JP2012229629A - Method for manufacturing fluid machine - Google Patents

Method for manufacturing fluid machine Download PDF

Info

Publication number
JP2012229629A
JP2012229629A JP2011096808A JP2011096808A JP2012229629A JP 2012229629 A JP2012229629 A JP 2012229629A JP 2011096808 A JP2011096808 A JP 2011096808A JP 2011096808 A JP2011096808 A JP 2011096808A JP 2012229629 A JP2012229629 A JP 2012229629A
Authority
JP
Japan
Prior art keywords
fluid machine
scroll
manufacturing
sliding
movable scroll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011096808A
Other languages
Japanese (ja)
Inventor
Hideto Oka
秀人 岡
Tsutayoshi Narita
傳良 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011096808A priority Critical patent/JP2012229629A/en
Publication of JP2012229629A publication Critical patent/JP2012229629A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve seizure resistance and wear resistance in a sliding part and to reduce sliding loss in a fluid machine in which efficiency and durability are required.SOLUTION: In the method for manufacturing the fluid machine with an anodic oxide film formed on a surface of a slide member, a step of forming the anodic oxide film includes: a pre-processing step of cleansing a material; an anodizing step where electrolyzation is performed at an electrolytic temperature of 20°C more and with a film thickness of 4 μm or less; and a sealing drying step for performing processing at a sealing drying temperature of 80°C or less. Accordingly, the slide member for which improvement in seizure resistance and wear resistance, and the reduction of sliding loss can be implemented, and the method for manufacturing the fluid machine having high reliability and efficiency can be provided.

Description

本発明は、相対的に摺動する部位に用いられる摺動部材と、流体を搬送する流体機械に関するものである。特に、冷凍機器及び空調機器等に用いられ、高圧の冷媒ガスであるHFC系代替冷媒ガスや自然冷媒である炭酸ガス等を、圧縮または膨張させるスクロール型の流体機械の製造方法に係るものである。   The present invention relates to a sliding member used for a relatively sliding part and a fluid machine for transporting a fluid. In particular, the present invention relates to a method for manufacturing a scroll type fluid machine that is used in refrigeration equipment, air conditioning equipment, and the like, and compresses or expands HFC-based alternative refrigerant gas that is high-pressure refrigerant gas and carbon dioxide gas that is natural refrigerant. .

従来より、冷凍空調用の圧縮機としては、圧縮機構の方式がレシプロ式、ローリングピストン式およびスクロール式のものが製造され、広く知られている。いずれの方式も家庭用、業務用の冷凍空調分野で使用されており、その代表的な構造は、密閉容器内に、圧縮機構部と、その駆動用のシャフト、及び電動機等を収容した構造が用いられている。   Conventionally, compressors for refrigerating and air-conditioning have been widely known as compressors having a reciprocating type, a rolling piston type, and a scroll type. Both methods are used in the field of refrigeration and air conditioning for home use and business use. The typical structure is a structure in which a compression mechanism, a drive shaft, an electric motor, etc. are housed in a sealed container. It is used.

ここでは、自然冷媒である炭酸ガス(二酸化炭素)冷媒ガスに使用したヒートポンプ給湯用、あるいは空調機用のスクロール圧縮機を例にとり、従来の技術を説明する。まず、図4に示す従来のスクロール型圧縮機の縦断面図を用いてその構造を説明する。密閉容器1は、円筒状の胴シェル21aと、その両端を上シェル21bと底シェル21cが冷媒ガスが漏れないよう円周を溶接されて構成され、さらに冷媒ガスの吸入管11と吐出管16、電動機7の通電用の端子25が各々溶接やロー付け等で冷媒ガスが漏れないよう固定設置されている。   Here, a conventional technology will be described by taking a scroll compressor for heat pump hot water supply or an air conditioner used for carbon dioxide (carbon dioxide) refrigerant gas, which is a natural refrigerant, as an example. First, the structure will be described with reference to a longitudinal sectional view of a conventional scroll compressor shown in FIG. The hermetic container 1 is constituted by a cylindrical shell shell 21a, and its upper and lower shells 21b and 21c are welded at their ends so that refrigerant gas does not leak, and further, a refrigerant gas suction pipe 11 and a discharge pipe 16 are provided. The terminals 25 for energization of the motor 7 are fixedly installed so that the refrigerant gas does not leak by welding or brazing.

