JPH11210766A - Three point contact ball bearing - Google Patents

Three point contact ball bearing

Info

Publication number
JPH11210766A
JPH11210766A JP10312110A JP31211098A JPH11210766A JP H11210766 A JPH11210766 A JP H11210766A JP 10312110 A JP10312110 A JP 10312110A JP 31211098 A JP31211098 A JP 31211098A JP H11210766 A JPH11210766 A JP H11210766A
Authority
JP
Japan
Prior art keywords
ball bearing
point contact
bearing
contact ball
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10312110A
Other languages
Japanese (ja)
Other versions
JP3736149B2 (en
Inventor
Masahito Taniguchi
雅人 谷口
Hirotoshi Aramaki
宏敏 荒牧
Yuji Nakano
裕司 中野
Hiroshi Ishiguro
博 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP31211098A priority Critical patent/JP3736149B2/en
Publication of JPH11210766A publication Critical patent/JPH11210766A/en
Application granted granted Critical
Publication of JP3736149B2 publication Critical patent/JP3736149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/43Clutches, e.g. disengaging bearing

Abstract

PROBLEM TO BE SOLVED: To reduce an eccentric wear and enlarge an axial rigidity by making the carvature radius of the track groove of a first track race having a single arc shape within the specific range of the ball diameter of a rolling body. SOLUTION: In a three point contact ball bearing B, the track groove surface 13a of an outer race 13 receiving a static load is made by a single arc section shape consisting of a radius Re, while the section shape of the track groove surface 12a of an inner race 12 receiving a rotary load is made by a Gothic arch shape contacted to a ball 14 by a rest angle β. The carvature (Re/Da) of the track groove of a first track race having the single arc shape is made into a range from 50.3% to 53.3% of a ball diameter Da. In this case, it is further favorable to make into the range from 50.5% to 50.0% of the ball diameter Da. Then, the eccentric wear by a spin can be reduced and the axial rigidity can be enlarged than a deep groove ball bearing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラジアル荷重を負
荷して用いられる軸方向の位置決め性能に優れた3点接
触玉軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-point contact ball bearing which is used under a radial load and has excellent axial positioning performance.

【0002】[0002]

【従来の技術】転がり軸受を用いて軸方向の変位を抑え
るためには、通常、アンギュラ玉軸受や円すいころ軸受
を用いる。しかし、これらの軸受は単独では一方向のア
キシアル荷重しか支持できないため、両方向のアキシア
ル荷重に対する変位を抑えるためには、これらの軸受を
2個以上組み合わせて用いるか、もしくは複列軸受を採
用する必要がある。従って、軸方向にある程度のスペー
スを必要とし、機械装置のコンパクト化および軽量化設
計が難しい。
2. Description of the Related Art In order to suppress axial displacement using a rolling bearing, an angular ball bearing or a tapered roller bearing is usually used. However, since these bearings can support only one axial load by themselves, it is necessary to use two or more of these bearings or adopt double-row bearings in order to suppress displacement due to axial loads in both directions. There is. Therefore, a certain space is required in the axial direction, and it is difficult to design a compact and lightweight mechanical device.

【0003】図1に示すように、単列の深みぞ玉軸受A
は、両方向のアキシアル荷重を支持できるが、内外輪
2,3のみぞ断面形状がともに単一円弧であるため、軸
方向のアキシアル変位が大きい。
As shown in FIG. 1, a single row deep groove ball bearing A
Can support axial loads in both directions, but the axial displacements in the axial direction are large because the inner and outer rings 2 and 3 have a single circular cross section.

【0004】このようなアキシアル変位を抑える目的
で、図2に示すような4点接触玉軸受Cが用いられるこ
とがある。4点接触玉軸受Cにおいては、内輪6および
外輪7の軌道面が対向しており、玉8を軌道面に押し付
けたとき、玉8の中心と接触点とを結ぶ線は軸受の中心
線に対してある角度β(レストアングル)をとる。4点
接触玉軸受Cは荷重条件によらず常に玉8が内外輪6,
7とある角度をもって接触するため、コンパクトであり
ながら、アキシアル剛性が高く、軸方向の位置決め性能
に優れている。
In order to suppress such axial displacement, a four-point contact ball bearing C as shown in FIG. 2 is sometimes used. In the four-point contact ball bearing C, the raceways of the inner ring 6 and the outer race 7 are opposed to each other, and when the ball 8 is pressed against the raceway, the line connecting the center of the ball 8 and the contact point is the center line of the bearing. Take an angle β (rest angle) with respect to it. In the four-point contact ball bearing C, the ball 8 always has the inner and outer rings 6, regardless of the load condition.
Since it is in contact with 7 at a certain angle, it is compact, has high axial rigidity, and has excellent axial positioning performance.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、4点接
触玉軸受Cにラジアル荷重を負荷すると、内外輪6,7
と玉8との接触点においてスピン運動によるすべりが大
きくなる。玉8や回転荷重を受ける軌道輪では、最大荷
重を受ける接触点の位置が刻々変化するため、すべりに
よって部材表面の特定の箇所が損傷を受ける可能性は低
いと考えられる。しかし、静止荷重を受ける軌道輪で
は、最大荷重を受ける位置が一定であるため、軌道面に
は繰り返し大きなすべり運動にさらされる部分が存在す
る。この部分では、接触点での発熱による温度上昇か
ら、焼付きが起こる危険性が高くなる。また、すべりが
大きい部位で軌道表面が偏摩耗することにより、軸受の
運転に支障をきたす可能性がある。
However, when a radial load is applied to the four-point contact ball bearing C, the inner and outer rings 6, 7
The slip due to the spin motion at the contact point between the ball and the ball 8 increases. Since the position of the contact point that receives the maximum load changes every moment in the ball 8 and the bearing ring that receives the rotational load, it is considered that the possibility that a specific portion of the member surface is damaged by the slip is low. However, in a bearing ring which receives a static load, the position where the maximum load is received is constant, and therefore, there are portions repeatedly exposed to a large sliding motion on the raceway surface. In this portion, the risk of seizures increases due to a temperature rise due to heat generation at the contact point. Further, uneven running of the raceway surface at a portion where the slip is large may hinder the operation of the bearing.

