JP2005061351A - Fluid machine - Google Patents

Fluid machine Download PDF

Info

Publication number
JP2005061351A
JP2005061351A JP2003294319A JP2003294319A JP2005061351A JP 2005061351 A JP2005061351 A JP 2005061351A JP 2003294319 A JP2003294319 A JP 2003294319A JP 2003294319 A JP2003294319 A JP 2003294319A JP 2005061351 A JP2005061351 A JP 2005061351A
Authority
JP
Japan
Prior art keywords
anodized layer
movable scroll
fluid machine
scroll
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003294319A
Other languages
Japanese (ja)
Inventor
Hidenobu Shintaku
秀信 新宅
Yasushi Aeba
靖 饗場
Tetsushi Yonekawa
哲史 米川
Toshihiro Nishioka
敏浩 西岡
Kenji Shimada
賢志 嶋田
Noboru Iida
飯田  登
Yoshiyuki Futagami
義幸 二上
Akira Iwashida
鶸田  晃
Hiroyuki Fukuhara
弘之 福原
Hideo Hirano
秀夫 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003294319A priority Critical patent/JP2005061351A/en
Publication of JP2005061351A publication Critical patent/JP2005061351A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-precision slide member such as a movable scroll with high abrasion resistance and low sliding loss at a favorable yield, and a fluid machine such as a compressor and a pump of high reliability and high efficiency. <P>SOLUTION: On the surface of a slide part of the movable scroll 3, an anodized layer 36 is formed, and prescribed thickness is eliminated from the surface of the anodized surface 36. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、流体を搬送する流体機械に関するもので、特に、冷凍機器及び空調機器等に用いられる圧縮機に関し、高圧の冷媒ガスである炭酸ガス等を、高圧に圧縮する圧縮機に係るものである。   The present invention relates to a fluid machine that conveys fluid, and particularly relates to a compressor that is used in a refrigeration apparatus, an air conditioner, and the like, and relates to a compressor that compresses carbon dioxide gas, which is a high-pressure refrigerant gas, to a high pressure. is there.

冷凍空調用の圧縮機としては、圧縮機構の方式がレシプロ式、ローリングピストン式およびスクロール式のものがあり、いずれの方法も家庭用、業務用の冷凍空調分野で使用されている。いずれの方式の圧縮機も、密閉容器内に、圧縮機構部と、その駆動用のシャフト、及び電動機等を収容して構成されている(例えば、特許文献1参照)。   As the compressors for refrigerating and air-conditioning, there are reciprocating, rolling piston, and scroll types of compression mechanisms, and any of these methods is used in the field of refrigerating and air-conditioning for home use and business use. Both types of compressors are configured by accommodating a compression mechanism, a driving shaft, an electric motor, and the like in an airtight container (see, for example, Patent Document 1).

ここでは、HCFC系冷媒R22を作動ガスに使用している場合のスクロール圧縮機を例にとり、従来の技術を説明する。   Here, a conventional technique will be described by taking a scroll compressor as an example when the HCFC refrigerant R22 is used as a working gas.

図5に従来のスクロール圧縮機の縦断面図を示す。   FIG. 5 shows a longitudinal sectional view of a conventional scroll compressor.

密閉容器1の内部には、固定スクロール2aと可動スクロール3とから構成された圧縮機構部2、オルダム継手4を介して可動スクロール3を固定スクロール2aに対して旋回運動させるシャフト5と、固定スクロール2aを固定されシャフト5を回転自在に支持する軸受部材6を設けている。   Inside the hermetic container 1 are a compression mechanism portion 2 composed of a fixed scroll 2a and a movable scroll 3, a shaft 5 for rotating the movable scroll 3 with respect to the fixed scroll 2a via an Oldham coupling 4, and a fixed scroll. A bearing member 6 is provided that fixes the shaft 2a and rotatably supports the shaft 5.

シャフト5には電動機7の回転子7aが取り付けられており、胴シェル20に焼き嵌め固定された固定子7bとともに軸受部材6の下部に配設されている。   A rotor 7 a of an electric motor 7 is attached to the shaft 5, and is disposed below the bearing member 6 together with a stator 7 b that is shrink-fitted and fixed to the body shell 20.

密閉容器1の下方底部には潤滑油9を貯溜する油溜め10が設けられており、シャフト5の貫通穴13の下端より油溜め10の潤滑油9をシャフト5の回転に伴いオイルポンプ17で吸い上げ、ジャーナル軸受6a、偏芯軸受3a、および固定スクロール2aと可動スクロール3などの各摺動面へ供給する。   An oil sump 10 for storing the lubricating oil 9 is provided at the lower bottom of the sealed container 1, and the oil 9 in the oil sump 10 is removed from the lower end of the through hole 13 of the shaft 5 by the oil pump 17 as the shaft 5 rotates. Suction, journal bearing 6a, eccentric bearing 3a, and supply to each sliding surface such as fixed scroll 2a and movable scroll 3.

