JP5385873B2 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
JP5385873B2
JP5385873B2 JP2010180275A JP2010180275A JP5385873B2 JP 5385873 B2 JP5385873 B2 JP 5385873B2 JP 2010180275 A JP2010180275 A JP 2010180275A JP 2010180275 A JP2010180275 A JP 2010180275A JP 5385873 B2 JP5385873 B2 JP 5385873B2
Authority
JP
Japan
Prior art keywords
refrigerant compressor
coating
hard
bearing
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010180275A
Other languages
Japanese (ja)
Other versions
JP2012036878A (en
Inventor
裕子 高妻
睦憲 松永
功一 今田
裕一 柳瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2010180275A priority Critical patent/JP5385873B2/en
Priority to US13/815,000 priority patent/US20130195707A1/en
Priority to PCT/JP2011/068092 priority patent/WO2012020740A1/en
Priority to CN201180038961.6A priority patent/CN103069166B/en
Publication of JP2012036878A publication Critical patent/JP2012036878A/en
Application granted granted Critical
Publication of JP5385873B2 publication Critical patent/JP5385873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0071Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/54Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0436Iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/10Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/20Resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Description

本発明は冷凍、空調用の冷媒圧縮機に関し、特に冷媒圧縮機の軸受摺動部の改良に関する。   The present invention relates to a refrigerant compressor for refrigeration and air conditioning, and more particularly to improvement of a bearing sliding portion of the refrigerant compressor.

冷媒圧縮機においては、機械部品が相互に摺動する摺動部である軸受の焼きつきや摩耗を防ぐため、表面材質を調整した軸受材料が開発されている。例えば、RoHs指令(電気、電気機器に含まれる特定有害物質の使用制限に関する欧州議会及び理事会指令)に従い、PTFEを主成分とし鉛を含まない摺動材料が軸受材料として使用され、良好な摺動特性を得るようにしている。
このPTFEを主成分とし鉛を含まない摺動材料の従来技術としては、特許文献1に記載されたものなどが挙げられる。
In the refrigerant compressor, in order to prevent seizure and wear of the bearing, which is a sliding portion where mechanical parts slide relative to each other, a bearing material with an adjusted surface material has been developed. For example, in accordance with the RoHs directive (European Parliament and Council Directive on restrictions on the use of specific hazardous substances contained in electricity and electrical equipment), sliding materials containing PTFE as the main component and not containing lead are used as bearing materials. Dynamic characteristics are obtained.
Examples of the conventional technology of the sliding material containing PTFE as a main component and not containing lead include those described in Patent Document 1.

特開2002−53673号公報JP 2002-53673 A

近年、エネルギーの削減に向けた関心が高まり、種々の産業において効率向上が求められている。特に、住環境に密接した空気調和機においては、世論の注目度が高いことから、より低コスト化、高効率化を達成できる製品の開発が求められている。   In recent years, interest in energy reduction has increased, and various industries have been demanding improved efficiency. In particular, in air conditioners that are closely related to the living environment, public attention is high, and therefore development of products that can achieve lower costs and higher efficiency is required.

空気調和機においては、2006年の省エネ法改訂以降、効率を示す基準に、通年エネルギー消費効率(APF)が使用されている。APFは使用状態に沿った空気調和機の効率であり、定格条件より低い負荷領域での効率が重視されているため、冷媒圧縮機において低速回転域の運転頻度が増している。   In air conditioners, annual energy consumption efficiency (APF) has been used as a standard for efficiency since the revision of the Energy Saving Law in 2006. APF is the efficiency of the air conditioner in accordance with the state of use, and importance is placed on the efficiency in the load region lower than the rated condition, so the frequency of operation in the low speed rotation region is increasing in the refrigerant compressor.

しかし、冷媒圧縮機を低速で運転すると、摺動部である軸受は油膜厚さを十分確保できず、境界潤滑領域に移行し易い。更に、冷媒は冷凍機油に溶け込むため、油の粘度が低下する。その結果、金属接触を誘発し、かじりや焼付き、或いは摩耗といった問題を引き起こし易く、冷媒圧縮機の性能や品質が低下する課題がある。   However, when the refrigerant compressor is operated at a low speed, the bearing which is a sliding portion cannot secure a sufficient oil film thickness, and easily moves to the boundary lubrication region. Furthermore, since the refrigerant dissolves in the refrigerating machine oil, the viscosity of the oil decreases. As a result, there is a problem in that metal contact is induced and problems such as galling, seizure, and wear are likely to occur, and the performance and quality of the refrigerant compressor are deteriorated.

本発明の目的は、軸受摺動部におけるかじりや焼付きの発生を抑制でき、耐摩耗性も向上できる信頼性の高い冷媒圧縮機を得ることにある。   An object of the present invention is to obtain a highly reliable refrigerant compressor that can suppress the occurrence of galling or seizure in a bearing sliding portion and can improve wear resistance.

上記目的を達成するため、本発明は、冷媒を圧縮する圧縮機構部と、該圧縮機構部を駆動する回転軸とを備え、前記回転軸と前記圧縮機構部との係合部、或いは前記回転軸を支持する回転支持部の少なくとも何れかにすべり軸受を備えている冷媒圧縮機において、前記すべり軸受は摩耗粒子を埋収させる異物埋収性を有する無鉛樹脂含浸材を用いて構成され、前記回転軸は鉄系材料で構成されると共に、この回転軸の前記すべり軸受と摺動する部分には硬さが1000Hv以上の硬質被膜が設けられていることを特徴とする。   In order to achieve the above object, the present invention comprises a compression mechanism section that compresses a refrigerant and a rotation shaft that drives the compression mechanism section, and an engagement section between the rotation shaft and the compression mechanism section, or the rotation. In the refrigerant compressor provided with the slide bearing in at least one of the rotation support portions that support the shaft, the slide bearing is configured using a lead-free resin impregnated material having a foreign matter burying property for burying the wear particles, The rotating shaft is made of an iron-based material, and a hard coating having a hardness of 1000 Hv or more is provided on a portion of the rotating shaft that slides with the slide bearing.

本発明によれば、軸受摺動部におけるかじりや焼付きの発生を抑制でき、耐摩耗性も向上できる信頼性の高い冷媒圧縮機を得ることができる効果がある。   ADVANTAGE OF THE INVENTION According to this invention, there exists an effect which can obtain the highly reliable refrigerant compressor which can suppress generation | occurrence | production of the galling and seizure in a bearing sliding part, and can also improve abrasion resistance.

本発明の冷媒圧縮機の実施例1を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a longitudinal sectional view showing a first embodiment of a refrigerant compressor according to the present invention. 図1のすべり軸受部付近の拡大断面図。FIG. 2 is an enlarged cross-sectional view of the vicinity of a plain bearing portion in FIG. 1. 回転軸に被覆した硬質被膜の硬度と軸受摩耗量との関係を示すグラフ。The graph which shows the relationship between the hardness of the hard film coat | covered on the rotating shaft, and the amount of bearing wear. 図2の変形例を説明する図で、図2に相当する拡大断面図。It is a figure explaining the modification of FIG. 2, and is expanded sectional view equivalent to FIG. 基材に硬質被膜を設ける一例を説明する拡大断面図。The expanded sectional view explaining an example which provides a hard film in a base material. 基材に硬質被膜を設ける他の例を説明する拡大断面図。The expanded sectional view explaining the other example which provides a hard film in a base material. 基材に硬質被膜を設ける更に他の例を説明する拡大断面図。The expanded sectional view explaining the further another example which provides a hard film in a base material.

