JP2005226714A - Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device - Google Patents

Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device Download PDF

Info

Publication number
JP2005226714A
JP2005226714A JP2004035064A JP2004035064A JP2005226714A JP 2005226714 A JP2005226714 A JP 2005226714A JP 2004035064 A JP2004035064 A JP 2004035064A JP 2004035064 A JP2004035064 A JP 2004035064A JP 2005226714 A JP2005226714 A JP 2005226714A
Authority
JP
Japan
Prior art keywords
rolling
raceway
compressive stress
residual compressive
rings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004035064A
Other languages
Japanese (ja)
Inventor
Hisashi Harada
久 原田
Takeshi Mikami
剛 三上
Original Assignee
Koyo Seiko Co Ltd
光洋精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd, 光洋精工株式会社 filed Critical Koyo Seiko Co Ltd
Priority to JP2004035064A priority Critical patent/JP2005226714A/en
Publication of JP2005226714A publication Critical patent/JP2005226714A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low cost rolling part easily enabling an increase in life irrespective of the shape of the part, a rolling device using the rolling part, and a method of manufacturing these part and device. <P>SOLUTION: Inner and outer rings (raceway members) 1 and 2 and balls (rolling members) 3 are assembled together in the same state as being used in a deep groove ball bearing (rolling device). A residual compressive stress is given to the inner and outer rings 1 and 2 and the balls 3 by moving these inner and outer rings 1 and 2 relative to the balls 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、転がり軸受等の転動装置とこれに含まれた構成要素としての転動部品、及びこれらの製造方法に関する。   The present invention relates to a rolling device such as a rolling bearing, a rolling component as a component included in the rolling device, and a manufacturing method thereof.
従来より、転がり軸受の軌道輪や転動体等の転動部品では、その動作時に繰り返し荷重がかかるために経年劣化は避け難く、いかにして長寿命化を図るかという課題がある。そこで、従来の転動部品には、相手部材が転がり接触する転動面にローラバニッシュ加工を施してその転動面表層に残留圧縮応力を付与することにより、寿命の向上を図ったものが知られている(例えば、下記特許文献1参照。)。   Conventionally, in rolling parts such as rolling rings and rolling elements of rolling bearings, repeated load is applied during the operation, so that it is difficult to avoid deterioration over time, and there is a problem of how to extend the life. For this reason, conventional rolling parts are known to have improved life by applying roller burnishing to the rolling contact surface of the mating member in rolling contact and applying residual compressive stress to the surface of the rolling contact surface. (For example, refer to Patent Document 1 below).
特開2002−168256号公報(第3頁)JP 2002-168256 A (page 3)
ところで、上記ローラバニッシュ加工では、その加工ツールとして、油圧で保持された例えばセラミックスボールが用いられており、このボールを転動部品の転動面(加工面)に強圧にて押し付けて転がり接触させながら当該加工面上を移動させることにより、残留圧縮応力を転動部品に生じさせていた。
ところが、上記のような従来例では、転動部品の形状や大きさなどによっては、ローラバニッシュ加工を適切に実施することができずに当該部品の寿命向上を図ることが困難な場合があった。具体的には、上記ボールは加工面に接触可能なようにその半球部分が外側に突出した状態でツールハウジングに回転自在に支持されているが、例えば深溝玉軸受の内輪軌道面に適用した場合、その軌道面両側の肩部にツールハウジングが当接することがあった。この結果、ボールと軌道面とが適切に接触せずに、残留圧縮応力を付与できないことがあり、内輪ひいては深溝玉軸受の寿命向上を行うのが難しかった。また、転動部品の形状などに応じてツールを用意することも考えられるが、このようにツールの種類数を増やすことは、転動部品に応じてツールの交換作業を行う必要が生じたり、転動部品及び転動装置のコストアップに直結したりして得策ではない。
By the way, in the roller burnishing, for example, a ceramic ball held by hydraulic pressure is used as a processing tool, and the ball is pressed against the rolling surface (working surface) of the rolling component with a strong pressure to make a rolling contact. However, the residual compressive stress was generated in the rolling parts by moving on the processed surface.
However, in the conventional example as described above, depending on the shape and size of the rolling part, it may be difficult to appropriately carry out the roller burnishing, and it is difficult to improve the life of the part. . Specifically, the ball is rotatably supported by the tool housing with its hemispherical portion protruding outward so that it can come into contact with the machining surface. For example, when applied to the inner ring raceway surface of a deep groove ball bearing The tool housing may come into contact with the shoulders on both sides of the track surface. As a result, the ball and the raceway surface are not in proper contact with each other, so that residual compressive stress may not be applied, and it is difficult to improve the life of the inner ring and thus the deep groove ball bearing. In addition, it is possible to prepare tools according to the shape of rolling parts, etc., but increasing the number of types of tools in this way requires the need to replace tools according to rolling parts, It is not a good idea because it directly leads to an increase in the cost of rolling parts and rolling devices.
上記のような従来の問題点に鑑み、本発明は、部品形状などに関わらず長寿命化を簡単に図ることができる低コストな転動部品及びこれを用いた転動装置並びにこれらの製造方法を提供することを目的とする。   In view of the above-described conventional problems, the present invention provides a low-cost rolling component that can easily extend the life regardless of the shape of the component, a rolling device using the rolling component, and a method of manufacturing the rolling device. The purpose is to provide.
本発明の転動部品は、転動部材とこの転動部材が転動する軌道部材とを有する転動装置に用いられるとともに、前記転動部材及び前記軌道部材のいずれか1つの部材を構成する合金鋼製の転動部品であって、
前記転動部材及び前記軌道部材は前記転動装置での使用状態と同様の状態に組立てられ、かつ、荷重が加えられた状態で相対運動することにより生じた残留圧縮応力を有することを特徴とするものである。
The rolling component of the present invention is used in a rolling device having a rolling member and a raceway member on which the rolling member rolls, and constitutes one member of the rolling member and the raceway member. Rolling parts made of alloy steel,
The rolling member and the raceway member are assembled in a state similar to the use state in the rolling device, and have a residual compressive stress generated by relative movement in a state where a load is applied. To do.