次に、以上のような構成を有する従来のスクロール圧縮機における、冷媒ガスの圧縮サイクルを説明する。空調機の熱交換器(図示せず)などを循環してきた低圧の冷媒ガスは吸入管11より圧縮機構部2に吸入される。   Next, the refrigerant gas compression cycle in the conventional scroll compressor having the above-described configuration will be described. The low-pressure refrigerant gas that has circulated through the heat exchanger (not shown) of the air conditioner is sucked into the compression mechanism 2 through the suction pipe 11.

吸入された冷媒ガスは、固定スクロール2aと可動スクロール3との間に形成された三日月状の圧縮空間(図示せず)に入り、可動スクロール3の旋回運動により三日月状の圧縮空間が外側から中央に向かって次第に縮小することで、冷媒ガスは圧縮され高圧ガスとなり吐出孔12より吐出される。   The sucked refrigerant gas enters a crescent-shaped compression space (not shown) formed between the fixed scroll 2 a and the movable scroll 3, and the crescent-shaped compression space is centered from the outside by the turning motion of the movable scroll 3. The refrigerant gas is compressed to become a high-pressure gas and is discharged from the discharge hole 12 by being gradually reduced toward.

吐出孔12より吐出された高圧ガスは、一旦密閉容器1内の固定スクロール2aの上方の吐出空間1aへ吐出され、ガス通路14を通じ、電動機7が収容された下部空間1bに流れ、回転子7a内に設けられたガス通路18aから密閉容器1の底部空間1cへ、さらに固定子7bの外周に設けられた通路18bを通じ上方に流れ、通路14とは別に設けられたガス通路15を通じ、固定スクロール2aより上方の空間1eに流れ、吐出管16より、外部の図示しない熱交換器などの空調システムへ吐出される。そして、高圧ガスは該空調システムにおいて空調機の熱交換器などを循環し低圧ガスとなり、再び吸入管11より圧縮機に戻る周知の圧縮サイクルを構成する。   The high-pressure gas discharged from the discharge hole 12 is once discharged into the discharge space 1a above the fixed scroll 2a in the hermetic container 1, flows through the gas passage 14 to the lower space 1b in which the electric motor 7 is accommodated, and the rotor 7a. From the gas passage 18a provided in the inside to the bottom space 1c of the hermetic container 1 further flows upward through the passage 18b provided on the outer periphery of the stator 7b, and through the gas passage 15 provided separately from the passage 14, the fixed scroll It flows into the space 1e above 2a and is discharged from the discharge pipe 16 to an external air conditioning system such as a heat exchanger (not shown). The high-pressure gas circulates in a heat exchanger or the like of the air conditioner in the air-conditioning system to become a low-pressure gas and constitutes a known compression cycle that returns to the compressor from the suction pipe 11 again.

次に、従来のスクロール圧縮機における、各摺動部へ潤滑油9を供給する潤滑油の循環サイクルを説明する。油溜め10からオイルポンプ17で吸い上げられた潤滑油9は、シャフト5の貫通穴13の中を上昇し、偏心軸受3a、ジャーナル軸受6aおよび各摺動部を潤滑、冷却して、ジャーナル軸受6aの下部の油排出口から回転子7a上部へ排出され、回転子7a内の通路18aを通って底部の油溜め10に戻る潤滑油の循環サイクルを形成している。   Next, the lubricating oil circulation cycle for supplying the lubricating oil 9 to each sliding portion in the conventional scroll compressor will be described. The lubricating oil 9 sucked up by the oil pump 17 from the oil sump 10 rises in the through hole 13 of the shaft 5, lubricates and cools the eccentric bearing 3a, the journal bearing 6a, and the sliding portions, and the journal bearing 6a. The oil is discharged from the lower oil discharge port to the upper portion of the rotor 7a and forms a lubricating oil circulation cycle that returns to the bottom oil sump 10 through the passage 18a in the rotor 7a.

また、偏心軸受3aを通った潤滑油9の一部も、可動スクロール3の下方のボス部空間21から、オルダム継手4が設置された背圧空間22、そして背圧空間22の圧力を調整する吸入背圧調整弁23を通じて吸入側の圧縮室24に導かれ、可動スクロール3の旋回運動により圧縮された冷媒ガスとともに吐出孔12よりでてガス通路14、18aを通じ、底部の油溜め10に戻る潤滑油の循環サイクルを形成している。この循環サイクルの過程で、オルダム継手4および可動スクロール3、固定スクロール2a等の各摺動部を潤滑、冷却する。   Further, part of the lubricating oil 9 that has passed through the eccentric bearing 3 a also adjusts the pressure in the back pressure space 22 in which the Oldham coupling 4 is installed and the pressure in the back pressure space 22 from the boss space 21 below the movable scroll 3. The refrigerant is led to the suction side compression chamber 24 through the suction back pressure adjusting valve 23 and is returned to the oil sump 10 at the bottom through the gas passages 14 and 18a from the discharge hole 12 together with the refrigerant gas compressed by the turning motion of the movable scroll 3. A lubricating oil circulation cycle is formed. In the course of this circulation cycle, the Oldham coupling 4, the movable scroll 3, the fixed scroll 2a and other sliding parts are lubricated and cooled.