空気調和機における通年エネルギー消費効率(APF)は、使用状態に沿った空気調和機の効率であり、定格点よりも低い負荷領域での効率が重視されている。このため冷媒圧縮機は低速回転で運転されることが多くなってきている。
しかし、冷媒圧縮機を低速で運転すると、前述した通り、低速運転では軸受での油膜厚さを十分確保できず、境界潤滑領域に移行し易い。その結果、金属接触を誘発し、かじりや焼付き、或いは摩耗といった問題を引き起こし易く、冷媒圧縮機の性能、品質が低下する。
The year-round energy consumption efficiency (APF) in an air conditioner is the efficiency of the air conditioner according to the state of use, and importance is placed on the efficiency in a load region lower than the rated point. For this reason, the refrigerant compressor is often operated at a low speed.
However, when the refrigerant compressor is operated at a low speed, as described above, the oil film thickness at the bearing cannot be ensured sufficiently at the low speed operation, and the transition to the boundary lubrication region is likely. As a result, metal contact is induced and problems such as galling, seizure, and wear are easily caused, and the performance and quality of the refrigerant compressor are deteriorated.

冷媒圧縮機の軸受としては、特許文献1にも記載されているように含浸材料であるPTFE等の樹脂材料なども使用されており、このような樹脂材料は、金属粒子などの摩耗粒子(異物)を当該樹脂材料の中に埋収させる異物埋収性を有するので、摩耗粒子によるかじりや摩耗を低減できる効果がある。しかし、低速運転で極度に軸受潤滑油の油膜厚さが低下する状況下では、樹脂材料の中に埋収された金属粒子(摩耗粒子)と回転軸とが金属接触を生じ、かじりや焼付きに発展するという課題があることがわかった。
この課題解決のための具体的実施例を、以下図面に基づき説明する。
As described in Patent Document 1, a resin material such as PTFE, which is an impregnation material, is also used as a bearing for a refrigerant compressor. Such a resin material includes wear particles (foreign matter) such as metal particles. ) Is embedded in the resin material, and has an effect of reducing galling and wear due to wear particles. However, under circumstances where the oil film thickness of the bearing lubricating oil is extremely reduced at low speed operation, the metal particles (wear particles) embedded in the resin material and the rotating shaft cause metal contact, which causes galling and seizure. It has been found that there is a problem of developing.
Specific examples for solving this problem will be described below with reference to the drawings.

図1は、本発明の冷媒圧縮機の実施例1を示す縦断面図で、冷媒圧縮機としてスクロール圧縮機に本発明を適用した例である。
密閉容器700内には、上方に圧縮機構部、中央に電動機600、下方に油溜り730が配設されており、鉄系材料で構成された回転軸300を介して前記圧縮機構部と電動機600が接続されている。前記圧縮機構部は、台板101に渦巻き状のラップ102を直立した固定スクロール100と、台板201に渦巻き状のラップ202を直立した旋回スクロール200とを、ラップを互いに噛み合わせて形成されている。前記固定スクロール100には吸入口103及び吐出口104も設けられている。前記回転軸300は、電動機上部のフレーム400に設けられたすべり軸受(主軸受)401と、電動機下部の下フレーム800に設けられた副軸受801により支持されている。前記フレーム400及び前記下フレーム800は密閉容器700に固定されている。前記回転軸300の先端には鉄系材料で構成されたクランクピン(偏心軸)301が設けられ、該クランクピン301は前記旋回スクロール200の台板201の下方に突設したボス部203に挿入されて係合されている。ボス部203内には旋回すべり軸受210が設けられており、前記クランクピン301と摺動するように構成されている。また、前記旋回スクロール200の台板201の背面にはオルダム継手500が配設され、該オルダム継手500により、旋回スクロール200は、固定スクロール100に対して自転することなく旋回運動される。
FIG. 1 is a longitudinal sectional view showing a first embodiment of the refrigerant compressor of the present invention, which is an example in which the present invention is applied to a scroll compressor as a refrigerant compressor.
In the hermetic container 700, a compression mechanism portion is disposed above, an electric motor 600 is disposed at the center, and an oil sump 730 is disposed below. The compression mechanism portion and the electric motor 600 are arranged via a rotating shaft 300 made of an iron-based material. Is connected. The compression mechanism section is formed by meshing a fixed scroll 100 with a spiral wrap 102 upright on a base plate 101 and an orbiting scroll 200 with a spiral wrap 202 upright on a base plate 201. Yes. The fixed scroll 100 is also provided with a suction port 103 and a discharge port 104. The rotating shaft 300 is supported by a slide bearing (main bearing) 401 provided on the frame 400 at the upper part of the electric motor and a sub bearing 801 provided on the lower frame 800 at the lower part of the electric motor. The frame 400 and the lower frame 800 are fixed to a sealed container 700. A crankpin (eccentric shaft) 301 made of an iron-based material is provided at the tip of the rotary shaft 300, and the crankpin 301 is inserted into a boss portion 203 protruding below the base plate 201 of the orbiting scroll 200. Has been engaged. A slewing plain bearing 210 is provided in the boss portion 203 and is configured to slide with the crank pin 301. Further, an Oldham joint 500 is disposed on the back surface of the base plate 201 of the orbiting scroll 200, and the orbiting scroll 200 is orbited by the Oldham joint 500 without rotating with respect to the fixed scroll 100.

前記電動機600によりそのロータに連結された回転軸300が回転すると、その回転により、回転軸300の先端に設けられたクランクピン301が偏心回転し、旋回スクロール200は、オルダム継手500の自転防止機構により、固定スクロール100に対して自転せずに旋回運動を行う。これにより、ガスは、吸入管711及び吸入口103を介して、前記渦巻状のラップ102及び202で形成される密閉室に吸入され、前記旋回運動と共に、前記密閉室は中心部側へ移動しながらその容積を減少してガスを圧縮し、圧縮されたガスを吐出口104から吐出室710に吐出する。吐出室710に吐出されたガスは、圧縮機構部や電動機部の周囲を循環したのち吐出管701から圧縮機外へ放出される。   When the rotary shaft 300 connected to the rotor is rotated by the electric motor 600, the rotation causes the crank pin 301 provided at the tip of the rotary shaft 300 to rotate eccentrically, and the orbiting scroll 200 is provided with a rotation prevention mechanism for the Oldham coupling 500. Thus, a turning motion is performed without rotating about the fixed scroll 100. As a result, the gas is sucked into the sealed chamber formed by the spiral wraps 102 and 202 through the suction pipe 711 and the suction port 103, and the sealed chamber moves toward the central portion side with the swirling motion. The volume is reduced while the gas is compressed, and the compressed gas is discharged from the discharge port 104 to the discharge chamber 710. The gas discharged into the discharge chamber 710 circulates around the compression mechanism section and the electric motor section, and is then discharged from the discharge pipe 701 to the outside of the compressor.

