JP2012215257A - Three-point contact ball bearing and method for manufacturing the same - Google Patents

Three-point contact ball bearing and method for manufacturing the same Download PDF

Info

Publication number
JP2012215257A
JP2012215257A JP2011081483A JP2011081483A JP2012215257A JP 2012215257 A JP2012215257 A JP 2012215257A JP 2011081483 A JP2011081483 A JP 2011081483A JP 2011081483 A JP2011081483 A JP 2011081483A JP 2012215257 A JP2012215257 A JP 2012215257A
Authority
JP
Japan
Prior art keywords
ball bearing
point contact
groove bottom
contact ball
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011081483A
Other languages
Japanese (ja)
Inventor
Tomoya Nakamura
智也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011081483A priority Critical patent/JP2012215257A/en
Publication of JP2012215257A publication Critical patent/JP2012215257A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a three-point contact ball bearing from hardly being damaged, even if fun blade off occurs when the three-point contact ball bearing is used for a gas turbine as an industrial machine or an aircraft and so on.SOLUTION: Stiffness near a groove bottom of a raceway surface 4 of an inner and outer ring is made to be lower than regions other than the groove bottom. Stiffness of regions with which the ball 3 of the raceway surface 4 contacts is reduced to easily deform in the fun blade off. When the stiffness at the regions other than the groove bottom of the raceway surface 4 of the inner and outer ring is set to approximately HRC60-HRC65, the stiffness near the groove bottom is set to HRC60 or lower.

Description

この発明は、3点接触玉軸受、特に、産業機械や航空機などのガスタービンに使用される3点接触玉軸受及びその製造方法に関するものである。   The present invention relates to a three-point contact ball bearing, and more particularly to a three-point contact ball bearing used for gas turbines such as industrial machines and aircraft, and a manufacturing method thereof.

航空機などのジェットエンジンの主軸用に使用される軸受は、主にアキシャル荷重を受ける。   A bearing used for a main shaft of a jet engine such as an aircraft mainly receives an axial load.

3点接触玉軸受は、アキシャル荷重が大きい条件下での使用に適しているが、ジェットエンジンにおいてファンブレードオフ(Fun Blade Off 以下、「FBO」と略す。)が起こった場合、アキシャル荷重に比べて非常に大きなラジアル荷重を受ける。   Three-point contact ball bearings are suitable for use under conditions with a large axial load, but in the case of a fan blade off (hereinafter referred to as “FBO”) in a jet engine, compared to the axial load. Receive very large radial loads.

FBOが起こると、航空機は最寄りの空港に安全に着陸する必要があるが、主軸の回転が止まると、ファンが空気抵抗となって飛行に支障をきたすため、主軸用の軸受には、FBOが起こっても、最低限回転することが要求される。   When FBO occurs, it is necessary for the aircraft to land safely at the nearest airport. However, if the spindle stops rotating, the fan will become air resistance and hinder flight. Even if it happens, it is required to rotate at least.

しかしながら、FBO時のラジアル荷重は、非常に大きいので、転動体が損傷し、軸受の回転が妨げられるリスクがある。   However, since the radial load during FBO is very large, there is a risk that the rolling elements will be damaged and the rotation of the bearing will be hindered.

このため、特許文献1の発明では、ジェットエンジンの主軸に用いられる軸受の外輪に、弾性部材と振動減衰部を設け、大きなラジアル荷重が働いた場合においても、転動体に過大な力が付加されないようにしている。   For this reason, in the invention of Patent Document 1, an excessive force is not applied to the rolling elements even when an elastic member and a vibration damping portion are provided on the outer ring of the bearing used for the main shaft of the jet engine and a large radial load is applied. I am doing so.

特開2008−138704号公報JP 2008-138704 A

ところが、特許文献1に記載の方法では、FBO時に転動体に負荷される荷重の軽減効果が十分でない上、構造が複雑で製造コストが高く、また大きなスペースが必要となるという問題がある。   However, the method described in Patent Document 1 has problems that the effect of reducing the load applied to the rolling element during FBO is not sufficient, the structure is complicated, the manufacturing cost is high, and a large space is required.