しかしながら、地球環境への問題へ対応から、従来用いられていたR12等のCFC系やR22などのHCFC系冷媒より地球温暖化抑制に適した、高効率で地球温暖化係数の小さいHFC系冷媒(例えば、R410A,またはR32等を、主成分としたHFC系冷媒等)、あるいは地球温暖化係数がさらに小さい自然冷媒(例えば、二酸化炭素(以後CO2と記す)等)を冷媒に用いた機器の利用が進められている。   However, in order to cope with global environmental problems, HFC refrigerants that are more efficient and have a lower global warming potential than conventional CFCs such as R12 and HCFC refrigerants such as R22, which are more suitable for suppressing global warming ( For example, use of a device that uses, as a refrigerant, a natural refrigerant (eg, carbon dioxide (hereinafter referred to as CO2)) having a smaller global warming potential, such as an HFC refrigerant having R410A or R32 as a main component. Is underway.

これらの冷媒の多くは、冷媒の特性上、機器のシステム効率を高めるために、従来冷媒R22等より作動圧力が高くする必要があり、その圧力に応じて摺動部は大きい力を受けながら摺動する。   Many of these refrigerants require a higher operating pressure than the conventional refrigerant R22 or the like in order to increase the system efficiency of the equipment due to the characteristics of the refrigerant, and the sliding portion is slid while receiving a large force according to the pressure. Move.

例えば、図5に示す上記圧縮機の構成の場合、ボス部空間21及び背圧空間22の圧力により可動スクロール3は、固定スクロール2aに押付けられながら旋回運動しているが、その際図6に示すように、固定スクロール2aの圧縮室スラスト面32bと可動スクロール3のラップ端面33a(図中では上面側)、同様に固定スクロール2aのラップ端面32a(図中では下面側)と可動スクロール3の圧縮室スラスト面33bが、上記荷重を受けながら互いに摺動している。   For example, in the case of the configuration of the compressor shown in FIG. 5, the movable scroll 3 is swung while being pressed against the fixed scroll 2a by the pressures of the boss space 21 and the back pressure space 22. As shown, the compression chamber thrust surface 32b of the fixed scroll 2a and the wrap end surface 33a (upper surface side in the drawing) of the movable scroll 3, as well as the wrap end surface 32a (lower surface side in the drawing) of the fixed scroll 2a and the movable scroll 3 The compression chamber thrust surfaces 33b slide on each other while receiving the load.

またオルダム継手4のキー部4aと可動スクロール3のキー溝部3bも、上記同様に荷重を受け互いに摺動している。   Further, the key portion 4a of the Oldham joint 4 and the key groove portion 3b of the movable scroll 3 are also slid against each other under the load as described above.

これらの摺動部では、過酷な運転条件や従来フロンHCFCの代替用冷媒ガス(潤滑作用を有していた塩素がないHFC系冷媒R410A、自然冷媒CO2等)での高差圧の運転条件において、運転時には過大な荷重が発生し摺動部の潤滑油膜が非常に薄くなり、部分的に接触する(境界潤滑に近い)混合潤滑状態となる。この(境界潤滑に近い)混合潤滑状態が続いた場合には、摺動部の表面に摩耗が発生し、信頼性を損なうという課題が生じていた。   In these sliding parts, under severe operating conditions and operating conditions of high differential pressure in refrigerant gas for replacement of conventional Freon HCFC (such as HFC refrigerant R410A without natural chlorine and natural refrigerant CO2 which has a lubricating action) During operation, an excessive load is generated, the lubricating oil film of the sliding portion becomes very thin, and a mixed lubrication state is brought into partial contact (close to boundary lubrication). When this mixed lubrication state (similar to boundary lubrication) continues, wear occurs on the surface of the sliding portion, causing a problem of impairing reliability.

この課題に対応するため、例えば可動スクロール3の基材にアルミを主成分とする材料が用いられる場合には、アルミの表面に陽極酸化層を形成する方法が提案されている(例えば、特許文献2、特許文献3参照)。   In order to cope with this problem, for example, when a material mainly composed of aluminum is used as the base material of the movable scroll 3, a method of forming an anodized layer on the surface of aluminum has been proposed (for example, Patent Documents). 2, see Patent Document 3).

陽極酸化層の形成には、硫酸やシュウ酸などを用いた方法が一般的に用いられている。アルミを主成分とする材料上に形成された陽極酸化層は、通常アルマイトと呼ばれている。   A method using sulfuric acid or oxalic acid is generally used to form the anodized layer. An anodized layer formed on a material mainly composed of aluminum is usually called anodized.

