WO2020095903A1 - Refrigerant compressor and refrigeration apparatus using same - Google Patents

Refrigerant compressor and refrigeration apparatus using same Download PDF

Info

Publication number
WO2020095903A1
WO2020095903A1 PCT/JP2019/043312 JP2019043312W WO2020095903A1 WO 2020095903 A1 WO2020095903 A1 WO 2020095903A1 JP 2019043312 W JP2019043312 W JP 2019043312W WO 2020095903 A1 WO2020095903 A1 WO 2020095903A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
shaft
taper
refrigerant compressor
bearing portion
Prior art date
Application number
PCT/JP2019/043312
Other languages
French (fr)
Japanese (ja)
Inventor
石田 貴規
Original Assignee
パナソニック株式会社
パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, パナソニック アプライアンシズ リフリジレーション デヴァイシズ シンガポール filed Critical パナソニック株式会社
Priority to CN201980052149.5A priority Critical patent/CN112567133B/en
Priority to EP19882174.6A priority patent/EP3879101A4/en
Priority to US17/282,664 priority patent/US20210340967A1/en
Priority to JP2020556082A priority patent/JP7142100B2/en
Publication of WO2020095903A1 publication Critical patent/WO2020095903A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/006Crankshafts

Definitions

  • the present invention relates to a refrigerant compressor used in a refrigerator, an air conditioner, etc., and a refrigeration system using the same.
  • the conventional refrigerant compressor 1 has, for example, a crankshaft 7 and a piston 15 connected to an eccentric shaft 9 of the crankshaft 7.
  • a compression element 6 and an electric element 5 having a stator 3 and a rotor 4 for rotating a crankshaft 7 are housed in a closed container 11.
  • the main shaft 8 of the crankshaft 7 is supported by a main bearing 14.
  • Refrigerating machine oil 2 is supplied to the sliding portion in the refrigerant compressor 1.
  • the crankshaft 7 When the refrigerant compressor 1 is driven, the crankshaft 7 is rotated together with the rotor 4 of the electric element 5 by the electric power supplied from the outside, and the eccentric movement of the eccentric shaft 9 causes the piston 15 through the connecting rod 17 and the piston pin 16. Are reciprocated in the cylinder bore 12.
  • the piston 15 compresses the refrigerant gas supplied from the outside into the closed container 11 via the suction tube 20 in the compression chamber 13.
  • Refrigerating machine oil 2 is supplied to each sliding portion from the oil supply pump 10 as the crankshaft 7 rotates, lubricates each sliding portion, and seals between the piston 15 and the cylinder bore 12.
  • Patent Document 1 a refrigerant compressor has been developed in which an insoluble film is formed on the surface of a sliding portion such as a crankshaft to prevent wear of the sliding portion.
  • the crankshaft 7 is supported by the main bearing 14 in a cantilever state.
  • the load acting on the crankshaft 7 in the radial direction fluctuates 10 times or more with respect to the minimum value. Due to the fluctuation of the load, the crankshaft 7 tends to swing around with the axis line inclined with respect to the axis line of the main bearing 14, so that the lubrication state at both axial ends of the main bearing 14 becomes relatively severe. Therefore, an insoluble coating such as a phosphate coating is formed on the surface of the main shaft 8 of the crankshaft 7 to suppress abnormal wear due to direct metal contact between the main shaft 8 and the main bearing 14.
  • the present invention provides a refrigerant compressor and a refrigeration apparatus using the same, which can prevent deterioration of durability and reliability by preventing abrasion of sliding parts, and can achieve high efficiency. It is an object.
  • a refrigerant compressor includes a closed container in which refrigerating machine oil is stored, an electric element housed in the closed container, and driven by electric power supplied from the outside.
  • a compression element that is housed in the closed container and attached to the refrigerating machine oil, is driven by the electric element, and compresses a refrigerant gas supplied from the outside, and the compression elements are arranged in a longitudinal direction.
  • a crankshaft having a main shaft and an eccentric shaft that are arranged, a main bearing that axially supports the main shaft, and an eccentric bearing that axially supports the eccentric shaft, and the shaft is at least one of the main shaft and the eccentric shaft.
  • a taper portion is provided which causes the shaft portion and the bearing portion to come into line contact with each other in a state in which the axis of the shaft portion is inclined with respect to the axis of the bearing portion due to the diameter changing from the side to the center side.
  • the ratio C / D of the diameter D of the shaft portion and the clearance C between the shaft portion and the bearing portion is in the range of 4.0 ⁇ 10 ⁇ 4 or more and 3.0 ⁇ 10 ⁇ 3 or less.
  • the taper depth d B corresponding to the distance in the direction perpendicular to the axis of the bearing between the one end and the other end of the taper in the axial direction of the bearing is 2.0 ⁇ 10 ⁇ .
  • a maximum gap G that is set to a value of 3 mm or more and is the sum of the total value of the taper depth d B of the tapered portion and the clearance C in the corresponding combination of the shaft portion and the bearing portion; the ratio G / D of the diameter D of, 4.0 ⁇ 10 -3 is set with the following values That.
  • the ratio C / D, the taper depth d B , and the ratio G / D are set to values in the above range, respectively, so that the shaft portion and the bearing portion are different from the diameter D of the shaft portion.
  • the distance between them can be set appropriately, and the tapered portion having a good inclined surface can be formed. This can prevent local metal contact between the shaft portion and the bearing portion, and promote formation of an oil film between the sliding portions of the shaft portion and the bearing portion. Therefore, it is possible to provide a refrigerant compressor having excellent long-term durability, low input, and high efficiency.
  • FIG. 1A is a characteristic diagram showing an input ratio between the embodiment of the refrigerant compressor of FIG. 1 and a conventional example.
  • B is a characteristic view showing the COP ratio of the embodiment of the refrigerant compressor of FIG. 1 and the conventional example.
  • FIG. 3 is an action diagram of a compression load in the refrigerant compressor of FIG. 1. It is a figure which shows each contact state of a main bearing and a main bearing when the main shaft of FIG.
  • FIG. 1 is a schematic cross-sectional view of a reciprocating (reciprocating) refrigerant compressor 100 according to the first embodiment.
  • the refrigerant compressor 100 includes a closed container 101, an electric element 106, a compression element 107, and an oil supply pump 120.
  • the closed container 101 is filled with a refrigerant gas (R600a as an example).
  • Refrigerating machine oil 103 (mineral oil as an example) is stored at the bottom of the closed container 101.
  • the electric element 106 is housed in the closed container 101 and driven by electric power supplied from the outside.
  • the electric element 106 has a stator 104 and a rotor 105.
  • the compression element 107 is housed in the closed container 101, is attached to the refrigerating machine oil 103, is driven by the electric element 106, and compresses the refrigerant gas supplied from the outside.
  • the compression element 107 has a crankshaft 108, a cylinder block 112, a piston pin 115, a connecting member 117, a piston 132, a valve plate 139, and a cylinder head 140.
  • the crankshaft 108 is made of cast iron as an example.
  • the crankshaft 108 is arranged so as to extend in the vertical direction.
  • the crankshaft 108 has a main shaft 109 and an eccentric shaft 110 which are arranged side by side in the longitudinal direction.
  • the rotor 105 is press-fitted and fixed to the main shaft 109.
  • the eccentric shaft 110 is arranged above the main shaft 109.
  • the eccentric shaft 110 is arranged eccentrically with respect to the main shaft 109.
  • the main shaft 109 is pivotally supported by the main bearing 111, and the eccentric shaft 110 is pivotally supported by the eccentric bearing 119.
  • An oil supply pump 120 is provided below the crankshaft 108 so that the refrigerating machine oil 103 is supplied.
  • the cylinder block 112 is made of cast iron as an example. Inside the cylinder block 112, a substantially cylindrical cylinder bore 113 is formed. The cylinder bore 113 extends in the horizontal direction, and one end of the cylinder bore 113 is sealed by a valve plate 139.
  • the cylinder block 112 has a main bearing 111 that supports the main shaft 109.
  • the piston 132 is reciprocally inserted in the cylinder bore 113.
  • the internal space between the piston 132 and the valve plate 139 in the cylinder bore 113 is a compression chamber 134.
  • a piston pin hole 116 is formed in the piston 132.
  • the piston pin 115 is non-rotatably locked in the piston pin hole 116.
  • the piston pin 115 is formed in a substantially cylindrical shape and is arranged parallel to the eccentric shaft 110.
  • the eccentric shaft 110 and the piston 132 are connected by a connecting member 117.
  • the connecting member 117 is an aluminum cast product and has an eccentric bearing 119.
  • the connecting member 117 connects the eccentric shaft 110 and the piston 132 via the piston pin 115.
  • a cylinder head 140 is arranged on the opposite side of the valve plate 139 from the cylinder bore 113.
  • the cylinder head 140 forms a high pressure chamber (not shown) and is fixed to the valve plate 139.
  • a suction tube (not shown) is fixed to the closed container 101.
  • the suction tube is connected to the low pressure side (not shown) of the refrigeration cycle of the refrigerant compressor 100 and guides the refrigerant gas into the closed container 101.
  • the suction muffler 142 is sandwiched between the valve plate 139 and the cylinder head 140.
  • the crankshaft 108 is rotated by the rotor 105 of the electric element 106, and the eccentric shaft 110 moves eccentrically.
  • the connecting member 117 reciprocates the piston 132 in the cylinder bore 113 via the piston pin 115.
  • the refrigerant gas introduced into the closed casing 101 through the suction tube is sucked into the compression chamber 134 from the suction muffler 142 and compressed in the compression chamber 134.
  • the refrigerating machine oil 103 is supplied to each sliding part from the oil supply pump 120 as the crankshaft 108 rotates, and lubricates the sliding part.
  • the refrigerator oil 103 also seals between the piston 132 and the cylinder bore 113.
  • the refrigerant compressor 100 includes a shaft portion that is at least one of the main shaft 109 and the eccentric shaft 110, and a bearing portion that is at least one of the main bearing 111 and the eccentric bearing 119.
  • the diameter of the shaft portion or the bearing portion changes from the outer side in the longitudinal direction of the crankshaft 108 toward the central side.
  • a taper portion is provided to bring the shaft portion and the bearing portion into line contact with each other in a state where the axis of the portion is inclined with respect to the axis of the bearing portion.
  • the ratio C / D between the diameter D of the shaft portion and the clearance C between the shaft portion and the bearing portion is 4.0 ⁇ 10 ⁇ 4 or more and 3.0 ⁇ 10 ⁇ 3 or less.
  • the taper depth d B set to a value in the range and corresponding to the distance in the direction perpendicular to the axis of the bearing between the one end and the other end of the taper in the axial direction of the bearing is 2.0 ⁇ 10 ⁇ . It is set to a value of 3 mm or more.
  • a pair of taper portions is provided on both axial sides of the bearing portion in one of the shaft portion and the bearing portion.
  • the outer diameter of the taper portion changes from one end to the other end in the axial direction of the shaft portion.
  • the bearing portion is provided with a taper, the inner diameter of the tapered portion changes from one end to the other end in the axial direction of the bearing portion.
  • the taper depth d BU which is the taper depth d B of the taper portion on one end side in the axial direction of the bearing portion, and the axial width of the bearing portion of the taper portion on the one end side in the axial direction of the bearing portion.
  • the taper width W BL which is the width, the bearing length B of the bearing portion, and the clearance C satisfy the equations 1 and 2.
  • (C + d BU + d BL ) corresponds to the maximum gap G that is the sum of the clearance C, the taper depth d BU, and the taper depth d BL .
  • the maximum gap G is the sum of the total value and the clearance C of the taper depth d B of the tapered portion in combination with the corresponding shaft portion and the bearing portion.
  • (C + d BU + d BL ) is also referred to as the maximum gap G.
  • FIG. 2 is an enlarged cross-sectional view of the E portion of the refrigerant compressor 100 of FIG.
  • FIG. 3 is a cross-sectional view of the main parts of the refrigerant compressor 100 of FIG. As shown in FIGS. 1 to 3, the main shaft 109 extends in the vertical direction.
  • a first sliding surface is formed on the mating surface of the shaft portion and the bearing portion, which is opposite to the surface of the tapered portion at one axial end of the bearing portion.
  • a second sliding surface is formed on the mating surface of the shaft portion and the bearing portion that faces the surface of the tapered portion on the other axial side of the bearing portion.
  • At least one of the shaft portion and the bearing portion is provided with a pair of tapered portions on both sides in the axial direction of the bearing portion, and has a small diameter portion having a diameter smaller than the maximum diameter of the tapered portion.
  • the main shaft 109 has a first sliding surface 151, a small diameter portion 152, and a second sliding surface 153.
  • the first sliding surface 151 is arranged above the main shaft 109.
  • the second sliding surface 153 is arranged below the main shaft 109.
  • the small diameter portion 152 is arranged between the first sliding surface 151 and the second sliding surface 153.
  • the small diameter portion 152 has a smaller diameter than the first sliding surface 151.
  • the diameter D LO of the portion of the main shaft 109 on which the second sliding surface 153 is arranged is equal to the diameter D UO of the portion of the main shaft 109 on which the first sliding surface 151 is arranged (see FIG. 5).
  • the main bearing 111 which supports the main shaft 109, is arranged so that its axis extends in the vertical direction.
  • 170 U of taper parts are provided in the upper end of the inner peripheral surface of the main bearing 111.
  • 170 L of taper parts are provided in the lower end of the inner peripheral surface of the main bearing 111. That is, in the present embodiment, the pair of tapered portions are provided on the bearing portion.
  • the inner diameter of the portion of the main bearing 111 other than where the tapered portions 170U and 170L are provided is constant.
  • the tapered portions 170U, 170L When viewed from a direction perpendicular to the axis of the tapered portions 170U, 170L, the tapered portions 170U, 170L have a linear or continuous curved surface. Although the tapered portion 170U has a linear surface between the inner end 171 and the outer end 172 in the axial direction of the main bearing 111 in FIG. 2, the tapered portion 170L has the same structure. Have.
  • the tapered portions 170U and 170L are formed on the inner circumferential surface of the main bearing 111 over the entire circumferential direction.
  • the taper depth d B (d BU , d BL ) corresponding to the distance in the direction perpendicular to the axis of the main bearing 111 between the one end 171 and the other end 172 of the tapered portions 170U, 170L in the axial direction of the main bearing 111 is , Here, it is set to a value on the order of ⁇ m.
  • the method of forming the tapered portions 170U and 170L is not limited.
  • the taper portions 170U and 170L of the present embodiment are based on the main bearing 111 using a trial tool composed of a radial needle bearing having an inner diameter of 12 mm, an outer diameter of 16 mm, and a roller diameter of 2 mm, and a rotary shaft having a slight gradient. It is formed by press-fitting while rotating into a bearing to be deformed and deforming the end portion of the bearing.
  • the clearance C corresponds to the difference between the inner diameter of the bearing portion when there is no tapered portion and the outer diameter of the portion of the shaft portion facing the inner peripheral surface of the bearing portion.
  • the clearance C is relative to the inner diameter of the bearing portion without the tapered portion and the inner peripheral surface of the bearing portion. It corresponds to the difference from the maximum outer diameter of the shaft portion.
  • the clearance C is the inner diameter of the bearing portion when there is no tapered portion, and the sliding surface 151 of the shaft portion. This corresponds to the difference from the outer diameter of the portion where 153 is provided.
  • the clearance C is, the tapered portion of the main bearing 111 170 U, the inner diameter D I of the portion excluding the 170L, the diameter of the first and second portion sliding surface 151, 153 is provided in the main shaft 109 It is the difference between D LO and D UO .
  • the clearance C is the larger of the inner diameter of the main bearing 111 when there is no taper portion and the diameter D LO or D UO of the main shaft 109. It can be the difference from the diameter.
  • the taper in the direction parallel to the axis 111c of the main bearing 111 is obtained.
  • the taper width W BU of the portion 170U (in other words, the taper width W BU which is the axial width of the main bearing 111 of the taper portion 170U on the one axial end side of the main bearing 111) is set to 10 mm, and the taper depth d BU is It is set to 4.0 ⁇ 10 ⁇ 3 mm.
  • the taper width W BL of the taper portion 170L in the direction parallel to the axis 111c of the main bearing 111 (in other words, of the main bearing 111).
  • the taper width W BL which is the axial width of the main bearing 111 of the tapered portion 170L on the other end side in the axial direction is set to 10 mm, and the taper depth d BL is set to 4.0 ⁇ 10 ⁇ 3 mm.
  • the bearing length B of the main bearing 111 is set to 43.5 mm.
  • the inner diameter D I of the portion of the main bearing 111 excluding the tapered portions 170U and 170L is set to 16.026 mm.
  • Each diameter D O of the portion of the main shaft 109 where the first sliding surface 151 is formed and the portion of the main shaft 109 where the second sliding surface 153 is formed is set to 16.010 mm.
  • the clearance C between the main shaft 109 and the main bearing 111 is set to 1.6 ⁇ 10 ⁇ 2 mm.
  • both d BU / w BU and d BL / w BL are set to 4.0 ⁇ 10 ⁇ 4 .
  • (C + d BU + d BL ) / B is set to 5.5 ⁇ 10 ⁇ 4 . That is, d BU / w BU and d BL / w BL both satisfy the relationship smaller than (C + d BU + d BL ) / B, and the ratio C / of the clearance C and the diameter D O of the main shaft 109.
  • D O is set to 1.0 ⁇ 10 ⁇ 3 .
  • the refrigerant compressor 100 the corresponding shaft portion and the total value of the taper depth d B of the tapered portion in combination with the bearing portion (where the two tapered portions 170U in combination with the main bearing 111 and main shaft 109, 170L
  • the ratio G / D is set to a value of 4.0 ⁇ 10 ⁇ 3 or less.
  • the ratio C / D, the taper depth d B (d BU , d BL ) and the ratio G / D are set to values in the above range, respectively, with respect to the diameter D of the shaft portion.
  • the distance between the shaft portion and the bearing portion can be appropriately set, and the tapered portions 170U and 170L having favorable inclined surfaces can be formed. This can prevent local metal contact between the shaft portion and the bearing portion, and promote formation of an oil film between the sliding portions of the shaft portion and the bearing portion. Therefore, the refrigerant compressor 100 having excellent long-term durability, low input and high efficiency can be provided.
  • the bearing length B of the bearing portion and the clearance C satisfy the relational expressions of the equations 1 and 2.
  • the degree of inclination of the tapered portions 170U, 170L is adjusted to an appropriate degree, so that when the shaft portion swings around when the refrigerant compressor 200 is driven, the surfaces of the tapered portions 170U, 170 and The surfaces of the shafts facing each other can be easily aligned with each other (see FIG. 6). Therefore, it is possible to further facilitate the formation of the oil film between the surfaces of the tapered portions 170U and 170 and the surface of the shaft portion facing the tapered portions 170U and 170.
  • the first sliding surface 151 faces the surface of the tapered portion 170U, and the sliding width L 1 of the first sliding surface 151 is greater than the tapered width W BU of the tapered portion 170U.
  • the second sliding surface 153 faces the surface of the tapered portion 170L, and the sliding width L 2 of the second sliding surface 153 is smaller than the tapered width W BL of the tapered portion 170L. ing. Thereby, the viscous resistance between the shaft portion and the bearing portion is effectively reduced.
  • the ratio G / D is set to a value of 4.0 ⁇ 10 ⁇ 3 or less.
  • the ratio between the maximum gap G and the diameter D of the shaft portion can be optimized, so that it is possible to prevent the inclination gradient in the bearing portion of the crankshaft 108 from becoming excessive and the partial contact described later to increase. Therefore, for example, it can be prevented that the tip end of the piston 132 is abraded due to one-sided contact, the amount of refrigerant leak from the abraded portion is increased, and the refrigerating capacity is lowered.