次に給油経路について説明する。下フレーム800には副軸受801を収容する軸受ハウジング802が取り付けられており、その軸受ハウジング802の下端にはポンプ部900が設けられている。このポンプ部900は前記回転軸300の下端部に取り付けたポンプ継ぎ手310を介して駆動される。回転軸300が回転すると、ポンプ部900により前記油溜り730の油が吸い上げられ、ポンプ部900から回転軸内に形成された油通路311を介して前記クランクピン301の上部に到達する。このクランクピンの上部から、油は前記旋回すべり軸受210を潤滑した後、すべり軸受401へ流れ、すべり軸受401を潤滑した油は排油パイプ408を通り、前記油溜り730に戻る。   Next, the oil supply path will be described. A bearing housing 802 that accommodates the auxiliary bearing 801 is attached to the lower frame 800, and a pump unit 900 is provided at the lower end of the bearing housing 802. The pump unit 900 is driven via a pump joint 310 attached to the lower end of the rotating shaft 300. When the rotating shaft 300 rotates, the oil in the oil reservoir 730 is sucked up by the pump unit 900 and reaches the upper portion of the crank pin 301 from the pump unit 900 via an oil passage 311 formed in the rotating shaft. From the upper part of the crank pin, the oil lubricates the swivel slide bearing 210 and then flows to the slide bearing 401. The oil lubricated the slide bearing 401 passes through the oil drain pipe 408 and returns to the oil reservoir 730.

なお、前記旋回すべり軸受210を潤滑した後の油の一部は、旋回スクロールの前記ボス部203下面と前記フレーム400との間に設けたシール部402を通過して前記旋回スクロールの台板201の背面に流入し、ここから旋回スクロール台板201に形成した給油路220を介して、固定スクロール100と旋回スクロール200との摺動部及びラップ102,202の間を潤滑し、圧縮ガスと共に吐出室710に吐出される。吐出室710に吐出された油はその後密閉容器700下部の油溜り730に戻る。   Part of the oil after lubricating the orbiting slide bearing 210 passes through a seal portion 402 provided between the bottom surface of the boss portion 203 of the orbiting scroll and the frame 400 and the base plate 201 of the orbiting scroll. From here, the sliding portion between the fixed scroll 100 and the orbiting scroll 200 and the space between the laps 102 and 202 are lubricated through the oil supply passage 220 formed on the orbiting scroll base plate 201 and discharged together with the compressed gas. It is discharged into the chamber 710. The oil discharged into the discharge chamber 710 then returns to the oil reservoir 730 below the sealed container 700.

図2は図1に示す旋回すべり軸受210及びすべり軸受(主軸受)401付近の拡大断面図で、図1と同一符号を付した部分は同一部分である。   FIG. 2 is an enlarged cross-sectional view of the vicinity of the slewing slide bearing 210 and the slide bearing (main bearing) 401 shown in FIG. 1, and the portions denoted by the same reference numerals as those in FIG. 1 are the same portions.

本実施例では、前記旋回すべり軸受210やすべり軸受401などのすべり軸受には無鉛樹脂含浸材を用いと共に、前記すべり軸受(主軸受)401と摺動する前記回転軸300の表面(外周面)、及び前記旋回すべり軸受210と摺動する前記クランクピン301の表面(外周面)には、1000Hv以上(好ましくは1500Hv以上)の硬度を有する硬質被膜1000を設けている。   In this embodiment, a lead-impregnated resin-impregnated material is used for the sliding bearings such as the swivel sliding bearing 210 and the sliding bearing 401, and the surface (outer peripheral surface) of the rotating shaft 300 that slides on the sliding bearing (main bearing) 401. Further, a hard coating 1000 having a hardness of 1000 Hv or more (preferably 1500 Hv or more) is provided on the surface (outer peripheral surface) of the crank pin 301 that slides with the orbiting slide bearing 210.

前記無鉛樹脂含浸材としては、PTFE(ポリテトラフルオロエチレン)などの異物埋収性を有する樹脂材料を使用している。異物埋収性を有する樹脂材料としては、他に、POM(ポリアセタール)、PBT(ポリブチレンテレフタレート)、PPS(ポリフェニレンスルファイド)、PEEK(ポリエーテルエーテルケトン)なども使用可能である。このような異物埋収性を有する樹脂材料を使用することにより、金属粒子などの摩耗粒子(異物)を当該樹脂材料中に埋収させることができるので、前記摩耗粒子によるすべり軸受のかじりや摩耗を低減することができる。   As the lead-free resin impregnated material, a resin material having a foreign substance burying property such as PTFE (polytetrafluoroethylene) is used. In addition, POM (polyacetal), PBT (polybutylene terephthalate), PPS (polyphenylene sulfide), PEEK (polyetheretherketone), and the like can be used as the resin material having the foreign substance burying property. By using such a resin material having a foreign substance embedding property, wear particles (foreign substances) such as metal particles can be embedded in the resin material, and therefore the sliding bearing is galling or worn by the wear particles. Can be reduced.

しかし、冷媒圧縮機を低速運転で運転した場合、極度に軸受潤滑油の油膜厚さが低下する状況下では油膜切れを生じることがある。このような場合、異物埋収性の高い無鉛樹脂含浸軸受では、埋集された金属粒子(摩耗粒子)と回転軸(クランクピンも含む)とが金属接触を生じ、かじりや焼付きに発展する恐れがある。   However, when the refrigerant compressor is operated at a low speed, an oil film breakage may occur in a situation where the oil film thickness of the bearing lubricating oil is extremely reduced. In such a case, in a lead-free resin-impregnated bearing with a high foreign substance burying property, the buried metal particles (wear particles) and the rotating shaft (including the crankpin) are brought into metal contact and develop into galling and seizure. There is a fear.

この課題に対し、本実施例では、すべり軸受401や旋回すべり軸受210と摺動する前記回転軸300や前記クランクピン301の表面(外周面)に、1000Hv以上(好ましくは1500Hv以上)の硬度を有する硬質被膜1000を設けているので、前記回転軸やクランクピンが前記摩耗粒子によって摩耗したり、かじりや線状傷が発生するのを著しく低減できる。即ち、冷媒圧縮機において前記無鉛樹脂含浸軸受に埋収される摩耗粒子の硬度はほとんどが1000Hv未満であるため、回転軸300(クランクピン含む)が前記摩耗粒子により摩耗したり、かじりや線状傷が生じることを大幅に低減でき、特に1500Hv以上の硬質被膜とすることで、回転軸のかじりや焼付き、及び摩耗がほとんど進行しないことがわかった。   In order to deal with this problem, in this embodiment, the surface (outer peripheral surface) of the rotary shaft 300 and the crank pin 301 that slides with the slide bearing 401 or the swing slide bearing 210 has a hardness of 1000 Hv or more (preferably 1500 Hv or more). Since the hard coating 1000 is provided, it is possible to significantly reduce the wear of the rotating shaft and the crankpin due to the wear particles and the occurrence of galling and linear scratches. That is, since the hardness of the wear particles embedded in the lead-free resin-impregnated bearing in the refrigerant compressor is almost less than 1000 Hv, the rotating shaft 300 (including the crank pin) is worn by the wear particles, or is galling or linear. It has been found that the occurrence of scratches can be greatly reduced, and in particular, by using a hard coating of 1500 Hv or higher, the shaft galling, seizure, and wear hardly proceed.