密閉容器1の内部には、固定スクロール2aと可動スクロール3とから構成された圧縮機構部2、オルダム継ぎ手4を介して可動スクロール3を固定スクロール2aに対して旋回運動させるシャフト5と、固定スクロール2aを固定されシャフト5を回転自在に支持する軸受部材6が設置されている。軸受部材6は密閉容器1に溶接などで固定されている。軸受部材6の下方には、シャフト5に固定された回転子7aと胴シェル21aに焼き嵌め等で固定された固定子7bが設置されている。   Inside the hermetic container 1 are a compression mechanism 2 composed of a fixed scroll 2a and a movable scroll 3, a shaft 5 for rotating the movable scroll 3 with respect to the fixed scroll 2a via an Oldham joint 4, and a fixed scroll. A bearing member 6 that fixes the shaft 2a and rotatably supports the shaft 5 is installed. The bearing member 6 is fixed to the sealed container 1 by welding or the like. Below the bearing member 6, a rotor 7a fixed to the shaft 5 and a stator 7b fixed to the shell shell 21a by shrink fitting or the like are installed.

さらに密閉容器1の内部の底部には潤滑油9を貯溜する油溜め10が設けられており、シャフト5の貫通穴13の下端より油溜め10の潤滑油9が、シャフト5の回転に伴いオイルポンプ17で吸い上げられ、ジャーナル軸受6a、偏芯軸受3a、および固定スクロール2aと可動スクロール3などの各摺動面へ供給される構造となっている。また、ジャーナル軸受6a及び偏芯軸受3aは、軸受部材6と可動スクロール3に圧入された軸受ブッシュ8a、8b等で構成され耐久性、摺動特性を維持している。軸受ブッシュ8a、8bには、円筒状の裏金(SPCC等)の内周面に摺動皮膜層(例えば、テフロン(登録商標)、ポリイミド、ポリアミド等の樹脂に、グラファイト、グラスファイバー、硬質カーボン等が添加されている)が形成されたいわゆる裏金付樹脂含浸軸受ブッシュを用いている。   Further, an oil sump 10 for storing the lubricating oil 9 is provided at the bottom inside the sealed container 1, and the lubricating oil 9 in the oil sump 10 is oiled from the lower end of the through hole 13 of the shaft 5 as the shaft 5 rotates. It is sucked up by the pump 17 and is supplied to each sliding surface such as the journal bearing 6a, the eccentric bearing 3a, and the fixed scroll 2a and the movable scroll 3. The journal bearing 6a and the eccentric bearing 3a are composed of the bearing member 6 and bearing bushes 8a and 8b press-fitted into the movable scroll 3, and maintain durability and sliding characteristics. For the bearing bushes 8a and 8b, a sliding coating layer (for example, a resin such as Teflon (registered trademark), polyimide, polyamide, graphite, glass fiber, hard carbon, etc.) on the inner peripheral surface of a cylindrical back metal (SPCC, etc.) So-called resin-impregnated bearing bushes with a back metal formed on the back.

次に、冷媒ガスの圧縮サイクルを説明する。空調機の熱交換器(図示せず)などを循環してきた低圧の冷媒ガスは吸入管11より圧縮機構部2に吸収される。吸入された冷媒ガスは、固定スクロール2aと可動スクロール3との間に形成された三日月状の圧縮空間(図示せず)には入り、可動スクロール3の旋回運動により三日月状の圧縮空間が外側から中央に向かって次第に縮小することで、冷媒ガスは圧縮され高圧ガスとなり固定スクロール2aの中央部に設けた吐出孔12より吐出される。   Next, the refrigerant gas compression cycle will be described. The low-pressure refrigerant gas that has circulated through the heat exchanger (not shown) of the air conditioner is absorbed by the compression mechanism unit 2 through the suction pipe 11. The sucked refrigerant gas enters a crescent-shaped compression space (not shown) formed between the fixed scroll 2 a and the movable scroll 3, and the crescent-shaped compression space is moved from the outside by the turning motion of the movable scroll 3. By gradually shrinking toward the center, the refrigerant gas is compressed and becomes a high-pressure gas, and is discharged from the discharge hole 12 provided in the center portion of the fixed scroll 2a.