【0006】また、電磁クラッチ用軸受においてはベル
ト荷重が軸面中央から変位する箇所に作用するため、複
列の玉軸受が使用されている。玉軸受とプーリとは電磁
クラッチをできるだけ小型化するために、軸方向に位置
がずれている。Vベルトの張力によって生じるラジアル
荷重は、プーリと玉軸受とが軸方向に位置ずれしている
ために、傾きを伴うモーメント荷重として玉軸受に作用
する。このため、玉軸受の外輪と内輪との間に相対的な
傾きが生じてしまい、外輪に嵌合されたロータに傾きを
伴う軸方向変位が生じる。複列の玉軸受を用いると、ロ
ータの傾きが小さくなり、図9に示すロータ35とアー
マチュア37とが接触し、電磁クラッチが損傷するのが
防止される。しかし、複列の玉軸受は幅寸法が大きい
(幅広)ため、電磁クラッチのコンパクト化を困難と
し、また電磁クラッチのコンパクト化に伴うコスト低減
を困難としている。
[0006] In the case of a bearing for an electromagnetic clutch, a double-row ball bearing is used because a belt load acts on a portion displaced from the center of the shaft surface. The ball bearing and the pulley are displaced in the axial direction in order to make the electromagnetic clutch as small as possible. The radial load generated by the tension of the V-belt acts on the ball bearing as a moment load with inclination because the pulley and the ball bearing are displaced in the axial direction. For this reason, a relative inclination occurs between the outer ring and the inner ring of the ball bearing, and the rotor fitted to the outer ring undergoes an axial displacement with an inclination. When a double row ball bearing is used, the inclination of the rotor is reduced, and the rotor 35 and the armature 37 shown in FIG. 9 are brought into contact with each other to prevent the electromagnetic clutch from being damaged. However, double-row ball bearings have a large width (wide width), which makes it difficult to reduce the size of the electromagnetic clutch, and also makes it difficult to reduce costs associated with the reduction in size of the electromagnetic clutch.

【0007】本発明は上記課題を解決するためになされ
たものであって、軌道輪と玉との接触点においてスピン
運動によるすべりが小さく、偏摩耗を低減することがで
き、かつ、アキシャル剛性を大きくすることができる3
点接触玉軸受を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a small slip due to spin motion at a contact point between a race and a ball, can reduce uneven wear, and has a high axial rigidity. 3 which can be increased
It is an object to provide a point contact ball bearing.

【0008】[0008]

【課題を解決するための手段】本発明に係る3点接触玉
軸受は、単一円弧形状の軌道を有する第1の軌道輪と、
軸平行断面が単一円弧形状でなく、かつ、転動体と2点
で接触する軌道を有する第2の軌道輪とを具備する3点
接触玉軸受において、単一円弧形状を有する第1の軌道
輪の軌道みぞ曲率半径が転動体の玉直径の50.3%以
上、53.3%以下であることを特徴とする。
According to the present invention, there is provided a three-point contact ball bearing comprising: a first race having a single arc-shaped raceway;
A first raceway having a single circular arc shape in a three-point contact ball bearing having an axially parallel cross section not having a single circular arc shape and having a second raceway having a raceway contacting the rolling element at two points. The raceway radius of curvature of the wheel is not less than 50.3% and not more than 53.3% of the ball diameter of the rolling element.

【0009】本発明では単一円弧形状を有する第1の軌
道輪の軌道みぞ曲率(Re/Da)を玉直径Daの5
0.3%から53.3%までの範囲とする。この場合
に、玉直径Daの50.5%から53.0%までの範囲
とすることが更に好ましい。このようにすると、スピン
による偏摩耗を小さくでき、かつ、深みぞ玉軸受よりア
キシャル剛性を大きくすることができる。
In the present invention, the raceway curvature (Re / Da) of the first raceway having a single arc shape is determined by calculating the diameter of the raceway of the ball having a diameter Da of five.
The range is from 0.3% to 53.3%. In this case, it is more preferable to set the range of 50.5% to 53.0% of the ball diameter Da. In this manner, uneven wear due to spin can be reduced, and axial rigidity can be increased as compared with a deep groove ball bearing.

