop

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567390A (en) * 1978-11-14 1980-05-21 Kyoto Suiken Kk Method and apparatus for treatment of waste water
JPS5624029A (en) * 1979-08-06 1981-03-07 Kureha Chem Ind Co Ltd Removal of sulfur dioxide gas in exhaust gas
JPS57194028A (en) * 1981-05-21 1982-11-29 Toppan Printing Co Ltd Method and device for deodorization of waste gas
JPS6328498A (en) * 1986-07-22 1988-02-06 Nippon Sheet Glass Co Ltd Module for liquid treatment device
JPS6447424A (en) * 1987-08-12 1989-02-21 Three N Gijutsu Consultant Kk Mirobe utilizing filter used for deodorizing device, or the like
JPH02172519A (en) * 1988-12-27 1990-07-04 Ebara Infilco Co Ltd Malodor deodorization and its apparatus
JPH04371213A (en) * 1991-06-19 1992-12-24 Ebara Infilco Co Ltd Deodorizing method for malodorous gas containing hydrogen sulfide of high concentration
JPH0751538A (en) * 1990-02-10 1995-02-28 Bayer Ag Method for biological purification of waste air by means of percolation system
JPH08299751A (en) * 1995-05-05 1996-11-19 Shinyou Sangyo Kk Multipurpose wet deodorizer
JPH11290070A (en) * 1998-04-07 1999-10-26 Chisso Chemitec:Kk Microorganism support comprising water-permeating sheet and biotreatment process for drainage water using the same
JP2000042354A (en) * 1998-08-03 2000-02-15 Ebara Corp Deodorizing method of malodorous gas
JP2001163689A (en) * 1999-12-13 2001-06-19 Yuushin Denki Kk Deodorizing apparatus for composting device of livestock excrement
JP2001334124A (en) * 2000-05-26 2001-12-04 Nichiboo:Kk Deodorizing apparatus and deodorizing method
JP2003117341A (en) * 2001-10-17 2003-04-22 Ebara Corp Method for treating gas containing ammonia and device therefor
WO2004085499A2 (en) * 2003-03-25 2004-10-07 Borealis Technology Oy Metallocene catalysts and preparation of polyolefins therewith
JP2011016043A (en) * 2009-07-07 2011-01-27 Shimizu Corp Filler, filler manufacturing device and method for manufacturing filler

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567390A (en) * 1978-11-14 1980-05-21 Kyoto Suiken Kk Method and apparatus for treatment of waste water
JPS5624029A (en) * 1979-08-06 1981-03-07 Kureha Chem Ind Co Ltd Removal of sulfur dioxide gas in exhaust gas
JPS57194028A (en) * 1981-05-21 1982-11-29 Toppan Printing Co Ltd Method and device for deodorization of waste gas
JPS6328498A (en) * 1986-07-22 1988-02-06 Nippon Sheet Glass Co Ltd Module for liquid treatment device
JPS6447424A (en) * 1987-08-12 1989-02-21 Three N Gijutsu Consultant Kk Mirobe utilizing filter used for deodorizing device, or the like
JPH02172519A (en) * 1988-12-27 1990-07-04 Ebara Infilco Co Ltd Malodor deodorization and its apparatus
JPH0751538A (en) * 1990-02-10 1995-02-28 Bayer Ag Method for biological purification of waste air by means of percolation system
JPH04371213A (en) * 1991-06-19 1992-12-24 Ebara Infilco Co Ltd Deodorizing method for malodorous gas containing hydrogen sulfide of high concentration
JPH08299751A (en) * 1995-05-05 1996-11-19 Shinyou Sangyo Kk Multipurpose wet deodorizer
JPH11290070A (en) * 1998-04-07 1999-10-26 Chisso Chemitec:Kk Microorganism support comprising water-permeating sheet and biotreatment process for drainage water using the same
JP2000042354A (en) * 1998-08-03 2000-02-15 Ebara Corp Deodorizing method of malodorous gas
JP2001163689A (en) * 1999-12-13 2001-06-19 Yuushin Denki Kk Deodorizing apparatus for composting device of livestock excrement
JP2001334124A (en) * 2000-05-26 2001-12-04 Nichiboo:Kk Deodorizing apparatus and deodorizing method
JP2003117341A (en) * 2001-10-17 2003-04-22 Ebara Corp Method for treating gas containing ammonia and device therefor
WO2004085499A2 (en) * 2003-03-25 2004-10-07 Borealis Technology Oy Metallocene catalysts and preparation of polyolefins therewith
JP2011016043A (en) * 2009-07-07 2011-01-27 Shimizu Corp Filler, filler manufacturing device and method for manufacturing filler