そこで、この発明は、軸受の構造を複雑にすることなく、FBO時における転動体の破損リスクを低減しようとするものである。   Accordingly, the present invention is intended to reduce the risk of rolling element breakage during FBO without complicating the structure of the bearing.

前記の課題を解決するために、この発明は、FBO時に軌道面の転動体が接触する箇所の硬さを低下させて変形しやすくし、FBOが起こった際の転動体の破損リスクを低減させたものである。   In order to solve the above-described problems, the present invention reduces the hardness of a portion of the raceway surface that contacts the rolling element during FBO to facilitate deformation, and reduces the risk of damage to the rolling element when FBO occurs. It is a thing.

即ち、この発明は、内外輪の軌道面の溝底付近の硬さを、溝底以外の硬さよりも低くして、FBO時に軌道面の転動体が接触する箇所の硬さを低下させて変形しやすくしたものである。   That is, according to the present invention, the hardness in the vicinity of the groove bottom of the raceway surface of the inner and outer rings is made lower than the hardness other than the bottom of the groove, and the hardness of the portion where the rolling elements of the raceway surface contact during FBO is reduced. It is easy to do.

この発明において、内外輪の軌道面の溝底以外の硬さを、HRC60〜HRC65程度にした場合、溝底付近の硬さを、HRC60以下にしている。   In the present invention, when the hardness of the raceway surface of the inner and outer rings other than the groove bottom is about HRC60 to HRC65, the hardness near the groove bottom is set to HRC60 or less.

ジェットエンジン主軸用3点接触玉軸受の内外輪を、耐熱浸炭鋼M50NiLによって形成する場合、溝底付近の軌道面を母材硬さのHRC45程度とし、それ以外の箇所の硬さは、従来通り、HRC60〜65程度とする。ジェットエンジン主軸用3点接触玉軸受の場合、アキシャル荷重が主となる通常運転時には、軌道面と転動体は、比較的大きな接触角を持って接触し、転動体は、HRC60〜65程度の硬さの軌道面と接触するため、従来のジェットエンジン主軸用3点接触玉軸受と変わらない寿命を有する。   When the inner and outer rings of the three-point contact ball bearing for the jet engine main shaft are formed of heat-resistant carburized steel M50NiL, the raceway surface near the groove bottom is set to about HRC45 of the base material hardness, and the hardness of the other portions is as usual. , HRC about 60-65. In the case of a three-point contact ball bearing for a jet engine main shaft, during normal operation where the axial load is mainly used, the raceway surface and the rolling element come into contact with each other with a relatively large contact angle, and the rolling element has a hardness of about 60 to 65 HRC. Therefore, it has the same life as a conventional three-point contact ball bearing for a jet engine main shaft.

そして、FBO時には、ラジアル荷重が大きくなる影響で接触角は0°に近くなり、硬さHRC45程度の溝底付近で軌道面と転動体が接触するため、HRC60〜65程度の軌道面に比べて変形しやすく、接触面に発生する応力が緩和されるため、転動体の破損リスクが低減される。
軌道面の溝底付近の変形のし易さは、材料の降伏強度に依存する。硬さと降伏強度の関係を表1に示す。表1に示すように、硬さをHRC60からHRC45に下げた場合、降伏強度が35%程度低下することから、硬さを低下させることは転動体の破損リスクを低減するのに十分な効果を有する。
At the time of FBO, the contact angle is close to 0 ° due to the effect of increasing radial load, and the raceway and the rolling element come into contact with each other near the bottom of the groove having a hardness of about HRC45. Since it is easy to deform | transform and the stress which generate | occur | produces on a contact surface is relieve | moderated, the failure risk of a rolling element is reduced.
The ease of deformation near the groove bottom of the raceway surface depends on the yield strength of the material. Table 1 shows the relationship between hardness and yield strength. As shown in Table 1, when the hardness is lowered from HRC60 to HRC45, the yield strength is reduced by about 35%, so reducing the hardness has an effect sufficient to reduce the risk of breakage of the rolling elements. Have.

