JP2009120917A - Sliding member, and fluid machine - Google Patents

Sliding member, and fluid machine Download PDF

Info

Publication number
JP2009120917A
JP2009120917A JP2007297577A JP2007297577A JP2009120917A JP 2009120917 A JP2009120917 A JP 2009120917A JP 2007297577 A JP2007297577 A JP 2007297577A JP 2007297577 A JP2007297577 A JP 2007297577A JP 2009120917 A JP2009120917 A JP 2009120917A
Authority
JP
Japan
Prior art keywords
sliding
scroll
solid lubricant
fluid machine
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007297577A
Other languages
Japanese (ja)
Inventor
Hidenobu Shintaku
秀信 新宅
Yasushi Aeba
靖 饗場
Manabu Sakai
学 阪井
Akinori Fukuda
昭徳 福田
Kenji Shimada
賢志 嶋田
Kenji Tonai
賢治 藤内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007297577A priority Critical patent/JP2009120917A/en
Publication of JP2009120917A publication Critical patent/JP2009120917A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that, in a fluid machine requiring efficiency and durability, the improvement of seizure resistance and wear resistance and the reduction of sliding loss at the sliding part thereof have been required as subjects, e.g., in a scroll type compressor using carbon dioxide as a refrigerant, these subjects have been produced at the sliding part of a scroll composed of an aluminum alloy. <P>SOLUTION: The fine powder of a solid lubricant is collided against the sliding face of a sliding member (movable scroll 3) essentially consisting of aluminum, so as to form a solid lubricating film, and thereafter, anodization treatment is performed, thus a lubricating oxide film layer comprising the solid lubricant is formed on the surface layer of the sliding face. In this way, the sliding member capable of achieving the improvement of seizure resistance and wear resistance and the reduction of sliding loss, and the fluid machine having high reliability and efficiency can be provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、相対的に摺動する部位に用いられる摺動部材と、流体を搬送する流体機械に関するものである。   The present invention relates to a sliding member used for a relatively sliding part and a fluid machine for transporting a fluid.

特に、冷凍機器及び空調機器等に用いられ、高圧の冷媒ガスであるHFC系代替冷媒ガスや自然冷媒である炭酸ガス等を、圧縮または膨張させるスクロール型の流体機械及びその製造方法に係るものである。   In particular, it relates to a scroll-type fluid machine that is used in refrigeration equipment, air-conditioning equipment, etc., and compresses or expands HFC-based alternative refrigerant gas that is high-pressure refrigerant gas, carbon dioxide gas that is natural refrigerant, etc. is there.

従来より、例えば冷凍空調用の圧縮機としては、圧縮機構の方式がレシプロ式、ローリングピストン式およびスクロール式のものが製造され、広く知られている。いずれの方式も家庭用、業務用の冷凍空調分野で使用されおり、その代表的な構造は、密閉容器内に、圧縮機構部と、その駆動用のシャフト、及び電動機等を収容した構造が用いられている。   Conventionally, as compressors for refrigerating and air-conditioning, for example, reciprocating, rolling piston, and scroll types of compression mechanisms have been manufactured and widely known. Both methods are used in the field of refrigeration and air conditioning for home use and commercial use, and the typical structure is a structure in which a compression mechanism, a drive shaft, an electric motor, etc. are housed in a sealed container. It has been.

ここでは、自然冷媒である炭酸ガス(二酸化炭素)冷媒ガスに使用したヒートポンプ給湯用、あるいは空調機用のスクロール圧縮機を例にとり、従来の技術を説明する。   Here, a conventional technology will be described by taking a scroll compressor for heat pump hot water supply or an air conditioner used for carbon dioxide (carbon dioxide) refrigerant gas, which is a natural refrigerant, as an example.

まず、図4に示す従来のスクロール型圧縮機の縦断面図を用いてその構造を説明する。密閉容器1は、円筒状の胴シェル21aと、その両端を上シェル21bと底シェル21cが冷媒ガスが漏れないよう円周を溶接されて構成され、さらに冷媒ガスの吸入管11と吐出管16、電動機7の通電用の端子25が各々溶接やロー付け等で冷媒ガスが漏れないよう固定設置されている。   First, the structure will be described with reference to a longitudinal sectional view of a conventional scroll compressor shown in FIG. The hermetic container 1 is constituted by a cylindrical shell shell 21a, and its upper and lower shells 21b and 21c are welded at their ends so that refrigerant gas does not leak, and further, a refrigerant gas suction pipe 11 and a discharge pipe 16 are provided. The terminals 25 for energization of the motor 7 are fixedly installed so that the refrigerant gas does not leak by welding or brazing.

密閉容器1の内部には、固定スクロール2aと可動スクロール3とから構成された圧縮機構部2、オルダム継手4を介して可動スクロール3を固定スクロール2aに対して旋回運動させるシャフト5と、固定スクロール2aを固定されシャフト5を回転自在に支持する軸受部材6が設置されている。軸受部材6は密閉容器1に溶接などで固定されている。   Inside the hermetic container 1 are a compression mechanism portion 2 composed of a fixed scroll 2a and a movable scroll 3, a shaft 5 for rotating the movable scroll 3 with respect to the fixed scroll 2a via an Oldham coupling 4, and a fixed scroll. A bearing member 6 that fixes the shaft 2a and rotatably supports the shaft 5 is installed. The bearing member 6 is fixed to the sealed container 1 by welding or the like.

軸受部材6の下方には、シャフト5に固定された回転子7aと胴シェル21aに焼き嵌め等で固定された固定子7bが設置されている。   Below the bearing member 6, a rotor 7a fixed to the shaft 5 and a stator 7b fixed to the shell shell 21a by shrink fitting or the like are installed.