  • the shaft portion of the refrigerant compressor 100 has a film formed on the surface portion that slides on the bearing portion.
  • This coating has a hardness equal to or higher than the hardness of the opposing surfaces of the bearing portion.
  • at least one (both here) of the main shaft 109 and the eccentric shaft 110 has this coating.
  • the type of coating is not limited, but examples include oxide coatings.
  • the oxide film include a film of iron oxide.
  • the iron oxide film is chemically very stable and has a high hardness as compared with, for example, a phosphate film.
  • the film may be harder than the mating material.
  • the base material of the shaft portion where the coating is formed is an iron-based material
  • the coating is formed not only by general quenching, but by impregnating the surface of the shaft portion with carbon, nitrogen, etc. May be.
  • the film may be formed by an oxidation treatment with water vapor or an oxidation treatment of immersing the material in an aqueous solution of sodium hydroxide or the like.
  • the film is not limited to the compound layer formed by the above-mentioned oxidation, carburization, nitriding, oxidation treatment, etc., for example, cold working, work hardening, solid solution strengthening, precipitation strengthening, dispersion strengthening, grain refinement, etc. Any of the above may be a strength enhancing layer in which the base material is strengthened by suppressing the slip motion of dislocations.
  • the coating may be a treated layer formed by any coating method such as plating, thermal spraying, PVD and CVD.
  • the refrigerant compressor 100 of the first embodiment was manufactured as an example.
  • a refrigerant compressor similar to the refrigerant compressor 100 except that the tapered portions 170U and 170L are not provided was manufactured as a conventional example.
  • the performance of these refrigerant compressors was evaluated when they were operated at a low speed by inverter drive (operating frequency of 17 Hz).
  • FIG. 4A is a characteristic diagram showing the input ratio between the embodiment of the refrigerant compressor of FIG. 1 and the conventional example.
  • FIG. 4B is a characteristic diagram showing the coefficient of performance (COP) ratio of the embodiment of the refrigerant compressor of FIG. 1 and the conventional example.
  • COP coefficient of performance
  • the coefficient of performance is a coefficient used as a guideline (index) of energy consumption efficiency of refrigeration equipment, and is a value obtained by dividing the refrigerating capacity (W) by the applied input (W).
  • FIG. 4A shows the ratio (input ratio) when the applied input value of the conventional example is 100.
  • FIG. 4B shows each ratio (COP ratio) when the COP value of the conventional example is 100.
  • the taper portions 170U and 170L are provided as compared with the comparative example, so that the input becomes lower than that in the conventional example and the COP is reduced. It was confirmed to be high.
  • FIG. 5 is an action diagram of the compression load in the refrigerant compressor 100 of FIG. 1.
  • the compression load acting on the refrigerant compressor 100 is schematically shown.
  • the confirmation test results of the example and the conventional example will be considered as follows with reference to FIG.
  • a compression load P generated in the cylinder axis direction of the cylinder bore 113 in a compression chamber 134 formed between the cylinder bore 113 and the piston 132.
  • the pressure inside the closed container 101 is lower than that of The compression load P acts on the eccentric shaft 110, while the main shaft 109 is cantilevered by a single main bearing 111. Therefore, when the refrigerant compressor is driven, the crankshaft 108 is affected by the compression load P, as shown in the document of Ito et al. (Annual Meeting of the Japan Society of Mechanical Engineers Vol.5-1 (2005) P.143). Therefore, the main bearing 111 swings in an inclined state.
  • the component force P1 of the compressive load P acts on the portion of the main shaft 109 corresponding to the upper end portion of the main bearing 111, and the component force P2 of the compressive load P corresponds to the main shaft 109 corresponding to the lower end portion of the main bearing 111.
  • partial contact occurs.
  • the main shaft 109 tilts in the main bearing 111 local contact between the main shaft 109 and the main bearing 111 may occur to increase the surface pressure.
  • the thickness of the oil film formed between the main shaft 109 and the main bearing 111 becomes thinner or the oil film is cut off. As a result, solid contact between the main shaft 109 and the main bearing 111 occurs and sliding loss increases.
  • the main bearing 111 by providing the main bearing 111 with the tapered portions 170U and 170L, even if the main shaft 109 is tilted in the main bearing 111, the main bearing 111 is inclined from the direction perpendicular to the axis of the main bearing 111. As viewed, the main shaft 109 and the main bearing 111 are arranged such that the facing surfaces thereof are along each other. As a result, local metal contact between the main shaft 109 and the main bearing 111 is prevented.
  • area A1 the range that satisfies the above-described relational expressions of Formula 1 and Formula 2 is referred to as area A1
  • area A2 the range that satisfies the relational formulas of Formula 3 and Formula 4 below.
  • FIG. 6 is a diagram showing a correlation between each contact state between the main shaft 109 and the main bearing 111 when the main shaft 109 in FIG. 1 is inclined in the main bearing 111, and a relational expression established in each contact state.
  • FIG. 7 is a graph showing the setting ranges of Examples 1 and 2 and Comparative Examples 1 and 2. Table 1 shows the evaluations in the performance evaluation test and the reliability evaluation test of Examples 1 and 2 and Comparative Examples 1 and 2.
  • the lower horizontal axis of the graph in FIG. 7 shows the taper depths d BU and d BL
  • the upper horizontal axis shows the ratio (C + d BU + d BL ) / D of the maximum gap G and the diameter D of the shaft portion.
  • the vertical axis of FIG. 7 shows the taper widths W BU and W BL .
  • the taper depths d BU and d BL are 2.0 ⁇ 10 ⁇ 3 mm or more, and the ratio (C + d BU + d BL ) / D of the maximum gap G and the diameter D of the shaft portion is 4.
  • the refrigerant compressor 100 set to satisfy the relational expressions 1 and 2 in the region of 0.0 ⁇ 10 ⁇ 3 or less was set as Example 1.
  • the taper depths d BU and d BL are 2.0 ⁇ 10 ⁇ 3 mm or more, and the ratio (C + d BU + d BL ) / D of the maximum gap G to the diameter D of the shaft portion is 4.0 ⁇ 10 ⁇ .
  • the refrigerant compressor set so as to satisfy the relational expressions of Formulas 3 and 4 in the region of 3 or less was set as Example 2.
  • Comparative Example 1 is a refrigerant compressor in which the taper depths d BU and d BL are set to values less than 2.0 ⁇ 10 ⁇ 3 mm.
  • Comparative Example 2 was a refrigerant compressor in which the ratio (C + d BU + d BL ) / D of the maximum gap G and the diameter D of the shaft portion was set to a value exceeding 4.0 ⁇ 10 ⁇ 3 .
  • the shafts of Examples 1 and 2 and Comparative Examples 1 and 2 were coated with a film on the surface that slides on the bearing.
  • a manganese phosphate film having a hardness lower than that of the mating main bearing or an iron oxide film having a hardness higher than that of the mating main bearing was formed.
  • Comparative Example 1 in which the taper depths d BU and d BL are set to values less than 2.0 ⁇ 10 ⁇ 3 mm, the performance is not improved as compared with the conventional example regardless of the areas A1 and A2. I understood. As a cause for this, it is considered that in Comparative Example 1, for example, the taper depth of the taper portion was too shallow, so that the effect due to the difference in shape from the taper portions of Examples 1 and 2 could not be obtained.
  • Comparative Example 2 in which the ratio (C + d BU + d BL ) / D is set to a value exceeding 4.0 ⁇ 10 ⁇ 3 , the performance is not improved as compared with the conventional example regardless of the areas A1 and A2. I understood. As a cause of this, for example, it is considered that the inclination gradient in the bearing portion of the crankshaft 108 becomes excessively large, and one-sided contact becomes apparent. That is, in Comparative Example 2, it was not possible to confirm the improvement in performance because the tip of the piston 132 was abraded due to the manifestation of this one-sided contact, the amount of refrigerant leaked from the abraded portion was increased, and the refrigerating capacity was decreased. Conceivable.
  • the clearance C between the main shaft 109 and the main bearing 111 is set to 1.6 ⁇ 10 ⁇ 2 mm, and the bearing length B of the main bearing 111 is set to 43.5 mm. It has been found that the same effect can be obtained when the ratio C / D is set to a value in the range of 4.0 ⁇ 10 ⁇ 4 or more and 3.0 ⁇ 10 ⁇ 3 or less.
  • the diameter D O of the main shaft 109 can be set as appropriate, but can be set to a value in the range of 10 mm or more and 28 mm or less, for example.
  • the clearance C, the taper depths d BU , d BL , and the taper are adjusted so that the ratios C / D and (C + d BU + d BL ) / D are in the appropriate ranges in accordance with the set diameter D of the shaft. It is desirable to set the widths W BU and W BL .
  • the tapered portions 170U and 170L are provided on the inner peripheral surface of the main bearing 111, but the same effect can be obtained even if the outer peripheral surface of the main shaft 109 is provided with the tapered portions. Be done.
  • the eccentric bearing 119 may be provided with a taper portion on the inner peripheral surface thereof, or the eccentric shaft 110 may be provided with a taper portion on the outer peripheral surface thereof.
  • the ratio C / D, the taper depth, and the ratio G / D are set to be the same as the above-described combination of the main shaft 109 and the main bearing 111. Even with such a configuration, similarly to the present embodiment, it is possible to contribute to the performance and reliability improvement of the refrigerant compressor.
  • the effect that the performance is improved when the refrigerant compressor 100 is operated at a low speed (operating frequency of 17 Hz as an example) has been described.
  • a speed of commercial speed or at a higher speed when operating at a speed of commercial speed or at a higher speed.
  • the same effect can be obtained even during high speed operation due to.
  • the type of the refrigerant compressor is not limited to the reciprocating type (reciprocating type), and other types such as a rotary type and a scroll type may be used. That is, in a refrigerant compressor of a rotary type or a scroll type, even if a taper portion is applied to a sliding portion (so-called journal bearing sliding portion) composed of the outer peripheral surface of the shaft and the inner peripheral surface of the bearing, the same result is obtained. The effect of improving performance and reliability can be obtained.
  • other embodiments will be described focusing on differences from the first embodiment.
  • FIG. 8 is a schematic sectional view of a rotary (rotary) refrigerant compressor 200 according to the second embodiment.
  • FIG. 9 is an enlarged cross-sectional view of part B of the refrigerant compressor 200 of FIG.
  • FIG. 9 corresponds to an enlarged cross-sectional view of a portion B (lower side of the main bearing 209) surrounded by a broken line circular frame in FIG.
  • FIG. 10 is a cross-sectional view of the refrigerant compressor 200 of FIG. 8 taken along the line AA ′.
  • the refrigerant compressor 200 includes a closed container 201, an electric element 202, and a compression element 203.
  • Refrigerating machine oil 220 is stored at the bottom of the closed container 101.
  • the electric element 202 and the compression element 203 are housed in the closed container 201.
  • the electric element 202 has a stator 202a and a rotor 202b.
  • the compression element 203 has a crankshaft 208, a main bearing 209, an auxiliary bearing 211, a cylinder 210, and a roller 213.
  • the crankshaft 208 extends in the vertical direction, and has a main shaft 206 and an eccentric shaft 212 arranged in the middle of the main shaft 206.
  • the main shaft 206 is pivotally supported by the main bearing 209 above the eccentric shaft 212, and is pivotally supported by the sub bearing 211 below the eccentric shaft 212.
  • the rotor 202b of the electric element 202 is fixed to the main shaft 206.
  • the outer circumference of the rotor 202b is surrounded by the stator 202a.
  • the eccentric shaft 212 is arranged inside the cylinder 210 penetrating in the vertical direction.
  • the roller 213 is formed in a tubular shape and is arranged so that its axis extends vertically. Inside the cylinder 210, the main shaft 206 and the eccentric shaft 212 are inserted into a roller 213.
  • the eccentric shaft 212 is supported on the inner peripheral surface of the cylinder 210 via a roller 213.
  • the roller 213 corresponds to the eccentric bearing of the eccentric shaft 212.
  • the roller 213 makes a planetary motion around the main shaft 206 of the crankshaft 208.
  • the cylinder 210 is provided with a through groove 222 extending in the horizontal direction.
  • a shaft-shaped vane 214 is inserted into the through groove 222.
  • One end (tip) in the longitudinal direction of the vane 214 is pressed against the peripheral surface 231 of the roller 213 by the spring 215 and the back pressure (discharge pressure).
  • the space between the cylinder 210 and the roller 213 is divided into a suction chamber 216 for sucking the refrigerant gas from the outside and a compression chamber 217 for compressing the refrigerant gas.
  • the cylinder 210 is further provided with a suction hole 205.
  • One end of the suction pipe 204 is inserted into the suction hole 205.
  • the refrigerant compressor 200 is connected to an accumulator (not shown) via a suction pipe 204.
  • a discharge notch 219 is provided on the inner peripheral surface of the cylinder 210.
  • the electric element 202 causes the crankshaft 208 to rotate around the main shaft 206, causing the roller 213 to make a planetary motion (in FIG. 10, rotate left).
  • the refrigerant gas is sucked into the suction chamber 216 from the outside through the suction pipe 204 and the suction hole 205.
  • the refrigerant gas is compressed by increasing the internal pressure of the compression chamber 217, and is discharged into the closed container 201 through the discharge notch 219 through a discharge hole (not shown).
  • the crankshaft 208 causes the upper end of the main bearing 209 (the end on the electric element 202 side in FIG. 8), the lower end of the main bearing 209 (the end on the roller 213 side in FIG. 8), and the auxiliary bearing 211.
  • the upper end the end on the roller 213 side in FIG. 8
  • the lower end of the auxiliary bearing 211 the end on the oil filler 221 side provided at the lower end of the crankshaft 208 in FIG. 8) of the auxiliary bearing 211.
  • the tapered portion 270U is provided at the upper end of the main bearing 209 that pivotally supports the crankshaft 208, and the tapered portion 270L is provided at the lower end of the main bearing 209. Further, a tapered portion 280U is provided on the upper end of the sub bearing 211, and a tapered portion 280L is provided on the lower end of the sub bearing 211.
  • the taper portions 270U and 280U correspond to the taper portion 170U, and the taper portions 270L and 280L correspond to the taper portion 170L. Note that, in FIG. 9, only the tapered portion 270L is shown among the respective tapered portions.
  • the tapered portions 270U and 270L are formed on the inner peripheral surface of the main bearing 209 over the entire circumferential direction.
  • the taper depth d B (d BU , d BL ) corresponding to the distance in the direction perpendicular to the axis of the main bearing 209 between the one end 271 and the other end 272 of the tapered portions 270U, 270L in the axial direction of the main bearing 209 is , Here, it is set to a value on the order of ⁇ m.
  • the ratio C / D between the diameter D of the crankshaft 208 (main shaft 206) and the clearance C between the crankshaft 208 (main shaft 206) and the bearing portion (main bearing 209) is 4 It is set to a value in the range of 0.0 ⁇ 10 ⁇ 4 to 3.0 ⁇ 10 ⁇ 3 .
  • the ratio G / D in the corresponding combination of the shaft portion and the bearing portion is set to a value of 4.0 ⁇ 10 ⁇ 3 or less.
  • the ratio C / D between the diameter D of the crankshaft 208 (main shaft 206) and the clearance C between the crankshaft 208 (main shaft 206) and the bearing portion (secondary bearing 211) is also 4.0 ⁇ 10 ⁇ 4.
  • the value is set in the range of 3.0 ⁇ 10 ⁇ 3 or less.
  • At least one (both here) of the taper depth d BU (not shown) of the taper portions 270U and 280U and the taper depth d BL of the taper portions 270L and 280L is 2.0 ⁇ 10 ⁇ . It is set to a value in the range of 3 mm or more.
  • the crankshaft 208 has a film formed on the surface portion that slides with respect to the main bearing 209 and the auxiliary bearing 211. This film is similar to the film of the first embodiment.
  • the facing surface between the main shaft 206 and the main bearing 209 is seen from the direction perpendicular to the axis of the crankshaft 208.
  • the respective facing surfaces of the main shaft 206 and the sub bearing 211 are arranged so as to be along each other. This prevents local metal contact between the main shaft 206 and the main bearing 209 and between the main shaft 206 and the sub bearing 211. Therefore, the refrigerant compressor 200 has good friction and wear characteristics and high performance and reliability.
  • the tapered portion 270L shown in FIG. 9 is formed in a curved shape having a continuous curved surface when viewed from a direction perpendicular to the axis thereof, but is formed so as to have a linear surface. May be. Further, when a plurality of tapered portions are provided, tapered portions having different shapes may be provided. Further, the refrigerant compressor 200 has four taper portions 270U, 270L, 280U, 280L, but it suffices to have at least one taper portion among them.
  • the target on which the above-mentioned film is formed is not limited to the crankshaft 208.
  • the above-described film may be provided on a sliding portion of any of the components of the refrigerant compressor and the refrigerating apparatus using the same (for example, units such as parts and devices, and units such as pumps and motors).
  • a configuration of a refrigeration system using the refrigerant compressors 100 and 200 will be exemplified.
  • FIG. 11 is a schematic diagram of the refrigeration apparatus 300 according to the third embodiment. The outline of the basic configuration of the refrigerating apparatus 300 will be described below. As shown in FIG. 11, the refrigeration system 300 includes a main body 301, a partition wall 307, and a refrigerant circuit 309.
  • the main body 301 has a heat insulating box body having an opening communicating with the inside thereof, and a door for opening and closing the opening of the box body. Further, the main body 301 has a storage space 303 in which articles are stored, and a machine room 305 in which a refrigerant circuit 309 that cools the storage space 303 is arranged. The storage space 303 and the machine room 305 are partitioned by a partition wall 307. A blower (not shown) is arranged in the storage space 303. In FIG. 11, a part of the box body is cut away to show the inside of the main body 301.
  • the refrigerant circuit 309 includes one of the refrigerant compressors 100 and 200, a radiator 313, a pressure reducing device 315, and a heat absorber 317. Any of the refrigerant compressors 100 and 200, the radiator 313, the pressure reducing device 315, and the heat absorber 317 are connected in an annular shape by piping.
  • the radiator 313 radiates heat from the refrigerant.
  • the decompression device 315 decompresses the refrigerant.
  • the heat absorber 317 absorbs heat of the refrigerant.
  • the heat absorber 317 is disposed in the storage space 303 to generate cooling heat. As shown by the arrow in FIG. 11, the cooling heat of the heat absorber 317 is circulated in the storage space 303 by the blower. Thereby, the air in the storage space 303 is agitated and the inside of the storage space 303 is cooled.
  • the refrigerating apparatus 300 having the above-described configuration can obtain high wear resistance between the shaft portion and the bearing portion and promote the formation of an oil film between the shaft portion and the bearing portion in either the refrigerant compressor 100 or 200. As a result, local metal contact between the shaft portion and the bearing portion can be prevented, and high reliability and compressor performance can be obtained. Accordingly, in the refrigeration system 300, by including the refrigerant compressors 100 and 200, power consumption can be reduced, energy saving can be realized, and long-term reliability can be improved.
  • the present invention is not limited to each embodiment, and its configuration can be changed, added, or deleted without departing from the spirit of the present invention.
  • the respective embodiments may be arbitrarily combined with each other, and for example, a part of the configuration in one embodiment may be applied to another embodiment.
  • the scope of the present invention is defined by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
  • the present invention provides a refrigerant compressor capable of achieving high efficiency while preventing deterioration of durability and reliability by preventing abrasion of sliding parts, and a refrigeration apparatus using the same. It has an excellent effect that can be provided. Therefore, it is beneficial to widely apply the present invention to a refrigerant compressor and a refrigerating apparatus using the same, which can exert the significance of this effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