上記のように構成された転動部品では、残留圧縮応力は上記転動装置の他の構成要素である転動部材や軌道部材とともに、その部品の当該装置での使用状態と同様の状態に組立てられて転動部材及び軌道部材を相対運動させることによって付与されている。すなわち、転動部品は、転動装置内に組付けられたときと同様の状態で残留圧縮応力が付与されているので、ローラバニッシュ加工にて残留圧縮応力を付与する上記従来例と異なり、当該部品形状や大きさなどに関わらず残留圧縮応力を生じさせることができるとともに、転動部品の形状などに応じた加工ツールを準備する必要がない。   In the rolling component configured as described above, the residual compressive stress is assembled together with the rolling member and the track member, which are other components of the rolling device, in a state similar to the usage state of the component in the device. Thus, the rolling member and the raceway member are given relative movement. That is, since the rolling component is applied with the residual compressive stress in the same state as when assembled in the rolling device, the rolling component is different from the conventional example in which the residual compressive stress is applied by roller burnishing. Residual compressive stress can be generated regardless of the part shape and size, and it is not necessary to prepare a processing tool according to the shape of the rolling part.
また、上記転動部品において、前記転動部材と前記軌道部材との最大接触面圧が3〜7.5GPaの範囲となるように荷重が加えられた状態で、これらの転動部材及び軌道部材を相対運動させて残留圧縮応力が付与されることが好ましい。
この場合、上記最大接触面圧を3GPa以上とすることによって転動部品の内部の残留圧縮応力の最大値を所望値以上にすることができ、転動部品の寿命向上を確実に行うことができる。また、最大接触面圧が3.5GPa以上とした場合には、転動部品での残留圧縮応力の分布をより適切なものとすることができ、長寿命な転動部品をより確実に得ることができる点で好ましい。また、最大接触面圧を7.5GPa以下とすることにより、著しい塑性変形が転動部品に生じるのを防止することができ、当該部品寸法が大きく変化するのを防ぐことができる。
Further, in the above rolling component, in a state where a load is applied so that the maximum contact surface pressure between the rolling member and the raceway member is in a range of 3 to 7.5 GPa, the rolling member and the raceway member It is preferable that the residual compressive stress is applied by relatively moving the.
In this case, by setting the maximum contact surface pressure to 3 GPa or more, the maximum value of the residual compressive stress inside the rolling component can be increased to a desired value or more, and the life of the rolling component can be reliably improved. . Moreover, when the maximum contact surface pressure is 3.5 GPa or more, the distribution of the residual compressive stress in the rolling parts can be made more appropriate, and a long-life rolling part can be obtained more reliably. It is preferable at the point which can do. In addition, by setting the maximum contact surface pressure to 7.5 GPa or less, significant plastic deformation can be prevented from occurring in the rolling part, and the part dimensions can be prevented from changing greatly.
また、本発明の転動装置は、いずれかの上記転動部品を、転動部材及び軌道部材の少なくとも1つとして用いたことを特徴とするものである。
上記のように構成された転動装置では、残留圧縮応力が簡単適切に与えられた転動部品を使用しているので、疲労強度が改善された転動部品が含まれることとなって当該装置の寿命向上を容易に図ることができる。
The rolling device according to the present invention is characterized in that any one of the rolling parts is used as at least one of a rolling member and a raceway member.
In the rolling device configured as described above, since the rolling component to which the residual compressive stress is given simply and appropriately is used, the rolling device having improved fatigue strength is included and the device is included. The lifetime can be easily improved.
また、本発明の転動部品の製造方法は、転動装置に含まれた転動部材または軌道部材を構成する転動部品を合金鋼を用いて製造する製造方法であって、
所定形状に形成された前記転動部材及び前記軌道部材の各中間素材の少なくとも一方を合金鋼により作製し、これら転動部材及び軌道部材の各中間素材を前記転動装置での使用状態と同様の状態に組立てた後、これら中間素材を相対運動させることにより残留圧縮応力を付与する工程を含むことを特徴とするものである。
The rolling component manufacturing method of the present invention is a manufacturing method for manufacturing a rolling component constituting a rolling member or a raceway member included in a rolling device using alloy steel,
At least one of the rolling member and the intermediate material of the raceway member formed in a predetermined shape is made of alloy steel, and the intermediate material of the rolling member and the raceway member is the same as in use in the rolling device. After assembling in this state, the method includes a step of applying a residual compressive stress by relatively moving these intermediate materials.
上記のように構成された転動部品の製造方法では、転動部材及び軌道部材の各中間素材を上記転動装置での使用状態と同様の状態に組立てた後、これら中間素材を相対運動させることにより残留圧縮応力を付与する工程が含まれているので、転動部品の形状や大きさなどに応じた加工ツールを用いることなく、所望の残留圧縮応力を転動部品に与えることができ、当該部品の寿命向上効果を簡単に得ることができる。   In the rolling part manufacturing method configured as described above, the intermediate materials of the rolling member and the race member are assembled in a state similar to the state of use in the rolling device, and then these intermediate materials are relatively moved. Since a process of applying residual compressive stress is included, the desired residual compressive stress can be given to the rolling component without using a processing tool according to the shape and size of the rolling component, The effect of improving the life of the component can be easily obtained.
また、上記転動部品の製造方法では、前記残留圧縮応力を付与する工程において、前記相対運動を20回以下に制限することが好ましい。
この場合、上記相対運動を20回以下に制限することによって残留圧縮応力の最大値が所望値よりも小さくなるのを防ぐことができ、転動部品の寿命向上効果をより確実に得ることができる。
Moreover, in the manufacturing method of the said rolling components, it is preferable to restrict | limit the said relative motion to 20 times or less in the process of providing the said residual compressive stress.
In this case, by limiting the relative movement to 20 times or less, the maximum value of the residual compressive stress can be prevented from becoming smaller than the desired value, and the life improvement effect of the rolling parts can be obtained more reliably. .
また、本発明の転動装置の製造方法は、転動部材とこの転動部材が転動する軌道部材とを有する転動装置の製造方法であって、
所定形状に形成された前記転動部材及び前記軌道部材の各中間素材の少なくとも一方を合金鋼により作製し、これらの中間素材を用いて前記転動装置の完成品となるように組立てた後、前記転動部材及び前記軌道部材の各中間素材を相対運動させることにより残留圧縮応力を付与する工程を含むことを特徴とするものである。
The rolling device manufacturing method of the present invention is a rolling device manufacturing method having a rolling member and a raceway member on which the rolling member rolls,
After producing at least one of each intermediate material of the rolling member and the raceway member formed in a predetermined shape with alloy steel, using these intermediate materials to assemble to be a finished product of the rolling device, The method includes a step of applying a residual compressive stress by relatively moving the intermediate members of the rolling member and the raceway member.
