JP2015059645A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2015059645A
JP2015059645A JP2013195358A JP2013195358A JP2015059645A JP 2015059645 A JP2015059645 A JP 2015059645A JP 2013195358 A JP2013195358 A JP 2013195358A JP 2013195358 A JP2013195358 A JP 2013195358A JP 2015059645 A JP2015059645 A JP 2015059645A
Authority
JP
Japan
Prior art keywords
raceway
rolling bearing
groove curvature
rolling
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013195358A
Other languages
Japanese (ja)
Inventor
大地 伊藤
Daichi Ito
大地 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013195358A priority Critical patent/JP2015059645A/en
Publication of JP2015059645A publication Critical patent/JP2015059645A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent the damage of a rolling body caused by edge stress while avoiding that the rolling body rides on a shoulder even if a large radial load by FBO acts, as a rolling bearing for jet engine main shaft of an aircraft.SOLUTION: A raceway face 13 of an inner ring 11, or a raceway face 14 of an outer ring 12, or both of them are formed at two different groove curvature ratios, inflection points of the raceway faces are located at both sides at the outside of a contact ellipse E at a normal operation, and the groove curvature ratios at the outside 14b of the raceway faces at both the sides are the same, and smaller than the groove curvature ratios at the inside 14a of the raceway faces.

Description

この発明は、航空機用ジェットエンジンの主軸、特にフロント・ファンの支持部に使用される転がり軸受に関するものである。   The present invention relates to a rolling bearing used for a main shaft of an aircraft jet engine, particularly a front fan support.

フロント・ファンを支持する転がり軸受は、飛行中に鳥を吸い込む等の外乱によるFBO(Fan Blade Off)を起因として過大なラジアル荷重を受けて損傷する恐れがある。FBO後、航空機は最寄りの空港に安全に着陸する必要があるが、ジェットエンジンの主軸の回転が止まるとファンが空気抵抗となって飛行に支障をきたすため、主軸を支持する軸受は最低限回転することが要求される。   The rolling bearing that supports the front fan may be damaged by receiving an excessive radial load due to FBO (Fan Blade Off) due to disturbance such as inhaling birds during flight. After the FBO, the aircraft needs to land safely at the nearest airport, but if the main shaft of the jet engine stops rotating, the fan will become air resistance and hinder the flight. It is required to do.

このような事態に対処すべく、ジェットエンジンの主軸用転がり軸受として、軸受外輪とケーシングの間に弾性部材と振動減衰部を介在し、大きなラジアル荷重が作用した場合においても転動体に過大な荷重が作用しないようにした構造が知られている(特許文献1)。   In order to cope with such a situation, as a rolling bearing for the main shaft of a jet engine, an elastic member and a vibration damping part are interposed between the bearing outer ring and the casing, and an excessive load is applied to the rolling element even when a large radial load is applied. There is known a structure that does not act (Patent Document 1).

特開2008−138704号公報JP 2008-138704 A

しかしながら、特許文献1に開示された転がり軸受は、FBO時に転動体に負荷される荷重の軽減効果が十分でないうえに、構造が複雑で製造コストが高く、また大きなスペースが必要となるなどの問題がある。また、転動体に過大なラジアル荷重が作用した場合、転動体と軌道面間の接触面圧が高くなり、転動体が変形する恐れがある。さらに、変形した転動体が軌道輪の肩部に乗り上げ、そのとき発生するエッジ応力により損傷を受ける恐れもある。   However, the rolling bearing disclosed in Patent Document 1 is not sufficient in reducing the load applied to the rolling element during FBO, and has a complicated structure, high manufacturing cost, and a large space. There is. In addition, when an excessive radial load is applied to the rolling elements, the contact surface pressure between the rolling elements and the raceway surface increases, and the rolling elements may be deformed. Furthermore, the deformed rolling element rides on the shoulder portion of the race and may be damaged by the edge stress generated at that time.

そこで、この発明は、FBO等による過大なラジアル荷重が作用した場合において、転動体が変形したり肩部に乗り上げたりすることを防止し、転動体が損傷を受ける恐れを無くすることを課題とする。   Accordingly, the present invention has an object to prevent the rolling element from being deformed or riding on the shoulder when an excessive radial load due to FBO or the like is applied, and to eliminate the risk of the rolling element being damaged. To do.