吐出孔12より吐出された高圧ガスは、一旦密閉容器1内の固定スクロール2aの上方の吐出空間1aへ吐出され、ガス通路14を通じ、可動子7a上部の空間1bに流れ、つ
いで回転子7a内部に設けられたガス通路18aから密閉容器1の底部空間1cへ、さらに固定子7bの外周に設けられた通路18bを通じ上方に流れ固定子上部空間1dに出て、通路14とは別に設けられたガス通路15を通じ固定スクロール2aの上方空間1eに流れ出てた後、吐出管16より外部の熱交換器(図示せず)などのヒートポンプシステムへ吐出搬送される。熱交換器等を循環し高圧ガスは低圧ガスとなり、再び吸入管11より圧縮機に戻り、周知のヒートポンプサイクルを循環する。
The high-pressure gas discharged from the discharge hole 12 is once discharged into the discharge space 1a above the fixed scroll 2a in the hermetic container 1 and flows to the space 1b above the movable element 7a through the gas passage 14, and then inside the rotor 7a. From the gas passage 18a provided to the closed space 1 to the bottom space 1c of the hermetic container 1 and further upward through the passage 18b provided on the outer periphery of the stator 7b to the stator upper space 1d and provided separately from the passage 14. After flowing out into the upper space 1e of the fixed scroll 2a through the gas passage 15, it is discharged and conveyed from the discharge pipe 16 to a heat pump system such as an external heat exchanger (not shown). The high pressure gas is circulated through a heat exchanger or the like, and becomes a low pressure gas. The high pressure gas returns to the compressor from the suction pipe 11 and circulates a known heat pump cycle.

次に、圧縮機内部での潤滑油9の循環サイクルを説明する。潤滑油9は油溜め10からオイルポンプ17で吸い上げられ、シャフト5の貫通穴13を上昇し、偏心軸受3a、の隙間から可動スクロール3のボス部が収納されるボス部空間19に出て、ジャーナル軸受6aの隙間を経て、ジャーナル軸受6aの下部の油排出口から可動子7a上部の空間1bへ排出される。その後、可動子7a内の通路18aを通って底部の油溜め10に戻る。また、偏心軸受3aを通った潤滑油9の一部は、ボス部空間19から、オルダム継ぎ手4が設置された背圧空間22、そして背圧空間22の圧力を調整する吸入背圧調整弁23を通じて吸入側の圧縮室24に導かれる。その後、可動スクロール3の旋回運動により冷媒ガスとともに圧縮され吐出孔12より出て、先の冷媒ガスと同様の経路を経て、固定子上方空間1bで先のジャーナル軸受6aの下部から出た潤滑油と合流し、底部の油溜め10に戻る。これらの潤滑油の循環サイクルにより、シャフト5と偏心軸受3a及びジャーナル軸受6a、またオルダム継ぎ手4、可動スクロール3、固定スクロール2a等の各摺動部を潤滑している。   Next, the circulation cycle of the lubricating oil 9 inside the compressor will be described. The lubricating oil 9 is sucked up by the oil pump 17 from the oil sump 10, rises through the through hole 13 of the shaft 5, and exits from the gap of the eccentric bearing 3 a to the boss part space 19 in which the boss part of the movable scroll 3 is accommodated. Through the gap of the journal bearing 6a, the oil is discharged from the oil discharge port below the journal bearing 6a to the space 1b above the mover 7a. Then, it returns to the oil sump 10 at the bottom through the passage 18a in the mover 7a. Part of the lubricating oil 9 that has passed through the eccentric bearing 3a is partly from the boss space 19 to the back pressure space 22 where the Oldham coupling 4 is installed, and the suction back pressure adjusting valve 23 that adjusts the pressure in the back pressure space 22. To the compression chamber 24 on the suction side. Thereafter, the lubricant oil is compressed together with the refrigerant gas by the orbiting movement of the movable scroll 3 and exits from the discharge hole 12, and passes through the same path as the previous refrigerant gas, and the lubricating oil that has exited from the lower portion of the previous journal bearing 6 a in the stator upper space 1 b. And return to the sump 10 at the bottom. By these circulation cycles of the lubricating oil, the sliding portions such as the shaft 5, the eccentric bearing 3a, the journal bearing 6a, the Oldham coupling 4, the movable scroll 3, the fixed scroll 2a, and the like are lubricated.