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111463A1 (en) * 2014-01-27 2015-07-30 三菱重工業株式会社 Gas-liquid contactor and co2 recovery device
JP2015139727A (en) * 2014-01-27 2015-08-03 三菱重工業株式会社 Gas-liquid contact apparatus, and co2 recovery apparatus
AU2015210222B2 (en) * 2014-01-27 2017-07-13 Mitsubishi Heavy Industries, Ltd. Gas-liquid contactor and CO2 recovery device
US9919267B2 (en) 2014-01-27 2018-03-20 Mitsubishi Heavy Industries, Ltd. Gas-liquid contactor and CO2 recovery device
JP5958594B1 (en) * 2015-04-15 2016-08-02 富士電機株式会社 Exhaust gas treatment device and maintenance method of exhaust gas treatment device
WO2016167023A1 (en) * 2015-04-15 2016-10-20 富士電機株式会社 Exhaust gas treatment device, and method for performing maintenance of exhaust gas treatment device
KR101752746B1 (en) 2015-04-15 2017-06-30 후지 덴키 가부시키가이샤 Exhaust gas treatment device, and method for performing maintenance of exhaust gas treatment device
CN109865396A (en) * 2019-04-03 2019-06-11 陈炳桦 A kind of exhaust gas source gas sampling purification device for chemical and medicine industry workshop

Also Published As

Publication number Publication date
JP5966555B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
US7294259B2 (en) Membrane module for gas transfer
CN105712478A (en) Double-ball type suspension filler
US20110120949A1 (en) Hollow fiber membrane module, hollow fiber membrane module unit, and water treatment method
US8501006B2 (en) Apparatus and method for processing liquid waste
JP5966555B2 (en) Absorption tower and biological deodorization apparatus using the same
CN108946951B (en) A kind of composite ecological floating island device of high-efficient purification polluted-water
KR101992133B1 (en) Water tank system
CN105722795A (en) Immobilized microorganism carrier, and contact oxidation combination system employing same
JP2017087191A (en) Waste water treatment apparatus and waste water treatment method
JP2019037974A (en) Sheet structure, wastewater treatment apparatus having the same, and method for manufacturing sheet structure
US20120125841A1 (en) Apparatus and method for disposal and treatment of waste water, sewage and/or effluent
JP3875258B1 (en) Oily sewage treatment floating body and oily sewage treatment method
CN210480990U (en) In-situ treatment device for rural sewage in river
KR101224524B1 (en) System for heat insulating covering of bio reactor for public sewage treatment facilities with offensive odor treatment function designing low energy consumption
CN209872517U (en) Water body in-situ remediation integrated device
JPH0811022B2 (en) A shell element for supplying and removing a flowing substance to or from the surrounding material
JP2023101768A (en) Waste water treatment apparatus
CN212655548U (en) Filling combined filler
US20120325686A1 (en) Collection Receptacles fo Gases
CN210928951U (en) Plant planting device for contact oxidation between gravels
CN209798659U (en) Underwater ecological retaining wall
JP2009154071A (en) Purification system
CN209759126U (en) Biomembrane water quality purification belt
KR200220411Y1 (en) A microbe membrane habitat for sewage and wastewater treatment
CN105983330A (en) High-tower biological waste gas treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R151 Written notification of patent or utility model registration

Ref document number: 5966555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250