さらに密閉容器1の内部の底部には潤滑油9を貯溜する油溜め10が設けられており、シャフト5の貫通穴13の下端より油溜め10の潤滑油9が、シャフト5の回転に伴いオイルポンプ17で吸い上げられ、ジャーナル軸受6a、偏芯軸受3a、および固定スクロール2aと可動スクロール3fなどの各摺動面へ供給される構造となっている。   Further, an oil sump 10 for storing lubricating oil 9 is provided at the bottom inside the sealed container 1, and the lubricating oil 9 in the oil sump 10 is oiled from the lower end of the through hole 13 of the shaft 5 as the shaft 5 rotates. It is sucked up by the pump 17 and is supplied to each sliding surface such as the journal bearing 6a, the eccentric bearing 3a, and the fixed scroll 2a and the movable scroll 3f.

また、ジャーナル軸受6a及び偏芯軸受3aは、軸受部材6と旋回スクロール3に圧入された軸受ブッシュ8a,8b等で構成され耐久性、摺動特性を維持している。軸受ブッシュ8a,8bには、円筒状の裏金(SPCC等)の内週面に摺動皮膜層(例えば、ポリエチレンテレフタレート、ポリイミド、ポリアミド等の樹脂に、グラファイト、グラスファイバー、硬質カーボン等が添加されている)が形成されたいわゆる裏金付樹脂含浸軸受ブッシュを用いている。   The journal bearing 6a and the eccentric bearing 3a are composed of the bearing member 6 and bearing bushes 8a and 8b press-fitted into the orbiting scroll 3, and maintain durability and sliding characteristics. In the bearing bushes 8a and 8b, a sliding film layer (for example, polyethylene terephthalate, polyimide, polyamide, etc., graphite, glass fiber, hard carbon, etc. is added to the inner week surface of a cylindrical backing metal (SPCC, etc.). A so-called resin-impregnated bearing bush with a back metal formed thereon.

次に、冷媒ガスの圧縮サイクルを説明する。空調機の熱交換器(図示せず)などを循環してきた低圧の冷媒ガスは吸入管11より圧縮機構部2に吸入される。吸入された冷媒ガスは、固定スクロール2aと可動スクロール3との間に形成された三日月状の圧縮空間(図示せず)に入り、可動スクロール3の旋回運動により三日月状の圧縮空間が外側から中央に向かって次第に縮小することで、冷媒ガスは圧縮され高圧ガスとなり固定スクロール2aの中央部に設けた吐出孔12より吐出される。   Next, the refrigerant gas compression cycle will be described. The low-pressure refrigerant gas that has circulated through the heat exchanger (not shown) of the air conditioner is sucked into the compression mechanism 2 through the suction pipe 11. The sucked refrigerant gas enters a crescent-shaped compression space (not shown) formed between the fixed scroll 2 a and the movable scroll 3, and the crescent-shaped compression space is centered from the outside by the turning motion of the movable scroll 3. The refrigerant gas is compressed and gradually becomes high-pressure gas, and is discharged from the discharge hole 12 provided in the central portion of the fixed scroll 2a.

吐出孔12より吐出された高圧ガスは、一旦密閉容器1内の固定スクロール2aの上方の吐出空間1aへ吐出され、ガス通路14を通じ、可動子7a上部の空間1bに流れ、ついで回転子7a内部に設けられたガス通路18aから密閉容器1の底部空間1cへ、さらに固定子7bの外周に設けられた通路18bを通じ上方に流れ固定子上部空間1dに出て、通路14とは別に設けられたガス通路15を通じ固定スクロール2aの上方空間1eに流れ出てた後、吐出管16より外部の熱交換器(図示せず)などのヒートポンプシステムへ吐出搬送される。熱交換器等を循環し高圧ガスは低圧ガスとなり、再び吸入管11より圧縮機に戻り、周知のヒートポンプサイクルを循環する。   The high-pressure gas discharged from the discharge hole 12 is once discharged into the discharge space 1a above the fixed scroll 2a in the hermetic container 1 and flows to the space 1b above the movable element 7a through the gas passage 14, and then inside the rotor 7a. From the gas passage 18a provided to the closed space 1 to the bottom space 1c of the hermetic container 1, and further flows upward through the passage 18b provided on the outer periphery of the stator 7b to the stator upper space 1d. After flowing out into the upper space 1e of the fixed scroll 2a through the gas passage 15, it is discharged and conveyed from the discharge pipe 16 to a heat pump system such as an external heat exchanger (not shown). The high pressure gas is circulated through a heat exchanger or the like, and becomes a low pressure gas. The high pressure gas returns to the compressor from the suction pipe 11 and circulates a known heat pump cycle.

その次に、圧縮機内部での潤滑油9の循環サイクルを説明する。潤滑油9は油溜め10からオイルポンプ17で吸い上げられ、シャフト5の貫通穴13を上昇し、偏心軸受3a、の隙間から可動スクロール3のボス部が収納されるボス部空間19に出て、ジャーナル軸受6aの隙間を経て、ジャーナル軸受6aの下部の油排出口から可動子7a上部の空間1bへ排出される。その後、可動子7a内の通路18aを通って底部の油溜め10に戻る。   Next, the circulation cycle of the lubricating oil 9 inside the compressor will be described. The lubricating oil 9 is sucked up by the oil pump 17 from the oil reservoir 10, rises through the through hole 13 of the shaft 5, and exits from the gap between the eccentric bearings 3 a to the boss part space 19 in which the boss part of the movable scroll 3 is stored, After passing through the gap of the journal bearing 6a, the oil is discharged from the oil discharge port below the journal bearing 6a to the space 1b above the movable element 7a. Then, it returns to the oil sump 10 at the bottom through the passage 18a in the mover 7a.