Figure 2012215257
Figure 2012215257

この発明によると、ジェットエンジンにFBOが起こった場合でも、軸受が破損することなく、回転を続けることができ、航空機は最寄りの空港まで安全に航行し、着陸することができる。   According to the present invention, even when the FBO occurs in the jet engine, the bearing can continue to rotate without being damaged, and the aircraft can safely navigate to and land at the nearest airport.

通常運転時における3点接触玉軸受に加わる負荷の状態を示す概略図である。It is the schematic which shows the state of the load added to the three-point contact ball bearing at the time of normal driving | operation. FBOが起こった場合に3点接触玉軸受に加わる負荷の状態を示す概略図である。It is the schematic which shows the state of the load added to a three-point contact ball bearing when FBO occurs. この発明に係る3点接触玉軸受の軌道面の形成方法の一例を示す概略図である。It is the schematic which shows an example of the formation method of the raceway surface of the three-point contact ball bearing which concerns on this invention. この発明に係る3点接触玉軸受の軌道面の形成方法の他の例を示す概略図である。It is the schematic which shows the other example of the formation method of the raceway surface of the three-point contact ball bearing which concerns on this invention. この発明に係る3点接触玉軸受の軌道面の形成方法の他の例を示す概略図である。It is the schematic which shows the other example of the formation method of the raceway surface of the three-point contact ball bearing which concerns on this invention.

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

ジェットエンジン主軸用3点接触玉軸受は、図1に示すように、通常運転時には、アキシャル荷重(Fa)が主となり、内輪1と外輪2の軌道面4と転動体3とは比較的大きな接触角αを持って接触する。 As shown in FIG. 1, the three-point contact ball bearing for the jet engine main shaft is mainly subjected to an axial load (Fa) during normal operation, and the raceway surface 4 of the inner ring 1 and the outer ring 2 and the rolling element 3 are in relatively large contact. Contact with angle α 1 .

そして、FBOが起こった時には、図2に示すように、ラジアル荷重(Fr)が大きくなる影響で接触角(α)は0°に近くなる。 When FBO occurs, as shown in FIG. 2, the contact angle (α 2 ) becomes close to 0 ° due to the effect of increasing the radial load (Fr).

このため、この発明は、通常運転時に、大きなアキシャル荷重を受ける接触角αを含む矢印aの範囲の内輪1と外輪2の軌道面4を、HRC60〜65程度の硬さにして、従来のジェットエンジン主軸用3点接触玉軸受と変わらない寿命を有するようにし、FBOが起こった時に、ラジアル荷重(Fr)が大きくなる接触角(α)を含む矢印bの範囲の溝底付近の硬さを、HRC45程度にして、接触面に発生する応力を緩和して、転動体3の破損リスクを低減している。 For this reason, in the present invention, during normal operation, the raceway surfaces 4 of the inner ring 1 and the outer ring 2 in the range of the arrow a including the contact angle α 1 that receives a large axial load are made to have a hardness of about HRC 60 to 65, It has the same life as a three-point contact ball bearing for a jet engine main shaft, and when FBO occurs, the hardness near the groove bottom in the range of arrow b including the contact angle (α 2 ) that increases the radial load (Fr). The stress is reduced to about HRC45, the stress generated on the contact surface is relaxed, and the risk of breakage of the rolling element 3 is reduced.

前記玉3は、耐熱鋼又はセラミックによって形成することができる。玉3をセラミックで形成する場合、セラミックは、窒化ケイ素、アルミナ、ジルコニア、炭化ケイ素の中の一つを主成分とする。
次に、軌道面4の溝底付近の硬さが、溝底以外の硬さよりも低くする内輪1と外輪2を形成する方法としては、次のような方法がある。
The ball 3 can be formed of heat resistant steel or ceramic. When the balls 3 are formed of ceramic, the ceramic is mainly composed of one of silicon nitride, alumina, zirconia, and silicon carbide.
Next, as a method of forming the inner ring 1 and the outer ring 2 in which the hardness near the groove bottom of the raceway surface 4 is lower than the hardness other than the groove bottom, there are the following methods.