図7に、従来の陽極酸化皮膜を形成する場合の、可動スクロール3の製作工程の概略を示す。まず、可動スクロール素材から加工取り代(例えば、約20μm程度)を残し略仕上げ形状にまで工する前仕上加工工程、次に所定の精度に仕上げる仕上加工工程を経る。そして、陽極酸化処理工程で、所定の陽極酸化皮膜を表面に形成される。また、陽極酸化処理工程の前に必要に応じて、陽極酸化層を形成させない部分や、陽極酸化工程での処理液等を混入させたくない部分を樹脂などで覆うマスキング工程を有する場合もある。
特開2002−161856号公報 特開平6−167243号公報 特開平7−126891号公報
FIG. 7 shows an outline of the manufacturing process of the movable scroll 3 in the case of forming a conventional anodic oxide film. First, a pre-finishing process that leaves a machining allowance (for example, about 20 μm) from the movable scroll material to a substantially finished shape, and then a finishing process that finishes to a predetermined accuracy. In the anodizing process, a predetermined anodized film is formed on the surface. Further, there may be a masking step of covering a portion where the anodic oxidation layer is not formed or a portion where the treatment liquid or the like in the anodic oxidation step is not mixed with a resin before the anodizing step.
JP 2002-161856 A JP-A-6-167243 Japanese Patent Application Laid-Open No. 7-126871

しかしながら、前記従来の構成では耐摩耗性は向上するが、陽極酸化層の皮膜を厚く形成すると表面粗さが大きくなっていた。図8に陽極酸化皮膜を形成された可動スクロール3の表面近傍の断面図を示す。表面から厚みδ0の陽極酸化層26が形成されている。その表面粗さは仕上工程後の表面粗さより通常粗くなるため、目的の表面粗さを得る事が難しかった。   However, although the wear resistance is improved in the conventional configuration, the surface roughness is increased when the anodized layer is formed thick. FIG. 8 is a cross-sectional view of the vicinity of the surface of the movable scroll 3 on which an anodized film is formed. An anodized layer 26 having a thickness δ0 is formed from the surface. Since the surface roughness is usually rougher than the surface roughness after the finishing step, it was difficult to obtain the desired surface roughness.

例えば、厚みが約20μmの陽極酸化層26を形成した場合、表面粗さRmaxは約10μmと大きくなるため、摺動部の摩擦係数が大きいことや、なじみ性が悪いなどの課題があった。   For example, when the anodic oxide layer 26 having a thickness of about 20 μm is formed, the surface roughness Rmax is as large as about 10 μm, which causes problems such as a large friction coefficient of the sliding portion and poor conformability.

これを解決するために、陽極酸化皮膜を形成する際の印加電流に整流した直流を用いて表面粗さを小さくする方法が提案されているが、この方法は処理設備の改造、導入が必要となり、容易に実施することができなかった。また、その効果による表面粗さ、及び膜厚の精度も、上記実施例の可動スクロールに適用するには不十分な精度であり、そのままでは、製造歩留まりから生産性が低くく、また表面のなじみ性から摺動損失が大きく十分な効率が確保できないという課題を有していた。   In order to solve this, a method has been proposed in which the surface roughness is reduced by using a rectified direct current as the applied current when forming the anodic oxide film, but this method requires modification and introduction of processing equipment. Could not be implemented easily. In addition, the surface roughness and film thickness accuracy due to the effect are also inadequate for application to the movable scroll of the above embodiment, and as it is, the productivity is low due to the manufacturing yield, and the surface is familiar. Therefore, there is a problem that sliding efficiency is large and sufficient efficiency cannot be secured.

本発明は、上記のような従来の課題を解決するものであり、耐摩耗性が高く、摺動損失が低い可動スクロールなどの高精度な摺動部材を歩留まりよく実現すると共に、それを用いた信頼性、効率が高い圧縮機またはポンプなどの流体機械を提供することを目的とする。   The present invention solves the conventional problems as described above, and realizes a high-precision sliding member such as a movable scroll with high wear resistance and low sliding loss with a high yield, and uses it. An object is to provide a fluid machine such as a compressor or a pump having high reliability and efficiency.

上記の目的を達成するために、本発明の流体機械は、摺動面に陽極酸化層を形成した後、陽極酸化層を表面より所定の厚みまで除去した摺動部材を有するものである。   In order to achieve the above object, the fluid machine of the present invention has a sliding member obtained by forming an anodized layer on a sliding surface and then removing the anodized layer from the surface to a predetermined thickness.

本発明によれば、CO2などの作動圧力が高い冷媒を用いる場合に、摺動部材の摺動面に表面粗さの低い陽極酸化層を形成でき、耐摩耗が高く摺動損失の低い摺動部材を生産性よくできる為、信頼性の高い流体機械が安価に実現できる。   According to the present invention, when a refrigerant having a high operating pressure such as CO2 is used, an anodized layer having a low surface roughness can be formed on the sliding surface of the sliding member, and the sliding has a high wear resistance and a low sliding loss. Since the members can be made with high productivity, a highly reliable fluid machine can be realized at low cost.

以下に、本発明の実施の形態について図面を参照しながら説明する。尚、本発明の一実施の形態で用いたスクロール圧縮機の構成において、図5で説明した従来の技術の例と同一機能部品については同一番号を使用し、同一の構成および作用の説明は省く。   Embodiments of the present invention will be described below with reference to the drawings. In the configuration of the scroll compressor used in the embodiment of the present invention, the same reference numerals are used for the same functional parts as those of the prior art example described with reference to FIG. 5, and the description of the same configuration and operation is omitted. .