また、偏心軸受3aを通った潤滑油9の一部は、ボス部空間19から、オルダム継手4が設置された背圧空間22、そして背圧空間22の圧力を調整する吸入背圧調整弁23を通じて吸入側の圧縮室24に導かれる。その後、可動スクロール3の旋回運動により冷媒ガスのともに圧縮され吐出孔12より出て、先の冷媒がすと同様の経路を経て、固定子上方空間1bで先のジャーナル軸受6aの下部から出た潤滑油と合流し、底部の油溜め10に戻る。   Part of the lubricating oil 9 that has passed through the eccentric bearing 3a is partly from the boss space 19 to the back pressure space 22 where the Oldham coupling 4 is installed, and the suction back pressure adjusting valve 23 that adjusts the pressure in the back pressure space 22. To the compression chamber 24 on the suction side. Thereafter, both the refrigerant gas is compressed by the orbiting movement of the movable scroll 3 and exits from the discharge hole 12. After passing through the same path as the previous refrigerant, it exits from the lower portion of the previous journal bearing 6 a in the stator upper space 1 b. It joins the lubricating oil and returns to the sump 10 at the bottom.

これらの潤滑油の循環サイクルにより、シャフト5と偏心軸受3a及びジャーナル軸受6a、またオルダム継手4、可動スクロール3、固定スクロール2a等の各摺動部を潤滑している。   These sliding cycles of the lubricating oil lubricate the sliding portions such as the shaft 5, the eccentric bearing 3a, the journal bearing 6a, the Oldham coupling 4, the movable scroll 3, and the fixed scroll 2a.

近年、地球温暖化抑制のために、従来冷媒として用いられていたR12等のCFC系やR22などのHCFC系冷媒に代わり、HFC系冷媒(例えば、R410A,またはR32等を主成分としたHFC系冷媒等)、二酸化炭素(以後CO2と記す)等の自然冷媒を用いた機器の利用が進められるとともに、効率向上が求められている。   In recent years, in order to suppress global warming, HFC refrigerants (for example, R410A or R32 etc. as main components) are used instead of CFC refrigerants such as R12 and HCFC refrigerants such as R22 that have been used as refrigerants in the past. The use of equipment using natural refrigerants such as refrigerants) and carbon dioxide (hereinafter referred to as CO2) has been promoted, and improvement in efficiency has been demanded.

しかしながら、これらの冷媒は、冷媒の特性上、上記従来冷媒より作動圧力が高くなるため、その圧力に応じて摺動部は大きい力を受けながら摺動する。また、HFC系冷媒はHCFC系で潤滑作用を有していた塩素がなく、自然冷媒CO2は洗浄作用が強く、ともに従来のHCFC系冷媒より潤滑面で不利となる側面をもっている。すなわち、温暖化抑制には効果的だが、信頼性及び効率向上には課題を有していた。   However, these refrigerants have higher operating pressure than the conventional refrigerants due to the characteristics of the refrigerants, so that the sliding portion slides while receiving a large force according to the pressure. In addition, the HFC refrigerant has no chlorine that had a lubricating action in the HCFC system, and the natural refrigerant CO2 has a strong cleaning action, both of which have disadvantages in terms of lubrication compared to conventional HCFC refrigerants. In other words, it is effective in suppressing global warming, but has problems in improving reliability and efficiency.

例えば、図5を用いて説明する。可動スクロール3はその下方よりボス部空間19及び背圧空間22の圧力により、固定スクロール2a側にスラスト方向荷重を受け押付けられながら旋回運動するが、そのスラスト荷重を、固定スクロール2aの圧縮室スラスト面52bと可動スクロール3のラップ端面53a(図中では上面)、同様に固定スクロール2aのラップ端面52a(図中では下面)と可動スクロール3の圧縮室スラスト面53bが受けながら、互いに摺動している。   This will be described with reference to FIG. The movable scroll 3 orbits from the lower side by the pressure in the boss portion space 19 and the back pressure space 22 while receiving a thrust direction load on the fixed scroll 2a and is swung. The thrust load is compressed into the compression chamber thrust of the fixed scroll 2a. The surface 52b and the wrap end surface 53a (upper surface in the drawing) of the movable scroll 3, and similarly the wrap end surface 52a (lower surface in the drawing) of the fixed scroll 2a and the compression chamber thrust surface 53b of the movable scroll 3 slide on each other. ing.

また、回転方向の荷重を、オルダム継手4のキー部4aと可動スクロール3のキー溝部3bと、図示しないがオルダム継手4のキー部と軸受部材6のキー溝部が、受けながら互いに摺動している。   Further, the key portion 4a of the Oldham joint 4 and the key groove portion 3b of the movable scroll 3 and the key portion of the Oldham joint 4 and the key groove portion of the bearing member 6 (not shown) slide against each other while receiving the load in the rotational direction. Yes.

上記構成の圧縮機をCO2冷媒のヒートポンプサイクルに用いる際、従来冷媒より高差圧運転が行われるため、上記両スクロール、オルダム継手の摺動部が受ける過大な荷重により、摺動面同士が部分的に接触する(境界潤滑に近い)混合潤滑状態となりやすくなる。この(境界潤滑に近い)混合潤滑状態が続く場合には、摺動部には摩耗や、焼き付きが発生する事となる。   When the compressor configured as described above is used in a CO2 refrigerant heat pump cycle, since the differential pressure operation is performed higher than that of the conventional refrigerant, the sliding surfaces are partially separated by an excessive load received by the sliding portions of the both scrolls and Oldham joint. Contact lubrication (close to boundary lubrication) is likely to occur. When this mixed lubrication state (close to boundary lubrication) continues, wear and seizure occur in the sliding portion.