前記の課題を解決するために、この発明は、内輪、外輪、これらの軌道輪の軌道面間に介在された多数の転動体及び前記転動体を一定間隔に保持する保持器とからなり、前記各軌道輪はその軌道面に沿った一定幅の肩部を備えた転がり軸受において、前記内輪又は外輪のいずれか、若しくはその両方の軌道面が、軸受の軸方向から見て、2つの異なる溝曲率比でできており、その変曲点は通常運転時における接触楕円を中心として、該接触楕円より外側の両側にあり、その両側の変曲点より外側の両軌道面の溝曲率比が同じであり、且つ、両側の変曲点より外側の両軌道面の溝曲率比は、該接触楕円を含む軌道面両変曲点の内側の軌道面の溝曲率比より小さい構成を採用した。
溝曲率比とは、溝曲率半径/ボール半径として定義される。
In order to solve the above problems, the present invention comprises an inner ring, an outer ring, a large number of rolling elements interposed between the raceway surfaces of these raceways, and a cage that holds the rolling bodies at a constant interval, Each bearing ring is a rolling bearing having a shoulder of a constant width along the raceway surface, and the raceway surface of either the inner ring or the outer ring or both of them is two different grooves when viewed from the axial direction of the bearing. The inflection point is on both sides outside the contact ellipse with the center of the contact ellipse during normal operation, and the groove curvature ratio of both raceway surfaces outside the inflection points on both sides is the same. The groove curvature ratio of both raceway surfaces outside the inflection points on both sides is smaller than the groove curvature ratio of the raceway surface inside the raceway both inflection points including the contact ellipse.
The groove curvature ratio is defined as groove radius of curvature / ball radius.

前記構成の転がり軸受が、航空機のジェットエンジン主軸のフロント・ファンの支持軸受等に用いられ、FBO等によって過大なラジアル荷重を受けた場合、前記軌道面外側の溝曲率比を軌道面内側の溝曲率比より小さくすることにより、転動体が軌道面外側において受けられ、転動体の変形を小さくすることができ、転動体の破損リスクを低減することができる。また、発生する接触楕円が肩部まで届かないため、転動体が肩部に乗り上げることが避けることができ、エッジ応力による転動体の損傷リスクを低減することができる。   When the rolling bearing having the above configuration is used for a front fan support bearing of an aircraft jet engine main shaft and receives an excessive radial load by FBO or the like, the groove curvature ratio on the outer surface of the raceway is changed to the groove on the inner side of the raceway surface. By making it smaller than the curvature ratio, the rolling element can be received outside the raceway surface, the deformation of the rolling element can be reduced, and the risk of breakage of the rolling element can be reduced. Further, since the generated contact ellipse does not reach the shoulder, it is possible to avoid the rolling element from riding on the shoulder, and the risk of damage to the rolling element due to edge stress can be reduced.

以上のように、この発明の転がり軸受を航空機のジェットエンジン主軸のフロント・ファン支持用軸受に用いた場合、FBOが生じても軸受の損傷を生じることなく回転を続行することができ、航空機は最寄りの空港まで安全に航行し、着陸することができる。   As described above, when the rolling bearing of the present invention is used as a front fan support bearing for an aircraft jet engine main shaft, even if FBO occurs, the rotation can continue without causing damage to the bearing. You can navigate safely and land at the nearest airport.

図1は、実施形態1の転がり軸受の一部拡大断面図である。FIG. 1 is a partially enlarged cross-sectional view of the rolling bearing of the first embodiment. 図2は、図1の一部拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of FIG. 図3は、比較例の転がり軸受の一部拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view of a rolling bearing of a comparative example.