また、本発明の実施の形態におけるスクロール圧縮機は、二酸化炭素を冷媒(以後CO2と記載)に用いた場合を例に説明するが、これに限るものではなく、従来用いられている冷媒でも作動圧力が5MPaを超えて使用する場合や、HFC系冷媒R410A、R32、またはハイドロカーボン(HC))等や、それより低い従来のHCFC22などの冷媒を用いた場合にも同様に適用可能であり、同様の効果を得ることができる。   Further, the scroll compressor according to the embodiment of the present invention will be described by taking an example in which carbon dioxide is used as a refrigerant (hereinafter referred to as CO2). It is also applicable to the case where the pressure exceeds 5 MPa, the case where HFC refrigerant R410A, R32, or hydrocarbon (HC)) or the like, or a lower refrigerant such as conventional HCFC22 is used, Similar effects can be obtained.

(実施の形態1)
本発明の実施の形態1について、図1から図3を用いて説明する。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIGS.

図1は、本発明の実施の形態における可動スクロールに形成された陽極酸化層の近傍を示した断面図である。図2は本発明の実施の形態における可動スクロールの製作工程図、図3は、可動スクロールの縦断面図である。   FIG. 1 is a cross-sectional view showing the vicinity of an anodized layer formed on a movable scroll according to an embodiment of the present invention. FIG. 2 is a manufacturing process diagram of the movable scroll according to the embodiment of the present invention, and FIG. 3 is a longitudinal sectional view of the movable scroll.

本実施の形態1である図1の構成と従来構成との違いは、陽極酸化工程後に、陽極酸化層の表面から所定の厚みまで除去し仕上げる、仕上工程を設けたことにある。その製作工程を図2を用いて説明する。   The difference between the configuration of FIG. 1 which is the first embodiment and the conventional configuration is that after the anodizing step, a finishing step is provided in which the surface is removed from the surface of the anodized layer to a predetermined thickness and finished. The manufacturing process will be described with reference to FIG.

まず、図2の可動スクロール3(図3及び図5参照)の製作工程の概略を説明する。まず、可動スクロール素材から前仕上加工工程で、加工取り代(例えば、仕上精度から約20μm程必要)を考慮し略仕上げ形状にまで加工する。次に陽極酸化処理工程で、所定の厚さ(ここでは約40μm〜50μm)まで陽極酸化層を表面に形成する。陽極酸化層26を形成後、仕上加工工程で、所定の寸法および精度(取り代はほぼ太り分であり、表面を目的の粗さまで仕上げる)で仕上を行い可動スクロール3を完成する。   First, the outline of the manufacturing process of the movable scroll 3 of FIG. 2 (see FIGS. 3 and 5) will be described. First, the movable scroll material is processed to a substantially finished shape in the pre-finishing process in consideration of a machining allowance (for example, about 20 μm is required from the finishing accuracy). Next, in an anodizing process, an anodized layer is formed on the surface to a predetermined thickness (here, about 40 μm to 50 μm). After the formation of the anodized layer 26, finishing is performed with a predetermined size and accuracy (the machining allowance is almost thick and the surface is finished to the desired roughness) in the finishing process, and the movable scroll 3 is completed.

図1は、陽極酸化処理工程後の陽極酸化層36近傍の断面図である。前仕上工程後の加工面は図中のA−A線である。陽極酸化層36の形成にともないA−A線より表面側(図中上方)に太り、厚みδ1の初期陽極酸化層が形成される。例えば、この太りが処理条件により初期陽極酸化層の厚みδ1の約1/2となる場合、初期陽極酸化層の厚みδ1が約40μmの場合、太り約20μm(図のAA線から初期陽極酸化層の表面まで)が生じる。また、その表面の粗さは処理前の表面粗さより荒くなり、例えばRaで約5μm(処理前のRaより変わる)となるが、陽極酸化処理工程後の仕上工程で陽極酸化層を除去厚みδ3だけ除去することにより、目的の表面粗さ(例えばRa0.2μm以下)にできる。陽極酸化処理工程の前に必要に応じて、陽極酸化層を形成させない部分や、陽極酸化工程での処理液等を混入させたくない部分を耐薬品性樹脂などで覆うマスキング工程を設けることができる。   FIG. 1 is a cross-sectional view of the vicinity of the anodized layer 36 after the anodizing process. The processed surface after the pre-finishing process is the AA line in the figure. With the formation of the anodic oxide layer 36, an initial anodic oxide layer having a thickness δ1 is formed which is thicker on the surface side (upward in the figure) than the line AA. For example, when the thickness is about ½ of the initial anodized layer thickness δ1 depending on the processing conditions, the initial anodized layer thickness δ1 is about 40 μm, and the thickness is about 20 μm (from the line AA in FIG. To the surface). Further, the roughness of the surface becomes rougher than the surface roughness before the treatment, for example, Ra is about 5 μm (changes from Ra before the treatment), but the anodized layer is removed in the finishing step after the anodizing treatment step. By removing only, the target surface roughness (for example, Ra 0.2 μm or less) can be obtained. Before the anodizing treatment step, a masking step for covering a portion where the anodized layer is not formed or a portion where the treatment liquid or the like in the anodizing step is not mixed with a chemical resistant resin can be provided as necessary. .