上記のように構成された転動装置の製造方法では、転動部材及び軌道部材の各中間素材が当該装置の完成品となるように組立てられた後、転動部材及び軌道部材の各中間素材を相対運動させることにより残留圧縮応力を付与する工程が含まれているので、転動装置に含まれた構成要素での疲労強度を同時に改善することができ、構成要素ひいては当該装置の寿命向上を簡単に図ることができる。   In the manufacturing method of the rolling device configured as described above, after the rolling member and the raceway member are assembled so that the intermediate materials become the finished product, the rolling member and the raceway member intermediate materials. The process of imparting residual compressive stress by causing relative motion is included, so that the fatigue strength of the components included in the rolling device can be improved at the same time, and the service life of the components can be improved. It can be done easily.
本発明によれば、転動部品の形状などに応じた加工ツールを使用することなく残留圧縮応力が適切に付与されるので、部品形状などに関わらず長寿命化を簡単に図ることができる低コストな転動部品、これを用いた転動装置、及びこれらの製造方法を提供することができる。   According to the present invention, since the residual compressive stress is appropriately applied without using a processing tool corresponding to the shape of the rolling component, the life can be easily extended regardless of the component shape, etc. It is possible to provide a costly rolling component, a rolling device using the rolling component, and a manufacturing method thereof.
以下、本発明の転動部品、転動装置、及び各製造方法を示す好ましい実施形態について図面を参照しながら説明する。尚、以下の説明では、転動装置として例えば型番6206の深溝玉軸受に本発明を適用した場合を説明する。また、以下の説明では、残留圧縮応力の各数値は、図2及び図3の縦軸以外は絶対値で表す。
図1は、本発明の一実施形態に係る転動装置を示す断面図である。図において、本実施形態の深溝玉軸受は、同芯に配置された軌道部材としての内輪1及び外輪2と、これらの内外輪間に転動自在に配置された転動部材としての複数のボール3とを備えており、各ボール3は保持器4により等間隔に保持されている。また、各ボール3は、窒化ケイ素などのセラミックス材により構成されている。
Hereinafter, preferred embodiments showing a rolling part, a rolling device, and each manufacturing method of the present invention will be described with reference to the drawings. In the following description, a case will be described in which the present invention is applied to a deep groove ball bearing of model number 6206, for example, as a rolling device. In the following description, each numerical value of the residual compressive stress is expressed as an absolute value except for the vertical axis in FIGS. 2 and 3.
FIG. 1 is a cross-sectional view showing a rolling device according to an embodiment of the present invention. In the figure, the deep groove ball bearing of the present embodiment includes an inner ring 1 and an outer ring 2 as raceway members arranged concentrically, and a plurality of balls as rolling members arranged so as to roll freely between these inner and outer rings. 3 and the balls 3 are held at equal intervals by a cage 4. Each ball 3 is made of a ceramic material such as silicon nitride.
上記内輪1及び外輪2は焼入硬化された軸受用鋼などを用いて構成されたものであり、その軌道部1a,2aは所定硬さ以上の表面硬度を有するよう形成されている。また、これらの内外輪1,2には、後に詳述する工程によって残留圧縮応力が付与されており、ボール3が転動する上記軌道部1a,2aの疲労強度が向上している。
具体的には、内輪1及び外輪2の各軌道部材では、例えばJIS SUJ2からなる環状素材に対して、旋削加工を施すことにより、軌道部1a,2aや内外周等を所定形状に加工する。続いて、浸炭焼入を含む熱処理を施して、その表面硬さが例えばロックウェルC硬さ60以上となるように硬化させる。そして、熱処理完了後に、軌道部1a,2aや内外周等を研削加工によって所定精度に仕上げ、内外輪1,2の各中間素材を得る。
The inner ring 1 and the outer ring 2 are made of hardened and hardened steel for bearings, and the raceways 1a and 2a are formed to have a surface hardness equal to or higher than a predetermined hardness. Further, residual compressive stress is applied to these inner and outer rings 1 and 2 by a process described in detail later, and the fatigue strength of the track portions 1a and 2a on which the ball 3 rolls is improved.
Specifically, in each raceway member of the inner ring 1 and the outer race 2, for example, the raceways 1a, 2a, the inner and outer circumferences, etc. are machined into a predetermined shape by turning the annular material made of JIS SUJ2. Subsequently, heat treatment including carburizing and quenching is performed, and the surface hardness is cured to be, for example, a Rockwell C hardness of 60 or more. Then, after the heat treatment is completed, the raceways 1a, 2a, inner and outer circumferences, etc. are finished to a predetermined accuracy by grinding to obtain intermediate materials for the inner and outer rings 1,2.
次に、上記内外輪1,2の各中間素材及びボール3を深溝玉軸受での使用状態と同じ状態に組立てた後、これらの中間素材を当該深溝玉軸受の使用条件よりも厳しい条件で相対運動させることにより残留圧縮応力を付与する。具体的には、図1に示すように、例えば内輪1の中間素材を回転軸11に回転自在に嵌合するとともに、外輪2の中間素材をハウジング12に固定する。そして、ハウジング12側から使用時の負荷よりも大きい負荷を作用させた状態、例えばボール3と各軌道部1a,2aとの最大接触面圧が3〜7.5GPaとなるように静定荷荷重Cの1〜7倍の軸受負荷を作用させた状態で、回転軸11によって内輪1の中間素材を所定回数(例えば、1〜20回)回転させてこれらの中間素材を相対運動させる。これにより、各中間素材では、所望の残留圧縮応力が付与される。尚、上記最大接触面圧の範囲は、深溝玉軸受の通常の運転条件での2〜14倍の値である。また、上記回転軸11及びハウジング12を含んだ加工装置は、軸受の寿命試験で使用されるラジアル試験装置と同一構成であり、この試験装置を使用して適切な残留圧縮応力を各中間素材に付与することができる。 Next, after assembling each intermediate material of the inner and outer rings 1 and 2 and the ball 3 in the same state as in the deep groove ball bearing, the intermediate material is relatively subjected to relative conditions under conditions severer than the deep groove ball bearing. The residual compressive stress is given by making it move. Specifically, as shown in FIG. 1, for example, the intermediate material of the inner ring 1 is rotatably fitted to the rotating shaft 11, and the intermediate material of the outer ring 2 is fixed to the housing 12. Then, a static load is applied so that a load larger than the load at the time of use is applied from the housing 12 side, for example, the maximum contact surface pressure between the ball 3 and each of the raceways 1a and 2a is 3 to 7.5 GPa. In a state in which a bearing load 1 to 7 times C 0 is applied, the intermediate material of the inner ring 1 is rotated a predetermined number of times (for example, 1 to 20 times) by the rotating shaft 11 to relatively move these intermediate materials. Thereby, a desired residual compressive stress is applied to each intermediate material. The range of the maximum contact surface pressure is 2 to 14 times the value under normal operating conditions of the deep groove ball bearing. Further, the processing device including the rotary shaft 11 and the housing 12 has the same configuration as the radial test device used in the bearing life test, and an appropriate residual compressive stress is applied to each intermediate material using this test device. Can be granted.