(実施例1)
図3(a)に示すように、内外輪の材料Aとして、耐熱浸炭鋼M50NiLを使用し、この材料Aを、図3(b)に示すように、溝底付近の取りしろを多く残して、軌道面4を、旋削工具5を使用して旋削し、その後、図3(c)に示すように、溝底付近の取りしろを多く残した材料Aを熱処理して、浸炭硬化層6を形成した後、図3(d)に示すように、溝底付近を旋削又は研削工具7を用いて、溝底付近の浸炭硬化層6を除去すると、図3(e)に示すように、溝底付近がHRC45程度の母材が露出し、溝底付近以外の部分がHRC60〜65程度の硬さの浸炭硬化層6が残る。
Example 1
As shown in FIG. 3 (a), heat-resistant carburized steel M50NiL is used as the material A for the inner and outer rings, leaving a lot of margin near the groove bottom as shown in FIG. 3 (b). Then, the raceway surface 4 is turned by using a turning tool 5, and thereafter, as shown in FIG. 3 (c), the material A having a lot of margin in the vicinity of the groove bottom is heat-treated, so that the carburized hardened layer 6 is formed. After the formation, as shown in FIG. 3 (d), when the carburized hardened layer 6 near the groove bottom is removed using a turning or grinding tool 7 near the groove bottom, as shown in FIG. A base material having an HRC of about 45 is exposed in the vicinity of the bottom, and a carburized hardened layer 6 having a hardness of about HRC 60 to 65 remains in a portion other than the vicinity of the groove.

このようにして、軌道面4の溝底付近の硬さが、溝底以外の硬さよりも低くした内輪1と外輪2を形成することができる。   In this way, it is possible to form the inner ring 1 and the outer ring 2 in which the hardness near the groove bottom of the raceway surface 4 is lower than the hardness other than the groove bottom.

(実施例2)
図4(a)に示すように、内外輪の材料Aとして、実施例1と同様に、耐熱浸炭鋼M50NiLを使用し、図4(b)に示すように、軌道面4を旋削工具5使用して旋削した後、熱処理する際に、図4(c)に示すように、軌道面4の溝底付近をマスキング剤8によってマスキングした後、図4(d)に示すように、熱処理により軌道面4に浸炭硬化層6を形成し、その後、図4(e)に示すように、溝底付近を旋削又は研削工具7を用いて、溝底付近のマスキング剤8を除去すると、マスキング剤8によって浸炭されずに残った、溝底付近のHRC45程度の母材が露出する。
このようにして、軌道面4の溝底付近の硬度が、溝底以外の硬度よりも低硬度にした内輪1と外輪2を形成することができる。
(Example 2)
As shown in FIG. 4 (a), heat-resistant carburized steel M50NiL is used as the material A for the inner and outer rings as in Example 1, and the raceway surface 4 is used as the turning tool 5 as shown in FIG. 4 (b). After the turning, when the heat treatment is performed, as shown in FIG. 4C, the vicinity of the groove bottom of the raceway surface 4 is masked by the masking agent 8 and then the orbit is performed by the heat treatment as shown in FIG. After forming the carburized hardened layer 6 on the surface 4 and then removing the masking agent 8 near the groove bottom using a turning or grinding tool 7 as shown in FIG. The base material of about HRC45 in the vicinity of the groove bottom that remains without being carburized is exposed.
In this way, it is possible to form the inner ring 1 and the outer ring 2 in which the hardness near the groove bottom of the raceway surface 4 is lower than the hardness other than the groove bottom.

(実施例3)
図5(a)に示すように、外輪の材料Aとして、実施例1と同様に、耐熱浸炭鋼M50NiL又は耐熱鋼M50を使用し、図5(b)に示すように、軌道面4を旋削工具5によって旋削した後、熱処理を行って、図5(c)に示すように、軌道面4全体をHRC60〜65程度の硬さとし、その後、溝底付近に軟金属のメッキ9を施すことにより、溝底付近の硬さを軟金属の硬さと同等にすることができる。なお、図5は、耐熱浸炭鋼M50NiLを使用した場合についての工程図である。
(Example 3)
As shown in FIG. 5 (a), as material A of the outer ring, heat resistant carburized steel M50NiL or heat resistant steel M50 is used as in Example 1, and the raceway surface 4 is turned as shown in FIG. 5 (b). After turning with the tool 5, heat treatment is performed, and the entire raceway surface 4 is made to have a hardness of about HRC 60 to 65 as shown in FIG. 5C, and then a soft metal plating 9 is applied in the vicinity of the groove bottom. The hardness near the groove bottom can be made equal to the hardness of the soft metal. FIG. 5 is a process diagram for the case where heat-resistant carburized steel M50NiL is used.