しかし、前記硬質被膜の硬度を更に高くした場合、回転軸の摩耗や線状傷に対する効果はほぼ同等であるものの、硬度を高くし過ぎると、例えば3000Hvを大きく超えるような硬度、例えば4000Hvの硬度を有する硬質被膜を使用すると、回転軸表面の粗さやうねりの影響、硬質被膜の剥離による軸表面の凹凸などにより、これと摺動する前記無鉛樹脂含浸軸受の摩耗が進行し易くなり、好ましくない。   However, when the hardness of the hard coating is further increased, the effect on the wear of the rotating shaft and the linear scratches is almost the same, but if the hardness is too high, for example, a hardness that greatly exceeds 3000 Hv, for example, a hardness of 4000 Hv It is not preferable to use a hard coating having a surface of the lead-free resin-impregnated bearing that slides on the shaft due to the effect of roughness and waviness on the surface of the rotating shaft, unevenness of the shaft surface due to peeling of the hard coating, and the like. .

図3は、回転軸に被覆した硬質被膜の硬度と前記無鉛樹脂含浸軸受の軸受摩耗量との関係を示すグラフである。このグラフは、冷媒圧縮機(スクロール圧縮機)を、低速で油膜を形成し難い境界潤滑域で、過酷摺動試験を行い確認したもので、横軸は、回転軸表面の硬質被膜の種類(硬質被膜の硬度)であり、ノンコート(A)は鉄系材料としてS45Cを用い、摺動部に焼入れ処理を施して約600Hvの硬度とした硬質被膜のない回転軸、DCL(B)は鉄系材料の回転軸表面に硬度が3000HvのDLC被膜(硬質炭素系被膜)を施した回転軸、DLC(C)は鉄系材料の回転軸表面に硬度が4000HvのDLC被膜を施した回転軸である。また、縦軸は、ノンコート(A)の回転軸を使用した場合にこれと摺動する異物埋収性のある無鉛樹脂含浸軸受の軸受摩耗量を基準(100)とし、他の硬質被膜を有する回転軸DLC(B),DLC(C)を使用した場合にこれと摺動する異物埋収性のある無鉛樹脂含浸軸受の軸受摩耗量(比摩耗量)を示している。   FIG. 3 is a graph showing the relationship between the hardness of the hard coating coated on the rotating shaft and the amount of bearing wear of the lead-free resin-impregnated bearing. This graph confirms a refrigerant compressor (scroll compressor) by performing a severe sliding test in a boundary lubrication region where it is difficult to form an oil film at low speed. The horizontal axis indicates the type of hard coating on the surface of the rotating shaft ( Hardness of hard coating), non-coating (A) uses S45C as an iron-based material, the sliding part is hardened to a hardness of about 600 Hv by hardening, and DCL (B) is iron-based The rotating shaft surface is a rotating shaft with a DLC coating (hard carbon coating) having a hardness of 3000 Hv, and DLC (C) is a rotating shaft with a DLC coating having a hardness of 4000 Hv on the rotating shaft surface of a ferrous material. . The vertical axis is based on the amount of wear of a lead-free resin-impregnated bearing with a foreign substance burying property that slides when a non-coated (A) rotating shaft is used, and has another hard coating. The bearing wear amount (specific wear amount) of the lead-free resin-impregnated bearing having a foreign substance burying property that slides with the rotating shafts DLC (B) and DLC (C) is shown.

この図3から、硬度が3000HvのDLC被膜を施した回転軸を使用した場合にはこれと摺動する異物埋収性のある無鉛樹脂含浸軸受の軸受摩耗量はノンコート(A)の回転軸を使用した場合よりも低下している。また、摺動後の回転軸及び軸受の損傷状態は良好で、回転軸及び軸受の双方共、線条傷は見られなかった。   From FIG. 3, when a rotating shaft coated with a DLC film having a hardness of 3000 Hv is used, the bearing wear amount of the lead-free resin-impregnated bearing that slides on the non-coated (A) rotating shaft is determined as follows. It is lower than when used. Further, the damaged state of the rotating shaft and the bearing after sliding was good, and neither the rotating shaft nor the bearing was found to have a linear scratch.

一方、硬度が4000HvのDLC被膜を施した回転軸を使用した場合には、軸受摩耗量はノンコート(A)の回転軸を使用した場合よりも増大している。また、摺動後の軸受には線条傷が生じていることを確認した。   On the other hand, when a rotating shaft coated with a DLC film having a hardness of 4000 Hv is used, the amount of bearing wear is greater than when a non-coating (A) rotating shaft is used. Further, it was confirmed that a linear scratch was generated in the bearing after sliding.

この図3に示す結果から、硬度が3000Hv以下の硬質被膜を施した回転軸を使用することにより、異物埋収性のある無鉛樹脂含浸軸受の軸受摩耗量を減少させ且つ線状傷の発生も防止できることがわかった。   From the results shown in FIG. 3, by using a rotating shaft with a hard coating having a hardness of 3000 Hv or less, the amount of wear of a lead-free resin-impregnated bearing with foreign matter burying ability is reduced and the occurrence of linear scratches is also observed. I found that it can be prevented.

また、回転軸が金属粒子などの摩耗粒子と接触してもかじりや焼付きを生じず、良好な状態に保つには、前述したように、硬度が1000Hv以上の硬質被膜を施した回転軸を使用することが好ましい。従って、本実施例では、硬度が1000Hv〜3000Hv(好ましくは1500〜3000Hv)の範囲の硬質被膜を施すことで、旋回すべり軸受210、すべり軸受401、回転軸300及びクランクピン301などの軸受摺動部におけるかじりや焼付きの発生を抑制でき、摩耗も低減できるから耐摩耗性の向上も図れる高い信頼性の冷媒圧縮機を得ることができる。   In addition, as described above, the rotating shaft with a hard coating having a hardness of 1000 Hv or more is used in order to keep the rotating shaft in a good state without causing galling or seizure even when it comes into contact with wear particles such as metal particles. It is preferable to use it. Therefore, in this embodiment, bearing sliding such as the swinging slide bearing 210, the sliding bearing 401, the rotating shaft 300, and the crank pin 301 is performed by applying a hard coating having a hardness in the range of 1000Hv to 3000Hv (preferably 1500 to 3000Hv). The occurrence of galling and seizure in the section can be suppressed, and wear can be reduced, so that a highly reliable refrigerant compressor that can improve wear resistance can be obtained.

図4は図2の変形例を示すもので、図2と同一符号を付した部分は同一または相当する部分を示している。図2に示した例では、回転軸(クランクピン含む)300の外周面に直接、硬質被膜1000の層を蒸着などにより形成するものであるが、図4に示す例では、旋回すべり軸受210及びすべり軸受401と摺動する回転軸300及びクランクピン301の表面に、硬質被膜1000を備えた鉄系材料からなる円筒部材302を嵌合することで、硬質被膜を設けたものである。即ち、鉄系材料の円筒部材302の外周面に硬度が1000Hv以上(好ましくは1500Hv以上)の硬質被膜を蒸着などにより形成したものを予め製作しておき、この円筒部材302を、旋回すべり軸受210及びすべり軸受401と摺動する回転軸300及びクランクピン301の部分に嵌合して構成したもので、この例によれば、図2に示した例と比較して、生産性を約5〜10倍向上することが可能となり、その結果冷媒圧縮機のコストダウンを図ることができるものである。   FIG. 4 shows a modification of FIG. 2, and the same reference numerals as those in FIG. 2 denote the same or corresponding parts. In the example shown in FIG. 2, the hard coating 1000 is formed directly on the outer peripheral surface of the rotating shaft (including the crankpin) 300 by vapor deposition or the like, but in the example shown in FIG. A hard coating is provided by fitting a cylindrical member 302 made of an iron-based material provided with a hard coating 1000 on the surfaces of the rotary shaft 300 and the crank pin 301 that slide with the slide bearing 401. That is, a hard film having a hardness of 1000 Hv or more (preferably 1500 Hv or more) formed by vapor deposition or the like on the outer peripheral surface of the cylindrical member 302 made of an iron-based material is manufactured in advance, and the cylindrical member 302 is turned into a swivel slide bearing 210. The sliding shaft 401 and the rotating shaft 300 and the crank pin 301 that slide with the sliding bearing 401 are fitted to each other. According to this example, the productivity is about 5 to 5 compared with the example shown in FIG. It becomes possible to improve 10 times, and as a result, the cost of the refrigerant compressor can be reduced.