以上の残留圧縮応力付与工程を実施することにより、内外輪1,2では、軌道部1a,2a内部において最大値が200MPaを越える残留圧縮応力が生じており、軌道部1a,2aの疲労強度が改善されて、内外輪1,2の各寿命を十分に延ばすことができる。また、軌道部1a,2aの各表面から所定深さ(例えば軸受運転時に最大剪断応力が作用する深さ)の残留圧縮応力が所望値以上とされており、内部起点剥離及び表面起点剥離の発生を極力抑えた長寿命な内外輪1,2を構成することができる。さらに、これらの軌道部1a,2aの表面では、ボール3が上記のような厳しい条件にて転動することにより、軌道部1a,2aでの表面硬度がアップされるとともに、表面粗さが改善され、しかもこれら内外輪1,2及びボール3の組付精度もまた向上されている。   By carrying out the above-described residual compressive stress application step, the inner and outer rings 1 and 2 generate residual compressive stress having a maximum value exceeding 200 MPa in the raceway portions 1a and 2a, and the fatigue strength of the raceway portions 1a and 2a is increased. As a result, the life of the inner and outer rings 1 and 2 can be extended sufficiently. In addition, the residual compressive stress at a predetermined depth (for example, the depth at which the maximum shear stress acts during bearing operation) from the respective surfaces of the raceways 1a and 2a is greater than or equal to a desired value, and internal origin separation and surface origin separation occur. It is possible to configure the inner and outer rings 1 and 2 having a long service life with as little as possible. Further, on the surfaces of the raceways 1a and 2a, the ball 3 rolls under the severe conditions as described above, so that the surface hardness at the raceways 1a and 2a is increased and the surface roughness is improved. In addition, the assembly accuracy of the inner and outer rings 1 and 2 and the ball 3 is also improved.
また、本実施形態では、内外輪1,2の各中間素材を深溝玉軸受での使用状態と同じ状態に組立てた後、相対運動させることにより、内外輪1,2双方に残留圧縮応力を意図的に発生させているので、内外輪1,2の形状や大きさなどに関わらず所望の残留圧縮応力を当該内外輪1,2に付与することができる。従って、セラミックスボールなどの加工ツールを用いたローラバニッシュ加工にて残留圧縮応力を与えていた上記従来例と異なり、所望の残留圧縮応力を内外輪1,2に容易に与えてこれら内外輪1,2の寿命向上効果を簡単に得ることができる。この結果、深溝玉軸受の製造工程を簡略化することができるとともに、低コストな当該玉軸受を容易に構成することができる。
また、上記残留圧縮応力付与工程において、上記深溝玉軸受に含まれる全てのボール3を内外輪1,2の中間素材間に介在させる必要はなく、これらの中間素材が相対運動できるように少なくとも1個のボール3を中間素材間に配置、すなわち転動装置での使用状態と同様に組立てられればよい。但し、全てのボール3を配置、すなわち転動装置での使用状態と同じ状態に組立てられて各中間素材に残留圧縮応力を付与する工程を実施する場合の方が、この寿命向上のための工程を深溝玉軸受での製造最終工程とすることができ、当該軸受の製造時間の短縮化を図ることができる点で好ましい。
Further, in this embodiment, after the intermediate materials of the inner and outer rings 1 and 2 are assembled in the same state as that used in the deep groove ball bearing, the residual compression stress is intended on both the inner and outer rings 1 and 2 by relative movement. Therefore, a desired residual compressive stress can be applied to the inner and outer rings 1 and 2 regardless of the shape and size of the inner and outer rings 1 and 2. Accordingly, unlike the above-described conventional example in which residual compressive stress is applied by roller burnishing using a processing tool such as a ceramic ball, desired inner and outer rings 1 and 2 are easily provided with desired residual compressive stress. The effect of improving the service life of 2 can be easily obtained. As a result, the manufacturing process of the deep groove ball bearing can be simplified, and the low-cost ball bearing can be easily configured.
Further, in the residual compressive stress applying step, it is not necessary to interpose all the balls 3 included in the deep groove ball bearing between the intermediate materials of the inner and outer rings 1 and 2, and at least 1 so that these intermediate materials can move relative to each other. The balls 3 may be arranged between the intermediate materials, that is, assembled in the same manner as in the use state in the rolling device. However, in the case where all the balls 3 are arranged, that is, assembled in the same state as used in the rolling device and the step of applying residual compressive stress to each intermediate material is performed, the process for improving the life is performed. Can be used as the final manufacturing process of the deep groove ball bearing, and the manufacturing time of the bearing can be shortened.
ここで、本発明の発明者等が実施した検証試験の試験結果について、図2〜図5及び表1〜表5を参照して具体的に説明する。
図2において、□及び●のプロットにて示す測定カーブはそれぞれ、本発明の実施例1及び2の測定結果を示している。また、▲のプロットにて示す測定カーブは、残留圧縮応力付与工程を行う前(上記研削加工後)での内輪中間素材(以下、“未加工品“という)の測定結果を示している。上記実施例1は、SUJ2を用いて構成した内外輪1,2間に窒化ケイ素からなる5個のボール3を配置するとともに、上記加工装置から25.0kNの負荷荷重を加えることで内外輪1,2とボール3との最大接触面圧を4.58GPaとして内輪1を10回回転させたものであり、当該内輪1での残留圧縮応力の測定値である。また、実施例2は、SUJ2を用いて構成した内外輪1,2間にSUJ2からなる9個のボール3を配置するとともに、上記加工装置から12.5kNの負荷荷重を加えることで内外輪1,2とボール3との最大接触面圧を3.58GPaとして内輪1を20回回転させたものであり、当該内輪1での残留圧縮応力の測定値である。
Here, the test results of the verification test conducted by the inventors of the present invention will be specifically described with reference to FIGS. 2 to 5 and Tables 1 to 5. FIG.