従来のスクロール圧縮機では、軽量化と高速回転に対応するため可動スクロール3をアルミ合金材で形成し、固定スクロール2を鋳鉄材、オルダムリングを鉄系焼結材を用いているが、可動スクロール3の表面に耐摩耗性を向上させる目的でその表面に陽極酸化層を形成している。図6は、陽極酸化処理される可動スクロールの断面を示したもので、図中の点線に示す様にほぼ全表面(53a、53b、53c、53d、53e等)に陽極酸化層を形成している。陽極酸化処理は、電解液中に可動スクロールを浸漬し、図のように、処理用電源36から電極37を介して通電されて皮膜形成が行われるが、処理中に、ボス部の鉄系の裏金を有するブッシュ3aが電解液の浸入により腐食するのを防止するため、ボス部にはマスキング35が被せられている(例えば、特許文献1参照)。   In conventional scroll compressors, the movable scroll 3 is made of an aluminum alloy material to cope with weight reduction and high-speed rotation, the fixed scroll 2 is made of cast iron, and the Oldham ring is made of iron-based sintered material. An anodized layer is formed on the surface 3 for the purpose of improving the wear resistance. FIG. 6 shows a cross section of the movable scroll to be anodized. An anodized layer is formed on almost the entire surface (53a, 53b, 53c, 53d, 53e, etc.) as shown by the dotted line in the figure. Yes. In the anodic oxidation treatment, a movable scroll is immersed in the electrolytic solution, and a film is formed by energization through the electrode 37 from the processing power source 36 as shown in the figure. In order to prevent the bush 3a having the back metal from being corroded by the infiltration of the electrolytic solution, the boss portion is covered with a masking 35 (see, for example, Patent Document 1).

また、固定スクロール2aと可動スクロール3をともにアルミ材で形成し、どちらかに陽極酸化層である硬質アルマイト処理した構成も提案されている(例えば、特許文献2参照)。   In addition, a configuration in which the fixed scroll 2a and the movable scroll 3 are both formed of an aluminum material and hard anodized as an anodic oxidation layer has been proposed (see, for example, Patent Document 2).

また、陽極酸化層の上からポリエチレンテレフタレート等の樹脂を塗布し含浸する方法も提案されている(例えば、特許文献3参照)。   A method of applying and impregnating a resin such as polyethylene terephthalate from the top of the anodized layer has also been proposed (see, for example, Patent Document 3).

また、スクロール圧縮機ではないが、アルミ合金のピストンにショットピーニング技術を用いてアルミ合金の表層に固体潤滑剤皮膜(二硫化モリブデン等)を形成する方法が提案されている(例えば、特許文献4参照)。
特開2006−112379号公報 特開昭55−081295号公報 特開平5−340364号公報 特開平8−28346号公報
Further, although not a scroll compressor, a method of forming a solid lubricant film (such as molybdenum disulfide) on the surface of an aluminum alloy using a shot peening technique on an aluminum alloy piston has been proposed (for example, Patent Document 4). reference).
JP 2006-112379 A JP 55-081295 A JP-A-5-340364 JP-A-8-28346

しかしながら陽極酸化層は多孔質層である事から、摩擦係数が大きく、また初期馴染み性の課題も有していた。また、特許文献2では、樹脂や固体潤滑材により摩擦係数を低減し初期馴染み性が改善出来るが、電解液が特殊で高価であり、孔の含浸だけでは十分な効果が得にくかった。また、特許文献3では、陽極酸化層の上にまで樹脂層が形成され易く皮膜の厚み、表面粗さを精度よく形成する事ができなかった。一方、特許文献4では、より耐久性の高い表面処理が求められていた。   However, since the anodized layer is a porous layer, it has a large coefficient of friction and has a problem of initial conformability. Further, in Patent Document 2, although the friction coefficient can be reduced by using a resin or a solid lubricant and the initial conformability can be improved, the electrolytic solution is special and expensive, and it is difficult to obtain a sufficient effect only by impregnation with holes. Moreover, in patent document 3, the resin layer was easy to be formed even on the anodized layer, and the thickness and surface roughness of the film could not be formed with high accuracy. On the other hand, in patent document 4, the surface treatment with higher durability was calculated | required.

本発明は、上記従来の課題を解決するものであり、耐摩耗性能および潤滑性能の高い摺動部材と、それを用い信頼性と性能向上を実現する流体機械の提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a sliding member having high wear resistance and lubrication performance, and a fluid machine that uses the sliding member to realize reliability and performance improvement.

上記の目的を達成するために、第1の本発明(請求項1に対応)は、アルミを主成分とする摺動部材の表面に固体潤滑剤の微細粉体を衝突させ前記表面の表層に固体潤滑剤含有皮膜を形成し、前期皮膜形成した後に陽極酸化処理することで、固体潤滑剤を含有した潤滑性酸化皮膜を形成したものである。これによって、従来より、陽極酸化皮膜に固体潤滑剤が強固に取り込まれた皮膜を形成できる。   In order to achieve the above object, according to a first aspect of the present invention (corresponding to claim 1), a fine powder of a solid lubricant is caused to collide with the surface of a sliding member mainly composed of aluminum so that the surface layer of the surface A lubricant film containing a solid lubricant is formed by forming a solid lubricant-containing film and anodizing the film after forming the previous film. As a result, it is possible to form a film in which a solid lubricant is firmly incorporated in the anodized film.

本発明の流体機械によれば、耐摩耗性能および摺動特性に優れた摺動部材を実現できるとともに、また優れた耐久性及び高い効率有する流体機械を実現できる。   According to the fluid machine of the present invention, a sliding member having excellent wear resistance and sliding characteristics can be realized, and a fluid machine having excellent durability and high efficiency can be realized.

第1の発明は、アルミを主成分とする材料の表面に固体潤滑剤の微細粉体を衝突させ前記表面の表層に固体潤滑剤含有皮膜を形成し、前期皮膜形成後に陽極酸化処理することで、陽極酸化皮膜に固体潤滑剤が強固に取り込まれた皮膜を摺動部材表面に容易に形成できる。   According to a first aspect of the present invention, a fine powder of a solid lubricant is collided with a surface of a material mainly composed of aluminum to form a solid lubricant-containing film on a surface layer of the surface, and anodizing is performed after the previous film formation. A film in which the solid lubricant is firmly taken into the anodized film can be easily formed on the surface of the sliding member.