図5は、図2や図4に示した基材(回転軸300や円筒部材302)と硬質被膜1000の部分の構成を示す図である。
図5において、表面に硬質被膜を形成する基材となるものは、図2に示す回転軸(クランクピンを含む)300、或いは図4に示すように回転軸に嵌合される円筒部材302である。この基材の表面には、硬度が例えば1500Hvの硬質被膜1000が形成されている。この硬質被膜1000としては、クロム系(Cr系)被膜(例えばCrN)、チタン系(Ti系)被膜(例えばTiN)、硬質炭素系被膜(DLC)、Si含有硬質炭素系被膜(Si:DLC)などを使用でき、これらの硬質被膜1000は、蒸着法などにより基材に被膜することで、基材表面に硬質被膜を形成することができる。また、前述した硬質被膜は、何れも耐腐食性が高く、高硬度で低摩擦係数を示すものであり、すべり軸受と摺動する摺動材として好適なものである。特に、硬質炭素系被膜であるDLC(Diamond−like Carbon)は、ダイヤモンドを構成するSP結合と、グラファイト構造を有するSP結合が混合しており、その硬度はコーティング条件の調整により結合比を種々変えることで調整することでができる。
FIG. 5 is a diagram showing a configuration of the base material (rotating shaft 300 and cylindrical member 302) and the hard coating 1000 shown in FIG. 2 and FIG.
In FIG. 5, the base material for forming a hard coating on the surface is a rotating shaft (including a crankpin) 300 shown in FIG. 2, or a cylindrical member 302 fitted to the rotating shaft as shown in FIG. is there. A hard coating 1000 having a hardness of, for example, 1500 Hv is formed on the surface of the substrate. The hard coating 1000 includes a chromium-based (Cr-based) coating (for example, CrN), a titanium-based (Ti-based) coating (for example, TiN), a hard carbon-based coating (DLC), and a Si-containing hard carbon-based coating (Si: DLC). These hard coatings 1000 can be formed on the surface of the substrate by coating the substrate with a vapor deposition method or the like. The hard coatings described above all have high corrosion resistance, high hardness and low friction coefficient, and are suitable as a sliding material that slides on a slide bearing. In particular, DLC (Diamond-Like Carbon), which is a hard carbon-based film, has a mixture of SP 3 bonds constituting diamond and SP 2 bonds having a graphite structure, and its hardness can be adjusted by adjusting coating conditions. It can be adjusted by various changes.

前述した各硬質被膜は表面の平滑性を高めることができるため、物理的な摩耗や摩擦も引き起こしにくく、また1500Hv以上の硬度の硬質被膜を容易に得ることができる。従って、前述した何れかの硬質被膜を、すべり軸受と摺動する回転軸表面に設けることにより、軸受摺動部におけるかじりや焼付きの発生を抑制でき、耐摩耗性も向上できる冷媒圧縮機を得ることができる。   Since each of the hard coatings described above can improve the smoothness of the surface, physical wear and friction are hardly caused, and a hard coating having a hardness of 1500 Hv or more can be easily obtained. Therefore, by providing any of the hard coatings described above on the surface of the rotating shaft that slides with the slide bearing, a refrigerant compressor that can suppress the occurrence of galling and seizure at the sliding portion of the bearing and can also improve wear resistance. Can be obtained.

図6は基材に硬質被膜を設ける他の例を説明する拡大断面図で、図5と同一符号を付した部分は同一或いは相当する部分を示す。図5の例では、回転軸300を構成する鉄系材料(基材)の硬度が低い場合、硬度の高い硬質被膜、例えば硬度の高いDLC被膜を形成すると、それらの硬度差が大きくなり、冷媒圧縮機の運転時に、摺動部の変形等により、硬質被膜1000の剥離を生じる可能性がある。図6に示す例は、硬質被膜1000の剥離防止に効果がある基材への硬質被膜の形成方法について説明するものである。   FIG. 6 is an enlarged cross-sectional view for explaining another example in which a hard film is provided on a base material, and the portions denoted by the same reference numerals as those in FIG. 5 indicate the same or corresponding portions. In the example of FIG. 5, when the hardness of the iron-based material (base material) constituting the rotary shaft 300 is low, when a hard coating with high hardness, for example, a DLC coating with high hardness, is formed, the hardness difference between them increases, During the operation of the compressor, the hard coating 1000 may be peeled off due to deformation of the sliding portion or the like. The example shown in FIG. 6 explains a method for forming a hard coating on a substrate that is effective in preventing the hard coating 1000 from peeling off.

この例は、硬質被膜1000と基材(回転軸300や円筒部材302)の間に、基材と硬質被膜の間の中間的な硬度を有する中間層1001を設けたものである。即ち、鉄系材料からなる回転軸300や円筒部材302を基材とし、まずこの基材の上に硬度が1000〜1500Hv程度のCr系被膜からなる中間層1001を形成し、この中間層1001の上に、硬度が2000〜3000Hv程度のDLC被膜からなる硬質被膜1000を形成したものである。この例によれば、より硬度の高い硬質被膜を摺動面に形成できるので、軸受摺動部の摩耗や焼付きを防止できると共に、前記中間層1001に鉄系の基材と密着性の良いCr系被膜を設けているから、硬質被膜の剥離も防止できる信頼性のより高い冷媒圧縮機を得ることができる。なお、この例においても、前記中間層1001や硬質被膜1000は、蒸着法などを用いて形成することができる。   In this example, an intermediate layer 1001 having an intermediate hardness between the base material and the hard film is provided between the hard film 1000 and the base material (the rotary shaft 300 or the cylindrical member 302). That is, the rotating shaft 300 and the cylindrical member 302 made of an iron-based material are used as a base material, and an intermediate layer 1001 made of a Cr-based film having a hardness of about 1000 to 1500 Hv is first formed on the base material. A hard coating 1000 made of a DLC coating having a hardness of about 2000 to 3000 Hv is formed thereon. According to this example, since a hard coating with higher hardness can be formed on the sliding surface, wear and seizure of the bearing sliding portion can be prevented, and the intermediate layer 1001 has good adhesion to the iron-based substrate. Since the Cr-based coating is provided, a highly reliable refrigerant compressor that can prevent the peeling of the hard coating can be obtained. Also in this example, the intermediate layer 1001 and the hard coating 1000 can be formed using a vapor deposition method or the like.