近年、地球温暖化抑制のために、従来冷媒として用いられていたR12等のCFC系やR22などのHCFC系冷媒に代わり、HFC系冷媒(例えば、R410A、またはR32等を主成分としたHFc系冷媒等)、二酸化炭素(以後CO2と記す)等の自然冷媒を用いた機器の利用が進められるとともに、効率向上が求められている。しかしながら、これらの冷媒は、冷媒の特性上、上記従来冷媒より作動圧力が高くなるため、その圧力に応じて摺動部は大きい力を受けながら摺動する。また、HFC系冷媒はHCFC系で潤滑作用を有していた塩素がなく、自然冷媒CO2は洗浄作用が強く、ともに従来のHCFC系冷媒より潤滑面で不利となる側面をもっている。すなわち、温暖化抑制には効果的だが、信頼性及び効率向上には課題を有していた。   In recent years, in order to suppress global warming, HFC refrigerants (for example, HFc type mainly composed of R410A or R32, etc.) are used in place of CFCs such as R12 and HCFC refrigerants such as R22, which have been conventionally used as refrigerants. The use of equipment using natural refrigerants such as refrigerants) and carbon dioxide (hereinafter referred to as CO2) has been promoted, and improvement in efficiency has been demanded. However, these refrigerants have higher operating pressure than the conventional refrigerants due to the characteristics of the refrigerants, so that the sliding portion slides while receiving a large force according to the pressure. In addition, the HFC refrigerant has no chlorine that had a lubricating action in the HCFC system, and the natural refrigerant CO2 has a strong cleaning action, both of which have disadvantages in terms of lubrication compared to conventional HCFC refrigerants. In other words, it is effective in suppressing global warming, but has problems in improving reliability and efficiency.

図5は、従来の摺動部の拡大断面図である。可動スクロール3はその下方よりボス部空間19及び背圧空間22の圧力により、固定スクロール2a側にスラスト方向荷重を受け押付けられながら旋回運動をするが、そのスラスト荷重を、固定スクロール2aの圧縮室スラスト面52bと可動スクロール3のラップ端面53a(図中では上面)、同様に固定スクロール2aのラップ端面52a(図中では下面)と可動スクロール3の圧縮室スラスト面53bが受けながら、互いに摺動している。   FIG. 5 is an enlarged cross-sectional view of a conventional sliding portion. The movable scroll 3 makes a turning motion while receiving and thrusting a load in the thrust direction toward the fixed scroll 2a due to the pressure in the boss portion space 19 and the back pressure space 22 from below, and the thrust load is applied to the compression chamber of the fixed scroll 2a. The thrust surface 52b and the wrap end surface 53a (upper surface in the drawing) of the movable scroll 3 and the wrap end surface 52a (lower surface in the drawing) of the fixed scroll 2a and the compression chamber thrust surface 53b of the movable scroll 3 are similarly slid with each other. doing.

また、回転方向の荷重を、オルダム継ぎ手4のキー部4aと可動スクロール3のキー溝部3bと、図示しないがオルダム継ぎ手4のキー部と軸受部材6のキー溝部が、受けながら互いに摺動している。   Further, the key portion 4a of the Oldham joint 4 and the key groove portion 3b of the movable scroll 3 and the key portion of the Oldham joint 4 and the key groove portion of the bearing member 6 (not shown) slide against each other while receiving the load in the rotational direction. Yes.

上記構成の圧縮機をCO2冷媒のヒートポンプサイクルに用いる際、従来冷媒より高差圧運転が行われるため、上記スクロール、オルダム継ぎ手の摺動部が受ける過大な荷重により、摺動面同士が部分的に接触する(境界潤滑に近い)混合潤滑状態となりやすくなる。この(境界潤滑に近い)混合潤滑状態が続く場合には、摺動部には磨耗や、焼付きが発生する事となる。   When the compressor configured as described above is used for a CO2 refrigerant heat pump cycle, since the differential pressure operation is higher than that of the conventional refrigerant, the sliding surfaces are partially separated by an excessive load received by the sliding portion of the scroll and Oldham joint. It becomes easy to be in a mixed lubrication state in contact with (close to boundary lubrication). When this mixed lubrication state (close to boundary lubrication) continues, wear and seizure occur at the sliding portion.

従来のスクロール圧縮機では、軽量化と高速回転に対応するため可動スクロール3をアルミ合金材で形成し、固定スクロール2に鋳鉄材、オルダムリングに鉄系焼結材を用いて
いるが、可動スクロール3の表面に耐摩耗性を向上させる目的でその表面に陽極酸化層を形成している(例えば、特許文献1参照)。図6は、陽極酸化処理された従来の可動スクロールの断面図である。図6中の点線に示す様にほぼ全表面(53a、53b、53c、53d、53e等)に陽極酸化層を形成している。陽極酸化処理は、電解液中に可動スクロールを浸漬し、図6のように、処理用電源136から電極137を介して通電されて皮膜形成が行われるが、処理中に、ボス部の鉄系の裏金を有するブッシュ103が電解液の侵入により腐食するのを防止するため、ボス部にはマスキング135が被せられている。
In a conventional scroll compressor, the movable scroll 3 is formed of an aluminum alloy material to cope with weight reduction and high-speed rotation, and the fixed scroll 2 uses cast iron material and the Oldham ring uses iron-based sintered material. An anodized layer is formed on the surface 3 for the purpose of improving wear resistance (see, for example, Patent Document 1). FIG. 6 is a cross-sectional view of a conventional movable scroll that has been anodized. As shown by the dotted lines in FIG. 6, an anodized layer is formed on almost the entire surface (53a, 53b, 53c, 53d, 53e, etc.). In the anodic oxidation treatment, a movable scroll is immersed in an electrolytic solution, and a film is formed by being energized through an electrode 137 from a processing power source 136 as shown in FIG. In order to prevent the bush 103 having the back metal from being corroded by the intrusion of the electrolytic solution, the boss portion is covered with a masking 135.