In FIG. 2, the measurement curves indicated by the plots □ and ● indicate the measurement results of Examples 1 and 2 of the present invention, respectively. Moreover, the measurement curve shown by the plot of ▲ shows the measurement result of the inner ring intermediate material (hereinafter referred to as “unprocessed product”) before the residual compressive stress application step (after the grinding process). In the first embodiment, five balls 3 made of silicon nitride are arranged between the inner and outer rings 1 and 2 formed using SUJ2, and a load load of 25.0 kN is applied from the processing apparatus to the inner and outer rings 1. , 2 and the ball 3 have a maximum contact surface pressure of 4.58 GPa and the inner ring 1 is rotated 10 times, and is a measured value of the residual compressive stress in the inner ring 1. Further, in the second embodiment, nine balls 3 made of SUJ2 are arranged between the inner and outer rings 1 and 2 configured using SUJ2, and a load of 12.5 kN is applied from the above processing device, whereby the inner and outer rings 1 are arranged. , 2 and the ball 3 with a maximum contact surface pressure of 3.58 GPa, the inner ring 1 is rotated 20 times, and is a measured value of residual compressive stress in the inner ring 1.
図2より明らかなように、実施例1,2では、未加工品に比べて表面からの深さが深い箇所において十分な残留圧縮応力が付与されており、また軸受回転時に最大剪断応力が作用する0.1mmでの残留圧縮応力も200MPa以上に設定されている。従って、実施例1,2は、未加工品よりも内部起点剥離の発生を大幅に抑えることができる軌道輪を構成したことが検証された。また、この実施例1,2では、加工前に比べて遙かに大きい残留圧縮応力が与えられており、内部起点剥離だけでなく表面起点剥離の発生を十分に抑制できうる残留圧縮応力の分布を有していることが実証された。   As can be seen from FIG. 2, in Examples 1 and 2, sufficient residual compressive stress is applied at locations where the depth from the surface is deeper than that of the unprocessed product, and the maximum shear stress acts when the bearing rotates. The residual compressive stress at 0.1 mm is also set to 200 MPa or more. Therefore, it was verified that Examples 1 and 2 constituted a race ring that can greatly suppress the occurrence of internal origin separation as compared with the unprocessed product. Further, in Examples 1 and 2, a much larger residual compressive stress than that before processing is given, and the distribution of residual compressive stress that can sufficiently suppress not only the internal origin separation but also the surface origin separation. It has been demonstrated that
また、最大接触面圧を変更した場合及び相対運動の回数(加工回数)を変更した場合での残留圧縮応力の測定値の具体例を表1及び表2に示す。表1の実施例3〜7は、SUJ2を用いて構成した内外輪1,2間に窒化ケイ素からなる5個のボール3を配置した軸受において、上記加工装置から負荷荷重を変更することで内外輪1,2とボール3との最大接触面圧を表1に示すように変えたものであり、内輪1を10回回転させたときでの当該内輪1での残留圧縮応力の測定値である。また、表1の比較例1,2は、SUJ2からなる内輪中間素材にローラバニッシュ加工を施した上記従来相当品の測定結果である。また、表2の実施例8は、実施例6のものを20回回転させたときでの内輪1での残留圧縮応力の測定値である。   Tables 1 and 2 show specific examples of measured values of residual compressive stress when the maximum contact surface pressure is changed and when the number of relative motions (the number of machining operations) is changed. In Examples 3 to 7 of Table 1, in the bearing in which five balls 3 made of silicon nitride are arranged between the inner and outer rings 1 and 2 configured using SUJ2, the load load is changed from the above processing device to change the load inside and outside. The maximum contact surface pressure between the rings 1 and 2 and the ball 3 is changed as shown in Table 1, and is a measured value of the residual compressive stress in the inner ring 1 when the inner ring 1 is rotated 10 times. . Further, Comparative Examples 1 and 2 in Table 1 are measurement results of the above-described conventional products obtained by subjecting the inner ring intermediate material made of SUJ2 to roller burnishing. In addition, Example 8 in Table 2 is a measurement value of the residual compressive stress in the inner ring 1 when the example 6 is rotated 20 times.
表1より明らかなように、最大接触面圧を上記3〜7.5GPaの範囲内の値に設定した実施例3〜7では、内輪1内部の残留圧縮応力が200MPa以上に調整されており、十分な寿命向上効果を得ることができることが確認された。これに対して、比較例1,2では、内輪軌道表面にはある程度の残留圧縮応力を与えることはできるが、加工ツールと当該軌道表面との接触面圧が小さいために、表面から100μmの箇所では、残留圧縮応力はほとんど与えられていなかった。
尚、最大接触面圧を3GPa未満の値に設定した場合では、内輪1内部の残留圧縮応力の最大値が200MPa以下となり、寿命を十分に向上させることができなかった。
また、最大接触面圧を7.5GPaを越える値に設定した場合では、内輪1に著しい塑性変形が生じてその寸法変化が大きくなり、真円度などの値が許容公差の範囲外の値となった。
As is clear from Table 1, in Examples 3 to 7 in which the maximum contact surface pressure was set to a value within the range of 3 to 7.5 GPa, the residual compressive stress inside the inner ring 1 was adjusted to 200 MPa or more, It was confirmed that a sufficient lifetime improvement effect can be obtained. On the other hand, in Comparative Examples 1 and 2, although a certain amount of residual compressive stress can be applied to the inner ring raceway surface, the contact surface pressure between the machining tool and the raceway surface is small, and therefore, a location 100 μm from the surface. However, almost no residual compressive stress was applied.
When the maximum contact surface pressure was set to a value less than 3 GPa, the maximum value of the residual compressive stress inside the inner ring 1 was 200 MPa or less, and the life could not be sufficiently improved.
In addition, when the maximum contact surface pressure is set to a value exceeding 7.5 GPa, significant plastic deformation occurs in the inner ring 1 and its dimensional change increases, and values such as roundness and the like are outside the allowable tolerance range. became.