図7は基材に硬質被膜を設ける更に他の例を説明する拡大断面図で、図5と同一符号を付した部分は同一或いは相当する部分を示す。この図7に示す例は、鉄系材料からなる回転軸300や円筒部材302を基材とし、この基材の上に硬質被膜1000を形成する点では図5に示した例と同じであるが、前記硬質被膜1000は、基材側から摺動面側にかけて硬度が次第に高くなる傾斜膜とした点に特徴がある。この例では、硬質被膜1000として、Si含有炭素系被膜(Si:DLC)を使用し、この被膜のSi量(Si濃度)を、基材表面側から摺動面側にかけて除々に減少させる傾斜膜とし、硬質被膜1000の基材側の硬度は1000Hv程度とし、摺動面側の硬度は1500Hv以上となるように構成したものである。このような傾斜膜からなる硬質被膜も蒸着法などにより基材表面に形成することができる。   FIG. 7 is an enlarged cross-sectional view for explaining still another example in which a hard film is provided on a base material, and the portions denoted by the same reference numerals as those in FIG. 5 indicate the same or corresponding portions. The example shown in FIG. 7 is the same as the example shown in FIG. 5 in that the rotating shaft 300 and the cylindrical member 302 made of an iron-based material are used as the base material, and the hard coating 1000 is formed on the base material. The hard coating 1000 is characterized in that it is an inclined film whose hardness gradually increases from the base material side to the sliding surface side. In this example, a Si-containing carbon-based coating (Si: DLC) is used as the hard coating 1000, and the gradient film gradually reduces the Si amount (Si concentration) of the coating from the substrate surface side to the sliding surface side. The hardness of the hard coating 1000 on the substrate side is about 1000 Hv, and the hardness on the sliding surface side is 1500 Hv or more. A hard film made of such a gradient film can also be formed on the surface of the substrate by vapor deposition or the like.

前記硬質被膜1000において、その下層(基材側)と上層(摺動面側)で組成の完全な境界を作らず、摺動面側から基材側にかけてDLCからDLC:Siへと緩やかに変化する傾斜膜に形成する方法としては、イオンプレーティング(IP)法、イオン蒸着法、スパッタリング法などがある。これら以外の形成方法であっても、目的とする硬度範囲を満たす被膜硬度が得られるものであれば使用可能である。   In the hard coating 1000, the lower layer (base material side) and the upper layer (sliding surface side) do not form a complete boundary of composition, but gradually change from DLC to DLC: Si from the sliding surface side to the base material side. Examples of the method for forming the inclined film include an ion plating (IP) method, an ion deposition method, and a sputtering method. Even if it is a formation method other than these, as long as the film hardness which satisfy | fills the target hardness range is obtained, it can be used.

ここでは、前記IP法の一種であるアークイオンプレーティング(AIP)法を用いて前記DLC:Si傾斜膜を形成する方法について説明する。AIP法では、10−3〜10−5Paの真空度を持つ真空チャンバ内に前記基材(回転軸300や円筒部材302)を配置し、これに負のバイアスを印加する。一方、硬質被膜を作るためのイオン化された原料を電気的に加速させ、前記基材に衝突させることで硬質被膜を基材表面に形成する。 Here, a method of forming the DLC: Si gradient film using an arc ion plating (AIP) method which is a kind of the IP method will be described. In the AIP method, the base material (the rotating shaft 300 or the cylindrical member 302) is disposed in a vacuum chamber having a vacuum degree of 10 −3 to 10 −5 Pa, and a negative bias is applied thereto. On the other hand, the ionized raw material for producing the hard coating is electrically accelerated and collides with the substrate to form the hard coating on the substrate surface.

DLC:Siの硬質被膜を形成する場合、DLCの形成にはCやCなどの炭化水素系ガスを導入し、添加材であるSiの原料としてはテトラメチルシラン等のシラン系ガスを導入する。 When forming a hard coating of DLC: Si, a hydrocarbon-based gas such as C 6 H 6 or C 2 H 2 is introduced for the formation of DLC, and silane such as tetramethylsilane is used as a raw material for Si as an additive. System gas is introduced.

AIP法による蒸着開始時には、前記炭化水素系ガス及び前記シラン系ガスの両方を真空チャンバ内に導入することで、基材の表面にはまずシラン系ガスの導入量に応じたDLC:Siの被膜が形成される。その後、徐々にシラン系ガスの導入量を低下させていくことで、基材側から摺動面側にかけてSi濃度が徐々に低くなる傾斜膜を形成することができる。DLC:Si被膜では、Si濃度が高いほど硬度は低くなり、またSi濃度が低くなるほど硬度は高くなるので、基材側については基材に近い硬度(例えば硬度が1000Hv)とし、摺動面側に近づくほど硬度が高くなるようにして、摺動面では硬度が2000〜3000Hvとなるようにすることができる。   At the start of vapor deposition by the AIP method, both the hydrocarbon-based gas and the silane-based gas are introduced into a vacuum chamber, so that a DLC: Si coating corresponding to the amount of silane-based gas introduced is first applied to the surface of the substrate. Is formed. Thereafter, by gradually reducing the amount of silane-based gas introduced, it is possible to form an inclined film in which the Si concentration gradually decreases from the base material side to the sliding surface side. In the DLC: Si coating, the higher the Si concentration, the lower the hardness, and the lower the Si concentration, the higher the hardness. Therefore, the base material side has a hardness close to the base material (for example, a hardness of 1000 Hv), and the sliding surface side. The hardness can be made higher as it gets closer to, and the hardness can be 2000 to 3000 Hv on the sliding surface.

このように構成することにより、初期摺動時の金属接触状態でも高い摺動特性が得られると共に、基材に向けて緩やかにSi量が増加するため、硬質被膜と基材との密着性が良くなり、硬質被膜の剥離も生じにくくなる。従って、この例によれば、信頼性を更に向上できる冷媒圧縮機が得られる効果がある。なお、基材付近の硬質被膜1000のSi量は、基材との密着性の観点から概ね20at.%とすることが望ましい。   By configuring in this way, high sliding characteristics can be obtained even in the metal contact state at the time of initial sliding, and the amount of Si gradually increases toward the base material, so that the adhesion between the hard coating and the base material is improved. The hard coating is less likely to be peeled off. Therefore, according to this example, there is an effect that a refrigerant compressor that can further improve the reliability can be obtained. In addition, it is desirable that the Si amount of the hard coating 1000 near the substrate is approximately 20 at.% From the viewpoint of adhesion to the substrate.

以上説明した本実施例によれば、すべり軸受は摩耗粒子を埋収させる異物埋収性を有する無鉛樹脂含浸材を用いて構成され、回転軸は鉄系材料で構成されると共に、この回転軸の前記すべり軸受と摺動する部分には硬さが1000Hv以上の硬質被膜が設けられているので、冷媒圧縮機が低速回転で運転されてすべり軸受部の油膜厚さが低下した場合でも、回転軸と無鉛樹脂含浸軸受との摺動面にかじりや焼付きが発生するのを防止できる信頼性の高い冷媒圧縮機を得ることができる。   According to the present embodiment described above, the plain bearing is configured by using a lead-free resin impregnated material having a foreign substance burying property that embeds wear particles, and the rotating shaft is configured by an iron-based material. Since the portion that slides with the slide bearing is provided with a hard coating having a hardness of 1000 Hv or more, even when the refrigerant compressor is operated at a low speed rotation and the oil film thickness of the slide bearing portion is reduced, it can rotate. It is possible to obtain a highly reliable refrigerant compressor that can prevent galling and seizure from occurring on the sliding surface between the shaft and the lead-free resin-impregnated bearing.