図3は、可動スクロール3の断面図である。ここでは、偏心軸受部3a部に陽極酸化層が形成されないようにマスキング治具37aを装着している。陽極酸化層36は図中の破線部分の表面(ラップ端面33a、ラップ側面33c、スラスト面33b、鏡板面33d、キー溝部33e)に形成される。その陽極酸化層36を形成後、鏡板厚みt1、ラップ高さt2、ラップ厚みt3を、所定の精度に仕上げる。   FIG. 3 is a cross-sectional view of the movable scroll 3. Here, a masking jig 37a is mounted so that an anodized layer is not formed on the eccentric bearing portion 3a. The anodized layer 36 is formed on the surface of the broken line in the figure (wrap end surface 33a, wrap side surface 33c, thrust surface 33b, end plate surface 33d, key groove portion 33e). After the anodic oxide layer 36 is formed, the end plate thickness t1, the wrap height t2, and the wrap thickness t3 are finished to a predetermined accuracy.

例えば、鏡板厚さを仕上る際を説明する。摺動面となるスラスト面33bを所定表面粗さ(例えば、Raで約0.2μm)の陽極酸化層36とするために、仕上前の陽極酸化層36の表面粗さ(例えば、Raで約5μmの場合)以上を表面より除去(除去厚みδ3)し仕上げることで、先の表面粗さを得ることができる。このスラスト面33b側の仕上より先に、鏡板面33d側から所定の加工代(=仕上前鏡板厚み−鏡板厚みt1−スラスト面33b側からの除去厚みδ3)を除去し、その後、スラスト面33b側から除去厚みδ3を除去する。尚、手順はこれに限るものではなく、これとは逆に、先にスラスト面側を
仕上げてもよい。ラップ高さ、ラップ厚みも同様の方法で仕上を行う。
For example, the case of finishing the end plate thickness will be described. In order to make the thrust surface 33b to be the sliding surface into the anodized layer 36 having a predetermined surface roughness (for example, about 0.2 μm in Ra), the surface roughness (for example, about Ra in the surface of the anodized layer 36 before finishing). By removing the above from the surface (removed thickness δ3) and finishing, the previous surface roughness can be obtained. Prior to finishing on the thrust surface 33b side, a predetermined machining allowance (= end plate thickness before finishing−end plate thickness t1−removed thickness δ3 from the thrust surface 33b side) is removed from the end plate surface 33d side, and then the thrust surface 33b. The removal thickness δ3 is removed from the side. The procedure is not limited to this, and on the contrary, the thrust surface side may be finished first. The wrap height and wrap thickness are finished in the same manner.

尚、図4のようにマスク治具37bを設置することで、鏡板面33d、キー溝部33eに、陽極酸化層36を形成せず、ラップ端面33a、ラップ側面33c、スラスト面33bのみに形成できる。   In addition, by installing the mask jig 37b as shown in FIG. 4, it is possible to form only the wrap end surface 33a, the wrap side surface 33c, and the thrust surface 33b without forming the anodized layer 36 on the end plate surface 33d and the key groove portion 33e. .

また、可動スクロール3が、アルミを主成分とし、例えば、平均粒子径が3〜5μmのシリコン粒子が10%〜30%程度含まれる材料の場合は、シリコン粒子が電気を通しにくいため、陽極酸化層もアルミ単体の場合より形成しにくい。シリコン粒子の分布のために、陽極酸化層の不均一が生じやすく、表面粗さが粗くなりやすい。特にこのような場合に表面粗さの向上に効果がある。即ち、上記実施例の方法を適用すれば、陽極酸化工程後にその表面を仕上る事で、その影響をなくし表面粗さの良い、陽極酸化層を得ることができる。当然、シリコンが10%以下の場合でも適用可能である。または30%以上の場合も適用可能と思われるが、材料の製造コストが高く、陽極酸化層の形成速度も低く、生産性は低くなる。   Further, when the movable scroll 3 is made of a material mainly composed of aluminum and containing, for example, about 10% to 30% of silicon particles having an average particle diameter of 3 to 5 μm, the silicon particles are difficult to conduct electricity. The layer is also harder to form than with a single aluminum. Due to the distribution of silicon particles, non-uniformity of the anodized layer is likely to occur, and the surface roughness tends to be rough. Especially in such a case, it is effective in improving the surface roughness. In other words, by applying the method of the above embodiment, the surface is finished after the anodic oxidation step, thereby eliminating the influence and obtaining an anodic oxide layer having good surface roughness. Of course, the present invention can be applied even when the silicon content is 10% or less. Alternatively, it may be applicable in the case of 30% or more, but the production cost of the material is high, the formation rate of the anodized layer is low, and the productivity is low.