This refrigerant compressor has a sealed container in which refrigerator oil is stored, wherein either a shaft part that is a main shaft and an eccentric shaft, or a bearing part that is a main bearing and an eccentric bearing, is provided with a tapered part that brings the shaft part and the bearing part into line contact in a state in which the axis of the shaft part is inclined relative to the axis of the bearing part, due to the diameter changing from the longitudinally outward side of a crankshaft toward the center in one axial end side and another axial end side of the bearing part. The ratio C/D of the diameter D of the shaft part to the clearance C between the shaft part and the bearing part is set to a value in the range of 4.0×10−4 to 3.0×10−3, inclusive. The taper depth dB of the tapered part is set to a value of 2.0×10−3 mm or greater. The ratio G/D of the diameter D of the shaft part to the maximum gap G, which is the sum of the clearance C and the total value of the taper depth dB in the corresponding combination of the shaft part and the bearing part, is set to a value of 4.0×10−3 or less.

Description

冷媒圧縮機及びこれを用いた冷凍装置Refrigerant compressor and refrigeration apparatus using the same
 本発明は、冷蔵庫やエアーコンディショナー等に使用される冷媒圧縮機及びこれを用いた冷凍装置に関する。 The present invention relates to a refrigerant compressor used in a refrigerator, an air conditioner, etc., and a refrigeration system using the same.
 図12の従来の冷媒圧縮機1の概略的な断面図に示すように、従来の冷媒圧縮機1は、例えば、クランクシャフト7とクランクシャフト7の偏心軸9に接続されたピストン15とを有する圧縮要素6、及び、クランクシャフト7を回転させる固定子3と回転子4とを有する電動要素5が、密閉容器11に収納された構成を有する。クランクシャフト7の主軸8は、主軸受14により軸支される。冷媒圧縮機1内の摺動部分には、冷凍機油2が供給される。 As shown in the schematic sectional view of the conventional refrigerant compressor 1 of FIG. 12, the conventional refrigerant compressor 1 has, for example, a crankshaft 7 and a piston 15 connected to an eccentric shaft 9 of the crankshaft 7. A compression element 6 and an electric element 5 having a stator 3 and a rotor 4 for rotating a crankshaft 7 are housed in a closed container 11. The main shaft 8 of the crankshaft 7 is supported by a main bearing 14. Refrigerating machine oil 2 is supplied to the sliding portion in the refrigerant compressor 1.
 冷媒圧縮機1の駆動時には、外部からの供給電力により電動要素5の回転子4と共にクランクシャフト7が回転させられ、偏心軸9の偏心運動により、コンロッド17及びピストンピン16を介して、ピストン15がシリンダボア12内を往復運動させられる。ピストン15は、サクションチューブ20を介して外部から密閉容器11内に供給される冷媒ガスを圧縮室13内で圧縮する。冷凍機油2は、クランクシャフト7の回転に伴って給油ポンプ10から各摺動部分に給油され、各摺動部分を潤滑すると共に、ピストン15とシリンダボア12との間をシールする。 When the refrigerant compressor 1 is driven, the crankshaft 7 is rotated together with the rotor 4 of the electric element 5 by the electric power supplied from the outside, and the eccentric movement of the eccentric shaft 9 causes the piston 15 through the connecting rod 17 and the piston pin 16. Are reciprocated in the cylinder bore 12. The piston 15 compresses the refrigerant gas supplied from the outside into the closed container 11 via the suction tube 20 in the compression chamber 13. Refrigerating machine oil 2 is supplied to each sliding portion from the oil supply pump 10 as the crankshaft 7 rotates, lubricates each sliding portion, and seals between the piston 15 and the cylinder bore 12.
 近年、地球環境保護の観点から、化石燃料使用量の削減のために冷媒圧縮機の高効率化が進められている。例えば、特許文献1に開示されるように、クランクシャフト等の摺動部分の表面に不溶解性皮膜を形成することで当該摺動部分の摩耗を防止した冷媒圧縮機が開発されている。 In recent years, from the viewpoint of protecting the global environment, the efficiency of refrigerant compressors has been improved to reduce the amount of fossil fuel used. For example, as disclosed in Patent Document 1, a refrigerant compressor has been developed in which an insoluble film is formed on the surface of a sliding portion such as a crankshaft to prevent wear of the sliding portion.
 具体的に図12に示す例では、クランクシャフト7は主軸受14に片持ち状態で支持されている。密閉容器11内への冷媒ガスの吸入圧縮工程においてクランクシャフト7に径方向に作用する荷重は、最小値に対して10倍以上変動する。この荷重の変動により、クランクシャフト7は、主軸受14の軸線に対して軸線が傾斜した状態で振れ回ろうとするため、主軸受14の軸線方向両端における潤滑状態が比較的厳しくなる。そこで、クランクシャフト7の主軸8の表面にリン酸塩皮膜等の不溶解性皮膜を形成し、主軸8と主軸受14との直接的な金属接触による異常摩耗の抑制が図られている。 Specifically, in the example shown in FIG. 12, the crankshaft 7 is supported by the main bearing 14 in a cantilever state. In the process of sucking and compressing the refrigerant gas into the closed container 11, the load acting on the crankshaft 7 in the radial direction fluctuates 10 times or more with respect to the minimum value. Due to the fluctuation of the load, the crankshaft 7 tends to swing around with the axis line inclined with respect to the axis line of the main bearing 14, so that the lubrication state at both axial ends of the main bearing 14 becomes relatively severe. Therefore, an insoluble coating such as a phosphate coating is formed on the surface of the main shaft 8 of the crankshaft 7 to suppress abnormal wear due to direct metal contact between the main shaft 8 and the main bearing 14.
特開平7-238885号公報Japanese Patent Laid-Open No. 7-238885
 しかしながら最近では、冷媒圧縮機の更なる高効率化が望まれており、例えば、冷媒圧縮機の回転部分における可変速回転域の拡大、低粘度冷凍機油の採用、及び、摺動部分の面積低減等の設計変更が検討されている。このような設計変更が行われた場合、摺動部分の表面に不溶解性皮膜が形成されていても、特に潤滑状態の維持が厳しいクランクシャフトの主軸の軸線方向両端等においては当該皮膜が削られ、摺動部分の摩耗が進行するおそれがある。これにより、冷媒圧縮機の耐久性及び信頼性が低下する。 However, recently, it has been desired to further improve the efficiency of the refrigerant compressor. For example, expansion of the variable speed rotation range in the rotating portion of the refrigerant compressor, adoption of low-viscosity refrigerating machine oil, and reduction of the sliding area Design changes such as the above are being considered. When such a design change is made, even if an insoluble film is formed on the surface of the sliding part, the film will be abraded especially at both axial ends of the main shaft of the crankshaft where maintaining the lubrication condition is severe. Therefore, there is a possibility that the sliding portion may be worn. This reduces the durability and reliability of the refrigerant compressor.
 そこで本発明は、摺動部分の摩耗を防止することで耐久性及び信頼性の低下を防止しながら、高効率化を図ることが可能な冷媒圧縮機及びこれを用いた冷凍装置を提供することを目的としている。 Therefore, the present invention provides a refrigerant compressor and a refrigeration apparatus using the same, which can prevent deterioration of durability and reliability by preventing abrasion of sliding parts, and can achieve high efficiency. It is an object.
 上記課題を解決するために、本発明の一態様に係る冷媒圧縮機は、冷凍機油が貯留された密閉容器と、前記密閉容器に収容され、外部より供給される電力により駆動される電動要素と、前記密閉容器に収容されて前記冷凍機油に被着され、前記電動要素により駆動されて、外部から供給される冷媒ガスを圧縮する圧縮要素とを備え、前記圧縮要素は、長手方向に並んで配置された主軸と偏心軸とを有するクランクシャフトと、前記主軸を軸支する主軸受と、前記偏心軸を軸支する偏心軸受とを有し、前記主軸及び前記偏心軸の少なくとも一方である軸部、及び、前記主軸受及び前記偏心軸受の少なくとも一方である軸受部のいずれかには、前記軸受部の軸線方向一端側及び他端側の少なくとも一方において、前記クランクシャフトの長手方向外側から中央側に向けて径が変化することにより、前記軸部の軸線が前記軸受部の軸線に対して傾斜した状態で、前記軸部と前記軸受部とを線接触させるテーパ部が設けられ、前記軸部の直径Dと、前記軸部と前記軸受部との間のクリアランスCとの比率C/Dが、4.0×10-4以上3.0×10-3以下の範囲の値に設定され、前記軸受部の軸線方向における前記テーパ部の一端と他端との間の前記軸受部の軸線に垂直な方向の距離に相当するテーパ深さdが、2.0×10-3mm以上の値に設定され、対応する前記軸部と前記軸受部との組み合わせにおける前記テーパ部のテーパ深さdの合計値とクリアランスCとの和である最大ギャップGと、前記軸部の直径Dとの比率G/Dが、4.0×10-3以下の値に設定されている。 In order to solve the above problems, a refrigerant compressor according to an aspect of the present invention includes a closed container in which refrigerating machine oil is stored, an electric element housed in the closed container, and driven by electric power supplied from the outside. A compression element that is housed in the closed container and attached to the refrigerating machine oil, is driven by the electric element, and compresses a refrigerant gas supplied from the outside, and the compression elements are arranged in a longitudinal direction. A crankshaft having a main shaft and an eccentric shaft that are arranged, a main bearing that axially supports the main shaft, and an eccentric bearing that axially supports the eccentric shaft, and the shaft is at least one of the main shaft and the eccentric shaft. Part, and at least one of the main bearing and the eccentric bearing, at least one of the axial direction one end side and the other end side of the bearing part, in the longitudinal direction of the crankshaft. A taper portion is provided which causes the shaft portion and the bearing portion to come into line contact with each other in a state in which the axis of the shaft portion is inclined with respect to the axis of the bearing portion due to the diameter changing from the side to the center side. The ratio C / D of the diameter D of the shaft portion and the clearance C between the shaft portion and the bearing portion is in the range of 4.0 × 10 −4 or more and 3.0 × 10 −3 or less. And the taper depth d B corresponding to the distance in the direction perpendicular to the axis of the bearing between the one end and the other end of the taper in the axial direction of the bearing is 2.0 × 10 −. A maximum gap G that is set to a value of 3 mm or more and is the sum of the total value of the taper depth d B of the tapered portion and the clearance C in the corresponding combination of the shaft portion and the bearing portion; the ratio G / D of the diameter D of, 4.0 × 10 -3 is set with the following values That.
 上記構成によれば、比率C/D、テーパ深さd、及び比率G/Dが上記範囲の値にそれぞれ設定されることで、軸部の直径Dに対して、軸部と軸受部との間の距離を適切に設定できると共に、良好な傾斜面を有するテーパ部を形成できる。これにより、軸部と軸受部との局所的な金属接触を防止して、軸部と軸受部との互いの摺動部分間に油膜が形成されるのを促進できる。よって、長期耐久性に優れ、且つ低入力で高効率な冷媒圧縮機を提供できる。 According to the above configuration, the ratio C / D, the taper depth d B , and the ratio G / D are set to values in the above range, respectively, so that the shaft portion and the bearing portion are different from the diameter D of the shaft portion. The distance between them can be set appropriately, and the tapered portion having a good inclined surface can be formed. This can prevent local metal contact between the shaft portion and the bearing portion, and promote formation of an oil film between the sliding portions of the shaft portion and the bearing portion. Therefore, it is possible to provide a refrigerant compressor having excellent long-term durability, low input, and high efficiency.
 本発明の一態様に係る冷凍装置は、前記冷媒圧縮機と、冷媒を放熱させる放熱器と、冷媒を減圧する減圧装置と、冷媒を吸熱する吸熱器とを配管により環状に連結した冷媒回路を備える。 A refrigerating apparatus according to an aspect of the present invention includes a refrigerant circuit in which the refrigerant compressor, a radiator that radiates the refrigerant, a decompressor that decompresses the refrigerant, and a heat absorber that absorbs the refrigerant are annularly connected by a pipe. Prepare
 上記構成によれば、上記した冷媒圧縮機を備えることで、消費電力を低減でき、省エネルギー化を実現できると共に、長期信頼性を向上できる冷凍装置を提供できる。 According to the above configuration, by including the refrigerant compressor described above, it is possible to provide a refrigeration system that can reduce power consumption, realize energy saving, and improve long-term reliability.
 本発明によれば、摺動部分の摩耗を防止することで耐久性及び信頼性の低下を防止しながら、高効率化を図ることが可能な冷媒圧縮機及びこれを用いた冷凍装置を提供できる。 According to the present invention, it is possible to provide a refrigerant compressor and a refrigerating apparatus using the same, which can achieve high efficiency while preventing deterioration of durability and reliability by preventing abrasion of sliding parts. ..
第1実施形態に係る往復動式(レシプロ式)の冷媒圧縮機の概略的な断面図である。It is a schematic sectional drawing of the reciprocating type (reciprocating type) refrigerant compressor concerning a 1st embodiment. 図1の冷媒圧縮機のE部の拡大断面図である。It is an expanded sectional view of the E section of the refrigerant compressor of FIG. 図1の冷媒圧縮機の主要部品の断面図である。It is sectional drawing of the main components of the refrigerant compressor of FIG. (a)は、図1の冷媒圧縮機の実施例と従来例との入力比を示す特性図である。(b)は、図1の冷媒圧縮機の実施例と従来例とのCOP比を示す特性図である。FIG. 1A is a characteristic diagram showing an input ratio between the embodiment of the refrigerant compressor of FIG. 1 and a conventional example. (B) is a characteristic view showing the COP ratio of the embodiment of the refrigerant compressor of FIG. 1 and the conventional example. 図1の冷媒圧縮機における圧縮荷重の作用図である。FIG. 3 is an action diagram of a compression load in the refrigerant compressor of FIG. 1. 図1の主軸が主軸受内で傾斜したときの主軸受と主軸受との各接触状態と、各接触状態で成立する関係式の相関を示す図である。It is a figure which shows each contact state of a main bearing and a main bearing when the main shaft of FIG. 1 inclines in a main bearing, and the correlation of the relational expression materialized in each contact state. 実施例及び比較例の設定範囲を示すグラフである。It is a graph which shows the setting range of an Example and a comparative example. 第2実施形態に係る回転式(ロータリ式)の冷媒圧縮機の概略的な断面図である。It is a schematic sectional drawing of the rotary (rotary type) refrigerant compressor which concerns on 2nd Embodiment. 図8の冷媒圧縮機のB部の拡大断面図である。It is an expanded sectional view of the B section of the refrigerant compressor of FIG. 図8の冷媒圧縮機のA-A´線矢視断面図である。FIG. 9 is a sectional view taken along the line AA ′ of the refrigerant compressor of FIG. 8. 第3実施形態に係る冷凍装置の模式図である。It is a schematic diagram of the refrigerating device which concerns on 3rd Embodiment. 従来の冷媒圧縮機の概略的な断面図である。It is a schematic sectional drawing of the conventional refrigerant compressor.
 以下、図面を参照して各実施形態を説明する。
 (第1実施形態)
[冷媒圧縮機]
 図1は、第1実施形態に係る往復動式(レシプロ式)の冷媒圧縮機100の概略的な断面図である。図1に示すように、冷媒圧縮機100は、密閉容器101、電動要素106、圧縮要素107、及び給油ポンプ120を備える。密閉容器101内には、冷媒ガス(一例としてR600a)が充填される。密閉容器101の底部には、冷凍機油103(一例として鉱油)が貯留されている。
Hereinafter, each embodiment will be described with reference to the drawings.
(First embodiment)
[Refrigerant compressor]
FIG. 1 is a schematic cross-sectional view of a reciprocating (reciprocating) refrigerant compressor 100 according to the first embodiment. As shown in FIG. 1, the refrigerant compressor 100 includes a closed container 101, an electric element 106, a compression element 107, and an oil supply pump 120. The closed container 101 is filled with a refrigerant gas (R600a as an example). Refrigerating machine oil 103 (mineral oil as an example) is stored at the bottom of the closed container 101.
 電動要素106は、密閉容器101に収容されて外部からの供給電力により駆動される。電動要素106は、固定子104と回転子105とを有する。圧縮要素107は、密閉容器101に収容されて冷凍機油103に被着され、電動要素106により駆動されて、外部から供給される冷媒ガスを圧縮する。圧縮要素107は、クランクシャフト108、シリンダブロック112、ピストンピン115、連結部材117、ピストン132、バルブプレート139、及びシリンダヘッド140を有する。 The electric element 106 is housed in the closed container 101 and driven by electric power supplied from the outside. The electric element 106 has a stator 104 and a rotor 105. The compression element 107 is housed in the closed container 101, is attached to the refrigerating machine oil 103, is driven by the electric element 106, and compresses the refrigerant gas supplied from the outside. The compression element 107 has a crankshaft 108, a cylinder block 112, a piston pin 115, a connecting member 117, a piston 132, a valve plate 139, and a cylinder head 140.
 クランクシャフト108は、一例として鋳鉄により構成される。クランクシャフト108は、上下方向に延びるように配置されている。クランクシャフト108は、長手方向に並んで配置された主軸109と偏心軸110とを有する。主軸109には回転子105が圧入固定される。一例として、偏心軸110は主軸109の上方に配置されている。偏心軸110は、主軸109に対して偏心して配置されている。 The crankshaft 108 is made of cast iron as an example. The crankshaft 108 is arranged so as to extend in the vertical direction. The crankshaft 108 has a main shaft 109 and an eccentric shaft 110 which are arranged side by side in the longitudinal direction. The rotor 105 is press-fitted and fixed to the main shaft 109. As an example, the eccentric shaft 110 is arranged above the main shaft 109. The eccentric shaft 110 is arranged eccentrically with respect to the main shaft 109.
 後述するように、冷媒圧縮機100において、主軸109は、主軸受111により軸支され、偏心軸110は、偏心軸受119により軸支される。クランクシャフト108の下側には、冷凍機油103が供給されるように給油ポンプ120が設けられている。 As described later, in the refrigerant compressor 100, the main shaft 109 is pivotally supported by the main bearing 111, and the eccentric shaft 110 is pivotally supported by the eccentric bearing 119. An oil supply pump 120 is provided below the crankshaft 108 so that the refrigerating machine oil 103 is supplied.
 シリンダブロック112は、一例として鋳鉄により構成される。シリンダブロック112の内部には、略円筒形のシリンダボア113が形成されている。シリンダボア113は、水平方向に延び、その一方の端部がバルブプレート139で封止されている。シリンダブロック112は、主軸109を軸支する主軸受111を有する。 The cylinder block 112 is made of cast iron as an example. Inside the cylinder block 112, a substantially cylindrical cylinder bore 113 is formed. The cylinder bore 113 extends in the horizontal direction, and one end of the cylinder bore 113 is sealed by a valve plate 139. The cylinder block 112 has a main bearing 111 that supports the main shaft 109.
 ピストン132は、シリンダボア113に往復可動に挿入されている。シリンダボア113におけるピストン132とバルブプレート139との間の内部空間は、圧縮室134となっている。ピストン132には、ピストンピン孔116が形成されている。ピストンピン孔116には、ピストンピン115が回転不能に係止されている。ピストンピン115は、略円筒形状に形成され、偏心軸110と平行に配置されている。 The piston 132 is reciprocally inserted in the cylinder bore 113. The internal space between the piston 132 and the valve plate 139 in the cylinder bore 113 is a compression chamber 134. A piston pin hole 116 is formed in the piston 132. The piston pin 115 is non-rotatably locked in the piston pin hole 116. The piston pin 115 is formed in a substantially cylindrical shape and is arranged parallel to the eccentric shaft 110.
 偏心軸110とピストン132とは、連結部材117により連結されている。連結部材117は、アルミ鋳造品であり、偏心軸受119を有する。連結部材117は、ピストンピン115を介して、偏心軸110とピストン132とを連結している。 The eccentric shaft 110 and the piston 132 are connected by a connecting member 117. The connecting member 117 is an aluminum cast product and has an eccentric bearing 119. The connecting member 117 connects the eccentric shaft 110 and the piston 132 via the piston pin 115.
 バルブプレート139のシリンダボア113とは反対側には、シリンダヘッド140が配置されている。シリンダヘッド140は、高圧室(図示せず)を形成し、バルブプレート139に固定されている。 A cylinder head 140 is arranged on the opposite side of the valve plate 139 from the cylinder bore 113. The cylinder head 140 forms a high pressure chamber (not shown) and is fixed to the valve plate 139.
 密閉容器101には、サクションチューブ(図示せず)が固定されている。サクションチューブは、冷媒圧縮機100の冷凍サイクルの低圧側(図示せず)に接続され、冷媒ガスを密閉容器101内に導く。バルブプレート139とシリンダヘッド140とは、サクションマフラー142を挟持している。 A suction tube (not shown) is fixed to the closed container 101. The suction tube is connected to the low pressure side (not shown) of the refrigeration cycle of the refrigerant compressor 100 and guides the refrigerant gas into the closed container 101. The suction muffler 142 is sandwiched between the valve plate 139 and the cylinder head 140.
 冷媒圧縮機100の駆動時には、外部から供給される商用電源等の電力が、外部のインバータ駆動回路(図示せず)を介して、電動要素106に供給される。これにより電動要素106は、複数の運転周波数によりインバータ駆動される。 When the refrigerant compressor 100 is driven, electric power such as a commercial power supply supplied from the outside is supplied to the electric element 106 via an external inverter drive circuit (not shown). As a result, the electric element 106 is driven by an inverter at a plurality of operating frequencies.
 電動要素106の回転子105によりクランクシャフト108が回転させられ、偏心軸110が偏心運動する。連結部材117は、ピストンピン115を介してピストン132をシリンダボア113内で往復運動させる。これにより、サクションチューブを通して密閉容器101内に導かれた冷媒ガスが、サクションマフラー142から圧縮室134内へ吸入され、圧縮室134内で圧縮される。 The crankshaft 108 is rotated by the rotor 105 of the electric element 106, and the eccentric shaft 110 moves eccentrically. The connecting member 117 reciprocates the piston 132 in the cylinder bore 113 via the piston pin 115. As a result, the refrigerant gas introduced into the closed casing 101 through the suction tube is sucked into the compression chamber 134 from the suction muffler 142 and compressed in the compression chamber 134.
 冷凍機油103は、クランクシャフト108の回転に伴い、給油ポンプ120から各摺動部分に給油され、摺動部分を潤滑する。また冷凍機油103は、ピストン132とシリンダボア113との間をシールする。以下、冷媒圧縮機100の軸部と軸受部との詳細について例示する。 The refrigerating machine oil 103 is supplied to each sliding part from the oil supply pump 120 as the crankshaft 108 rotates, and lubricates the sliding part. The refrigerator oil 103 also seals between the piston 132 and the cylinder bore 113. Hereinafter, the details of the shaft portion and the bearing portion of the refrigerant compressor 100 will be illustrated.