軟金属のメッキ9としては、銀メッキを使用することができる。銀の硬さは、130HVであるから、降伏強度が、硬さ694HV(HRC60)の軌道面よりも81%程度低下するので、実施例3による方法でも十分な効果を有する。なお、メッキ9としては、銀メッキ以外に銅メッキを用いることもできる。   As the soft metal plating 9, silver plating can be used. Since the hardness of silver is 130 HV, the yield strength is reduced by about 81% from the raceway surface having a hardness of 694 HV (HRC 60), so that the method according to Example 3 has a sufficient effect. In addition, as the plating 9, copper plating can be used in addition to silver plating.

1 内輪
2 外輪
3 玉
4 軌道面
5 旋削工具
6 浸炭硬化層
7 旋削・研削工具
8 マスキング剤
9 メッキ
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Ball 4 Raceway 5 Turning tool 6 Carburizing hardening layer 7 Turning and grinding tool 8 Masking agent 9 Plating

Claims (13)

内外輪と、内外輪間を転動する複数の玉とからなる3点接触玉軸受において、内外輪の軌道面の溝底付近の硬さを、溝底以外の硬さよりも低くしたことを特徴とする3点接触玉軸受。   In a three-point contact ball bearing consisting of inner and outer rings and a plurality of balls that roll between the inner and outer rings, the hardness near the groove bottom of the raceway surface of the inner and outer rings is lower than the hardness other than the groove bottom A three-point contact ball bearing. 前記内外輪の軌道面の溝底以外の硬さが、HRC60〜HRC65程度であり、溝底付近の硬さが、HRC60以下である請求項1記載の3点接触玉軸受。   The three-point contact ball bearing according to claim 1, wherein the hardness of the inner and outer ring raceways other than the groove bottom is about HRC60 to HRC65, and the hardness near the groove bottom is HRC60 or less. 前記内外輪の軌道面の溝底以外の部分に、熱処理による浸炭硬化層を設けた請求項1又は2記載の3点接触玉軸受。   The three-point contact ball bearing according to claim 1 or 2, wherein a carburized hardened layer by heat treatment is provided in a portion other than the groove bottom of the raceway surface of the inner and outer rings. 前記内外輪の軌道面の溝底付近に、軟金属によるメッキが施されている請求項1記載の3点接触玉軸受。   The three-point contact ball bearing according to claim 1, wherein the inner and outer rings are plated with a soft metal in the vicinity of the groove bottom of the raceway surface. 前記軟金属が、銀又は銅である請求項4に記載の3点接触玉軸受。   The three-point contact ball bearing according to claim 4, wherein the soft metal is silver or copper. 前記内外輪が、浸炭鋼によって形成されている請求項1〜4のいずれかに記載の3点接触玉軸受。   The three-point contact ball bearing according to any one of claims 1 to 4, wherein the inner and outer rings are formed of carburized steel. 前記浸炭鋼が、耐熱浸炭鋼である請求項6に記載の3点接触玉軸受。   The three-point contact ball bearing according to claim 6, wherein the carburized steel is heat-resistant carburized steel. 前記玉の材質が、耐熱鋼である請求項1〜7のいずれかに記載の3点接触玉軸受。   The three-point contact ball bearing according to any one of claims 1 to 7, wherein the ball is made of heat-resistant steel. 前記玉の材質が、窒化ケイ素、アルミナ、ジルコニア、炭化ケイ素の中の一つを主成分とする請求項1〜7のいずれかに記載の3点接触玉軸受。   The three-point contact ball bearing according to any one of claims 1 to 7, wherein a material of the ball is one of silicon nitride, alumina, zirconia, and silicon carbide as a main component. ジェットエンジンの主軸に使用される請求項1〜9のいずれかに記載の3点接触玉軸受。   The three-point contact ball bearing according to any one of claims 1 to 9, which is used for a main shaft of a jet engine. 内外輪の軌道面を形成する際に、溝底付近の取りしろを多く残して旋削し、その後、溝底付近の取りしろを多く残した材料を熱処理して、浸炭硬化層を形成した後、溝底付近の浸炭硬化層を除去することにより、内輪と外輪を形成することを特徴とする3点接触玉軸受の製造方法。   When forming the raceway surface of the inner and outer rings, turning to leave a lot of margin near the groove bottom, and then heat treating the material leaving a lot of margin near the groove bottom to form a carburized hardened layer, A method for manufacturing a three-point contact ball bearing, wherein an inner ring and an outer ring are formed by removing a carburized hardened layer near the groove bottom. 内外輪の軌道面を旋削した後、熱処理する際に、軌道面の溝底付近をマスキングによってマスキングした後、熱処理により軌道面に浸炭硬化層を形成し、その後、溝底付近のマスキング剤を除去することにより、内輪と外輪を形成することを特徴とする3点接触玉軸受の製造方法。   After turning the raceway surfaces of the inner and outer rings, when heat treatment is performed, the vicinity of the groove bottom of the raceway surface is masked by masking, and then a carburized hardened layer is formed on the raceway surface by heat treatment, and then the masking agent near the groove bottom is removed. A method for manufacturing a three-point contact ball bearing, characterized in that an inner ring and an outer ring are formed. 内外輪の軌道面を旋削した後、熱処理を行って、軌道面全体に浸炭硬化層を形成した後、溝底付近に軟金属のメッキを施すことにより、内輪と外輪を形成することを特徴とする3点接触玉軸受の製造方法。
After turning the raceway surface of the inner and outer rings, heat treatment is performed to form a carburized hardened layer on the entire raceway surface, and then the inner ring and the outer ring are formed by applying a soft metal plating near the groove bottom. A manufacturing method of a three-point contact ball bearing.
JP2011081483A 2011-04-01 2011-04-01 Three-point contact ball bearing and method for manufacturing the same Withdrawn JP2012215257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081483A JP2012215257A (en) 2011-04-01 2011-04-01 Three-point contact ball bearing and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081483A JP2012215257A (en) 2011-04-01 2011-04-01 Three-point contact ball bearing and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012215257A true JP2012215257A (en) 2012-11-08