表2より明らかなように、上記加工回数が多い実施例8の方が回数の少ない実施例6よりも残留圧縮応力の値が小さくなっていた。すなわち、ある程度の回数を超えて相対運動させたときには、残留圧縮応力は逆に小さくなることが分かった。また、20回を越えるような相対運動をさせた場合には、内輪1の塑性変形及びこれに起因する寸法変化が大きくなった。さらに、20回を越えると、残留圧縮応力の最大値も小さくなって十分な寿命向上効果を得られないことが判明した。   As is apparent from Table 2, the value of residual compressive stress was smaller in Example 8 where the number of machining operations was larger than in Example 6 where the number of machining operations was smaller. That is, it was found that the residual compressive stress becomes smaller when the relative movement is performed beyond a certain number of times. In addition, when the relative motion was performed more than 20 times, the plastic deformation of the inner ring 1 and the dimensional change caused by the plastic deformation increased. Further, it has been found that when the number of times exceeds 20, the maximum value of the residual compressive stress is also reduced, and a sufficient life improvement effect cannot be obtained.
また、上記加工回数を変更した場合における表面から所定深さ(例えば、0.1mm)での残留圧縮応力の測定結果例を図3及び表3に示す。表3の実施例9〜11は、SUJ2を用いて構成した内外輪1,2間に窒化ケイ素からなる5個のボール3を配置するとともに、ボール3の内外輪1,2との転がり接触部に潤滑油(タービン油VG68)を供給した状態で、上記加工装置から25.0kNの負荷荷重を加えることで内外輪1,2とボール3との最大接触面圧を4.58GPaとしたものである。そして、内輪1の加工回数を図3及び表3に示すように、5回、10回、20回としたときでの当該内輪1での各残留圧縮応力の測定値である。   In addition, FIG. 3 and Table 3 show examples of measurement results of residual compressive stress at a predetermined depth (for example, 0.1 mm) from the surface when the number of times of machining is changed. In Examples 9 to 11 in Table 3, five balls 3 made of silicon nitride are arranged between the inner and outer rings 1 and 2 configured using SUJ2, and the rolling contact portion of the ball 3 with the inner and outer rings 1 and 2 is arranged. The maximum contact surface pressure between the inner and outer rings 1 and 2 and the ball 3 is set to 4.58 GPa by applying a load of 25.0 kN from the above processing device with the lubricating oil (turbine oil VG68) supplied to is there. Then, as shown in FIG. 3 and Table 3, the measured value of each residual compressive stress in the inner ring 1 when the inner ring 1 is processed 5 times, 10 times, and 20 times.
図3及び表3に示されるように、実施例9〜11では、0.1mm深さでの残留圧縮応力が400MPa以上となっており、上記従来例と異なり、表面からある程度の深さの箇所でも十分な残留圧縮応力を付与できることが確認された。また、表2に示した場合と同様に、加工回数を増やすにつれて、上記深さでの残留圧縮応力も小さくなることが確認された。   As shown in FIG. 3 and Table 3, in Examples 9 to 11, the residual compressive stress at a depth of 0.1 mm is 400 MPa or more, and unlike the above-described conventional example, a portion having a certain depth from the surface. However, it was confirmed that sufficient residual compressive stress can be applied. Further, as in the case shown in Table 2, it was confirmed that the residual compressive stress at the above-mentioned depth decreases as the number of processing increases.
また、本願発明品と比較品との寿命試験の結果例を表4に示す。表4の実施例12〜14は、SUJ2を用いて構成した内外輪1,2間にSUJ2からなる9個のボール3を配置するとともに、上記加工装置から12.5kNの負荷荷重を加えることで内外輪1,2とボール3との最大接触面圧を3.58GPaとして内輪1を20回回転させることにより、製作された内輪1である。また、比較例3〜5は、SUJ2からなる内輪1の上記未加工品である。また、この寿命試験は、上記実施例12〜14及び比較例3〜5の各内輪1において、図4(a)及び(b)に示す圧痕Aを軌道部1aの表面に付与した状態で、ボール3を転がり運転させて、内輪剥離が生じるまでの時間を求めることによって行ったものであり、この圧痕Aを付与した状態での寿命試験は、本出願人により、在来の異物混入油を用いた寿命試験と同等の検証をより短い時間で正確に行えることが確認されている。また、圧痕Aは、圧子としての直径1mmのセラミックス製の玉を1471Nの荷重にて軌道部1aに衝突させることで形成されたものであり、図4(c)に“d“、”t“、”h1“、及び”h2“にて示す寸法は、それぞれ450μm、40μm、3μm、及び3μm程度である。   Table 4 shows an example of the results of the life test of the present invention product and the comparative product. Examples 12-14 of Table 4 arrange | position 9 balls 3 which consist of SUJ2 between the inner-outer rings 1 and 2 comprised using SUJ2, and add 12.5 kN load from the said processing apparatus. The inner ring 1 is produced by rotating the inner ring 1 20 times with the maximum contact surface pressure between the inner and outer rings 1 and 2 and the ball 3 being 3.58 GPa. Further, Comparative Examples 3 to 5 are the above-described unprocessed products of the inner ring 1 made of SUJ2. Moreover, this life test is in the state which provided the impression A shown to FIG. 4 (a) and (b) on the surface of the track part 1a in each inner ring | wheel 1 of the said Examples 12-14 and Comparative Examples 3-5. Rolling operation of the ball 3 was carried out to determine the time until the inner ring was peeled off. The life test in the state where the indentation A was applied was performed by the present applicant using conventional foreign matter-containing oil. It has been confirmed that verification equivalent to the life test used can be performed accurately in a shorter time. The indentation A is formed by causing a ceramic ball having a diameter of 1 mm as an indenter to collide with the track portion 1a with a load of 1471N. FIG. 4 (c) shows “d” and “t”. , “H1” and “h2” are about 450 μm, 40 μm, 3 μm, and 3 μm, respectively.
表4より明らかなように、実施例12〜14の本発明品は、比較例3〜5の比較品に比べて寿命が延ばされていることが実証された。また、これらの寿命試験データをワイブル解析した結果を表5及び図5に示す。   As is clear from Table 4, it was demonstrated that the products of the present invention of Examples 12 to 14 had a longer life than the comparative products of Comparative Examples 3 to 5. The results of Weibull analysis of these life test data are shown in Table 5 and FIG.