[軸部及び軸受部]
 冷媒圧縮機100は、主軸109及び偏心軸110の少なくとも一方である軸部、及び、主軸受111及び偏心軸受119の少なくとも一方である軸受部を備える。この軸部と軸受部とのいずれかには、軸受部の軸線方向一端側及び他端側の少なくとも一方において、クランクシャフト108の長手方向外側から中央側に向けて径が変化することにより、軸部の軸線が軸受部の軸線に対して傾斜した状態で、軸部と軸受部とを線接触させるテーパ部が設けられている。
[Shaft and bearing]
The refrigerant compressor 100 includes a shaft portion that is at least one of the main shaft 109 and the eccentric shaft 110, and a bearing portion that is at least one of the main bearing 111 and the eccentric bearing 119. In at least one of the one axial end and the other axial end of the bearing portion, the diameter of the shaft portion or the bearing portion changes from the outer side in the longitudinal direction of the crankshaft 108 toward the central side. A taper portion is provided to bring the shaft portion and the bearing portion into line contact with each other in a state where the axis of the portion is inclined with respect to the axis of the bearing portion.
 また冷媒圧縮機100では、軸部の直径Dと、軸部と軸受部との間のクリアランスCとの比率C/Dが、4.0×10-4以上3.0×10-3以下の範囲の値に設定され、軸受部の軸線方向におけるテーパ部の一端と他端との間の軸受部の軸線に垂直な方向の距離に相当するテーパ深さdが、2.0×10-3mm以上の値に設定されている。 Further, in the refrigerant compressor 100, the ratio C / D between the diameter D of the shaft portion and the clearance C between the shaft portion and the bearing portion is 4.0 × 10 −4 or more and 3.0 × 10 −3 or less. The taper depth d B set to a value in the range and corresponding to the distance in the direction perpendicular to the axis of the bearing between the one end and the other end of the taper in the axial direction of the bearing is 2.0 × 10 −. It is set to a value of 3 mm or more.
 また冷媒圧縮機100では、軸部及び軸受部の一方における軸受部の軸線方向両側に、一対のテーパ部が設けられている。軸部にテーパ部が設けられる場合、テーパ部の外径は、軸部の軸線方向一端から他端に向けて変化する。軸受部にテーパが設けられる場合、テーパ部の内径は、軸受部の軸線方向一端から他端に向けて変化する。 Also, in the refrigerant compressor 100, a pair of taper portions is provided on both axial sides of the bearing portion in one of the shaft portion and the bearing portion. When the taper portion is provided on the shaft portion, the outer diameter of the taper portion changes from one end to the other end in the axial direction of the shaft portion. When the bearing portion is provided with a taper, the inner diameter of the tapered portion changes from one end to the other end in the axial direction of the bearing portion.
 また冷媒圧縮機100では、軸受部の軸線方向一端側のテーパ部のテーパ深さdであるテーパ深さdBUと、軸受部の軸線方向一端側におけるテーパ部の軸受部の軸線方向幅であるテーパ幅WBUと、軸受部の軸線方向他端側におけるテーパ部のテーパ深さdであるテーパ深さdBLと、軸受部の軸線方向他端側におけるテーパ部の軸受部の軸線方向幅であるテーパ幅WBLと、軸受部の軸受長さBと、クリアランスCとが、数1及び数2を満たしている。
[数1]
 dBU/WBU≦(C+dBU+dBL)/B
[数2]
 dBL/WBL≦(C+dBU+dBL)/B
In the refrigerant compressor 100, the taper depth d BU , which is the taper depth d B of the taper portion on one end side in the axial direction of the bearing portion, and the axial width of the bearing portion of the taper portion on the one end side in the axial direction of the bearing portion. A certain taper width W BU , a taper depth d BL that is the taper depth d B of the taper portion on the other end side in the axial direction of the bearing portion, and an axial direction of the bearing portion of the taper portion on the other end side in the axial direction of the bearing portion. The taper width W BL, which is the width, the bearing length B of the bearing portion, and the clearance C satisfy the equations 1 and 2.
[Equation 1]
d BU / W BU ≤ (C + d BU + d BL ) / B
[Equation 2]
d BL / W BL ≤ (C + d BU + d BL ) / B
 ここで(C+dBU+dBL)は、クリアランスCと、テーパ深さdBUと、テーパ深さdBLとの合計である最大ギャップGに相当する。言い換えると、最大ギャップGは、対応する軸部と軸受部との組み合わせにおけるテーパ部のテーパ深さdの合計値とクリアランスCとの和である。以下、(C+dBU+dBL)を最大ギャップGとも称する。 Here, (C + d BU + d BL ) corresponds to the maximum gap G that is the sum of the clearance C, the taper depth d BU, and the taper depth d BL . In other words, the maximum gap G is the sum of the total value and the clearance C of the taper depth d B of the tapered portion in combination with the corresponding shaft portion and the bearing portion. Hereinafter, (C + d BU + d BL ) is also referred to as the maximum gap G.
 次に、このような構成を有する冷媒圧縮機100について詳細に例示する。図2は、図1の冷媒圧縮機100のE部の拡大断面図である。図3は、図1の冷媒圧縮機100の主要部品の断面図である。図1~3に示すように、主軸109は、上下方向に延びている。 Next, the refrigerant compressor 100 having such a configuration will be illustrated in detail. FIG. 2 is an enlarged cross-sectional view of the E portion of the refrigerant compressor 100 of FIG. FIG. 3 is a cross-sectional view of the main parts of the refrigerant compressor 100 of FIG. As shown in FIGS. 1 to 3, the main shaft 109 extends in the vertical direction.
 冷媒圧縮機100において、軸部及び軸受部のうち、軸受部の軸線方向一端側のテーパ部の表面と相対する相手側の表面には、第1摺動面が形成されている。また軸部及び軸受部のうち、軸受部の軸線方向他方側のテーパ部の表面と相対する相手側の表面には、第2摺動面が形成されている。 In the refrigerant compressor 100, a first sliding surface is formed on the mating surface of the shaft portion and the bearing portion, which is opposite to the surface of the tapered portion at one axial end of the bearing portion. A second sliding surface is formed on the mating surface of the shaft portion and the bearing portion that faces the surface of the tapered portion on the other axial side of the bearing portion.
 また冷媒圧縮機100において、軸部及び軸受部の少なくとも一方は、軸受部の軸線方向両側に一対のテーパ部が設けられると共に、テーパ部の最大径よりも径が小さい小径部を有する。 Further, in the refrigerant compressor 100, at least one of the shaft portion and the bearing portion is provided with a pair of tapered portions on both sides in the axial direction of the bearing portion, and has a small diameter portion having a diameter smaller than the maximum diameter of the tapered portion.
 一例として、本実施形態の冷媒圧縮機100では、主軸109が、第1摺動面151、小径部152、及び第2摺動面153を有する。第1摺動面151は、主軸109の上部に配置されている。第2摺動面153は、主軸109の下部に配置されている。小径部152は、第1摺動面151と第2摺動面153との間に配置されている。 As an example, in the refrigerant compressor 100 of the present embodiment, the main shaft 109 has a first sliding surface 151, a small diameter portion 152, and a second sliding surface 153. The first sliding surface 151 is arranged above the main shaft 109. The second sliding surface 153 is arranged below the main shaft 109. The small diameter portion 152 is arranged between the first sliding surface 151 and the second sliding surface 153.
 小径部152は、第1摺動面151よりも直径が小さい。主軸109の第2摺動面153が配置された部分の直径DLOは、主軸109の第1摺動面151が配置された部分の直径DUOと同等である(図5参照)。 The small diameter portion 152 has a smaller diameter than the first sliding surface 151. The diameter D LO of the portion of the main shaft 109 on which the second sliding surface 153 is arranged is equal to the diameter D UO of the portion of the main shaft 109 on which the first sliding surface 151 is arranged (see FIG. 5).
 主軸109を軸支する主軸受111は、軸線が上下方向に延びるように配置されている。主軸受111の内周面の上端には、テーパ部170Uが設けられている。主軸受111の内周面の下端には、テーパ部170Lが設けられている。即ち、本実施形態では、一対のテーパ部が、軸受部に設けられている。主軸受111のテーパ部170U,170Lが設けられた以外の部分の内径は、一定である。 The main bearing 111, which supports the main shaft 109, is arranged so that its axis extends in the vertical direction. 170 U of taper parts are provided in the upper end of the inner peripheral surface of the main bearing 111. 170 L of taper parts are provided in the lower end of the inner peripheral surface of the main bearing 111. That is, in the present embodiment, the pair of tapered portions are provided on the bearing portion. The inner diameter of the portion of the main bearing 111 other than where the tapered portions 170U and 170L are provided is constant.
 テーパ部170U,170Lの軸線に垂直な方向から見て、テーパ部170U,170Lは、直線状、又は、連続的な曲線状の表面を有する。図2では、テーパ部170Uが、主軸受111の軸線方向における内側の一端171から外側の他端172との間で直線状の表面を有する構成を示しているが、テーパ部170Lも同様の構成を有する。 When viewed from a direction perpendicular to the axis of the tapered portions 170U, 170L, the tapered portions 170U, 170L have a linear or continuous curved surface. Although the tapered portion 170U has a linear surface between the inner end 171 and the outer end 172 in the axial direction of the main bearing 111 in FIG. 2, the tapered portion 170L has the same structure. Have.
 テーパ部170U,170Lは、主軸受111の内周面の全周方向にわたって形成されている。主軸受111の軸線方向におけるテーパ部170U,170Lの一端171と他端172との間の主軸受111の軸線に垂直な方向の距離に相当するテーパ深さd(dBU,dBL)は、ここではμmオーダの値に設定されている。 The tapered portions 170U and 170L are formed on the inner circumferential surface of the main bearing 111 over the entire circumferential direction. The taper depth d B (d BU , d BL ) corresponding to the distance in the direction perpendicular to the axis of the main bearing 111 between the one end 171 and the other end 172 of the tapered portions 170U, 170L in the axial direction of the main bearing 111 is , Here, it is set to a value on the order of μm.
 テーパ部170U,170Lの形成方法は限定されない。本実施形態のテーパ部170U,170Lは、内径12mm、外径16mm、及びころ直径2mmのラジアルニードル軸受と微小な勾配が付与された回転軸とから構成される試作工具を、主軸受111の元となる軸受内に回転させながら圧入し、当該軸受の端部を変形させることで形成されている。 The method of forming the tapered portions 170U and 170L is not limited. The taper portions 170U and 170L of the present embodiment are based on the main bearing 111 using a trial tool composed of a radial needle bearing having an inner diameter of 12 mm, an outer diameter of 16 mm, and a roller diameter of 2 mm, and a rotary shaft having a slight gradient. It is formed by press-fitting while rotating into a bearing to be deformed and deforming the end portion of the bearing.
 ここでクリアランスCは、テーパ部がないとした場合の軸受部の内径と、軸受部の内周面と相対する軸部の部分の外径との差分に相当する。軸受部の内周面に相対する軸部の部分の外径が複数の位置で異なる場合、クリアランスCは、テーパ部がないとした場合の軸受部の内径と、軸受部の内周面に相対する軸部の部分の最大外径との差分に相当する。 Here, the clearance C corresponds to the difference between the inner diameter of the bearing portion when there is no tapered portion and the outer diameter of the portion of the shaft portion facing the inner peripheral surface of the bearing portion. When the outer diameter of the shaft portion facing the inner peripheral surface of the bearing portion is different at a plurality of positions, the clearance C is relative to the inner diameter of the bearing portion without the tapered portion and the inner peripheral surface of the bearing portion. It corresponds to the difference from the maximum outer diameter of the shaft portion.
 具体的には上記のように、軸部の直径DLO,DUOが同等である場合、クリアランスCは、テーパ部がないとした場合の軸受部の内径と、軸部の摺動面151,153が設けられた部分の外径との差分に相当する。言い換えると本実施形態では、クリアランスCは、主軸受111のテーパ部170U,170Lを除いた部分の内径Dと、主軸109の第1,2摺動面151,153が設けられた部分の直径DLO,DUOとの差分である。 Specifically, as described above, when the diameters D LO and DUO of the shaft portion are the same, the clearance C is the inner diameter of the bearing portion when there is no tapered portion, and the sliding surface 151 of the shaft portion. This corresponds to the difference from the outer diameter of the portion where 153 is provided. In this embodiment in other words, the clearance C is, the tapered portion of the main bearing 111 170 U, the inner diameter D I of the portion excluding the 170L, the diameter of the first and second portion sliding surface 151, 153 is provided in the main shaft 109 It is the difference between D LO and D UO .
 また、軸部の直径DLO,DUOが異なる場合、クリアランスCは、テーパ部がないとした場合の主軸受111の内径と、主軸109の直径DLO,DUOのうちいずれか大きい方の直径との差分とすることができる。 Further, when the diameters D LO and D UO of the shaft portion are different, the clearance C is the larger of the inner diameter of the main bearing 111 when there is no taper portion and the diameter D LO or D UO of the main shaft 109. It can be the difference from the diameter.
 図2及び3に示すように、本実施形態では、一例として、主軸受111の軸線111cを含む平面内における主軸受111の端部の断面において、主軸受111の軸線111cに平行な方向のテーパ部170Uのテーパ幅WBU(言い換えると、主軸受111の軸線方向一端側におけるテーパ部170Uの主軸受111の軸線方向幅であるテーパ幅WBU)が10mmに設定され、テーパ深さdBUが4.0×10-3mmに設定されている。 As shown in FIGS. 2 and 3, in the present embodiment, as an example, in the cross section of the end portion of the main bearing 111 in the plane including the axis 111c of the main bearing 111, the taper in the direction parallel to the axis 111c of the main bearing 111 is obtained. The taper width W BU of the portion 170U (in other words, the taper width W BU which is the axial width of the main bearing 111 of the taper portion 170U on the one axial end side of the main bearing 111) is set to 10 mm, and the taper depth d BU is It is set to 4.0 × 10 −3 mm.
 また、主軸受111の軸線111cを含む平面内における主軸受111の端部の断面において、主軸受111の軸線111cに平行な方向のテーパ部170Lのテーパ幅WBL(言い換えると、主軸受111の軸線方向他端側におけるテーパ部170Lの主軸受111の軸線方向幅であるテーパ幅WBL)が10mmに設定され、テーパ深さdBLが4.0×10-3mmに設定されている。 Further, in the cross section of the end portion of the main bearing 111 in the plane including the axis 111c of the main bearing 111, the taper width W BL of the taper portion 170L in the direction parallel to the axis 111c of the main bearing 111 (in other words, of the main bearing 111). The taper width W BL which is the axial width of the main bearing 111 of the tapered portion 170L on the other end side in the axial direction is set to 10 mm, and the taper depth d BL is set to 4.0 × 10 −3 mm.
 また、主軸受111の軸受長さBは、43.5mmに設定されている。主軸受111のテーパ部170U,170Lを除いた部分の内径Dは、16.026mmに設定されている。主軸109の第1摺動面151が形成された部分、及び、主軸109の第2摺動面153が形成された部分の各直径Dは、16.010mmに設定されている。主軸109と主軸受111との間のクリアランスCは、1.6×10-2mmに設定されている。 The bearing length B of the main bearing 111 is set to 43.5 mm. The inner diameter D I of the portion of the main bearing 111 excluding the tapered portions 170U and 170L is set to 16.026 mm. Each diameter D O of the portion of the main shaft 109 where the first sliding surface 151 is formed and the portion of the main shaft 109 where the second sliding surface 153 is formed is set to 16.010 mm. The clearance C between the main shaft 109 and the main bearing 111 is set to 1.6 × 10 −2 mm.
 これにより、dBU/wBU、及び、dBL/wBLは、いずれも4.0×10-4に設定されている。また(C+dBU+dBL)/Bは、5.5×10-4に設定されている。即ち、dBU/wBU、及び、dBL/wBLは、いずれも(C+dBU+dBL)/Bよりも小さい関係を満たし、且つ、クリアランスCと主軸109の直径Dとの比率C/Dは、1.0×10-3に設定されている。 As a result, both d BU / w BU and d BL / w BL are set to 4.0 × 10 −4 . Further, (C + d BU + d BL ) / B is set to 5.5 × 10 −4 . That is, d BU / w BU and d BL / w BL both satisfy the relationship smaller than (C + d BU + d BL ) / B, and the ratio C / of the clearance C and the diameter D O of the main shaft 109. D O is set to 1.0 × 10 −3 .
 ここで冷媒圧縮機100では、対応する軸部と軸受部との組み合わせにおけるテーパ部のテーパ深さdの合計値(ここでは主軸109と主軸受111との組み合わせにおける2つのテーパ部170U,170Lのテーパ深さの合計値dBU+dBL)とクリアランスCとの和である最大ギャップG(=C+dBU+dBL)と、軸部の直径D(上記例では主軸109の直径D)との比率G/Dが、4.0×10-3以下の値に設定されている。 Here the refrigerant compressor 100, the corresponding shaft portion and the total value of the taper depth d B of the tapered portion in combination with the bearing portion (where the two tapered portions 170U in combination with the main bearing 111 and main shaft 109, 170L The maximum gap G (= C + d BU + d BL ) which is the sum of the total taper depth d BU + d BL ) and the clearance C, and the diameter D of the shaft portion (the diameter D O of the main shaft 109 in the above example). The ratio G / D is set to a value of 4.0 × 10 −3 or less.
 以上のように、比率C/D、テーパ深さd(dBU,dBL)、及び比率G/Dが上記範囲の値にそれぞれ設定されることで、軸部の直径Dに対して、軸部と軸受部との間の距離を適切に設定できると共に、良好な傾斜面を有するテーパ部170U,170Lを形成できる。これにより、軸部と軸受部との局所的な金属接触を防止して、軸部と軸受部との互いの摺動部分間に油膜が形成されるのを促進できる。よって、長期耐久性に優れ、且つ低入力で高効率な冷媒圧縮機100を提供できる。 As described above, the ratio C / D, the taper depth d B (d BU , d BL ) and the ratio G / D are set to values in the above range, respectively, with respect to the diameter D of the shaft portion. The distance between the shaft portion and the bearing portion can be appropriately set, and the tapered portions 170U and 170L having favorable inclined surfaces can be formed. This can prevent local metal contact between the shaft portion and the bearing portion, and promote formation of an oil film between the sliding portions of the shaft portion and the bearing portion. Therefore, the refrigerant compressor 100 having excellent long-term durability, low input and high efficiency can be provided.
 また冷媒圧縮機100では、軸受部の軸受長さBと、クリアランスCとが、数1及び数2の関係式を満たしている。これにより、テーパ部170U,170Lの傾斜の程度が適度に小さくなるように調整されるので、冷媒圧縮機200の駆動時に軸部が振れ回った際に、テーパ部170U,170の表面とこれに相対する軸部の表面とを互いに沿い易くすることができる(図6参照)。よって、テーパ部170U,170の表面とこれに相対する軸部の表面との間に油膜の形成を更に促し易くすることができる。 Also, in the refrigerant compressor 100, the bearing length B of the bearing portion and the clearance C satisfy the relational expressions of the equations 1 and 2. As a result, the degree of inclination of the tapered portions 170U, 170L is adjusted to an appropriate degree, so that when the shaft portion swings around when the refrigerant compressor 200 is driven, the surfaces of the tapered portions 170U, 170 and The surfaces of the shafts facing each other can be easily aligned with each other (see FIG. 6). Therefore, it is possible to further facilitate the formation of the oil film between the surfaces of the tapered portions 170U and 170 and the surface of the shaft portion facing the tapered portions 170U and 170.
 また冷媒圧縮機100では、一例として、第1摺動面151がテーパ部170Uの表面と相対し、且つ、第1摺動面151の摺動幅Lがテーパ部170Uのテーパ幅WBUよりも小さくされていると共に、第2摺動面153がテーパ部170Lの表面と相対し、且つ、第2摺動面153の摺動幅Lがテーパ部170Lのテーパ幅WBLよりも小さくされている。これにより、軸部と軸受部と間の粘性抵抗が効果的に削減されている。 In the refrigerant compressor 100, as an example, the first sliding surface 151 faces the surface of the tapered portion 170U, and the sliding width L 1 of the first sliding surface 151 is greater than the tapered width W BU of the tapered portion 170U. And the second sliding surface 153 faces the surface of the tapered portion 170L, and the sliding width L 2 of the second sliding surface 153 is smaller than the tapered width W BL of the tapered portion 170L. ing. Thereby, the viscous resistance between the shaft portion and the bearing portion is effectively reduced.
 また冷媒圧縮機100では、比率G/Dが、4.0×10-3以下の値に設定されている。これにより、最大ギャップGと軸部の直径Dとの比率を適正化できるため、クランクシャフト108の軸受部内での傾斜勾配が過剰となって後述する片当たりが増大するのを防止できる。よって例えば、片当たりによりピストン132の先端に摩耗が生じ、摩耗部位から冷媒のリーク量が増大して冷凍能力が低下するのを防止できる。 Further, in the refrigerant compressor 100, the ratio G / D is set to a value of 4.0 × 10 −3 or less. As a result, the ratio between the maximum gap G and the diameter D of the shaft portion can be optimized, so that it is possible to prevent the inclination gradient in the bearing portion of the crankshaft 108 from becoming excessive and the partial contact described later to increase. Therefore, for example, it can be prevented that the tip end of the piston 132 is abraded due to one-sided contact, the amount of refrigerant leak from the abraded portion is increased, and the refrigerating capacity is lowered.
 更に冷媒圧縮機100の軸部は、軸受部に対して摺動する表面の部分に形成された皮膜を有する。この皮膜は、軸受部の相対する表面の硬さに比べて同等以上の硬さを有している。本実施形態では、主軸109及び偏心軸110のうち少なくともいずれか(ここでは両方)が、この皮膜を有している。 Further, the shaft portion of the refrigerant compressor 100 has a film formed on the surface portion that slides on the bearing portion. This coating has a hardness equal to or higher than the hardness of the opposing surfaces of the bearing portion. In the present embodiment, at least one (both here) of the main shaft 109 and the eccentric shaft 110 has this coating.
 皮膜の種類は限定されないが、例えば酸化皮膜が挙げられる。酸化皮膜としては、例えば、鉄の酸化物の皮膜が挙げられる。鉄の酸化物の皮膜は、例えば、リン酸塩皮膜と比較して、化学的に非常に安定であり、且つ、高い硬度を有する。酸化皮膜が形成されることで、摩耗粉の発生、及び、摩耗粉の皮膜への付着等を効果的に防止できる。よって、酸化皮膜自体の摩耗量の増加を有効に回避でき、皮膜に高い耐摩耗性を付与できる。 The type of coating is not limited, but examples include oxide coatings. Examples of the oxide film include a film of iron oxide. The iron oxide film is chemically very stable and has a high hardness as compared with, for example, a phosphate film. By forming the oxide film, it is possible to effectively prevent generation of wear powder and adhesion of the wear powder to the film. Therefore, an increase in the amount of wear of the oxide film itself can be effectively avoided, and high wear resistance can be imparted to the film.