特開2006−112379号公報JP 2006-112379 A

しかしながら陽極酸化層は処理時割れやすく、耐摩耗性、潤滑性が損なわれる課題を有していた。本発明は、上記従来の課題を解決するものであり、耐磨耗性能および潤滑性能の高い摺動部材を用いて信頼性と性能向上を実現する流体機械の製造方法を提供することを目的とする。   However, the anodized layer is easily cracked during processing, and has a problem that wear resistance and lubricity are impaired. The present invention solves the above-described conventional problems, and an object thereof is to provide a method of manufacturing a fluid machine that realizes reliability and performance improvement using a sliding member having high wear resistance and lubrication performance. To do.

上記の目的を達成するために、本発明は、アルミを主成分とする摺動部材の表面に陽極酸化処理時、工程を管理することで割れのない皮膜を形成したものである。これによって、信頼性の高い皮膜を形成できる。   In order to achieve the above object, in the present invention, a crack-free coating is formed on the surface of a sliding member mainly composed of aluminum by controlling the process during anodizing. Thereby, a highly reliable film can be formed.

本発明の流体機械の製造方法によれば、耐摩耗性能および摺動特性に優れた摺動部材を実現できると共に、また優れた耐久性及び高い効率を有する流体機械の製造方法を実現できる。   According to the fluid machine manufacturing method of the present invention, it is possible to realize a sliding member having excellent wear resistance and sliding characteristics, and also to realize a fluid machine manufacturing method having excellent durability and high efficiency.

実施の形態1における可動スクロール表面の断面図Sectional drawing of the surface of the movable scroll in Embodiment 1 実施の形態1における陽極酸化処理工程のフローチャート図Flowchart diagram of an anodic oxidation process in the first embodiment 従来の陽極酸化皮膜と、本発明の実施の形態1における陽極酸化皮膜とのSEM写真図SEM photograph of conventional anodized film and anodized film in embodiment 1 of the present invention 従来のスクロール圧縮機の縦断面図Longitudinal sectional view of a conventional scroll compressor 従来の摺動部の拡大断面図Expanded sectional view of a conventional sliding part 従来の可動スクロールの断面図Cross section of a conventional movable scroll

第1の発明は、摺動部材表面に陽極酸化皮膜を形成する流体機械の製造方法であって、前記陽極酸化皮膜を形成する工程は、素材を洗浄する前処理工程と、電解温度を20℃以上、皮膜の厚さを4μm以下で電解する陽極酸化処理工程と、封孔乾燥温度を80℃以下で処理を行う封孔乾燥工程とを備えることにより、膜の成長が一定になり割れのない皮膜を形成することができる。   1st invention is the manufacturing method of the fluid machine which forms an anodic oxide film in the sliding member surface, Comprising: The process of forming the said anodic oxide film is a pre-processing process which wash | cleans a raw material, and electrolysis temperature is 20 degreeC. As described above, by providing the anodizing treatment step for electrolysis at a film thickness of 4 μm or less and the sealing drying step for treatment at a sealing drying temperature of 80 ° C. or less, the growth of the film becomes constant and there is no cracking. A film can be formed.

第2の発明は、前記摺動部材は、アルミを主成分とし、シリコン粒子を5%から15%含有することにより、製造コストの低減および機械的強度の向上を図ることができる。   In the second invention, the sliding member is mainly composed of aluminum and contains silicon particles in an amount of 5% to 15%, so that the manufacturing cost can be reduced and the mechanical strength can be improved.

第3の発明は、スクロール型の圧縮機構部を有する流体機械であって、前記摺動部材が、可動スクロールまたは固定スクロールであることにより、第1の発明と同様の効果を奏
する。
3rd invention is a fluid machine which has a scroll type compression mechanism part, Comprising: When the said sliding member is a movable scroll or a fixed scroll, there exists an effect similar to 1st invention.