以下、この発明の実施の形態を添付図面に基づいて説明する。
[実施形態1]
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[Embodiment 1]

図1に示した実施形態1に係る転がり軸受は、内輪11、外輪12、これらの対向した軌道面13、14間に介在された転動体としての単列の多数の玉15及び各玉15を一定間隔に保持する保持器16によって構成された玉軸受である。内輪11は軸方向に二分された分割内輪11a、11bの組み合わせからなり、外輪12と合せ、玉15はこれらの3部材によって支持された3点接触玉軸受である。3点接触玉軸受を使用する理由は、エンジンの不具合等によりファンが止まると通常運転とは逆方向のアキシアル荷重が軸受にかかる恐れがあるためである。   The rolling bearing according to the first embodiment shown in FIG. 1 includes an inner ring 11, an outer ring 12, a plurality of balls 15 as a rolling element interposed between the opposed raceway surfaces 13 and 14, and each ball 15. It is a ball bearing constituted by a cage 16 held at regular intervals. The inner ring 11 is a combination of split inner rings 11a and 11b divided in the axial direction. The inner ring 11 is combined with the outer ring 12, and the ball 15 is a three-point contact ball bearing supported by these three members. The reason for using a three-point contact ball bearing is that if the fan stops due to an engine failure or the like, an axial load in the direction opposite to that of normal operation may be applied to the bearing.

内輪11が回転側、外輪12が静止側として使用に供され、保持器16は外輪12に滑り接触して案内される。   The inner ring 11 is used as a rotating side and the outer ring 12 is used as a stationary side, and the cage 16 is guided in sliding contact with the outer ring 12.

前記内輪11及び外輪12の軌道面13、14の軸方向両側には、それぞれ一定幅を持った肩部17、18が設けられる。   On the both sides in the axial direction of the raceway surfaces 13 and 14 of the inner ring 11 and the outer ring 12, shoulder portions 17 and 18 having a certain width are provided.

外輪12の軌道面14は、その底面から通常運転における接触楕円までの範囲が通常運転に必要な軌道面14a(軌道面内側14aと称する。)と、これに連続して通常運転における接触楕円外側の両側に形成された軌道面外側14bとにより構成され、軌道面内側14aと軌道面外側14bが異なる溝曲率比でできている。
ここで、「通常運転」とは、ジェットエンジンが正常に稼動している状態をいう。
The raceway surface 14 of the outer ring 12 has a raceway surface 14a (referred to as a raceway inner surface 14a) required for normal operation in a range from the bottom surface to the contact ellipse in normal operation, and continuously from the contact ellipse outside in normal operation. The raceway outer surface 14b is formed on both sides of the track surface, and the raceway inner surface 14a and the raceway outer surface 14b have different groove curvature ratios.
Here, “normal operation” means a state in which the jet engine is operating normally.

前記軌道面内側14aと軌道面外側14bの変曲点の位置は、軸受の軸方向中心から見て、左右対称とした。   The positions of the inflection points on the raceway inner surface 14a and the raceway outer surface 14b are symmetrical with respect to the axial center of the bearing.

前記軌道面内側14aの溝曲率比Xは、軌道面外側14bの溝曲率比Xとの間に、1.00≦X<X≦1.12という関係が成立する必要がある。その理由は次のとおりである。 Groove curvature ratio X 1 of the raceway surface inner 14a is provided between the groove curvature ratio X 2 of track surface outer 14b, relationship 1.00 ≦ X 2 <X 1 ≦ 1.12 must be established. The reason is as follows.

即ち、1.00未満の場合は、通常運転中に軸受に所定の荷重が作用した際に、軌道面外側14bと玉15とが干渉する不具合が生じる。また、X>Xになると、玉15との干渉は無いが、過大なラジアル負荷が作用した際に、玉15の変形量が大きくなる不具合がある。また、X>1.12になると、接触面圧が過大となり、軸受寿命が短くなる。結局、1.00≦X<X≦1.12の関係が満たされる場合は、玉15と軌道面外側14bとの干渉が無く、また玉15の変形が抑制される。 That is, when it is less than 1.00, when a predetermined load is applied to the bearing during normal operation, there is a problem that the raceway outer surface 14b and the ball 15 interfere with each other. Further, when X 2 > X 1 , there is no interference with the ball 15, but there is a problem that the deformation amount of the ball 15 becomes large when an excessive radial load is applied. Further, when X 1 > 1.12, the contact surface pressure becomes excessive and the bearing life is shortened. Eventually, when the relationship of 1.00 ≦ X 2 <X 1 ≦ 1.12 is satisfied, there is no interference between the ball 15 and the outer raceway surface 14b, and the deformation of the ball 15 is suppressed.