 また皮膜は、酸化皮膜と同様に、相手材よりも硬い皮膜であればよい。また、皮膜が形成される軸部の部分の基材が鉄系材料であれば、一般的な焼入れの他、軸部の表層に炭素や窒素等を浸み込ませることで皮膜が形成されていてもよい。また、水蒸気による酸化処理、又は、水酸化ナトリウム等の水溶液に材料を浸漬させる酸化処理によって皮膜が形成されていてもよい。 Like the oxide film, the film may be harder than the mating material. In addition, if the base material of the shaft portion where the coating is formed is an iron-based material, the coating is formed not only by general quenching, but by impregnating the surface of the shaft portion with carbon, nitrogen, etc. May be. Further, the film may be formed by an oxidation treatment with water vapor or an oxidation treatment of immersing the material in an aqueous solution of sodium hydroxide or the like.
 また皮膜は、上記した酸化や浸炭、窒化、酸化処理等によって形成された化合物層に限定されず、例えば、冷間加工、加工硬化、固溶強化、析出強化、分散強化、結晶粒微細化等のいずれかによって、転位のすべり運動を抑制させることで基材の強化が図られた強度強化層であってもよい。また皮膜は、メッキ、溶射、PVD、CVD等のいずれかの被覆法により形成された処理層であってもよい。 Further, the film is not limited to the compound layer formed by the above-mentioned oxidation, carburization, nitriding, oxidation treatment, etc., for example, cold working, work hardening, solid solution strengthening, precipitation strengthening, dispersion strengthening, grain refinement, etc. Any of the above may be a strength enhancing layer in which the base material is strengthened by suppressing the slip motion of dislocations. Further, the coating may be a treated layer formed by any coating method such as plating, thermal spraying, PVD and CVD.
 [確認試験]
 第1実施形態の冷媒圧縮機100を実施例として作製した。また、テーパ部170U,170Lが設けられていないこと以外は冷媒圧縮機100と同様の冷媒圧縮機を従来例として作製した。これらの冷媒圧縮機について、インバータ駆動により低速運転(運転周波数17Hz)した場合における性能評価を行った。
[Confirmation test]
The refrigerant compressor 100 of the first embodiment was manufactured as an example. A refrigerant compressor similar to the refrigerant compressor 100 except that the tapered portions 170U and 170L are not provided was manufactured as a conventional example. The performance of these refrigerant compressors was evaluated when they were operated at a low speed by inverter drive (operating frequency of 17 Hz).
 図4の(a)は、図1の冷媒圧縮機の実施例と従来例との入力比を示す特性図である。図4の(b)は、図1の冷媒圧縮機の実施例と従来例との成績係数(COP:Coefficient of Performance)比を示す特性図である。 4A is a characteristic diagram showing the input ratio between the embodiment of the refrigerant compressor of FIG. 1 and the conventional example. FIG. 4B is a characteristic diagram showing the coefficient of performance (COP) ratio of the embodiment of the refrigerant compressor of FIG. 1 and the conventional example.
 成績係数とは、冷凍冷蔵機器等のエネルギー消費効率の目安(指標)として使われる係数であり、冷凍能力(W)を印加入力(W)で除した値である。図4(a)では、従来例の印加入力値を100としたときの比率(入力比)を表す。図4(b)では、従来例のCOP値を100としたときの各々の比率(COP比)を表す。 The coefficient of performance is a coefficient used as a guideline (index) of energy consumption efficiency of refrigeration equipment, and is a value obtained by dividing the refrigerating capacity (W) by the applied input (W). FIG. 4A shows the ratio (input ratio) when the applied input value of the conventional example is 100. FIG. 4B shows each ratio (COP ratio) when the COP value of the conventional example is 100.
 図4(a),(b)に示される結果から、実施例は、比較例に比べて、テーパ部170U,170Lが設けられたことによって、従来例に比して入力が低くなり、COPが高くなることが確認された。 From the results shown in FIGS. 4 (a) and 4 (b), in the embodiment, the taper portions 170U and 170L are provided as compared with the comparative example, so that the input becomes lower than that in the conventional example and the COP is reduced. It was confirmed to be high.
 ここで図5は、図1の冷媒圧縮機100における圧縮荷重の作用図である。図5では、冷媒圧縮機100に作用する圧縮荷重を模式的に示している。実施例及び従来例の確認試験結果について、図5を参照しながら以下のように考察する。 Here, FIG. 5 is an action diagram of the compression load in the refrigerant compressor 100 of FIG. 1. In FIG. 5, the compression load acting on the refrigerant compressor 100 is schematically shown. The confirmation test results of the example and the conventional example will be considered as follows with reference to FIG.
 冷媒圧縮機100のような往復動(レシプロ)式の冷媒圧縮機では、一般に、シリンダボア113とピストン132との間に形成される圧縮室134内で、シリンダボア113の筒軸方向に生じる圧縮荷重Pに比べて、密閉容器101内の圧力が低い。偏心軸110に圧縮荷重Pが作用する一方で、主軸109は、単一の主軸受111により片持ち支持される。そのため当該冷媒圧縮機の駆動時には、伊藤らの文献(日本機械学会年次大会論文集 Vol.5-1 (2005) P.143)に示されるように、クランクシャフト108は、圧縮荷重Pの影響により主軸受111内で傾いた状態で振れ回っている。 In a reciprocating refrigerant compressor such as the refrigerant compressor 100, generally, a compression load P generated in the cylinder axis direction of the cylinder bore 113 in a compression chamber 134 formed between the cylinder bore 113 and the piston 132. The pressure inside the closed container 101 is lower than that of The compression load P acts on the eccentric shaft 110, while the main shaft 109 is cantilevered by a single main bearing 111. Therefore, when the refrigerant compressor is driven, the crankshaft 108 is affected by the compression load P, as shown in the document of Ito et al. (Annual Meeting of the Japan Society of Mechanical Engineers Vol.5-1 (2005) P.143). Therefore, the main bearing 111 swings in an inclined state.
 これにより、圧縮荷重Pの分力P1が、主軸受111の上端部に対応する主軸109の部分に作用すると共に、圧縮荷重Pの分力P2が、主軸受111の下端部に対応する主軸109の部分に作用することで、いわゆる片当りが発生する。従来の冷媒圧縮機では、主軸109が主軸受111内で傾くと、主軸109と主軸受111との局所的な接触が生じて面圧が高くなる場合がある。運転がより低速になると、主軸109と主軸受111との間に形成される油膜の厚さが薄くなり、もしくは油膜が切れてしまう。その結果、主軸109と主軸受111との固体接触が発生して摺動損失が増加する。 Accordingly, the component force P1 of the compressive load P acts on the portion of the main shaft 109 corresponding to the upper end portion of the main bearing 111, and the component force P2 of the compressive load P corresponds to the main shaft 109 corresponding to the lower end portion of the main bearing 111. By acting on the part of, so-called partial contact occurs. In the conventional refrigerant compressor, when the main shaft 109 tilts in the main bearing 111, local contact between the main shaft 109 and the main bearing 111 may occur to increase the surface pressure. When the operation becomes slower, the thickness of the oil film formed between the main shaft 109 and the main bearing 111 becomes thinner or the oil film is cut off. As a result, solid contact between the main shaft 109 and the main bearing 111 occurs and sliding loss increases.
 これに対して本実施形態(実施例)では、主軸受111にテーパ部170U,170Lを設けることで、主軸109が主軸受111内で傾いたとしても、主軸受111の軸線に垂直な方向から見て、主軸109と主軸受111との対向面が互いに沿うように配置される。これにより、主軸109と主軸受111との局所的な金属接触が防止される。 On the other hand, in the present embodiment (example), by providing the main bearing 111 with the tapered portions 170U and 170L, even if the main shaft 109 is tilted in the main bearing 111, the main bearing 111 is inclined from the direction perpendicular to the axis of the main bearing 111. As viewed, the main shaft 109 and the main bearing 111 are arranged such that the facing surfaces thereof are along each other. As a result, local metal contact between the main shaft 109 and the main bearing 111 is prevented.
 また本実施形態(実施例)では、クリアランスCと、テーパ深さdBUと、テーパ深さdBLとの合計値である最大ギャップG(=C+dBU+dBL)が比較的大きく確保される。これにより冷凍機油103の粘性抵抗が低減され、摺動損失が顕著に低減されて、冷媒圧縮機の入力が効果的に引き下げられたものと推察される。 Further, in the present embodiment (example), the maximum gap G (= C + d BU + d BL ) which is the total value of the clearance C, the taper depth d BU, and the taper depth d BL is secured relatively large. It is presumed that the viscous resistance of the refrigerating machine oil 103 was thereby reduced, the sliding loss was significantly reduced, and the input of the refrigerant compressor was effectively lowered.
 以上の結果から、冷媒圧縮機の軸受部にテーパ部を設けることで、軸受部と軸部との局所的な金属接触を防止して耐久性の向上を図れると共に、冷媒圧縮機の性能の向上を図れることが分かった。 From the above results, by providing the tapered portion on the bearing portion of the refrigerant compressor, it is possible to prevent local metal contact between the bearing portion and the shaft portion to improve the durability and improve the performance of the refrigerant compressor. I found out that
 [評価試験]
 次に、上記確認試験の結果を踏まえ、冷媒圧縮機の性能評価試験と信頼性評価試験を行い、冷媒圧縮機の性能を向上できる各数値範囲の明確化を行った。性能評価試験では、主軸と主軸受のクリアランスC、軸受長さB、主軸の直径D、クリアランスCとの比率C/D、テーパ部170U,170Lのテーパ深さdBU,dBL、並びにテーパ幅WBU、WBLをパラメータとして用いた。また性能評価試験では、冷媒圧縮機をインバータ駆動により低速運転(運転周波数17Hz)させた。
[Evaluation test]
Next, based on the results of the above confirmation test, a performance evaluation test and a reliability evaluation test of the refrigerant compressor were performed to clarify each numerical range capable of improving the performance of the refrigerant compressor. In the performance evaluation test, the clearance C between the main shaft and the main bearing, the bearing length B, the diameter D O of the main shaft, the ratio C / D O with the clearance C, the taper depths d BU and d BL of the taper portions 170U and 170L, and The taper widths W BU and W BL were used as parameters. In the performance evaluation test, the refrigerant compressor was driven at a low speed by an inverter drive (operating frequency of 17 Hz).
 また信頼性評価試験では、冷媒圧縮機を高温及び高負荷断続運転モードにて160時間運転した後、冷媒圧縮機を分解して、摺動部品(クランクシャフトやピストン等)の摩耗を測定することにより評価を行った。 In the reliability evaluation test, after operating the refrigerant compressor for 160 hours in the high temperature and high load intermittent operation mode, disassemble the refrigerant compressor and measure the wear of sliding parts (crankshaft, piston, etc.). Was evaluated by.
 以降では、テーパ部170Uのテーパ幅WBU及びテーパ深さdBUと、テーパ部170Lのテーパ幅WBL及びテーパ深さdBLと、主軸受111の軸受長さBと、主軸109と主軸受111のクリアランスCとの関係をプロットしたグラフ(図7参照)において、上記した数1及び数2の関係式を満たす範囲をエリアA1と称し、以下の数3及び数4の関係式を満たす範囲をエリアA2と称する。 Hereinafter, the taper width W BU and the taper depth d BU of the taper portion 170U, the taper width W BL and the taper depth d BL of the taper portion 170L, the bearing length B of the main bearing 111, the main shaft 109 and the main bearing. In the graph plotting the relationship between the clearance C of 111 (see FIG. 7), the range that satisfies the above-described relational expressions of Formula 1 and Formula 2 is referred to as area A1, and the range that satisfies the relational formulas of Formula 3 and Formula 4 below. Is referred to as area A2.
[数3]
 dBU/WBU>(C+dBU+dBL)/B
[数4]
 dBL/WBL>(C+dBU+dBL)/B
[Equation 3]
d BU / W BU > (C + d BU + d BL ) / B
[Formula 4]
d BL / W BL > (C + d BU + d BL ) / B
 また、この各試験に際し、主軸109と主軸受111のクリアランスCを1.6×10-2mmに設定し、主軸受111の軸受長さBを43.5mmに設定した。図6は、図1の主軸109が主軸受111内で傾斜したときの主軸109と主軸受111との各接触状態と、各接触状態で成立する関係式の相関を示す図である。図7は、実施例1,2及び比較例1,2の設定範囲を示すグラフである。表1は、実施例1,2及び比較例1,2の性能評価試験及び信頼性評価試験での評価を示している。 Further, in each of these tests, the clearance C between the main shaft 109 and the main bearing 111 was set to 1.6 × 10 −2 mm, and the bearing length B of the main bearing 111 was set to 43.5 mm. FIG. 6 is a diagram showing a correlation between each contact state between the main shaft 109 and the main bearing 111 when the main shaft 109 in FIG. 1 is inclined in the main bearing 111, and a relational expression established in each contact state. FIG. 7 is a graph showing the setting ranges of Examples 1 and 2 and Comparative Examples 1 and 2. Table 1 shows the evaluations in the performance evaluation test and the reliability evaluation test of Examples 1 and 2 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図7のグラフの下側横軸は、テーパ深さdBU,dBLを示し、上側横軸は、最大ギャップGと軸部の直径Dとの比率(C+dBU+dBL)/Dを示す。図7の縦軸は、テーパ幅WBU,WBL示す。図7中に示した実線は、以下の数5及び数6の関係式を満たす位置を示す。
[数5]
 dBU/wBU=(C+dBU+dBL)/B
[数6]
 dBL/wBL=(C+dBU+dBL)/B
The lower horizontal axis of the graph in FIG. 7 shows the taper depths d BU and d BL , and the upper horizontal axis shows the ratio (C + d BU + d BL ) / D of the maximum gap G and the diameter D of the shaft portion. The vertical axis of FIG. 7 shows the taper widths W BU and W BL . The solid line shown in FIG. 7 indicates a position that satisfies the relational expressions of the following Expressions 5 and 6.
[Equation 5]
d BU / w BU = (C + d BU + d BL ) / B
[Equation 6]
dBL / wBL = (C + dBU + dBL ) / B
 図7に示す試験では、テーパ深さdBU,dBLが2.0×10-3mm以上で、且つ最大ギャップGと軸部の直径Dとの比率(C+dBU+dBL)/Dが4.0×10-3以下の領域において、数1及び数2の関係式を満たすように設定された冷媒圧縮機100を実施例1とした。一方、テーパ深さdBU,dBLが2.0×10-3mm以上で、且つ最大ギャップGと軸部の直径Dとの比率(C+dBU+dBL)/Dが4.0×10-3以下の領域において、数3及び数4の関係式を満たすように設定された冷媒圧縮機を実施例2とした。 In the test shown in FIG. 7, the taper depths d BU and d BL are 2.0 × 10 −3 mm or more, and the ratio (C + d BU + d BL ) / D of the maximum gap G and the diameter D of the shaft portion is 4. The refrigerant compressor 100 set to satisfy the relational expressions 1 and 2 in the region of 0.0 × 10 −3 or less was set as Example 1. On the other hand, the taper depths d BU and d BL are 2.0 × 10 −3 mm or more, and the ratio (C + d BU + d BL ) / D of the maximum gap G to the diameter D of the shaft portion is 4.0 × 10 −. The refrigerant compressor set so as to satisfy the relational expressions of Formulas 3 and 4 in the region of 3 or less was set as Example 2.
 また、テーパ深さdBU,dBLが2.0×10-3mm未満の値に設定された冷媒圧縮機を比較例1とした。また、最大ギャップGと軸部の直径Dとの比率(C+dBU+dBL)/Dが4.0×10-3を超える値に設定された冷媒圧縮機を比較例2とした。 Further, Comparative Example 1 is a refrigerant compressor in which the taper depths d BU and d BL are set to values less than 2.0 × 10 −3 mm. Further, Comparative Example 2 was a refrigerant compressor in which the ratio (C + d BU + d BL ) / D of the maximum gap G and the diameter D of the shaft portion was set to a value exceeding 4.0 × 10 −3 .
 また、実施例1,2及び比較例1,2の軸部には、軸受部に対して摺動する表面の部分に皮膜を形成した。この皮膜として、相手側である主軸受の材質よりも硬さが低いリン酸マンガン膜、又は、相手側である主軸受の材質よりも硬さが高い鉄の酸化物膜を形成した。 Also, the shafts of Examples 1 and 2 and Comparative Examples 1 and 2 were coated with a film on the surface that slides on the bearing. As this coating, a manganese phosphate film having a hardness lower than that of the mating main bearing or an iron oxide film having a hardness higher than that of the mating main bearing was formed.
 表1の評価を行うに際し、テーパ部が設けられていない従来例の冷媒圧縮機の性能と、信頼性試験での摩耗結果とを基準として評価を行った。表1中の「A」は、従来例よりも特性が顕著に向上したこと、即ち、圧縮機性能が向上すると共に軸部及び軸受部の摩耗が最も緩和されたとの評価を示す。「B」は、「A」に次ぐ評価であり、従来例の冷媒圧縮機に比して特性がやや上回る程度であるとの評価を示す。「C」は、「B」に次ぐ評価であり、従来例の冷媒圧縮機に比して特性の向上が見られなかったとの評価を示す。 When performing the evaluation shown in Table 1, the evaluation was performed based on the performance of the conventional refrigerant compressor without the tapered portion and the wear result in the reliability test. “A” in Table 1 shows that the characteristics were significantly improved as compared with the conventional example, that is, the compressor performance was improved and the wear of the shaft portion and the bearing portion was most alleviated. “B” is the second highest evaluation after “A”, and indicates that the characteristics are slightly higher than those of the conventional refrigerant compressor. "C" is the second highest evaluation after "B" and indicates that no improvement in characteristics was observed as compared with the conventional refrigerant compressor.
 図7及び表1に示されるように、実施例1,2では、いずれも比較例1,2に比して、性能及び信頼性が共に向上することが分かった。実施例1は、実施例2よりも性能及び信頼性が高く、特に軸部の皮膜として、相手側である主軸受の材質よりも硬さが高い皮膜を形成すると、優れた圧縮機性能が得られると共に、軸部及び軸受部の摩耗が高度に緩和され、信頼性が一層高まることが分かった。 As shown in FIG. 7 and Table 1, it was found that in Examples 1 and 2, both performance and reliability were improved as compared with Comparative Examples 1 and 2. Example 1 has higher performance and reliability than Example 2. Particularly, when a film having a hardness higher than that of the mating main bearing material is formed as the film of the shaft portion, excellent compressor performance is obtained. It was found that the wear of the shaft portion and the bearing portion was highly mitigated and the reliability was further improved.
 一方、テーパ深さdBU,dBLが2.0×10-3mm未満の値に設定された比較例1は、エリアA1,A2に関わらず、性能が従来例に比して向上しないことが分かった。この原因としては、比較例1では、例えば、テーパ部のテーパ深さが浅すぎたために、実施例1,2のテーパ部との形状の差異による効果が得られなかったことが考えられる。 On the other hand, in Comparative Example 1 in which the taper depths d BU and d BL are set to values less than 2.0 × 10 −3 mm, the performance is not improved as compared with the conventional example regardless of the areas A1 and A2. I understood. As a cause for this, it is considered that in Comparative Example 1, for example, the taper depth of the taper portion was too shallow, so that the effect due to the difference in shape from the taper portions of Examples 1 and 2 could not be obtained.
 また、比率(C+dBU+dBL)/Dが4.0×10-3を超える値に設定された比較例2も、エリアA1,A2に関わらず、性能が従来例に比して向上しないことが分かった。この原因としては、例えば、クランクシャフト108の軸受部内での傾斜勾配が過剰に大きくなり、片当たりが顕在化したことが考えられる。即ち比較例2では、この片当たりの顕在化により、ピストン132の先端に摩耗が生じ、摩耗部位から冷媒のリーク量が増大して冷凍能力が低下し、性能の向上が確認できなかったことが考えられる。 Further, in Comparative Example 2 in which the ratio (C + d BU + d BL ) / D is set to a value exceeding 4.0 × 10 −3 , the performance is not improved as compared with the conventional example regardless of the areas A1 and A2. I understood. As a cause of this, for example, it is considered that the inclination gradient in the bearing portion of the crankshaft 108 becomes excessively large, and one-sided contact becomes apparent. That is, in Comparative Example 2, it was not possible to confirm the improvement in performance because the tip of the piston 132 was abraded due to the manifestation of this one-sided contact, the amount of refrigerant leaked from the abraded portion was increased, and the refrigerating capacity was decreased. Conceivable.
 また、別に行った圧縮機信頼性試験でも、比較例2では、ピストンの先端側の端部に片当たりによると思われる摩耗が顕著に生じていることが確認されており、この考察が裏付けられている。 Also, in a compressor reliability test conducted separately, in Comparative Example 2, it was confirmed that the end portion on the tip side of the piston was significantly worn, which is thought to be due to one-sided contact, and this consideration is supported. ing.
 なお上記試験では、主軸109と主軸受111のクリアランスCを1.6×10-2mmに設定し、主軸受111の軸受長さBを43.5mmに設定した条件での結果を示したが、比率C/Dを4.0×10-4以上3.0×10-3以下の範囲の値に設定した場合においても同様の効果が得られることが分かっている。 In the above test, the clearance C between the main shaft 109 and the main bearing 111 is set to 1.6 × 10 −2 mm, and the bearing length B of the main bearing 111 is set to 43.5 mm. It has been found that the same effect can be obtained when the ratio C / D is set to a value in the range of 4.0 × 10 −4 or more and 3.0 × 10 −3 or less.
 また、主軸109の直径Dは、適宜設定可能であるが、例えば、10mm以上28mm以下の範囲の値に設定できる。例えば、設定した軸部の直径Dに合わせて、比率C/D及び(C+dBU+dBL)/Dがそれぞれ適正範囲の値となるように、クリアランスC、テーパ深さdBU,dBL、テーパ幅WBU、WBLを設定することが望ましい。 The diameter D O of the main shaft 109 can be set as appropriate, but can be set to a value in the range of 10 mm or more and 28 mm or less, for example. For example, the clearance C, the taper depths d BU , d BL , and the taper are adjusted so that the ratios C / D and (C + d BU + d BL ) / D are in the appropriate ranges in accordance with the set diameter D of the shaft. It is desirable to set the widths W BU and W BL .
 本実施形態の冷媒圧縮機100では、主軸受111の内周面にテーパ部170U,170Lが設けられているが、主軸109の外周面にテーパ部が設けられていても、同様の効果が得られる。また、偏心軸受119の内周面にテーパ部を設けていてもよいし、偏心軸110の外周面にテーパ部を設けていてもよい。これらの場合、偏心軸110と偏心軸受119との組み合わせにおいて、比率C/D、テーパ深さ、及び比率G/Dは、上記した主軸109と主軸受111との組み合わせと同等に設定される。このような構成であっても、本実施形態と同様に、冷媒圧縮機の性能及び信頼性向上に寄与できる。 In the refrigerant compressor 100 of the present embodiment, the tapered portions 170U and 170L are provided on the inner peripheral surface of the main bearing 111, but the same effect can be obtained even if the outer peripheral surface of the main shaft 109 is provided with the tapered portions. Be done. Further, the eccentric bearing 119 may be provided with a taper portion on the inner peripheral surface thereof, or the eccentric shaft 110 may be provided with a taper portion on the outer peripheral surface thereof. In these cases, in the combination of the eccentric shaft 110 and the eccentric bearing 119, the ratio C / D, the taper depth, and the ratio G / D are set to be the same as the above-described combination of the main shaft 109 and the main bearing 111. Even with such a configuration, similarly to the present embodiment, it is possible to contribute to the performance and reliability improvement of the refrigerant compressor.