即ち、異物埋収性を有する無鉛樹脂含浸材を用いたことにより、摩耗粒子が無縁樹脂含浸材に埋収されるから、回転軸やすべり軸受にかじりや摩耗が発生するのを低減できるだけでなく、低速運転により油膜厚さを確保できず境界潤滑領域に移行し、前記埋収された摩耗粒子と回転軸とが金属接触を生じた場合でも、回転軸表面には摩耗粒子よりも硬度が高く摺動性も良い硬質被膜を設けているので、回転軸のかじりや焼付きを抑制して良好な摺動性を確保することができる。従って、本実施例によれば、冷媒圧縮機の低速運転時にも、軸受摺動部におけるかじりや焼付きの発生を抑制して、良好な摺動性が得られ、且つ耐摩耗性も向上できる信頼性の高い冷媒圧縮機を得ることができる。   In other words, the use of lead-free resin impregnated material having foreign substance embeddability not only reduces the occurrence of galling and wear on the rotary shaft and plain bearing, but also wear particles are embedded in the resin-free resin impregnated material. Even when the oil film thickness cannot be secured due to low-speed operation and the transition to the boundary lubrication region occurs and the buried wear particles and the rotation shaft make metal contact, the surface of the rotation shaft has higher hardness than the wear particles. Since the hard coating having good slidability is provided, it is possible to secure good slidability by suppressing the galling and seizure of the rotating shaft. Therefore, according to the present embodiment, even during low-speed operation of the refrigerant compressor, it is possible to suppress the occurrence of galling and seizure in the bearing sliding portion, to obtain good slidability and to improve wear resistance. A highly reliable refrigerant compressor can be obtained.

100 固定スクロール(101:台板、102:ラップ、103:吸入口、104:吐出口)
200 旋回スクロール(201:台板、202:ラップ、203:ボス部、210:旋回すべり軸受、220:給油路)
300 回転軸(301:クランクピン、302:円筒部材、310:ポンプ継ぎ手、311:油通路)
400 フレーム(401:すべり軸受、402:シール部、408:排油パイプ)
500 オルダム継手
600 電動機
700 密閉容器(701:吐出管、710:吐出室、711:吸入管、730:油溜り)
800 下フレーム(801:副軸受、802:軸受ハウジング)
900 ポンプ部
1000 硬質被膜
1001 中間層。
100 fixed scroll (101: base plate, 102: lap, 103: suction port, 104: discharge port)
200 orbiting scroll (201: base plate, 202: lap, 203: boss, 210: orbiting slide bearing, 220: oil supply path)
300 Rotating shaft (301: Crank pin, 302: Cylindrical member, 310: Pump joint, 311: Oil passage)
400 frame (401: plain bearing, 402: seal part, 408: oil drain pipe)
500 Oldham coupling 600 Electric motor 700 Sealed container (701: Discharge pipe, 710: Discharge chamber, 711: Suction pipe, 730: Oil reservoir)
800 Lower frame (801: secondary bearing, 802: bearing housing)
900 Pump unit 1000 Hard coating 1001 Intermediate layer.

Claims (7)

冷媒を圧縮する圧縮機構部と、該圧縮機構部を駆動する回転軸とを備え、前記回転軸と前記圧縮機構部との係合部、或いは前記回転軸を支持する回転支持部の少なくとも何れかにすべり軸受を備えている冷媒圧縮機において、
前記すべり軸受は摩耗粒子を埋収させる異物埋収性を有する無鉛樹脂含浸材を用いて構成され、
前記回転軸は鉄系材料で構成されると共に、この回転軸の前記すべり軸受と摺動する部分には硬さが1000Hv以上の硬質被膜が設けられていることを特徴とする冷媒圧縮機。
A compression mechanism section that compresses the refrigerant; and a rotation shaft that drives the compression mechanism section; and at least one of an engagement section between the rotation shaft and the compression mechanism section, or a rotation support section that supports the rotation shaft. In a refrigerant compressor equipped with a sliding bearing,
The slide bearing is composed of a lead-free resin impregnated material having foreign matter burying property for burying wear particles,
The rotary shaft is made of an iron-based material, and a hard coating having a hardness of 1000 Hv or more is provided on a portion of the rotary shaft that slides with the slide bearing.
請求項1に記載の冷媒圧縮機において、前記硬質被膜の硬度は1500〜3000Hvであることを特徴とする冷媒圧縮機。   The refrigerant compressor according to claim 1, wherein the hardness of the hard coating is 1500 to 3000 Hv. 請求項1または2に記載の冷媒圧縮機において、前記回転軸に設けた前記硬質被膜は、鉄系材料で構成された円筒部材の外周面に硬質被膜を形成し、この硬質被膜を形成した円筒部材を前記回転軸に嵌合することで設けられていることを特徴とする冷媒圧縮機。   3. The refrigerant compressor according to claim 1, wherein the hard coating provided on the rotary shaft forms a hard coating on an outer peripheral surface of a cylindrical member made of an iron-based material, and the cylinder having the hard coating formed thereon. A refrigerant compressor provided by fitting a member to the rotating shaft. 請求項1〜3の何れかに記載の冷媒圧縮機において、前記硬質被膜は、クロム系被膜、チタン系被膜、硬質炭素系被膜、Si含有硬質炭素系被膜の少なくとも何れかであることを特徴とする冷媒圧縮機。   The refrigerant compressor according to any one of claims 1 to 3, wherein the hard coating is at least one of a chromium-based coating, a titanium-based coating, a hard carbon-based coating, and a Si-containing hard carbon-based coating. Refrigerant compressor. 請求項4に記載の冷媒圧縮機において、前記硬質被膜は、前記回転軸を構成する鉄系材料の基材表面にクロム系被膜を形成し、このクロム系被膜の上に、該クロム系被膜より硬度の高い硬質炭素系被膜を形成して構成されていることを特徴とする冷媒圧縮機。   5. The refrigerant compressor according to claim 4, wherein the hard coating forms a chromium-based coating on a surface of a base material of an iron-based material constituting the rotating shaft, and the chromium-based coating is formed on the chromium-based coating from the chromium-based coating. A refrigerant compressor characterized in that a hard carbon-based film having high hardness is formed. 請求項4に記載の冷媒圧縮機において、前記硬質皮膜はSi含有硬質炭素系被膜であって、このSi含有硬質炭素系被膜は、前記回転軸を構成する鉄系材料の基材表面から摺動面にかけて、そのSi濃度が減少する傾斜膜に形成されていることを特徴とする冷媒圧縮機。   5. The refrigerant compressor according to claim 4, wherein the hard coating is a Si-containing hard carbon-based coating, and the Si-containing hard carbon-based coating slides from the surface of a base material of an iron-based material constituting the rotating shaft. A refrigerant compressor characterized in that it is formed in an inclined film whose Si concentration decreases over the surface. 請求項1〜6の何れかに記載の冷媒圧縮機において、前記圧縮機構部は、台板に渦巻状のラップを有する固定スクロールと旋回スクロールを互いに組み合わせて構成されたスクロール圧縮機であることを特徴とする冷媒圧縮機。   The refrigerant compressor according to any one of claims 1 to 6, wherein the compression mechanism unit is a scroll compressor configured by combining a fixed scroll having a spiral wrap on a base plate and a turning scroll. A featured refrigerant compressor.
JP2010180275A 2010-08-11 2010-08-11 Refrigerant compressor Active JP5385873B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010180275A JP5385873B2 (en) 2010-08-11 2010-08-11 Refrigerant compressor
US13/815,000 US20130195707A1 (en) 2010-08-11 2011-08-08 Refrigerant Compressor
PCT/JP2011/068092 WO2012020740A1 (en) 2010-08-11 2011-08-08 Refrigerant compressor
CN201180038961.6A CN103069166B (en) 2010-08-11 2011-08-08 Coolant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180275A JP5385873B2 (en) 2010-08-11 2010-08-11 Refrigerant compressor