第2の発明は、特に、第1の発明の摺動材を用いた流体機械であって、摺動部の摺動表面に潤滑剤が強固に取り込まれた皮膜が形成されたことで、摺動部での耐摩耗性および摺動損失が低減される。   In particular, the second invention is a fluid machine using the sliding material of the first invention, in which a film in which the lubricant is firmly incorporated is formed on the sliding surface of the sliding portion. Abrasion resistance and sliding loss in moving parts are reduced.

以下に、本発明の実施の形態について図面を参照しながら、二酸化炭素を冷媒(以後CO2と記載)に潤滑油にPAG油を用いたスクロール圧縮機の場合を例に説明するが、上記で説明した従来の技術の例と同一機能部品については同一番号を使用し、同一の構成および作用の説明は省く。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings, taking as an example a scroll compressor using carbon dioxide as a refrigerant (hereinafter referred to as CO2) and PAG oil as a lubricating oil. The same number is used about the same functional part as the example of the prior art, and description of the same structure and operation is omitted.

(実施の形態1)
本発明の実施の形態1について、アルミと5〜15%Si粒子を含有したアルミ合金を素材とした可動スクロールにアルマイト(陽極酸化皮膜)に二硫化モリブデンを含有した潤滑性酸化皮膜を形成する場合を例にして、図1から3を用いて説明する。
(Embodiment 1)
In the first embodiment of the present invention, when a lubricous oxide film containing molybdenum disulfide is formed on an alumite (anodized film) on a movable scroll made of aluminum and an aluminum alloy containing 5 to 15% Si particles. Will be described with reference to FIGS.

図1は、本発明の第1の実施の形態における、可動スクロール3の摺動部表面に形成された潤滑性酸化皮膜の断面図である。図2は、潤滑酸化性皮膜の製作工程を説明する図である。図3は、固体潤滑剤含有皮膜の断面図である。   FIG. 1 is a cross-sectional view of a lubricating oxide film formed on the surface of the sliding portion of the movable scroll 3 in the first embodiment of the present invention. FIG. 2 is a diagram for explaining a manufacturing process of the lubricating oxide film. FIG. 3 is a cross-sectional view of a solid lubricant-containing coating.

可動スクロール3は、図2に示す製作工程でその表面に所望の潤滑性酸化皮膜が形成されて完成する。まず、(1)前仕上加工工程で、素材を皮膜形成前に必要な形状、精度に仕上げる。次に、(2)固体潤滑剤皮膜形成工程は、前仕上げされた状態の表面に固体潤滑剤(二硫化モリブデン)の含有した皮膜を形成するもので、その皮膜形成方法には、先の特許文献1にもあるショットピーニング技術を用いる。これは、固体潤滑剤の微粒子を高速度で衝突させることで、可動スクロール3の表層に潤滑剤を固着、熱拡散または打ち込むものである。その後、(3)陽極酸化処理工程は、表面にアルミの酸化層であるアルマイト層を形成する工程であり、この工程で先の潤滑剤を含有したアルマイト層が形成され、その結果、潤滑性酸化皮膜層が形成される。そして、(4)仕上加工工程で、必要な箇所の孔明けやバフ処理などを行い可動スクロール3が完成する。   The movable scroll 3 is completed by forming a desired lubricating oxide film on the surface in the manufacturing process shown in FIG. First, (1) in the pre-finishing process, the material is finished to the required shape and accuracy before film formation. Next, (2) the solid lubricant film forming step forms a film containing a solid lubricant (molybdenum disulfide) on the surface in a pre-finished state. The shot peening technique also present in document 1 is used. In this method, solid lubricant fine particles are collided at a high speed, whereby the lubricant is fixed to the surface layer of the movable scroll 3 and is thermally diffused or driven. Thereafter, (3) the anodizing step is a step of forming an alumite layer, which is an aluminum oxide layer, on the surface. In this step, an alumite layer containing the previous lubricant is formed. A film layer is formed. Then, (4) in the finishing process, drilling or buffing of necessary portions is performed to complete the movable scroll 3.

図3で示す表層断面図は、上記(2)固体潤滑剤皮膜形成工程後のもので、3は可動スクロールで素材はアルミ合金であり、31は素材に含有する平均径5μm程度のSi粒子、32が摺動表面である。二硫化モリブデン粒子をショットピーニングにより摺動表面32に高速で衝突させることにより、二硫化モリブデン粒子は可動スクロール3表面よりアルミ合金内へ打ち込まれ混入するもの、あるいは衝突時の熱で拡散するもの、一部は表面に固着して薄い固着層34を形成するものがあって、結果として可動スクロール3の表層に厚みδmの二硫化モリブデンを含有した固体潤滑剤含有層を形成する。本形態1では、この厚みδmは5〜20μm程度、固着層は1μm以下で形成された。また、二硫化モリブデンは中心粒径50μm以下のものを用いた。   The surface layer sectional view shown in FIG. 3 is after the above (2) solid lubricant film forming step, 3 is a movable scroll and the material is an aluminum alloy, 31 is Si particles having an average diameter of about 5 μm, Reference numeral 32 denotes a sliding surface. By making the molybdenum disulfide particles collide with the sliding surface 32 at high speed by shot peening, the molybdenum disulfide particles are injected into the aluminum alloy from the surface of the movable scroll 3 or mixed, or diffused by the heat at the time of the collision, Some are fixed to the surface to form a thin fixed layer 34, and as a result, a solid lubricant containing layer containing molybdenum disulfide having a thickness of δm is formed on the surface layer of the movable scroll 3. In the first embodiment, the thickness δm is about 5 to 20 μm, and the fixed layer is 1 μm or less. Further, molybdenum disulfide having a center particle size of 50 μm or less was used.