 また本実施形態では、冷媒圧縮機100が低速運転(一例として運転周波数17Hz)される場合に性能が向上される効果を説明したが、商用回転数での速度における運転時や、より大きな回転数による高速運転時においても、同様の効果が得られる。 Further, in the present embodiment, the effect that the performance is improved when the refrigerant compressor 100 is operated at a low speed (operating frequency of 17 Hz as an example) has been described. However, when operating at a speed of commercial speed or at a higher speed. The same effect can be obtained even during high speed operation due to.
 また、冷媒圧縮機の形式は往復動式(レシプロ式)に限定されず、その他の形式、例えば、ロータリ式やスクロール式等であってもよい。即ち、ロータリ式やスクロール式等の冷媒圧縮機では、シャフトの外周面と軸受の内周面から構成される摺動部(いわゆるジャーナル軸受摺動部)にテーパ部を適用しても、同様の性能及び信頼性向上の効果が得られる。以下、その他の実施形態について、第1実施形態との差異を中心に説明する。 Also, the type of the refrigerant compressor is not limited to the reciprocating type (reciprocating type), and other types such as a rotary type and a scroll type may be used. That is, in a refrigerant compressor of a rotary type or a scroll type, even if a taper portion is applied to a sliding portion (so-called journal bearing sliding portion) composed of the outer peripheral surface of the shaft and the inner peripheral surface of the bearing, the same result is obtained. The effect of improving performance and reliability can be obtained. Hereinafter, other embodiments will be described focusing on differences from the first embodiment.
 (第2実施形態)
 図8は、第2実施形態に係る回転式(ロータリ式)の冷媒圧縮機200の概略的な断面図である。図9は、図8の冷媒圧縮機200のB部の拡大断面図である。図9は、図8で破線の丸枠で囲んだB部(主軸受209の下側)の拡大断面図に相当する。図10は、図8の冷媒圧縮機200のA-A´線矢視断面図である。
(Second embodiment)
FIG. 8 is a schematic sectional view of a rotary (rotary) refrigerant compressor 200 according to the second embodiment. FIG. 9 is an enlarged cross-sectional view of part B of the refrigerant compressor 200 of FIG. FIG. 9 corresponds to an enlarged cross-sectional view of a portion B (lower side of the main bearing 209) surrounded by a broken line circular frame in FIG. FIG. 10 is a cross-sectional view of the refrigerant compressor 200 of FIG. 8 taken along the line AA ′.
 図8~10に示すように、冷媒圧縮機200は、密閉容器201、電動要素202、及び圧縮要素203を備える。密閉容器101の底部には、冷凍機油220が貯留されている。電動要素202と圧縮要素203とは、密閉容器201に収容されている。電動要素202は、固定子202aと回転子202bとを有する。圧縮要素203は、クランクシャフト208、主軸受209、副軸受211、シリンダ210、及びローラ213を有する。 As shown in FIGS. 8 to 10, the refrigerant compressor 200 includes a closed container 201, an electric element 202, and a compression element 203. Refrigerating machine oil 220 is stored at the bottom of the closed container 101. The electric element 202 and the compression element 203 are housed in the closed container 201. The electric element 202 has a stator 202a and a rotor 202b. The compression element 203 has a crankshaft 208, a main bearing 209, an auxiliary bearing 211, a cylinder 210, and a roller 213.
 クランクシャフト208は、上下方向に延び、主軸206と、主軸206の途中に配置された偏心軸212とを有する。主軸206は、偏心軸212よりも上方において、主軸受209により軸支され、偏心軸212よりも下方において、副軸受211により軸支されている。主軸206には、電動要素202の回転子202bが固定されている。回転子202bの外周は、固定子202aにより囲まれている。 The crankshaft 208 extends in the vertical direction, and has a main shaft 206 and an eccentric shaft 212 arranged in the middle of the main shaft 206. The main shaft 206 is pivotally supported by the main bearing 209 above the eccentric shaft 212, and is pivotally supported by the sub bearing 211 below the eccentric shaft 212. The rotor 202b of the electric element 202 is fixed to the main shaft 206. The outer circumference of the rotor 202b is surrounded by the stator 202a.
 偏心軸212は、上下方向に貫通するシリンダ210の内部に配置されている。ローラ213は筒状に形成されており、軸線が上下方向に延びるように配置されている。シリンダ210の内部において、主軸206と偏心軸212は、ローラ213に挿通されている。偏心軸212は、ローラ213を介して、シリンダ210の内周面に支持されている。本実施形態では、ローラ213が、偏心軸212の偏心軸受に相当する。冷媒圧縮機200の駆動時において、ローラ213は、クランクシャフト208の主軸206の軸回りに遊星運動する。 The eccentric shaft 212 is arranged inside the cylinder 210 penetrating in the vertical direction. The roller 213 is formed in a tubular shape and is arranged so that its axis extends vertically. Inside the cylinder 210, the main shaft 206 and the eccentric shaft 212 are inserted into a roller 213. The eccentric shaft 212 is supported on the inner peripheral surface of the cylinder 210 via a roller 213. In the present embodiment, the roller 213 corresponds to the eccentric bearing of the eccentric shaft 212. When the refrigerant compressor 200 is driven, the roller 213 makes a planetary motion around the main shaft 206 of the crankshaft 208.
 シリンダ210には、水平方向に延びる貫通溝222が設けられている。貫通溝222には、軸状のベーン214が挿入されている。ベーン214の長手方向一端(先端)は、スプリング215及び背圧(吐出圧)により、ローラ213の周面231に押し付けられる。これにより、シリンダ210とローラ213との間の空間は、外部から冷媒ガスが吸入される吸入室216と、冷媒ガスが圧縮される圧縮室217とに区画されている。 The cylinder 210 is provided with a through groove 222 extending in the horizontal direction. A shaft-shaped vane 214 is inserted into the through groove 222. One end (tip) in the longitudinal direction of the vane 214 is pressed against the peripheral surface 231 of the roller 213 by the spring 215 and the back pressure (discharge pressure). As a result, the space between the cylinder 210 and the roller 213 is divided into a suction chamber 216 for sucking the refrigerant gas from the outside and a compression chamber 217 for compressing the refrigerant gas.
 シリンダ210には、更に吸入穴205が設けられている。吸入穴205には、吸入管204の一端が挿入されている。冷媒圧縮機200は、吸入管204を介してアキュムレータ(図示せず)と繋がっている。シリンダ210の内周面には、吐出切欠き219が設けられている。 The cylinder 210 is further provided with a suction hole 205. One end of the suction pipe 204 is inserted into the suction hole 205. The refrigerant compressor 200 is connected to an accumulator (not shown) via a suction pipe 204. A discharge notch 219 is provided on the inner peripheral surface of the cylinder 210.
 冷媒圧縮機200の駆動時には、電動要素202によりクランクシャフト208が主軸206の軸回りに回転され、ローラ213が遊星運動(図10では、左回転)する。これにより、吸入管204と吸入穴205とを経て、外部から吸入室216へ冷媒ガスが吸入される。冷媒ガスは、圧縮室217の内圧が上昇されることで圧縮され、吐出切欠き219を経て、図示しない吐出孔より密閉容器201内へ吐出される。 When the refrigerant compressor 200 is driven, the electric element 202 causes the crankshaft 208 to rotate around the main shaft 206, causing the roller 213 to make a planetary motion (in FIG. 10, rotate left). As a result, the refrigerant gas is sucked into the suction chamber 216 from the outside through the suction pipe 204 and the suction hole 205. The refrigerant gas is compressed by increasing the internal pressure of the compression chamber 217, and is discharged into the closed container 201 through the discharge notch 219 through a discharge hole (not shown).
 ここで、吸入室216と圧縮室217を仕切るベーン214は、その長手方向一端が、スプリング215及び背圧によりローラ213の周面231に押し付けられる。これによりベーン214は、ローラ213の周面231との接点で摺動しながら運動する。この運度によって、クランクシャフト208は、その主軸206の軸線に垂直な方向から圧力を受けて撓みを生じる。その結果、クランクシャフト208は、主軸受209と副軸受211との各クリアランス間において振れ回るように回転する。 Here, one end in the longitudinal direction of the vane 214 that partitions the suction chamber 216 and the compression chamber 217 is pressed against the peripheral surface 231 of the roller 213 by the spring 215 and the back pressure. As a result, the vane 214 moves while sliding at the contact point with the peripheral surface 231 of the roller 213. Due to this luck, the crankshaft 208 is subjected to pressure from a direction perpendicular to the axis of the main shaft 206, and thus is bent. As a result, the crankshaft 208 rotates so as to swing between the clearances between the main bearing 209 and the auxiliary bearing 211.
 この振れ回りにより、クランクシャフト208は、主軸受209の上端(図8では、電動要素202側の端部)、主軸受209の下端(図8では、ローラ213側の端部)、副軸受211の上端(図8では、ローラ213側の端部)及び、副軸受211の下端(図8では、クランクシャフト208の下端に設けられた給油部221側の端部)の少なくともいずれかにおいて、片当たりが生じる場合がある。この片当たりにより、摺動面にキズが発生したり、微小な摩耗粉により摺動面が切削されて摩耗する凝着摩耗が発生するおそれがある。 Due to this whirling, the crankshaft 208 causes the upper end of the main bearing 209 (the end on the electric element 202 side in FIG. 8), the lower end of the main bearing 209 (the end on the roller 213 side in FIG. 8), and the auxiliary bearing 211. Of at least one of the upper end (the end on the roller 213 side in FIG. 8) and the lower end of the auxiliary bearing 211 (the end on the oil filler 221 side provided at the lower end of the crankshaft 208 in FIG. 8) of the auxiliary bearing 211. There may be a hit. Due to this one-sided contact, scratches may be generated on the sliding surface, or adhesive wear may occur in which the sliding surface is cut and worn by minute abrasion powder.
 そこで冷媒圧縮機200では、クランクシャフト208を軸支する主軸受209の上端にテーパ部270Uを設けると共に、主軸受209の下端にテーパ部270Lを設けている。更に、副軸受211の上端にテーパ部280Uを設けると共に、副軸受211の下端にテーパ部280Lを設けている。テーパ部270U,280Uは、テーパ部170Uに相当し、テーパ部270L,280Lは、テーパ部170Lに相当する。なお、図9では、各テーパ部のうちテーパ部270Lのみを図示している。 Therefore, in the refrigerant compressor 200, the tapered portion 270U is provided at the upper end of the main bearing 209 that pivotally supports the crankshaft 208, and the tapered portion 270L is provided at the lower end of the main bearing 209. Further, a tapered portion 280U is provided on the upper end of the sub bearing 211, and a tapered portion 280L is provided on the lower end of the sub bearing 211. The taper portions 270U and 280U correspond to the taper portion 170U, and the taper portions 270L and 280L correspond to the taper portion 170L. Note that, in FIG. 9, only the tapered portion 270L is shown among the respective tapered portions.
 テーパ部270U,270Lは、主軸受209の内周面の全周方向にわたって形成されている。主軸受209の軸線方向におけるテーパ部270U,270Lの一端271と他端272との間の主軸受209の軸線に垂直な方向の距離に相当するテーパ深さd(dBU,dBL)は、ここではμmオーダの値に設定されている。 The tapered portions 270U and 270L are formed on the inner peripheral surface of the main bearing 209 over the entire circumferential direction. The taper depth d B (d BU , d BL ) corresponding to the distance in the direction perpendicular to the axis of the main bearing 209 between the one end 271 and the other end 272 of the tapered portions 270U, 270L in the axial direction of the main bearing 209 is , Here, it is set to a value on the order of μm.
 また、図8及び9に示すように、クランクシャフト208(主軸206)の直径Dと、クランクシャフト208(主軸206)と軸受部(主軸受209)のクリアランスCとの比率C/Dは、4.0×10-4以上3.0×10-3以下の範囲の値に設定されている。また、対応する軸部と軸受部との組み合わせ(ここでは主軸206と主軸受209との組み合わせ)における比率G/Dが、4.0×10-3以下の値に設定されている。 Further, as shown in FIGS. 8 and 9, the ratio C / D between the diameter D of the crankshaft 208 (main shaft 206) and the clearance C between the crankshaft 208 (main shaft 206) and the bearing portion (main bearing 209) is 4 It is set to a value in the range of 0.0 × 10 −4 to 3.0 × 10 −3 . Further, the ratio G / D in the corresponding combination of the shaft portion and the bearing portion (here, the combination of the main shaft 206 and the main bearing 209) is set to a value of 4.0 × 10 −3 or less.
 また図示しないが、クランクシャフト208(主軸206)の直径Dと、クランクシャフト208(主軸206)と軸受部(副軸受211)のクリアランスCとの比率C/Dも、4.0×10-4以上3.0×10-3以下の範囲の値に設定されている。 Although not shown, the ratio C / D between the diameter D of the crankshaft 208 (main shaft 206) and the clearance C between the crankshaft 208 (main shaft 206) and the bearing portion (secondary bearing 211) is also 4.0 × 10 −4. The value is set in the range of 3.0 × 10 −3 or less.
 また、テーパ部270U,280Uのテーパ深さdBU(図示せず)、及び、テーパ部270L,280Lのテーパ深さdBLのうち少なくともいずれか(ここでは両方)は、2.0×10-3mm以上の範囲の値に設定されている。またクランクシャフト208は、主軸受209及び副軸受211に対して摺動する表面の部分に形成された皮膜を有する。この皮膜は、第1実施形態の皮膜と同様のものである。 Further, at least one (both here) of the taper depth d BU (not shown) of the taper portions 270U and 280U and the taper depth d BL of the taper portions 270L and 280L is 2.0 × 10 −. It is set to a value in the range of 3 mm or more. Further, the crankshaft 208 has a film formed on the surface portion that slides with respect to the main bearing 209 and the auxiliary bearing 211. This film is similar to the film of the first embodiment.
 このような設定が行われることで、仮にクランクシャフト208が振れ回って上記片当たりが生じたとしても、クランクシャフト208の軸線に垂直な方向から見て、主軸206と主軸受209との対向面、及び、主軸206と副軸受211との対向面の各々が、互いに沿うように配置される。これにより、主軸206と主軸受209との間、及び、主軸206と副軸受211との局所的な金属接触が防止される。よって、冷媒圧縮機200は、良好な摩擦摩耗特性と、高い性能及び信頼性を有している。 By such setting, even if the crankshaft 208 swings and the above-mentioned one-sided contact occurs, the facing surface between the main shaft 206 and the main bearing 209 is seen from the direction perpendicular to the axis of the crankshaft 208. , And the respective facing surfaces of the main shaft 206 and the sub bearing 211 are arranged so as to be along each other. This prevents local metal contact between the main shaft 206 and the main bearing 209 and between the main shaft 206 and the sub bearing 211. Therefore, the refrigerant compressor 200 has good friction and wear characteristics and high performance and reliability.
 なお、図9に示したテーパ部270Lは、その軸線に垂直な方向から見て、連続的な曲線状の表面を有する曲線状に形成されているが、直線状の表面を有するように形成されていてもよい。また、複数のテーパ部を設ける場合、異なる形状のテーパ部を設けてもよい。また冷媒圧縮機200は、4つのテーパ部270U,270L,280U,280Lを有しているが、このうち少なくとも1つのテーパ部を有していればよい。 The tapered portion 270L shown in FIG. 9 is formed in a curved shape having a continuous curved surface when viewed from a direction perpendicular to the axis thereof, but is formed so as to have a linear surface. May be. Further, when a plurality of tapered portions are provided, tapered portions having different shapes may be provided. Further, the refrigerant compressor 200 has four taper portions 270U, 270L, 280U, 280L, but it suffices to have at least one taper portion among them.
 また、上記した皮膜が形成される対象は、クランクシャフト208に限定されない。上記した皮膜は、冷媒圧縮機及びこれを用いた冷凍装置の構成要素のうち、いずれか(例えば部品、機器の他、ポンプやモータ等のユニット)の摺動部分に設けられていてもよい。次に、冷媒圧縮機100,200を用いた冷凍装置の構成について例示する。 Also, the target on which the above-mentioned film is formed is not limited to the crankshaft 208. The above-described film may be provided on a sliding portion of any of the components of the refrigerant compressor and the refrigerating apparatus using the same (for example, units such as parts and devices, and units such as pumps and motors). Next, a configuration of a refrigeration system using the refrigerant compressors 100 and 200 will be exemplified.
(第3実施形態)
 図11は、第3実施形態に係る冷凍装置300の模式図である。以下、冷凍装置300の基本構成の概略を説明する。図11に示すように、冷凍装置300は、本体301、区画壁307、及び冷媒回路309を備える。
(Third Embodiment)
FIG. 11 is a schematic diagram of the refrigeration apparatus 300 according to the third embodiment. The outline of the basic configuration of the refrigerating apparatus 300 will be described below. As shown in FIG. 11, the refrigeration system 300 includes a main body 301, a partition wall 307, and a refrigerant circuit 309.
 本体301は、内部に連通する開口が形成された断熱性の箱体と、箱体の開口を開閉する扉とを有する。また本体301は、物品が貯蔵される貯蔵空間303と、貯蔵空間303内を冷却する冷媒回路309が配置される機械室305とを有する。貯蔵空間303と機械室305とは、区画壁307により区画されている。貯蔵空間303には、送風機(図示せず)が配置されている。図11では、箱体の一部を切り欠いて本体301の内部を示している。 The main body 301 has a heat insulating box body having an opening communicating with the inside thereof, and a door for opening and closing the opening of the box body. Further, the main body 301 has a storage space 303 in which articles are stored, and a machine room 305 in which a refrigerant circuit 309 that cools the storage space 303 is arranged. The storage space 303 and the machine room 305 are partitioned by a partition wall 307. A blower (not shown) is arranged in the storage space 303. In FIG. 11, a part of the box body is cut away to show the inside of the main body 301.
 冷媒回路309は、冷媒圧縮機100,200のいずれか、放熱器313、減圧装置315、及び吸熱器317を有する。冷媒圧縮機100,200のいずれか、放熱器313、減圧装置315、及び吸熱器317は、配管により環状に接続されている。 The refrigerant circuit 309 includes one of the refrigerant compressors 100 and 200, a radiator 313, a pressure reducing device 315, and a heat absorber 317. Any of the refrigerant compressors 100 and 200, the radiator 313, the pressure reducing device 315, and the heat absorber 317 are connected in an annular shape by piping.
 放熱器313は、冷媒を放熱させる。減圧装置315は、冷媒を減圧する。吸熱器317は、冷媒を吸熱する。吸熱器317は、貯蔵空間303内に配置されて冷却熱を発生させる。図11中の矢印で示すように、吸熱器317の冷却熱は、送風機によって貯蔵空間303内を循環する。これにより、貯蔵空間303内の空気が撹拌され、貯蔵空間303内が冷却される。 The radiator 313 radiates heat from the refrigerant. The decompression device 315 decompresses the refrigerant. The heat absorber 317 absorbs heat of the refrigerant. The heat absorber 317 is disposed in the storage space 303 to generate cooling heat. As shown by the arrow in FIG. 11, the cooling heat of the heat absorber 317 is circulated in the storage space 303 by the blower. Thereby, the air in the storage space 303 is agitated and the inside of the storage space 303 is cooled.
 以上の構成を有する冷凍装置300は、冷媒圧縮機100,200のいずれかにおいて、軸部と軸受部との間の高い耐摩耗性が得られると共に、軸部と軸受部間の油膜形成を促すことで軸部と軸受部との局所的な金属接触を防止でき、高い信頼性と圧縮機性能とが得られる。これにより冷凍装置300では、冷媒圧縮機100,200を備えることで、消費電力を低減でき、省エネルギー化を実現できると共に、長期信頼性を向上できる。 The refrigerating apparatus 300 having the above-described configuration can obtain high wear resistance between the shaft portion and the bearing portion and promote the formation of an oil film between the shaft portion and the bearing portion in either the refrigerant compressor 100 or 200. As a result, local metal contact between the shaft portion and the bearing portion can be prevented, and high reliability and compressor performance can be obtained. Accordingly, in the refrigeration system 300, by including the refrigerant compressors 100 and 200, power consumption can be reduced, energy saving can be realized, and long-term reliability can be improved.
 本発明は、各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲でその構成を変更、追加、又は削除することができる。前記各実施形態は、互いに任意に組み合わせてもよく、例えば1つの実施形態中の一部の構成を、他の実施形態に適用してもよい。また本発明の範囲は、特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The present invention is not limited to each embodiment, and its configuration can be changed, added, or deleted without departing from the spirit of the present invention. The respective embodiments may be arbitrarily combined with each other, and for example, a part of the configuration in one embodiment may be applied to another embodiment. The scope of the present invention is defined by the claims, and is intended to include meanings equivalent to the claims and all modifications within the scope.
 以上のように本発明は、摺動部分の摩耗を防止することで耐久性及び信頼性の低下を防止しながら、高効率化を図ることが可能な冷媒圧縮機及びこれを用いた冷凍装置を提供できる優れた効果を有する。従って、この効果の意義を発揮できる冷媒圧縮機及びこれを用いた冷凍装置に本発明を広く適用すると有益である。 INDUSTRIAL APPLICABILITY As described above, the present invention provides a refrigerant compressor capable of achieving high efficiency while preventing deterioration of durability and reliability by preventing abrasion of sliding parts, and a refrigeration apparatus using the same. It has an excellent effect that can be provided. Therefore, it is beneficial to widely apply the present invention to a refrigerant compressor and a refrigerating apparatus using the same, which can exert the significance of this effect.
 100、200  冷媒圧縮機
 101、201  密閉容器
 103、220  冷凍機油
 106、202  電動要素
 107、203  圧縮要素
 108、208  クランクシャフト
 109,206  主軸(軸部)
 110,212  偏心軸(軸部)
 111、209  主軸受(軸受部)
 111c  主軸受の軸線
 119  偏心軸受(軸受部)
 151  第1摺動面
 152  小径部
 153  第2摺動面
 170U,170L,270U,270L,280U,280L  テーパ部
 211  副軸受(軸受部)
 300  冷凍装置
 309  冷媒回路
 313  放熱器
 315  減圧装置
 317  吸熱器
 B  軸受幅
 C  クリアランス
 D  軸部の直径
 D  主軸の直径
 D  主軸受の直径(内径)
 d,dBU,dBL  テーパ深さ
 L  第1摺動面の摺動幅
 L  第2摺動面の摺動幅
 wBU,wBL テーパ幅
100, 200 Refrigerant compressor 101, 201 Airtight container 103, 220 Refrigerating machine oil 106, 202 Electric element 107, 203 Compression element 108, 208 Crank shaft 109, 206 Main shaft (shaft part)
110,212 Eccentric shaft (shaft part)
111,209 Main bearing (bearing part)
111c Main bearing axis 119 Eccentric bearing (bearing part)
151 First Sliding Surface 152 Small Diameter Section 153 Second Sliding Surface 170U, 170L, 270U, 270L, 280U, 280L Tapered Part 211 Secondary Bearing (Bearing Part)
300 Refrigerator 309 Refrigerant circuit 313 Radiator 315 Pressure reducer 317 Heat absorber B Bearing width C Clearance D Shaft diameter D O Main shaft diameter D I Main bearing diameter (inner diameter)
d B , d BU , d BL taper depth L 1 sliding width of first sliding surface L 2 sliding width of second sliding surface w BU , w BL taper width