尚、シリコン平均粒子径は3〜5μmに限定するものではなく、より大きい粒子径や、小さい場合でも、適用可能であることはいうまでもない。   It should be noted that the silicon average particle diameter is not limited to 3 to 5 μm, and it goes without saying that the present invention can be applied even when the particle diameter is larger or smaller.

尚、上記実施の形態では、スクロール型圧縮機構を有する場合を例にして説明したが、他のロータリ型、レシプロ型等の圧縮機や、ポンプににも、本発明は適用可能であり、同様の効果を実現できる事は、いうまでもない。特に、小型、軽量化の要求される場合は、機構部もアルミ合金となることが多く、特にそのような場合に、本発明は効果をより発揮できる。即ち、本発明を適用する事で、表面粗さを向上でき、信頼性及び生産性の高い流体機械が実現できる。   In the above embodiment, the case where the scroll type compression mechanism is provided has been described as an example. However, the present invention can be applied to other rotary type and reciprocating type compressors and pumps. It goes without saying that the effects of can be realized. In particular, when a reduction in size and weight is required, the mechanism part is often made of an aluminum alloy. In such a case, the present invention can exhibit more effects. That is, by applying the present invention, the surface roughness can be improved, and a fluid machine with high reliability and productivity can be realized.

このように、上記実施の形態の構成によれば、従来より格段に陽極酸化層の表面粗さを向上することが可能となり、安価に、スクロールなどの密閉型圧縮機の信頼性を向上することができる。   As described above, according to the configuration of the above embodiment, it is possible to significantly improve the surface roughness of the anodized layer as compared with the prior art, and to improve the reliability of a hermetic compressor such as a scroll at a low cost. Can do.

尚、上記実施の形態では、CO2冷媒を用いた場合を例に説明したが、CO2冷媒に限定するものではなく、作動圧力がCO2冷媒同等以下、またはそれ以上となる冷媒を用いる場合でも、上記同様に効果を得られることはいうまでもない。   In the above-described embodiment, the case where the CO2 refrigerant is used has been described as an example. However, the present invention is not limited to the CO2 refrigerant, and even when a refrigerant whose operating pressure is equal to or lower than the CO2 refrigerant is used. It goes without saying that the same effect can be obtained.

以上のように本発明は、軽量で耐磨耗性に優れ、かつ摩擦抵抗の小さな摺動部材を有する流体機械を提供することが可能となるので、潤滑条件の厳しい代替冷媒を使用した空気調和装置や冷凍機器をはじめ、CO2冷媒を用いたヒートポンプシステムを搭載した給湯機器などの用途にも適用できる。   As described above, the present invention can provide a fluid machine having a sliding member that is lightweight, excellent in wear resistance, and having low frictional resistance. It can also be applied to applications such as equipment and refrigeration equipment, as well as hot water supply equipment equipped with a heat pump system using CO2 refrigerant.

本発明の実施の形態による摺動面表層部の断面図Sectional drawing of the sliding surface layer part by embodiment of this invention 本発明の実施の形態による可動スクロールの製作工程図Manufacturing process diagram of movable scroll according to the embodiment of the present invention 本発明の実施の形態による可動スクロールの断面図Sectional drawing of the movable scroll by embodiment of this invention 本発明の実施の形態による可動スクロールの断面図Sectional drawing of the movable scroll by embodiment of this invention 従来のスクロール圧縮機の縦断面図Longitudinal sectional view of a conventional scroll compressor 従来の主要部の断面図Cross-sectional view of conventional main part 従来の可動スクロールの製作工程図Production process diagram of conventional movable scroll 従来の可動スクロール摺動面表層部の断面図Sectional view of the surface layer of a conventional movable scroll sliding surface

符号の説明Explanation of symbols

1 密閉容器
1a 吐出空間
1b 下部空間
1c 底部空間
2 圧縮機構
2a 固定スクロール
3 可動スクロール
3a 偏芯軸受
4 オルダム継手
5 シャフト
6 軸受部材
6a ジャーナル軸受
7 電動機
7a 回転子
7b 固定子
9 潤滑油
10 油溜め
11 吸入管
13 貫通穴
14 通路
15 通路
16 吐出管
17 オイルポンプ
18a 通路
18b 通路
20 胴シェル
21 ボス部空間
26 陽極酸化層
36 陽極酸化層
37 マスク治具
DESCRIPTION OF SYMBOLS 1 Airtight container 1a Discharge space 1b Lower space 1c Bottom space 2 Compression mechanism 2a Fixed scroll 3 Movable scroll 3a Eccentric bearing 4 Oldham joint 5 Shaft 6 Bearing member 6a Journal bearing 7 Electric motor 7a Rotor 7b Stator 9 Lubricant 10 Oil sump DESCRIPTION OF SYMBOLS 11 Intake pipe 13 Through-hole 14 Passage 15 Passage 16 Discharge pipe 17 Oil pump 18a Passage 18b Passage 20 Body shell 21 Boss part space 26 Anodized layer 36 Anodized layer 37 Mask jig