表5より明らかなように、本発明品では、L10及びL50の寿命時間が比較品に比べて長時間なものであり、比較品に比べて剥離が生じにくい内輪1を構成することが検証された。また、図5の直線51に示すように、本発明品のスロープは、同図の直線50に示した従来品のものに比べて5倍以上の値となっており、寿命のバラツキが小さくなることが示された。   As is clear from Table 5, it is verified that the product of the present invention constitutes the inner ring 1 in which the lifetime of L10 and L50 is longer than that of the comparative product and is less likely to be peeled off than the comparative product. It was. Further, as shown by the straight line 51 in FIG. 5, the slope of the product of the present invention is more than five times the value of the conventional product shown by the straight line 50 in the figure, and the variation in the life is reduced. It was shown that.
尚、上記の説明では、深溝玉軸受に本発明を適用した場合について説明したが、本発明は転動部材とこの転動部材が転動する軌道部材とを有する転動装置の構成要素のうち、転動部材及び軌道部材のいずれか1つの部材を構成する転動部品において、上記転動部材及び軌道部材を転動装置での使用状態と同様の状態に組立て、これらの転動部材及び軌道部材を相対運動させることにより、残留圧縮応力を付与したものであれば何等限定されるものではなく、例えばテーパーローラー軸受などの他の軸受形式の転動装置にも適用することができる。また、上記深溝玉軸受のように転動装置として完成されたものや残留圧縮応力を付与する上記工程の終了後に装置構成を要素単位に分解した各転動部品個々のものにも適用することができる。また、例えば固定軌道輪として外輪と円筒ころなどの転動部材とを有し、この転動部材が回転軸などの軸受支持対象物上を直接的に転動するインテグラル(一体化)型の軸受及びその各構成要素にも適用することができる。このような軌道部材が1つのみの転動装置に適用する場合には、この装置に含まれた軌道部材及び転動部材と当該装置が組付けられる上記軸受対象物等のダミー部材とをその使用状態と同様の状態に組立てた後、当該軌道部材及び転動部材を相対運動させて残留圧縮応力を付与すればよい。さらに、直動軸受やボールネジ等各種転動装置にも適用可能である。   In the above description, the case where the present invention is applied to a deep groove ball bearing has been described. However, the present invention is a component of a rolling device having a rolling member and a raceway member on which the rolling member rolls. In the rolling component constituting any one member of the rolling member and the raceway member, the rolling member and the raceway member are assembled in a state similar to the usage state in the rolling device, and the rolling member and the raceway are assembled. There is no limitation as long as the residual compressive stress is applied by moving the members relative to each other, and the present invention can be applied to rolling devices of other bearing types such as a tapered roller bearing. Also, it can be applied to a rolling device such as the deep groove ball bearing that has been completed as a rolling device, or an individual rolling component that has been disassembled into element units after completion of the above-described step of applying residual compressive stress. it can. Further, for example, an integral (integrated) type that has an outer ring as a fixed raceway and a rolling member such as a cylindrical roller, and this rolling member rolls directly on a bearing support object such as a rotating shaft. The present invention can also be applied to a bearing and its components. When such a raceway member is applied to only one rolling device, the raceway member and rolling member included in this device and a dummy member such as the bearing object to which the device is assembled are After assembling in a state similar to the use state, the track member and the rolling member may be moved relative to each other to apply a residual compressive stress. Furthermore, the present invention can be applied to various rolling devices such as a linear bearing and a ball screw.
また、上記の説明では、内外輪の素材鋼としてSUJ2を用いた場合について説明したが、本発明はこれに限定されるものではなくJIS SUJ3等の他の軸受用鋼(高炭素クロム鋼)、SAE5120あるいはSCr420等の肌焼(浸炭)鋼(低炭素鋼)、またはS55C等の機械構造用炭素鋼等の合金鋼を用い、これらの素材鋼に浸炭あるいは浸炭窒化したもので構成してもよい。
また、上記の説明では、窒化ケイ素などのセラミックス材からなるボールを備えた深溝玉軸受について説明したが、転動部材の素材はセラミックス材に限定されるものではなく、軌道部材と同様に、上記合金鋼製の転動部材を有する転がり軸受にも適用できる。このような合金鋼製の転動部材を用いた場合には、当該転動部材に対しても適切な残留圧縮応力を発生させることができる。
In the above description, the case where SUJ2 is used as the material steel for the inner and outer rings has been described, but the present invention is not limited to this, and other bearing steels (high carbon chromium steel) such as JIS SUJ3, It may be composed of case-hardened (carburized) steel (low carbon steel) such as SAE5120 or SCr420, or alloy steel such as carbon steel for machine structural use such as S55C, which is carburized or carbonitrided. .
In the above description, the deep groove ball bearing provided with a ball made of a ceramic material such as silicon nitride has been described, but the material of the rolling member is not limited to the ceramic material, The present invention can also be applied to a rolling bearing having a rolling member made of alloy steel. When such a rolling member made of alloy steel is used, an appropriate residual compressive stress can be generated for the rolling member.
本発明の一実施形態に係る転動装置を示す断面図である。It is sectional drawing which shows the rolling device which concerns on one Embodiment of this invention. 表面からの各深さにおける残留圧縮応力を測定した結果例を示すグラフ図である。It is a graph which shows the example of a result of having measured the residual compressive stress in each depth from the surface. 加工回数を変化させた場合での表面から所定深さでの残留圧縮応力の測定結果例を示すグラフである。It is a graph which shows the example of a measurement result of the residual compressive stress in the predetermined depth from the surface at the time of changing the frequency | count of a process. (a)及び(b)はそれぞれ寿命試験の際に圧痕を軌道部表面に付与した内輪の平面図及び側面図であり、(c)は上記圧痕を示す図である。(A) And (b) is the top view and side view of an inner ring | wheel which gave the impression to the track surface surface in the lifetime test, respectively, (c) is a figure which shows the said impression. 寿命データのワイブル解析の結果例を示すグラフである。It is a graph which shows the example of a result of the Weibull analysis of lifetime data.