以下に、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
アルミと5〜15%Si粒子を含有したアルミ合金を素材とした可動スクロール3に、割れのない陽極酸化皮膜(アルマイト層)を形成する場合を、図1〜3を用いて説明する。
図1は、本発明の実施の形態1における可動スクロール表面の断面図である。図2は、実施の形態1における陽極酸化処理工程のフローチャート図である。図3は、従来の陽極酸化皮膜と、本発明の実施の形態1における陽極酸化皮膜とのSEM写真図である。
(Embodiment 1)
A case where an anodized film (alumite layer) having no cracks is formed on the movable scroll 3 made of aluminum and an aluminum alloy containing 5 to 15% Si particles will be described with reference to FIGS.
FIG. 1 is a cross-sectional view of the surface of the movable scroll according to Embodiment 1 of the present invention. FIG. 2 is a flowchart of the anodizing process in the first embodiment. FIG. 3 is a SEM photograph of the conventional anodic oxide film and the anodic oxide film in Embodiment 1 of the present invention.

図1は本実施の形態に係る陽極酸化処理後の表層断面を示し、可動スクロール3の素材はアルミ合金である。Si粒子31は、平均径3〜5μm程度の粒子である。32は摺動表面、35aは陽極酸化皮膜である。Si粒子31はアルミ部より導電性が悪いため陽極酸化皮膜35aの成長過程でSi粒子31の周りに隙間36が生じている。ここでは、陽極酸化処理は、25℃の硫酸アルマイト処理を用い厚みσaは約3μmとし、Si粒子31の平均径は5μmとした。陽極酸化皮膜35aは柱状組織であり柱状に沿って中空部を有し皮膜上面から皮膜下部(アルミ基材)へとつながっている。   FIG. 1 shows a surface layer cross section after anodizing treatment according to the present embodiment, and the material of the movable scroll 3 is an aluminum alloy. The Si particles 31 are particles having an average diameter of about 3 to 5 μm. 32 is a sliding surface, and 35a is an anodized film. Since the Si particles 31 are less conductive than the aluminum part, gaps 36 are generated around the Si particles 31 during the growth process of the anodized film 35a. Here, the anodic oxidation treatment was an alumite sulfate treatment at 25 ° C., the thickness σa was about 3 μm, and the average diameter of the Si particles 31 was 5 μm. The anodized film 35a has a columnar structure, has a hollow portion along the columnar shape, and is connected from the upper surface of the film to the lower part of the film (aluminum substrate).

尚、5〜15%Siのアルミ合金の場合だけでなく、15%以上含まれる材料の場合も効果はあるが、材料の製造コストが高くなることや機械的強度が逆に低く、また陽極酸化層の形成速度も低く、生産性は低く現実的でない。また、逆に5%以下でも効果があることは言うまでもない。   In addition, it is effective not only in the case of 5-15% Si aluminum alloy but also in the case of a material containing 15% or more, but the manufacturing cost of the material is high and the mechanical strength is low, and anodization The formation rate of the layer is low, the productivity is low and it is not realistic. On the other hand, it goes without saying that an effect can be obtained even at 5% or less.

なお、シリコン平均粒子径は3〜5μmに限定するものではなく、より大きい粒子径や、小さい場合でも、適用可能であることは言うまでもない。   It should be noted that the silicon average particle diameter is not limited to 3 to 5 μm, and it goes without saying that the present invention can be applied even when the particle diameter is larger or smaller.

以上の構成によれば、摺動部材である可動スクロール3の摺動部に、磨耗性に優れた陽極酸化皮膜35aを割れることなく形成できるため、摺動部の損失低減、耐摩耗性向上を実現できる。また、流体機械であるスクロール圧縮機に、その酸化皮膜を形成した可動スクロール3を用いることで、効率、耐久性、信頼性向上を実現できる。   According to the above configuration, since the anodic oxide film 35a having excellent wear properties can be formed on the sliding portion of the movable scroll 3 that is a sliding member without breaking, the loss of the sliding portion is reduced and the wear resistance is improved. realizable. Further, by using the movable scroll 3 formed with the oxide film in the scroll compressor which is a fluid machine, it is possible to improve efficiency, durability and reliability.