Claims (8)

  1.  冷凍機油が貯留された密閉容器と、
     前記密閉容器に収容され、外部より供給される電力により駆動される電動要素と、
     前記密閉容器に収容されて前記冷凍機油に被着され、前記電動要素により駆動されて、外部から供給される冷媒ガスを圧縮する圧縮要素とを備え、
     前記圧縮要素は、長手方向に並んで配置された主軸と偏心軸とを有するクランクシャフトと、
     前記主軸を軸支する主軸受と、
     前記偏心軸を軸支する偏心軸受とを有し、
     前記主軸及び前記偏心軸の少なくとも一方である軸部、及び、前記主軸受及び前記偏心軸受の少なくとも一方である軸受部のいずれかには、前記軸受部の軸線方向一端側及び他端側の少なくとも一方において、前記クランクシャフトの長手方向外側から中央側に向けて径が変化することにより、前記軸部の軸線が前記軸受部の軸線に対して傾斜した状態で、前記軸部と前記軸受部とを線接触させるテーパ部が設けられ、
     前記軸部の直径Dと、前記軸部と前記軸受部との間のクリアランスCとの比率C/Dが、4.0×10-4以上3.0×10-3以下の範囲の値に設定され、
     前記軸受部の軸線方向における前記テーパ部の一端と他端との間の前記軸受部の軸線に垂直な方向の距離に相当するテーパ深さdが、2.0×10-3mm以上の値に設定され、
     対応する前記軸部と前記軸受部との組み合わせにおける前記テーパ部のテーパ深さdの合計値とクリアランスCとの和である最大ギャップGと、前記軸部の直径Dとの比率G/Dが、4.0×10-3以下の値に設定されている、冷媒圧縮機。
    A closed container in which refrigerating machine oil is stored,
    An electric element housed in the closed container and driven by electric power supplied from the outside,
    And a compression element that is housed in the closed container and is attached to the refrigerating machine oil, is driven by the electric element, and compresses a refrigerant gas supplied from the outside,
    The compression element is a crankshaft having a main shaft and an eccentric shaft arranged side by side in the longitudinal direction,
    A main bearing for supporting the main shaft,
    An eccentric bearing that supports the eccentric shaft,
    At least one of a shaft portion that is at least one of the main shaft and the eccentric shaft and a bearing portion that is at least one of the main bearing and the eccentric bearing has at least one end side and the other end side in the axial direction of the bearing portion. On the other hand, as the diameter of the crankshaft changes from the outside in the longitudinal direction toward the center, the axis of the shaft part is inclined with respect to the axis of the bearing part, and the shaft part and the bearing part are Is provided with a taper that makes line contact with
    The ratio C / D of the diameter D of the shaft portion and the clearance C between the shaft portion and the bearing portion is set to a value in the range of 4.0 × 10 −4 or more and 3.0 × 10 −3 or less. Is set,
    A taper depth d B corresponding to a distance between one end and the other end of the tapered portion in the axial direction of the bearing portion in a direction perpendicular to the axis of the bearing portion is 2.0 × 10 −3 mm or more. Is set to the value
    The ratio G / D of the maximum gap G is the sum of the total value and the clearance C of the taper depth d B of the tapered portion and corresponding one of the shaft portion in combination with the bearing portion, the diameter D of the shaft portion Is a refrigerant compressor having a value of 4.0 × 10 −3 or less.
  2.  前記軸部及び前記軸受部の一方における前記軸受部の軸線方向両側に一対の前記テーパ部が設けられ、
     前記軸受部の軸線方向一端側の前記テーパ部の前記テーパ深さdであるテーパ深さdBUと、前記軸受部の軸線方向一端側における前記テーパ部の前記軸受部の軸線方向幅であるテーパ幅WBUと、
     前記軸受部の軸線方向他端側における前記テーパ部の前記テーパ深さdであるテーパ深さdBLと、前記軸受部の軸線方向他端側における前記テーパ部の前記軸受部の軸線方向幅であるテーパ幅WBLと、
     前記軸受部の軸受長さBと、前記クリアランスCとが、数1及び数2を満たしている、請求項1に記載の冷媒圧縮機。
    [数1]
     dBU/WBU≦(C+dBU+dBL)/B
    [数2]
     dBL/WBL≦(C+dBU+dBL)/B
    A pair of the taper portions are provided on both sides in the axial direction of the bearing portion in one of the shaft portion and the bearing portion,
    A taper depth d BU that is the taper depth d B of the tapered portion on one axial side end of the bearing portion and an axial width of the bearing portion of the tapered portion on one axial side end of the bearing portion. Taper width W BU ,
    A taper depth d BL that is the taper depth d B of the tapered portion on the other end side in the axial direction of the bearing portion, and an axial width of the bearing portion of the tapered portion on the other end side in the axial direction of the bearing portion. And the taper width W BL is
    The refrigerant compressor according to claim 1, wherein the bearing length B of the bearing portion and the clearance C satisfy Formula 1 and Formula 2.
    [Equation 1]
    d BU / W BU ≤ (C + d BU + d BL ) / B
    [Equation 2]
    d BL / W BL ≤ (C + d BU + d BL ) / B
  3.  前記軸部及び前記軸受部のうち、前記軸受部の軸線方向一端側の前記テーパ部の表面と相対する相手側の表面に第1摺動面が形成され、
     前記軸部及び前記軸受部のうち、前記軸受部の軸線方向他方側の前記テーパ部の表面と相対する相手側の表面に第2摺動面が形成され、
     前記相手側の軸線に垂直な方向から見て、前記第1摺動面の前記テーパ部の表面に対する摺動幅Lが、前記テーパ幅WBUよりも小さく、且つ、前記第2摺動面の前記テーパ部の表面に対する摺動幅Lが、前記テーパ幅WBLよりも小さい、請求項2に記載の冷媒圧縮機。
    Of the shaft portion and the bearing portion, a first sliding surface is formed on a mating surface opposite to the surface of the tapered portion on the one axial end side of the bearing portion,
    Of the shaft portion and the bearing portion, a second sliding surface is formed on a mating surface opposite to the surface of the tapered portion on the other axial side of the bearing portion,
    The sliding width L 1 of the first sliding surface with respect to the surface of the tapered portion is smaller than the tapered width W BU when viewed from a direction perpendicular to the axis of the mating side, and the second sliding surface The refrigerant compressor according to claim 2, wherein a sliding width L 2 of the taper with respect to the surface of the tapered portion is smaller than the taper width W BL .
  4.  前記軸部及び前記軸受部の少なくとも一方は、前記軸受部の軸線方向両側に一対の前記テーパ部が設けられると共に、前記テーパ部の最大径よりも径が小さい小径部を有する、請求項1~3のいずれか1項に記載の冷媒圧縮機。 At least one of the shaft portion and the bearing portion is provided with a pair of the tapered portions on both sides in the axial direction of the bearing portion, and has a small diameter portion having a diameter smaller than a maximum diameter of the tapered portion. The refrigerant compressor according to any one of 3 above.
  5.  前記テーパ部の軸線に垂直な方向から見て、前記テーパ部は、直線状、又は、連続的な曲線状の表面を有する、請求項1~4のいずれか1項に記載の冷媒圧縮機。 The refrigerant compressor according to any one of claims 1 to 4, wherein the tapered portion has a linear or continuous curved surface when viewed in a direction perpendicular to an axis of the tapered portion.
  6.  前記軸部は、前記軸受部に対して摺動する表面の部分に形成された皮膜を有し、前記皮膜が、前記軸受部の相対する表面の硬さに比べて同等以上の硬さを有している、請求項1~5のいずれか1項に記載の冷媒圧縮機。 The shaft portion has a film formed on a portion of the surface that slides with respect to the bearing portion, and the film has a hardness equal to or higher than the hardness of the opposing surfaces of the bearing portion. The refrigerant compressor according to any one of claims 1 to 5, wherein:
  7.  前記電動要素が、複数の運転周波数によりインバータ駆動される、請求項1~6のいずれか1項に記載の冷媒圧縮機。 The refrigerant compressor according to any one of claims 1 to 6, wherein the electric element is driven by an inverter at a plurality of operating frequencies.
  8.  請求項1~7のいずれか1項に記載の冷媒圧縮機と、冷媒を放熱させる放熱器と、冷媒を減圧する減圧装置と、冷媒を吸熱する吸熱器とを配管により環状に連結した冷媒回路を備える、冷凍装置。 A refrigerant circuit in which the refrigerant compressor according to any one of claims 1 to 7, a radiator that dissipates the refrigerant, a decompression device that decompresses the refrigerant, and a heat absorber that absorbs the refrigerant are annularly connected by piping. A refrigeration system comprising:
PCT/JP2019/043312 2018-11-08 2019-11-05 Refrigerant compressor and refrigeration apparatus using same WO2020095903A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980052149.5A CN112567133B (en) 2018-11-08 2019-11-05 Refrigerant compressor and refrigeration device using same
EP19882174.6A EP3879101A4 (en) 2018-11-08 2019-11-05 Refrigerant compressor and refrigeration apparatus using same
US17/282,664 US20210340967A1 (en) 2018-11-08 2019-11-05 Refrigerant compressor and refrigeration apparatus using the same
JP2020556082A JP7142100B2 (en) 2018-11-08 2019-11-05 Refrigerant compressor and refrigeration system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018210882 2018-11-08
JP2018-210882 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020095903A1 true WO2020095903A1 (en) 2020-05-14