前記軌道面内側14aは、通常運転において玉15が転動する部分であるので、通常通りスーパー研磨が施される。これに対し、軌道面外側14bは、過大なラジアル負荷が作用した場合にのみ玉15が接触する部分であり、通常運転の場合に転動する面ではないので、軌道面内側14aより粗面でよく、従って、スーパー研磨を施す必要はない。   Since the raceway inner surface 14a is a portion where the balls 15 roll in a normal operation, super polishing is performed as usual. On the other hand, the raceway outer surface 14b is a portion that the ball 15 contacts only when an excessive radial load is applied, and is not a surface that rolls during normal operation, so it is rougher than the raceway inner surface 14a. Well, therefore, there is no need for super polishing.

軌道面内側14aのスーパー研磨を容易にするために、軌道面内側14aと軌道面外側14bとの境界部分に溝形のヌスミ形状22を設けることが望ましい。ヌスミ形状22は、研磨加工をする際の逃がしに作用する。   In order to facilitate the super polishing of the raceway inner surface 14a, it is desirable to provide a groove-like Nusumi shape 22 at the boundary between the raceway inner surface 14a and the raceway outer surface 14b. The Nusumi shape 22 acts as a relief when polishing.

また、軌道面外側14bと肩部18とが作るコーナ部23にR面取り加工を施すことが望ましい。これは、過大なラジアル荷重が作用した際に、肩部18と玉15との間にエッジ応力が発生する恐れを解消するためである。   Further, it is desirable that the corner portion 23 formed by the raceway outer surface 14b and the shoulder portion 18 is subjected to R chamfering. This is to eliminate the risk of edge stress occurring between the shoulder 18 and the ball 15 when an excessive radial load is applied.

保持器16は、SAE4340等の金属材料を加工し表面に銀メッキ処理を施したものを用いることができる。   The retainer 16 may be made of a metal material such as SAE 4340 and subjected to silver plating on the surface.

また、内輪11及び外輪12は、耐熱性軸受鋼であるM50や、表面硬化鋼であるM50NiLを用いることができる。   Further, the inner ring 11 and the outer ring 12 can use M50 which is heat-resistant bearing steel and M50NiL which is surface hardened steel.

玉15は、M50又はセラミックスを用いることができる。セラミックスとしては、窒化ケイ素、アルミナ、ジルコニア、炭化ケイ素中の一つを主成分とするものを用いることができる。   The ball 15 can use M50 or ceramics. As the ceramic, one containing silicon nitride, alumina, zirconia, or silicon carbide as a main component can be used.

ここで、比較対象として従来から知られている3点接触玉軸受を図2に示す。この玉軸受は、前述の場合と同様に、内輪11、外輪12、これらの対向した軌道面13、14間に介在された転動体としての単列の多数の玉15及び各玉15を一定間隔に配列する保持器16によって構成された玉軸受である。内輪11は軸方向に二分された分割内輪11a、11bの組み合わせからなり、外輪12と合せ、玉15はこれらの3部材によって支持された3点接触玉軸受である。   Here, FIG. 2 shows a three-point contact ball bearing conventionally known as a comparison target. In the same manner as described above, this ball bearing has a plurality of single-row balls 15 as rolling elements interposed between the inner ring 11 and the outer ring 12, and the raceway surfaces 13 and 14 opposed to each other, and each ball 15. It is a ball bearing comprised by the holder | retainer 16 arranged in this. The inner ring 11 is a combination of split inner rings 11a and 11b divided in the axial direction. The inner ring 11 is combined with the outer ring 12, and the ball 15 is a three-point contact ball bearing supported by these three members.

前記内輪11の軌道面13の両側に一定幅の肩部17が設けられるところまでは実施形態1の場合と同一構造である。しかし、この比較対象の3点接触玉軸受の場合は、外輪12の軌道面14が2つの異なる溝曲率比でできている点において相違している。   The structure is the same as that of the first embodiment up to the point where shoulder portions 17 having a constant width are provided on both sides of the raceway surface 13 of the inner ring 11. However, the three-point contact ball bearing to be compared is different in that the raceway surface 14 of the outer ring 12 is formed with two different groove curvature ratios.