Claims (5)

摺動面に陽極酸化層を形成され、前記陽極酸化層は陽極酸化処理工程後に表面より所定の厚みまで除去された摺動部材を有することを特徴とする流体機械。 A fluid machine comprising: a sliding member having an anodized layer formed on a sliding surface, wherein the anodized layer is removed from the surface to a predetermined thickness after the anodizing treatment step. 前記陽極酸化層の除去厚みが、除去前の陽極酸化層表面の粗さ(Ra)以上であることを特徴とする請求項1に記載の流体機械。 The fluid machine according to claim 1, wherein the removal thickness of the anodized layer is equal to or greater than the roughness (Ra) of the surface of the anodized layer before removal. 前記摺動部材は、アルミを主成分としシリコンを10%から30%程度含有することを特徴とする請求項1または2記載の流体機械。 The fluid machine according to claim 1 or 2, wherein the sliding member is mainly composed of aluminum and contains silicon in an amount of about 10% to 30%. スクロール型の圧縮機構部を有する流体機械であって、前記摺動部材が、可動スクロールまたは前記固定スクロールであることを特徴とする請求項1から3いずれかに記載の流体機械。 The fluid machine according to any one of claims 1 to 3, wherein the fluid machine has a scroll-type compression mechanism, and the sliding member is the movable scroll or the fixed scroll. 作動ガスがHFC系冷媒または二酸化炭素を主成分とすることを特徴とする請求項1から4いずれかに記載の流体機械。 The fluid machine according to any one of claims 1 to 4, wherein the working gas is mainly composed of HFC refrigerant or carbon dioxide.
JP2003294319A 2003-08-18 2003-08-18 Fluid machine Pending JP2005061351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003294319A JP2005061351A (en) 2003-08-18 2003-08-18 Fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294319A JP2005061351A (en) 2003-08-18 2003-08-18 Fluid machine

Publications (1)

Publication Number Publication Date
JP2005061351A true JP2005061351A (en) 2005-03-10

Family

ID=34370920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294319A Pending JP2005061351A (en) 2003-08-18 2003-08-18 Fluid machine

Country Status (1)

Country Link
JP (1) JP2005061351A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114638A1 (en) * 2007-03-20 2008-09-25 Sanden Corporation Compressor
JP2009161784A (en) * 2007-12-28 2009-07-23 Panasonic Corp Method for manufacturing fluid machine
EP2215363B1 (en) * 2007-10-24 2017-06-28 Emerson Climate Technologies, Inc. Scroll compressor for carbon dioxide refrigerant
JP2020023961A (en) * 2018-07-27 2020-02-13 パナソニックIpマネジメント株式会社 Scroll compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114638A1 (en) * 2007-03-20 2008-09-25 Sanden Corporation Compressor
JP2008232014A (en) * 2007-03-20 2008-10-02 Sanden Corp Compressor
EP2215363B1 (en) * 2007-10-24 2017-06-28 Emerson Climate Technologies, Inc. Scroll compressor for carbon dioxide refrigerant
JP2009161784A (en) * 2007-12-28 2009-07-23 Panasonic Corp Method for manufacturing fluid machine
JP2020023961A (en) * 2018-07-27 2020-02-13 パナソニックIpマネジメント株式会社 Scroll compressor
JP7308437B2 (en) 2018-07-27 2023-07-14 パナソニックIpマネジメント株式会社 scroll compressor

Similar Documents

Publication Publication Date Title
JP6072601B2 (en) Compressor vane manufacturing method
EP2980407B1 (en) Scroll compressor
JP4440565B2 (en) Scroll compressor
KR20080042124A (en) Refrigerant compressor, cooling system and refrigerator
JP2010121448A (en) Hermetic compressor
JP2005061351A (en) Fluid machine
JP2010031733A (en) Rotary compressor
JP2009108748A (en) Scroll compressor
JP2009235969A (en) Rotary compressor and refrigerating cycle apparatus
JP2009287483A (en) Refrigerant compressor
JP2002031055A (en) Hermetic compressor
JP2006077628A (en) Fluid machine
JP2006226210A (en) Scroll compressor
JP2005307903A (en) Scroll compressor
JP3130704B2 (en) Hermetic compressor
CN109996901B (en) Oxide film, sliding member having the same formed thereon, and apparatus having the sliding member
JP2997373B2 (en) Hermetic electric compressor
JP7308437B2 (en) scroll compressor
JPH06264881A (en) Rotary compressor
JP5067181B2 (en) Sliding member and fluid machine
JP5194785B2 (en) Manufacturing method of fluid machine
JP2009062929A (en) Rotary compressor and refrigerating cycle device
JPH10196562A (en) Scroll compressor
JPWO2004029461A1 (en) Scroll compressor
WO2017056213A1 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

RD01 Notification of change of attorney

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Effective date: 20090317

Free format text: JAPANESE INTERMEDIATE CODE: A02