Family

ID=70610990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043312 WO2020095903A1 (en) 2018-11-08 2019-11-05 Refrigerant compressor and refrigeration apparatus using same

Country Status (5)

Country Link
US (1) US20210340967A1 (en)
EP (1) EP3879101A4 (en)
JP (1) JP7142100B2 (en)
CN (1) CN112567133B (en)
WO (1) WO2020095903A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022111379A1 (en) 2022-05-06 2023-11-09 OET GmbH Displacement machine based on the spiral principle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074355A (en) * 1993-06-17 1995-01-10 Hitachi Ltd Closed type compressor
JPH07238885A (en) 1994-02-28 1995-09-12 Toshiba Corp Sealed compressor
JP2016205134A (en) * 2015-04-15 2016-12-08 日立アプライアンス株式会社 Hermetic type compressor
WO2018092853A1 (en) * 2016-11-18 2018-05-24 パナソニックIpマネジメント株式会社 Refrigerant compressor and refrigeration device provided with same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766747A (en) * 1972-01-06 1973-10-23 Lennox Ind Inc Liquid sensor for reciprocating refrigerant compressor
JPS6085278A (en) * 1983-10-14 1985-05-14 Sanyo Electric Co Ltd Enclosed motor compressor
JPH0294451U (en) * 1989-01-13 1990-07-26
US6168403B1 (en) * 1999-05-10 2001-01-02 Carrier Corporation Rotating compressor bearing with dual taper
JP2003003959A (en) * 2001-06-20 2003-01-08 Matsushita Electric Ind Co Ltd Compressor
JP4894750B2 (en) * 2007-12-25 2012-03-14 株式会社デンソー Compressor
JP4950138B2 (en) * 2008-06-24 2012-06-13 日立アプライアンス株式会社 Reciprocating hermetic compressor and manufacturing method thereof
JP5385873B2 (en) * 2010-08-11 2014-01-08 日立アプライアンス株式会社 Refrigerant compressor
JP5945683B2 (en) * 2011-03-23 2016-07-05 パナソニックIpマネジメント株式会社 Hermetic compressor and refrigeration apparatus provided with the same
CN102200114A (en) 2011-06-17 2011-09-28 华意压缩机股份有限公司 Super-efficient single-support compressor having taper hole bearing structure
EP2851563B1 (en) * 2012-04-12 2021-03-10 Panasonic Appliances Refrigeration Devices Singapore Hermetic compressor and refrigeration device comprising same
CN106062363A (en) * 2014-02-25 2016-10-26 松下知识产权经营株式会社 Sealed compressor and refrigeration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074355A (en) * 1993-06-17 1995-01-10 Hitachi Ltd Closed type compressor
JPH07238885A (en) 1994-02-28 1995-09-12 Toshiba Corp Sealed compressor
JP2016205134A (en) * 2015-04-15 2016-12-08 日立アプライアンス株式会社 Hermetic type compressor
WO2018092853A1 (en) * 2016-11-18 2018-05-24 パナソニックIpマネジメント株式会社 Refrigerant compressor and refrigeration device provided with same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITO ET AL., PROCEEDINGS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS ANNUAL MEETING, vol. 5-1, 2005, pages 143

Also Published As

Publication number Publication date
JP7142100B2 (en) 2022-09-26
CN112567133B (en) 2022-05-31
CN112567133A (en) 2021-03-26
US20210340967A1 (en) 2021-11-04
JPWO2020095903A1 (en) 2021-09-02
EP3879101A1 (en) 2021-09-15
EP3879101A4 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
US6948922B2 (en) Hermetic compressor and open compressor
KR20060038374A (en) Fluid machinery
US20210148361A1 (en) Scroll compressor including a fixed and orbiting scroll
EP3546749B1 (en) Refrigerant compressor and freezer including same
WO2020095903A1 (en) Refrigerant compressor and refrigeration apparatus using same
EP3543529B1 (en) Refrigerant compressor and freezer including same
US11959670B2 (en) Refrigerant compressor and freezer including same
JP7307065B2 (en) Hermetic refrigerant compressor and freezer/refrigerator using the same
JP2005325842A (en) Fluid machine
CN109996901B (en) Oxide film, sliding member having the same formed thereon, and apparatus having the sliding member
WO2018092854A1 (en) Refrigerant compressor and refrigeration device with same
JP6041177B1 (en) Refrigerant compressor and refrigeration apparatus using the same
US10760563B2 (en) Refrigerant compressor and refrigeration device including refrigerant compressor
JP2020012374A (en) Refrigerant compressor and refrigerator using it
JP2017053341A (en) Refrigerant compressor and freezer using the same
JPH04136493A (en) Refrigerant compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19882174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019882174

Country of ref document: EP

Effective date: 20210608