前記比較対象との対比から明らかなように、実施形態1の場合は、軌道面内側14aに連続して軌道面外側14bを設けている。さらに軌道面外側14bの溝曲率比Xを1.00≦X<X≦1.12に設定している。このため、航空機のジェットエンジン主軸のフロント・ファンの支持部に用いられ、FBOに起因する過大なラジアル荷重を受けた場合において、玉15は軌道面外側14bで受けられるため、接触面圧が過大になることが抑制され、変形が防止される。また肩部18へ乗り上げることも防止され、エッジ応力による玉15の損傷が防止される。 As is clear from the comparison with the comparison object, in the case of the first embodiment, the track surface outer side 14b is provided continuously to the track surface inner side 14a. Furthermore has set groove curvature ratio X 2 of track surface outer 14b to 1.00 ≦ X 2 <X 1 ≦ 1.12. For this reason, since the ball 15 is received by the outer raceway surface 14b when it is used for the front fan support portion of the jet engine main shaft of an aircraft and receives an excessive radial load due to FBO, the contact surface pressure is excessive. Is suppressed, and deformation is prevented. Further, it is possible to prevent the ball 15 from climbing onto the shoulder 18 and to prevent the ball 15 from being damaged by the edge stress.

なお、以上の実施形態1は、外輪12に2つの異なる溝曲率比を設ける場合について説明したが、内輪11のみ、若しくは外輪12と内輪11の両方に本発明を適用してもよい。   In the above-described first embodiment, the case where two different groove curvature ratios are provided in the outer ring 12 has been described. However, the present invention may be applied only to the inner ring 11 or both the outer ring 12 and the inner ring 11.

11 内輪
11a、11b 分割内輪
12 外輪
13 軌道面
14 軌道面
14a 軌道面内側
14b 軌道面外側
15 玉
16 保持器
17 肩部
18 肩部
21 被案内面
22 ヌスミ形状
23 コーナー部
E 通常運転における接触楕円
11 Inner rings 11a, 11b Split inner ring 12 Outer ring 13 Race surface 14 Race surface 14a Race surface inside 14b Track surface outside 15 Ball 16 Cage 17 Shoulder 18 Shoulder 21 Guided surface 22 Nusumi shape 23 Corner E E Contact ellipse in normal operation

Claims (6)

内輪、外輪、これらの軌道輪の軌道面間に介在された多数の転動体及び前記転動体を一定間隔に保持する保持器とからなり、前記各軌道輪はその軌道面に沿った一定幅の肩部を備えた転がり軸受において、前記内輪又は外輪のいずれか、若しくはその両方の軌道面が、軸受の軸方向から見て、2つの異なる溝曲率比でできており、その変曲点は通常運転時における接触楕円を中心として、該接触楕円より外側の両側にあり、その両側の変曲点より外側の両軌道面の溝曲率比が同じであり、且つ、両側の変曲点より外側の両軌道面の溝曲率比は、該接触楕円を含む軌道面両変曲点の内側の軌道面の溝曲率比より小さいことを特徴とする転がり軸受。   An inner ring, an outer ring, a large number of rolling elements interposed between the raceway surfaces of these raceways, and a cage that holds the rolling bodies at regular intervals, each raceway having a constant width along the raceway surface. In a rolling bearing having a shoulder, the raceway surface of either the inner ring or the outer ring or both of them has two different groove curvature ratios as viewed from the axial direction of the bearing, and the inflection point is usually Centering on the contact ellipse during operation, the groove curvature ratios of both raceway surfaces outside the inflection points on both sides of the contact ellipse are the same, and outside the inflection points on both sides. A rolling bearing characterized in that the groove curvature ratio of both raceway surfaces is smaller than the groove curvature ratio of the raceway surface inside the raceway both inflection points including the contact ellipse. 前記変曲点の位置が軸受の軸方向中心から見て、左右対称となることを特徴とする請求項1に記載の転がり軸受。   The rolling bearing according to claim 1, wherein the position of the inflection point is symmetric when viewed from the axial center of the bearing. 前記軌道面内側の溝曲率比Xと前記軌道面外側の溝曲率比Xの間に、1.00≦X<X≦1.12という関係が成立することを特徴とする請求項1又は2に記載の転がり軸受。 Claims, characterized in that between the groove curvature ratio X 2 of the raceway surface outside the groove curvature ratio X 1 of the inner said track surface, the relationship of 1.00 ≦ X 2 <X 1 ≦ 1.12 is satisfied The rolling bearing according to 1 or 2. 前記肩部と軌道面外側とが作るコーナー部分にR面取り加工が施されたことを特徴とする請求項1から3のいずれかに記載の転がり軸受。   The rolling bearing according to any one of claims 1 to 3, wherein an R chamfering process is performed on a corner portion formed by the shoulder portion and the outer raceway surface. 前記転動体が、軸方向に2分された分割内輪と、外輪の3部材によって接触支持された3点接触玉軸受であることを特徴とする請求項1から4のいずれかに記載の転がり軸受。   5. The rolling bearing according to claim 1, wherein the rolling element is a three-point contact ball bearing that is contact-supported by three members, an inner ring divided in the axial direction and an outer ring. . 航空機のジェットエンジン主軸においてフロント・ファンの支持部に用いられることを特徴とする請求項1から5のいずれかに記載の転がり軸受。