図1に示す表層断面図は、上記(3)陽極酸化処理工程後のもので、35は形成された潤滑性酸化皮膜である。これは図2の二硫化モリブデンを含有する固着層34、固体潤滑含有層33が陽極酸化処理された層であるが、酸化されることで二硫化モリブデンを含有した厚みδaの潤滑性酸化皮膜35が形成される。ここでは、陽極酸化処理は、一般的な常温の硫酸アルマイト処理を用い厚みδaは約3μmとし、Si粒子の平均径5μm以下とした。尚、陽極酸化皮膜は表面粗さが粗くなりやすいので比較的薄い皮膜を用いるため、潤滑性酸化皮膜の厚みを確保するため、二硫化モリブデンが含有される固体潤滑剤含有層より、陽極酸化層の厚みを薄くし(即ち、δa<δm)している。このような厚みの関係することで、表面粗さ及び寸法精度も良好な潤滑性酸化皮膜を形成できる。   The surface layer sectional view shown in FIG. 1 is the one after the above-mentioned (3) anodizing treatment step, and 35 is a formed lubricating oxide film. This is a layer in which the fixed layer 34 containing molybdenum disulfide and the solid lubricant-containing layer 33 in FIG. 2 are anodized, but when oxidized, the lubricating oxide film 35 having a thickness δa containing molybdenum disulfide. Is formed. Here, as the anodizing treatment, a general room temperature sulfuric acid alumite treatment was used, the thickness δa was about 3 μm, and the average diameter of the Si particles was 5 μm or less. Since the surface roughness of the anodic oxide film tends to be rough, a relatively thin film is used. Therefore, in order to ensure the thickness of the lubricating oxide film, the anodic oxide layer is more preferable than the solid lubricant-containing layer containing molybdenum disulfide. Is made thinner (ie, δa <δm). With such a thickness relationship, a lubricating oxide film with good surface roughness and dimensional accuracy can be formed.

尚、5〜15%Siのアルミ合金の場合だけでなく、15%以上含まれる材料の場合も効果はあるが、材料の製造コストが高くなることや機械的強度が逆に低く、また陽極酸化層の形成速度も低く、生産性は低く現実的でない。また、逆に5%以下でも効果があることはいうまでもない。   In addition, it is effective not only in the case of 5-15% Si aluminum alloy but also in the case of a material containing 15% or more, but the manufacturing cost of the material is high and the mechanical strength is low, and anodization is also performed. The formation rate of the layer is low, the productivity is low and it is not realistic. On the other hand, it goes without saying that an effect can be obtained even at 5% or less.

尚、シリコン平均粒子径は3〜5μmに限定するものではなく、より大きい粒子径や、小さい場合でも、適用可能であることはいうまでもない。   It should be noted that the silicon average particle diameter is not limited to 3 to 5 μm, and it goes without saying that the present invention can be applied even when the particle diameter is larger or smaller.

以上の構成によれば、摺動部材である可動スクロール3の摺動部に、潤滑性に優れた二硫化モリブデンを含有し、磨耗性に優れたアルマイト層である潤滑性酸化皮膜を容易に形成できるため、摺動部の損失低減、耐摩耗性向上を実現できる。   According to the above configuration, the sliding portion of the movable scroll 3, which is a sliding member, contains molybdenum disulfide with excellent lubricity, and easily forms a lubricating oxide film that is an alumite layer with excellent wear characteristics. Therefore, it is possible to reduce the loss of the sliding portion and improve the wear resistance.

また、流体機械であるスクロール圧縮機に、その潤滑性酸化皮膜を形成した可動スクロール3を用いることで、効率、耐久性、信頼性向上を実現できる。   In addition, the use of the movable scroll 3 formed with the lubricating oxide film in the scroll compressor, which is a fluid machine, can improve efficiency, durability, and reliability.

(実施の形態2)
次に、本発明の実施の形態2について説明する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.

可動スクロール3と軸受部材6に鋳鉄材、オルダム継手4にアルミ合金材を用いる場合は、オルダム継手4の摺動部に潤滑性酸化皮膜を実施の形態1と同様にして形成することで、摺動部の損失低減、耐摩耗性向上が実現できる。   When a cast iron material is used for the movable scroll 3 and the bearing member 6 and an aluminum alloy material is used for the Oldham joint 4, a lubricating oxide film is formed on the sliding portion of the Oldham joint 4 in the same manner as in the first embodiment. Reduced loss of moving parts and improved wear resistance.

以上の構成によれば、摺動部材であるオルダム継手4の摺動部に、潤滑性に優れた二硫化モリブデンを含有し、耐磨耗性に優れたアルマイト層である潤滑性酸化皮膜を容易に形成できるため、摺動部の損失低減、耐摩耗性向上を実現できる。   According to the above configuration, the sliding portion of the Oldham joint 4 which is a sliding member contains molybdenum disulfide excellent in lubricity and easily forms a lubricating oxide film which is an alumite layer excellent in wear resistance. Therefore, it is possible to reduce the loss of the sliding portion and improve the wear resistance.

また、そのオルダム継手4を用いた流体機械であるスクロール圧縮機は、効率、耐久性、信頼性向上を実現できる。   Moreover, the scroll compressor which is a fluid machine using the Oldham coupling 4 can realize improvement in efficiency, durability and reliability.