符号の説明Explanation of symbols
1 内輪(転動部品;軌道部材)
2 外輪(転動部品;軌道部材)
3 ボール(転動部品;転動部材)
1 Inner ring (rolling parts; raceway members)
2 Outer ring (rolling parts; raceway member)
3 balls (rolling parts; rolling members)

Claims (6)

  1. 転動部材とこの転動部材が転動する軌道部材とを有する転動装置に用いられるとともに、前記転動部材及び前記軌道部材のいずれか1つの部材を構成する合金鋼製の転動部品であって、
    前記転動部材及び前記軌道部材は前記転動装置での使用状態と同様の状態に組立てられ、かつ、荷重が加えられた状態で相対運動することにより生じた残留圧縮応力を有することを特徴とする転動部品。
    It is used in a rolling device having a rolling member and a raceway member on which the rolling member rolls, and is a rolling component made of alloy steel that constitutes one of the rolling member and the raceway member. There,
    The rolling member and the raceway member are assembled in a state similar to the use state in the rolling device, and have a residual compressive stress generated by relative movement in a state where a load is applied. Rolling parts to do.
  2. 前記転動部材と前記軌道部材との最大接触面圧が3〜7.5GPaの範囲となるように荷重が加えられた状態で、これらの転動部材及び軌道部材を相対運動させて残留圧縮応力が付与されたことを特徴とする請求項1に記載の転動部品。   In a state where a load is applied so that the maximum contact surface pressure between the rolling member and the raceway member is in the range of 3 to 7.5 GPa, the rolling member and the raceway member are moved relative to each other to cause residual compressive stress. The rolling part according to claim 1, wherein
  3. 請求項1または2に記載の転動部品を、転動部材及び軌道部材の少なくとも1つとして用いたことを特徴とする転動装置。   A rolling device using the rolling component according to claim 1 as at least one of a rolling member and a raceway member.
  4. 転動装置に含まれた転動部材または軌道部材を構成する転動部品を合金鋼を用いて製造する製造方法であって、
    所定形状に形成された前記転動部材及び前記軌道部材の各中間素材の少なくとも一方を合金鋼により作製し、これら転動部材及び軌道部材の各中間素材を前記転動装置での使用状態と同様の状態に組立てた後、これら中間素材を相対運動させることにより残留圧縮応力を付与する工程を含むことを特徴とする転動部品の製造方法。
    A manufacturing method for manufacturing a rolling part or a rolling member included in a rolling device using alloy steel,
    At least one of the rolling member and the intermediate material of the raceway member formed in a predetermined shape is made of alloy steel, and the intermediate material of the rolling member and the raceway member is the same as in use in the rolling device. A method of manufacturing a rolling part comprising the step of applying a residual compressive stress by moving these intermediate materials relative to each other after assembling to the above state.
  5. 前記残留圧縮応力を付与する工程において、前記相対運動を20回以下に制限したことを特徴とする請求項4に記載の転動部品の製造方法。   The method of manufacturing a rolling part according to claim 4, wherein the relative motion is limited to 20 times or less in the step of applying the residual compressive stress.
  6. 転動部材とこの転動部材が転動する軌道部材とを有する転動装置の製造方法であって、
    所定形状に形成された前記転動部材及び前記軌道部材の各中間素材の少なくとも一方を合金鋼により作製し、これらの中間素材を用いて前記転動装置の完成品となるように組立てた後、前記転動部材及び前記軌道部材の各中間素材を相対運動させることにより残留圧縮応力を付与する工程を含むことを特徴とする転動装置の製造方法。
    A method of manufacturing a rolling device having a rolling member and a raceway member on which the rolling member rolls,
    After producing at least one of each intermediate material of the rolling member and the raceway member formed in a predetermined shape with alloy steel, using these intermediate materials to assemble to be a finished product of the rolling device, A method of manufacturing a rolling device, comprising: applying a residual compressive stress by relatively moving the intermediate members of the rolling member and the raceway member.
JP2004035064A 2004-02-12 2004-02-12 Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device Withdrawn JP2005226714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035064A JP2005226714A (en) 2004-02-12 2004-02-12 Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035064A JP2005226714A (en) 2004-02-12 2004-02-12 Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device

Publications (1)

Publication Number Publication Date
JP2005226714A true JP2005226714A (en) 2005-08-25

Family

ID=35001596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035064A Withdrawn JP2005226714A (en) 2004-02-12 2004-02-12 Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device

Country Status (1)

Country Link
JP (1) JP2005226714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140992A (en) * 2010-01-07 2011-07-21 Jtekt Corp Rolling sliding member and method of manufacturing the same
EP3162493A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Method of imparting compressive residual stress to balls
EP3162494A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Apparatus for producing compressive residual stress in balls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140992A (en) * 2010-01-07 2011-07-21 Jtekt Corp Rolling sliding member and method of manufacturing the same
EP3162493A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Method of imparting compressive residual stress to balls
EP3162494A1 (en) * 2015-10-30 2017-05-03 Aktiebolaget SKF Apparatus for producing compressive residual stress in balls
US10118274B2 (en) 2015-10-30 2018-11-06 Aktiebolaget Skf Apparatus for producing compressive residual stress in balls
US10480578B2 (en) 2015-10-30 2019-11-19 Aktiebolaget Skf Method of imparting compressive residual stress to balls

Similar Documents

Publication Publication Date Title
US7685717B2 (en) Method for manufacturing a bearing raceway member
JP2009229288A (en) Testing method of rolling-contact fatigue life
JP3326912B2 (en) Rolling bearing
JP5163183B2 (en) Rolling bearing
JP2005098475A5 (en)
JP2005226714A (en) Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device
KR20010082238A (en) Raw material for bearing parts
EP2789705A1 (en) Machine part, rolling bearing, conical roller bearing and method for manufacturing machine part
KR20180091021A (en) Shafts and bearings for bearings
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP2003329048A (en) Manufacturing method for bearing raceway member
JP5130707B2 (en) Rolling device
JP2011208751A (en) Rolling bearing, method for manufacturing roller, and roller machining device
JP2007186760A (en) Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP4284956B2 (en) Manufacturing method of rolling sliding member
JP2019095044A (en) Rolling component, bearing and manufacturing method of these items
WO2019103039A1 (en) Rolling part, bearing, and production method therefor
JP2010025183A (en) Self-aligning roller bearing
JP2007260813A (en) Working tool and roller vanishing working tool
JP4284951B2 (en) Method of manufacturing bearing ring for ball bearing
CN109072978B (en) Rolling bearing and method for treating bearing rail surface for wear resistance
JP6637304B2 (en) bearing
US20210156428A1 (en) Thrust roller bearing
JP2021089067A (en) Thrust roller bearing
JP2004044787A (en) Method for manufacturing bearing raceway member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070130

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081125