Family

ID=47268185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081483A Withdrawn JP2012215257A (en) 2011-04-01 2011-04-01 Three-point contact ball bearing and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012215257A (en)

Similar Documents

Publication Publication Date Title
CN101652222A (en) Method for manufacturing the outer race of self-aligning bearing
JP2014531010A (en) Method for manufacturing track element of bearing assembly and track element
JP2014088893A (en) Rolling bearing and manufacturing method thereof
JP2015059645A (en) Rolling bearing
JP2005076675A (en) Tapered roller bearing for transmission of automobile
JP5163183B2 (en) Rolling bearing
US9422984B2 (en) Bearing having a raceway with high chromium content
JP2006009891A (en) Roller bearing
JP5998631B2 (en) Rolling bearing
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP2012215257A (en) Three-point contact ball bearing and method for manufacturing the same
JP2007009951A (en) Inner ring for tapered roller bearing and tapered roller bearing
JP2006214456A (en) Roller bearing
JP2013160314A (en) Rolling bearing
JP2011133060A (en) Rolling bearing
JP2018115747A (en) Rolling bearing
CN109072978B (en) Rolling bearing and method for treating bearing rail surface for wear resistance
JP2007120712A (en) Double row automatic aligning roller bearing for aircraft
WO2015194492A1 (en) Rolling bearing
JP2008202682A (en) Rolling bearing
JP4433778B2 (en) Manufacturing method of bearing race member
WO2024048601A1 (en) Rolling bearing and rolling body production method
JP2005226714A (en) Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device
JP2001288535A (en) Rolling bearing
JP2008180282A (en) Thrust roller bearing and torque converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603