以上、上記実施の形態1から2では、スクロール型圧縮機構を有する場合を例にして説明したが、他のロータリ型、レシプロ型等の圧縮機や膨張機、ポンプ、さらにはエンジン等内燃機関などにも、本発明は適用可能であり、同様の効果を実現できる事は言うまでもない。特に、小型、軽量化が要求される車用の圧縮機やエンジンでは、摺動部にアルミ合金が用いられる事も多く、陽極酸化処理が必要なとされることも多いため、特にそのような場合に本発明はより効果を発揮できる。   As described above, in the first and second embodiments, the case where the scroll type compression mechanism is provided has been described as an example. However, other rotary type, reciprocating type compressors, expanders, pumps, and internal combustion engines such as engines, etc. Needless to say, the present invention is applicable and can achieve the same effect. In particular, in compressors and engines for vehicles that are required to be small and light, aluminum alloys are often used for sliding parts, and anodization is often required. In some cases, the present invention can be more effective.

また、上記実施の形態1から2において、固体潤滑剤に二硫化モリブデンを用いた場合で説明したが、固体潤滑剤はこれに限るものではなく、黒鉛、窒化ホウ素、二硫化タングステン、四フッ化エチレン(PTFE)等の樹脂、等を用いてもよい。   In the first and second embodiments, the case where molybdenum disulfide is used as the solid lubricant has been described. However, the solid lubricant is not limited to this, and graphite, boron nitride, tungsten disulfide, tetrafluoride are not limited thereto. A resin such as ethylene (PTFE) may be used.

また、本発明の実施の形態1から2におけるスクロール圧縮機は、二酸化炭素を冷媒(以後CO2と記載)に潤滑油にPAG油を用いた場合を例に説明するが、これに限るものではなく、HFC系冷媒R410A、R32、またはハイドロカーボン(HC)、HCFC22などの冷媒と、エーテル、エステル、PAO、アルキルベンゼンまたは鉱油等を潤滑油を用いた場合にも同様に適用可能であり、同様の効果を得ることができる。なお、この実施の形態によって本発明が限定されるものではない。   Further, the scroll compressor according to the first and second embodiments of the present invention will be described by taking, as an example, the case where PAG oil is used as a lubricating oil as a refrigerant (hereinafter referred to as CO2), but is not limited thereto. The same effect can be applied to the case where HFC refrigerants R410A and R32 or hydrocarbons (HC), HCFC22, and the like, and ether, ester, PAO, alkylbenzene, mineral oil, or the like are used as the lubricating oil. Can be obtained. Note that the present invention is not limited to the embodiments.

即ち、本発明を適用する事で、低い摺動損失と耐摩耗性有する固体潤滑剤を含有した潤滑性酸化皮膜を容易に形成できるため、優れた潤滑性を有する摺動部材を実現できるとともに、その摺動部材を用いることで、高効率で高い信頼性を有する流体機械を実現できる。   That is, by applying the present invention, it is possible to easily form a lubricating oxide film containing a solid lubricant having low sliding loss and wear resistance, so that a sliding member having excellent lubricity can be realized, By using the sliding member, a fluid machine having high efficiency and high reliability can be realized.

以上のように本発明にかかる摺動部材および流体機械は、摺動部の低損失、耐摩耗性向上が実現できる為、圧縮機や膨張機、ポンプ、内燃機関等の摺動部を有するさまざまな機器に適用することができる。   As described above, since the sliding member and the fluid machine according to the present invention can realize low loss of the sliding portion and improved wear resistance, various sliding portions such as a compressor, an expander, a pump, and an internal combustion engine can be realized. It can be applied to various devices.

本発明の実施の形態1における潤滑性酸化皮膜形成後の表面近傍断面図Cross-sectional view of the vicinity of the surface after the formation of the lubricating oxide film in the first embodiment of the present invention 本発明の実施の形態1における製造工程の説明図Explanatory drawing of the manufacturing process in Embodiment 1 of this invention 本発明の実施の形態1における固体潤滑皮膜形成後の表面近傍の断面図Sectional drawing of the surface vicinity after solid lubricant film formation in Embodiment 1 of this invention 従来のスクロール型圧縮機の縦断面図Vertical section of a conventional scroll compressor 従来の摺動部の説明図Explanatory drawing of conventional sliding part 従来の可動スクロールの断面図Cross section of a conventional movable scroll

符号の説明Explanation of symbols

3 可動スクロール
31 Si粒子
32 摺動部表面
33 固体潤滑剤含有層
34 固着層
35 潤滑性酸化皮膜
3 Movable scroll 31 Si particles 32 Sliding surface 33 Solid lubricant containing layer 34 Adhering layer 35 Lubricating oxide film

Claims (6)