The rolling bearing according to claim 1, wherein the rolling bearing is used as a support portion of a front fan in an aircraft jet engine main shaft.



JP2013195358A 2013-09-20 2013-09-20 Rolling bearing Pending JP2015059645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195358A JP2015059645A (en) 2013-09-20 2013-09-20 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195358A JP2015059645A (en) 2013-09-20 2013-09-20 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2015059645A true JP2015059645A (en) 2015-03-30

Family

ID=52817335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195358A Pending JP2015059645A (en) 2013-09-20 2013-09-20 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2015059645A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078588A1 (en) * 2015-04-06 2016-10-12 General Electric Company Fan bearings for a turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210766A (en) * 1997-11-07 1999-08-03 Nippon Seiko Kk Three point contact ball bearing
JP2002005178A (en) * 2000-06-23 2002-01-09 Hiroshi Teramachi Raceway groove structure of ball
JP2003130058A (en) * 2001-10-22 2003-05-08 Meiji Univ Rolling machine element
JP2003130065A (en) * 2001-10-22 2003-05-08 Koyo Seiko Co Ltd Ball bearing
JP2013079680A (en) * 2011-10-04 2013-05-02 Ntn Corp Rolling bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210766A (en) * 1997-11-07 1999-08-03 Nippon Seiko Kk Three point contact ball bearing
JP2002005178A (en) * 2000-06-23 2002-01-09 Hiroshi Teramachi Raceway groove structure of ball
JP2003130058A (en) * 2001-10-22 2003-05-08 Meiji Univ Rolling machine element
JP2003130065A (en) * 2001-10-22 2003-05-08 Koyo Seiko Co Ltd Ball bearing
JP2013079680A (en) * 2011-10-04 2013-05-02 Ntn Corp Rolling bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
EP3078588A1 (en) * 2015-04-06 2016-10-12 General Electric Company Fan bearings for a turbine engine
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Similar Documents

Publication Publication Date Title
JP2015059645A (en) Rolling bearing
US10054164B2 (en) Rolling bearing
US20140003755A1 (en) Bearing device having a safety bearing
US10527091B2 (en) Self-aligning roller bearing
WO2013051696A1 (en) Rolling bearing
JP2012017770A (en) Self-aligning roller bearing
JP2018109448A (en) Conical roller bearing
EP2700834B1 (en) Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
US9587676B2 (en) Self-aligning roller bearing
JP2015102144A (en) Self-aligning roller bearing
JP6696610B2 (en) Cage cage for rolling bearings
CN108884865B (en) Multi-row cylindrical roller bearing
JP6550711B2 (en) Crown type cage for rolling bearing
JP2017078480A (en) Self-aligning roller bearing
JP2010196861A (en) Roll bearing
JP2017137970A (en) Roller bearing
JP6554772B2 (en) Roller bearing cage
JP2007247755A (en) Double row roller bearing
JP2006307886A (en) Roller bearing
WO2023037918A1 (en) Needle roller bearing
JP2005299738A (en) Rolling bearing with flange
JP2012112517A (en) Tapered roller bearing
CN117916478A (en) Needle roller bearing
JP5703494B2 (en) Ball bearing
JP2007292163A (en) Split type roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171226