Publications (2)

Publication Number Publication Date
JP2012036878A JP2012036878A (en) 2012-02-23
JP5385873B2 true JP5385873B2 (en) 2014-01-08

Family

ID=45567704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180275A Active JP5385873B2 (en) 2010-08-11 2010-08-11 Refrigerant compressor

Country Status (4)

Country Link
US (1) US20130195707A1 (en)
JP (1) JP5385873B2 (en)
CN (1) CN103069166B (en)
WO (1) WO2012020740A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386485B1 (en) * 2012-09-24 2014-04-18 엘지전자 주식회사 Scroll compressor with a bearing
KR101308753B1 (en) * 2012-09-24 2013-09-12 엘지전자 주식회사 Synthetic resine bearing and scroll compressor with the same
JP2014196680A (en) * 2013-03-29 2014-10-16 株式会社日立製作所 Refrigerant compressor
CN105604933A (en) * 2014-10-31 2016-05-25 珠海格力节能环保制冷技术研究中心有限公司 Scroll compressor and air conditioner
US20190136858A1 (en) * 2015-03-30 2019-05-09 Hicor Technologies, Inc. Compressor with liquid injection cooling
JP2018517097A (en) * 2015-04-23 2018-06-28 エマソン クライメット テクノロジーズ(スーチョウ)カンパニー、リミテッド Scroll compressor and drive shaft and unload bush for scroll compressor
CN105257545A (en) * 2015-11-04 2016-01-20 安徽美芝精密制造有限公司 Rotary compressor
CN109964034B (en) * 2016-11-18 2021-05-07 松下知识产权经营株式会社 Refrigerant compressor and refrigerating device with same
CN110036201A (en) * 2016-11-18 2019-07-19 松下知识产权经营株式会社 Coolant compressor and refrigerating plant with it
CN111480014B (en) * 2017-12-15 2022-04-29 千住金属工业株式会社 Sliding member and bearing
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
JP7142100B2 (en) * 2018-11-08 2022-09-26 パナソニックホールディングス株式会社 Refrigerant compressor and refrigeration system using the same
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115998A (en) * 1984-06-29 1986-01-24 Toshiba Corp Sliding parts of compressor or the like
JPS6371591A (en) * 1986-09-12 1988-03-31 Daikin Ind Ltd Bearing structure of rotary compressor
JPH081184B2 (en) * 1987-09-30 1996-01-10 株式会社日立製作所 Compressor
JPH0563162U (en) * 1992-01-30 1993-08-20 日本電気ホームエレクトロニクス株式会社 Horizontal deflection linearity correction circuit
JPH0712624U (en) * 1993-05-31 1995-03-03 エヌティエヌ株式会社 Spherical plain bearing
JPH07293468A (en) * 1994-04-28 1995-11-07 Toshiba Corp Closed type compressor
JPH1082390A (en) * 1996-07-18 1998-03-31 Sanyo Electric Co Ltd Sliding member, compressor and rotary compressor
JP2001225412A (en) * 2000-02-16 2001-08-21 Token Thermotec:Kk Protective film coated member
JP3571623B2 (en) * 2000-08-07 2004-09-29 大同メタル工業株式会社 Sliding material
JP2002098052A (en) * 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd Hermetically closed type electric compressor and its manufacturing method
JP2002147354A (en) * 2000-11-14 2002-05-22 Matsushita Electric Ind Co Ltd Compressor
JP2003245485A (en) * 2002-02-22 2003-09-02 Brother Ind Ltd Sewing machine
DE10201405A1 (en) * 2002-01-15 2003-07-24 Siemens Ag Pump for pumping fuel has a pump casing with a pumping chamber fitted with inlets and outlets as well as a pumping wheel in the chamber fastened on a drive shaft rotating on bearings in the casing.
JP2004269973A (en) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd Method of producing sliding component, and compressor provided with the sliding component
JP2005127226A (en) * 2003-10-24 2005-05-19 Hitachi Industries Co Ltd Drain pump and submerged bearing device
JP2006016992A (en) * 2004-06-30 2006-01-19 Daikin Ind Ltd Fluid machine
CN1896555A (en) * 2005-07-15 2007-01-17 乐金电子(天津)电器有限公司 Production of rotary compressor crank
JP2009287483A (en) * 2008-05-30 2009-12-10 Hitachi Appliances Inc Refrigerant compressor
CN101724741A (en) * 2008-10-20 2010-06-09 乐金电子(天津)电器有限公司 Method for manufacturing compressor crankshaft
JP2014196680A (en) * 2013-03-29 2014-10-16 株式会社日立製作所 Refrigerant compressor

Also Published As

Publication number Publication date
CN103069166A (en) 2013-04-24
WO2012020740A1 (en) 2012-02-16
JP2012036878A (en) 2012-02-23
CN103069166B (en) 2016-01-27
US20130195707A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5385873B2 (en) Refrigerant compressor
AU2006223991B2 (en) Composition for sliding element, sliding element and fluid machine
EP2784322A1 (en) Refrigerant compressor
WO2005068840A1 (en) Fluid machine
JP2006283706A (en) Composition for sliding member, sliding member and fluid machine
JP2013015092A (en) Compressor
JP6214954B2 (en) Scroll compressor
CN106151029A (en) Scroll compressor and drive shaft and unload bushing for scroll compressor
JP2001115959A (en) Compressor
JPWO2015025416A1 (en) Rotating machinery and refrigeration cycle equipment
JP2008261261A (en) Slide member and scroll type motor-driven compressor using it
WO1992018772A1 (en) Rotary compressor
JP2007224767A (en) Rotary fluid machine
CN101027486A (en) Sliding member and fluid machine
JP2009287483A (en) Refrigerant compressor
JP5132711B2 (en) Vane, rolling piston type single-stage rotary hermetic compressor, water heater, and vane manufacturing method
WO2021065391A1 (en) Insulating rolling bearing
JP2005325842A (en) Fluid machine
JP5640885B2 (en) Scroll compressor
CN218760434U (en) Rotor type compressor
JP4967513B2 (en) Composition for sliding member of compressor, sliding member of compressor and compressor
JP7433829B2 (en) insulated rolling bearing
JP5217233B2 (en) Composition for sliding member, sliding member and fluid machine
JP2008280934A (en) Refrigerant compressor
JP2021014811A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250