アルミを主成分とする材料の表面に固体潤滑剤の微細粉体を衝突させ前記表面の表層に固体潤滑剤含有皮膜を形成し、前記皮膜形成後に陽極酸化処理することで、固体潤滑剤を含有した潤滑性酸化皮膜を形成したことを特徴とする摺動部材。 Solid lubricant is contained by colliding fine powder of solid lubricant on the surface of the material mainly composed of aluminum to form a film containing solid lubricant on the surface layer of the surface, and anodizing after forming the film. A sliding member characterized by forming a lubricious oxide film. 前記固体潤滑剤は、二硫化モリブデンを主成分とすることを特徴とする請求項1に記載の摺動部材。 The sliding member according to claim 1, wherein the solid lubricant is mainly composed of molybdenum disulfide. 荷重を受け相対的に摺動する摺動部材を有し、前記相対する摺動部材の少なくとも一方は、アルミを主成分とした材料からなり、前記摺動部材の摺動面には、固体潤滑剤の微細粉体を衝突させ前記表面の表層に固体潤滑剤含有皮膜を形成した後、陽極酸化処理により、固体潤滑剤を含有した潤滑性酸化皮膜を形成した摺動部材を有することを特徴とする流体機械。 A sliding member that slides relatively under load; at least one of the opposing sliding members is made of a material mainly composed of aluminum, and the sliding surface of the sliding member has solid lubrication Characterized by having a sliding member in which a fine lubricant powder is collided to form a solid lubricant-containing film on the surface layer, and then a lubricating oxide film containing a solid lubricant is formed by anodization. Fluid machine. 固定スクロールと旋回スクロールとを備えたスクロール型の流体機械であって、相対的に摺動する前記スクロールをアルミ系合金であるいはいずれか一方を鉄系材料で構成し、前記アルミ系合金の摺動面に前記潤滑性酸化皮膜を形成したことを特徴とする請求項3記載の流体機械。 A scroll-type fluid machine having a fixed scroll and an orbiting scroll, wherein the relatively sliding scroll is made of an aluminum-based alloy or one of them is made of an iron-based material, and the sliding of the aluminum-based alloy The fluid machine according to claim 3, wherein the lubricating oxide film is formed on a surface. 固定スクロールに対しオルダムリングを介して旋回運動する旋回スクロールを備えたスクロール型の流体機械であって、相対的に摺動する前記旋回スクロールとオルダム継手をアルミ系合金で同種あるいはいずれか一方を鉄系材料で構成し、前記アルミ系合金の摺動面に前記潤滑性酸化皮膜を形成したことを特徴とする請求項3または4記載の流体機械。 A scroll-type fluid machine having a orbiting scroll that orbits with respect to a fixed scroll via an Oldham ring. The orbiting joint and the orbital joint that slide relative to each other are made of an aluminum alloy of the same kind or one of which is iron. The fluid machine according to claim 3 or 4, wherein the fluidic oxide film is formed on a sliding surface of the aluminum alloy, and the lubricating oxide film is formed on the sliding surface of the aluminum alloy. 前記固体潤滑剤は、二硫化モリブデンを主成分としたものであることを特徴とする請求項3から5の何れか1項に記載の流体機械。 The fluid machine according to claim 3, wherein the solid lubricant is mainly composed of molybdenum disulfide.
JP2007297577A 2007-11-16 2007-11-16 Sliding member, and fluid machine Pending JP2009120917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007297577A JP2009120917A (en) 2007-11-16 2007-11-16 Sliding member, and fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007297577A JP2009120917A (en) 2007-11-16 2007-11-16 Sliding member, and fluid machine

Publications (1)

Publication Number Publication Date
JP2009120917A true JP2009120917A (en) 2009-06-04

Family

ID=40813385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007297577A Pending JP2009120917A (en) 2007-11-16 2007-11-16 Sliding member, and fluid machine

Country Status (1)

Country Link
JP (1) JP2009120917A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483642A (en) * 1977-12-16 1979-07-03 Seiko Instr & Electronics Ltd Manufacture of aluminum dial
JPS62240797A (en) * 1986-04-10 1987-10-21 Toyo Sash Co Ltd Method for coloring aluminum building material using fine abrasive material
JPH05340364A (en) * 1992-06-05 1993-12-21 Hitachi Ltd Scroll compressor
JP2000282259A (en) * 1999-03-30 2000-10-10 Toyota Central Res & Dev Lab Inc Production of metallic member having low friction coating film
WO2002040743A1 (en) * 2000-11-16 2002-05-23 Honda Giken Kogyo Kabushiki Kaisha Metallic sliding member, piston for internal combustion engine, method of surface-treating these, and apparatus therefor
JP2005113262A (en) * 2003-09-18 2005-04-28 Takushi Kirihata Method of producing metallic member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483642A (en) * 1977-12-16 1979-07-03 Seiko Instr & Electronics Ltd Manufacture of aluminum dial
JPS62240797A (en) * 1986-04-10 1987-10-21 Toyo Sash Co Ltd Method for coloring aluminum building material using fine abrasive material
JPH05340364A (en) * 1992-06-05 1993-12-21 Hitachi Ltd Scroll compressor
JP2000282259A (en) * 1999-03-30 2000-10-10 Toyota Central Res & Dev Lab Inc Production of metallic member having low friction coating film
WO2002040743A1 (en) * 2000-11-16 2002-05-23 Honda Giken Kogyo Kabushiki Kaisha Metallic sliding member, piston for internal combustion engine, method of surface-treating these, and apparatus therefor
JP2005113262A (en) * 2003-09-18 2005-04-28 Takushi Kirihata Method of producing metallic member

Similar Documents

Publication Publication Date Title
JP3941815B2 (en) Composition for sliding member, sliding member and fluid machine
WO2005068840A1 (en) Fluid machine
JP2001065458A (en) Compressor
JP3961274B2 (en) Compressor
JP5963854B2 (en) Rotating machinery and refrigeration cycle equipment
JP2001289169A (en) Compressor
KR20080042124A (en) Refrigerant compressor, cooling system and refrigerator
WO2000006902A1 (en) Bearing for refrigerating machine compressor and compressor
JP2002147354A (en) Compressor
JP4325611B2 (en) Compressor bearings for refrigerators and compressors for refrigerators
JP5067181B2 (en) Sliding member and fluid machine
JP2005307903A (en) Scroll compressor
JP2009287483A (en) Refrigerant compressor
JP3476970B2 (en) Scroll compressor
JP2009120917A (en) Sliding member, and fluid machine
JP5864883B2 (en) Scroll compressor
JP2005325842A (en) Fluid machine
CN109996901B (en) Oxide film, sliding member having the same formed thereon, and apparatus having the sliding member
JP2009108748A (en) Scroll compressor
JPH06264881A (en) Rotary compressor
JP2005061351A (en) Fluid machine
JP7308437B2 (en) scroll compressor
JP4967513B2 (en) Composition for sliding member of compressor, sliding member of compressor and compressor
WO2017056213A1 (en) Scroll compressor
JP5640885B2 (en) Scroll compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

RD01 Notification of change of attorney

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Effective date: 20120626

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717