可動スクロール3は、図2に示す陽極酸化処理工程でその表面に所望の陽極酸化皮膜35aが形成されて完成する。
(工程1)前処理工程であり、素材を洗浄(酸洗浄、アルカリ洗浄)し表面から不純物を取り除く。
(工程2)陽極酸化電解処理工程であり、前処理された状態の表面にアルミの酸化層である陽極酸化皮膜35aを形成する工程である。電解時、電流一定、温度20℃以上、膜厚4μm以下で電解することで、弾性のある膜を均一に形成することができ、割れのない陽極酸化皮膜(アルマイト層)が形成される。
(工程3)封孔処理工程であり、形成された陽極酸化皮膜35aの空孔部分に酸化封孔する工程である。
(工程4)乾燥処理工程であり、封孔処理工程と共に、温度を80℃以下にして乾燥するする工程である。
The movable scroll 3 is completed by forming a desired anodized film 35a on the surface thereof in the anodizing process shown in FIG.
(Step 1) This is a pretreatment step, and the material is washed (acid washing, alkali washing) to remove impurities from the surface.
(Step 2) An anodic oxidation electrolytic treatment step in which an anodized film 35a, which is an aluminum oxide layer, is formed on the pretreated surface. During electrolysis, electrolysis is performed at a constant current, a temperature of 20 ° C. or more, and a film thickness of 4 μm or less, whereby an elastic film can be formed uniformly and an anodic oxide film (alumite layer) without cracks is formed.
(Step 3) This is a sealing treatment step, which is a step of oxidizing and sealing the pore portions of the formed anodized film 35a.
(Process 4) It is a drying process, and is a process of drying at a temperature of 80 ° C. or lower together with the sealing process.

図3により、本工程によって作成された陽極酸化皮膜35aは、表面に熱膨張による亀裂の発生が防止されたことが確認される。   From FIG. 3, it is confirmed that the anodized film 35a produced by this process has prevented the surface from being cracked due to thermal expansion.

(実施の形態2)
次に、本発明の実施の形態2について説明する。可動スクロール3と軸受部材6に鋳鉄材、オルダム継ぎ手4にアルミ合金材を用いる場合は、オルダム継ぎ手4の摺動部に酸化皮膜を実施の形態1と同様にして形成することで、摺動部の損失低減、耐摩耗性向上が実現できる。また、そのオルダム継ぎ手4を用いた流体機械であるスクロール圧縮機は、効率、耐久性、信頼性向上を実現できる。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. When a cast iron material is used for the movable scroll 3 and the bearing member 6 and an aluminum alloy material is used for the Oldham joint 4, an oxide film is formed on the sliding portion of the Oldham joint 4 in the same manner as in the first embodiment. Loss reduction and improved wear resistance. Moreover, the scroll compressor which is a fluid machine using the Oldham coupling 4 can realize improvement in efficiency, durability and reliability.

以上、上記実施の形態1から2では、スクロール型圧縮機構を有する場合を例にして説明したが、他のロータリー型、レシプロ型等の圧縮機や膨張機、ポンプ、さらにはエンジン等ない熱機関などにも、本発明は適用可能であり、同様の効果を実現できる事は言うまでもない。特に、小型、軽量化が要求される車用の圧縮機やエンジンでは、摺動部にアルミ合金が用いられることも多く、陽極酸化処理が必用とされることも多いため、特にそのような場合に本発明はより効果を発揮できる。尚、相対摺道する摺動部材の双方がアルミ合金であって、片方または双方に同様に酸化皮膜を形成してもよいことは、言うまでもない。   As described above, in the first and second embodiments, the case where the scroll type compression mechanism is provided has been described as an example. However, other rotary type, reciprocating type compressors, expanders, pumps, and heat engines that do not have an engine, etc. Needless to say, the present invention can be applied to the above, and the same effect can be realized. Especially in car compressors and engines that are required to be smaller and lighter, aluminum alloys are often used for sliding parts and anodization is often required. In addition, the present invention can be more effective. Needless to say, both sliding members that slide relative to each other are made of an aluminum alloy, and an oxide film may be similarly formed on one or both.

また、本発明の実施の形態1から2におけるスクロール圧縮機は、CO2を冷媒に潤滑油にPAG油を用いた場合を例に説明するが、これに限るものではなく、HFC系冷媒R410A、R32、またはハイドロカーボン(HC)、HCFC22などの冷媒と、エーテル、エステル、PAO、アルキルベンゼンまたは鉱油等を潤滑油に用いた場合にも同様に適用可能であり、同様の効果を得ることができる。   The scroll compressors according to the first and second embodiments of the present invention will be described by taking as an example the case where CO2 is used as refrigerant and PAG oil is used as lubricating oil. However, the present invention is not limited to this, and HFC refrigerants R410A and R32 are used. Alternatively, the present invention can be similarly applied to the case where a refrigerant such as hydrocarbon (HC) or HCFC22 and ether, ester, PAO, alkylbenzene, mineral oil, or the like is used for the lubricating oil, and the same effect can be obtained.

以上のように、本発明に係る摺動部材及び流体機械によれば、耐摩耗性能および摺動特性に優れた摺動部材を実現できると共に、また優れた耐久性及び高い効率を有する流体機械を実現することが可能となるので、空気調和機や冷蔵庫などの冷凍機器、除湿機や乾燥機、給湯器ヒートポンプ応用機器に使用される冷媒圧縮機のほかに、エンジンなどの用途にも適用することができる。   As described above, according to the sliding member and the fluid machine according to the present invention, a sliding member having excellent wear resistance and sliding characteristics can be realized, and a fluid machine having excellent durability and high efficiency can be realized. Since it can be realized, it should be applied to applications such as engines in addition to refrigerant compressors used in refrigeration equipment such as air conditioners and refrigerators, dehumidifiers and dryers, and water heater heat pump applications. Can do.

3 可動スクロール
31 Si粒子
32 摺動表面
35a 陽極酸化皮膜
36 隙間
3 Movable scroll 31 Si particle 32 Sliding surface 35a Anodized film 36 Gap

Claims (3)

摺動部材表面に陽極酸化皮膜を形成する流体機械の製造方法であって、
前記陽極酸化皮膜を形成する工程は、
素材を洗浄する前処理工程と、
電解温度を20℃以上、皮膜の厚さを4μm以下で電解する陽極酸化処理工程と、
封孔乾燥温度を80℃以下で処理を行う封孔乾燥工程とを備えている、流体機械の製造方法。
A fluid machine manufacturing method for forming an anodized film on a sliding member surface,
The step of forming the anodized film comprises
A pretreatment process for cleaning the material;
An anodizing treatment step of electrolyzing at an electrolysis temperature of 20 ° C. or more and a film thickness of 4 μm or less;
A method for manufacturing a fluid machine, comprising: a sealing drying process for performing a sealing drying temperature of 80 ° C. or less.
前記摺動部材は、アルミを主成分とし、シリコン粒子を5%から15%含有することを特徴とする請求項1に記載の流体機械の製造方法。 2. The method of manufacturing a fluid machine according to claim 1, wherein the sliding member contains aluminum as a main component and contains 5% to 15% of silicon particles. スクロール型の圧縮機構部を有する流体機械であって、前記摺動部材が、可動スクロールまたは固定スクロールであることを特徴とする請求項1または2に記載の流体機械の製造方法。 3. The fluid machine manufacturing method according to claim 1, wherein the fluid machine has a scroll type compression mechanism, and the sliding member is a movable scroll or a fixed scroll.
JP2011096808A 2011-04-25 2011-04-25 Method for manufacturing fluid machine Withdrawn JP2012229629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096808A JP2012229629A (en) 2011-04-25 2011-04-25 Method for manufacturing fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096808A JP2012229629A (en) 2011-04-25 2011-04-25 Method for manufacturing fluid machine

Publications (1)

Publication Number Publication Date
JP2012229629A true JP2012229629A (en) 2012-11-22

Family

ID=47431369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096808A Withdrawn JP2012229629A (en) 2011-04-25 2011-04-25 Method for manufacturing fluid machine

Country Status (1)

Country Link
JP (1) JP2012229629A (en)

Similar Documents

Publication Publication Date Title
KR100832688B1 (en) Fluid machinery
CN103946546B (en) Rotary compressor
WO2011007498A1 (en) Reciprocating compressor
KR20080042124A (en) Refrigerant compressor, cooling system and refrigerator
JP2001289169A (en) Compressor
CN109996901B (en) Oxide film, sliding member having the same formed thereon, and apparatus having the sliding member
JP2009287483A (en) Refrigerant compressor
JP2012229629A (en) Method for manufacturing fluid machine
JP5067181B2 (en) Sliding member and fluid machine
JP2005325842A (en) Fluid machine
JP2005307903A (en) Scroll compressor
JP2009108748A (en) Scroll compressor
WO2020095903A1 (en) Refrigerant compressor and refrigeration apparatus using same
JP5864883B2 (en) Scroll compressor
JP2009120917A (en) Sliding member, and fluid machine
JP2004301074A (en) Semi-hermetic multistage compressor
JP5194785B2 (en) Manufacturing method of fluid machine
JP7308437B2 (en) scroll compressor
JPH0932747A (en) Scroll compressor
JP2005061351A (en) Fluid machine
JP2004301071A (en) Semi-hermetic multistage compressor
JP2006112379A (en) Method of manufacturing fluid machine and fluid machine
JP2005133586A (en) Hermetic refrigerant compressor
WO2017056213A1 (en) Scroll compressor
JP2018131969A (en) Slide member in refrigerant compressor and refrigerant compressor with the member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701