【0010】なお、第1及び第2の軌道輪、転動体のう
ちの少なくとも一つの構成部材の表面に窒化処理を施す
ことが好ましい。このようにすると構成部材の耐摩耗性
が高まる。
It is preferable that the surface of at least one of the first and second races and the rolling elements is subjected to nitriding. This increases the wear resistance of the component.

【0011】また、軸受はラジアル荷重を支持し、軸方
向の位置決めを目的として使用されることが好ましい。
The bearing preferably supports a radial load and is used for the purpose of positioning in the axial direction.

【0012】また、軸受は自動車の無段変速機において
ベルトをかけるプーリ軸の荷重を支持する箇所に用いる
ことが望ましい。
Further, it is desirable that the bearing is used in a position where the load of the pulley shaft on which the belt is applied is supported in a continuously variable transmission of an automobile.

【0013】さらに、軸受は自動車のトロイダル型の無
段変速機において、軸の位置決めを行うようにしてもよ
い。
Further, the bearing may be used for positioning the shaft in a toroidal type continuously variable transmission of an automobile.

【0014】また、上述した自動車の無段変速機用軸受
など高速、高荷重条件で運転される軸受の場合、静止荷
重を受ける軌道輪のスピンによる偏摩耗を小さくするた
め、単一円弧形状を有する第1の軌道輪は静止荷重を受
け、転動体と2点で接触する第2の軌道輪は回転荷重を
受けるようにすることが好ましい。
In the case of a bearing operated under high-speed and high-load conditions, such as the above-described bearing for a continuously variable transmission of an automobile, a single circular arc shape is used in order to reduce uneven wear due to spin of a bearing ring which receives a static load. It is preferable that the first bearing ring has a static load and the second bearing ring that contacts the rolling element at two points receives a rotating load.

【0015】また、軸受は、電磁クラッチ装置におい
て、摩擦面を有し回転するロータを回転支持する箇所に
用いることが望ましい。
It is desirable that the bearing be used in a portion of the electromagnetic clutch device that rotatably supports a rotating rotor having a friction surface.

【0016】さらに、転動体および第2の軌道輪(内
輪)をセラミックス製とすることが望ましい。
Further, it is desirable that the rolling elements and the second race (the inner race) are made of ceramics.

【0017】[0017]

【作用】本発明に係る3点接触玉軸受においては、第1
の軌道輪の軌道断面形状を単一円弧としているため、4
点接触玉軸受に比べてラジアル荷重負荷時に、スピンす
べりが小さくなり、同軌道面の偏摩耗が防止される。
In the three-point contact ball bearing according to the present invention, the first
Since the raceway cross-sectional shape of the raceway is a single arc,
As compared to point contact ball bearings, when a radial load is applied, spin sliding is reduced, and uneven wear of the raceway surface is prevented.

【0018】また、本発明の3点接触玉軸受では、第2
の軌道輪の軌道面は対向しており、常に玉が軌道面と大
きな接触角で接触するため、両方向のアキシアル荷重に
対して深みぞ玉軸受よりも高いアキシアル剛性を示すよ
うになる。
Also, in the three-point contact ball bearing of the present invention,
The orbital surfaces of the orbital rings face each other, and the ball always contacts the orbital surface at a large contact angle, so that the axial load in both directions exhibits higher axial rigidity than the deep groove ball bearing.

【0019】さらに、第1及び第2の軌道輪、転動体の
うち少なくとも1つをセラミックス製とすると、セラミ
ックスは鋼材よりも線膨張係数が小さく、温度が変化し
たときに軸受の隙間の変動が少なくなるので、焼付きを
生じにくくなる。また、転動体をセラミックスにする
と、同一の溝の曲率に対して外輪の軸方向変位量を小さ
くすることができるので、設計の自由度が高まる。
Further, if at least one of the first and second races and the rolling elements is made of ceramics, the ceramics have a smaller coefficient of linear expansion than a steel material, and when the temperature changes, the fluctuation of the bearing gap changes. Since the number of the images decreases, seizure hardly occurs. Further, when the rolling elements are made of ceramics, the axial displacement of the outer ring can be reduced with respect to the curvature of the same groove, so that the degree of freedom in design is increased.

【0020】[0020]

【発明の実施の形態】以下、添付の図面と表を参照しな
がら本発明の種々の好ましい実施の形態について説明す
る。(実施例1)表1に示す同じ寸法の深みぞ玉軸受
A、3点接触玉軸受B、4点接触玉軸受Cの各特性を計
算機によってそれぞれシミュレート解析した。この解析
手法には「4点接触玉軸受の性能解析」(谷口、荒牧、
正田;(社)日本トライボロジー学会、トライボロジー
会議1996年春の東京講演予稿集)に記載の方法を採
用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various preferred embodiments of the present invention will be described below with reference to the accompanying drawings and tables. (Example 1) Each characteristic of a deep groove ball bearing A, a three-point contact ball bearing B, and a four-point contact ball bearing C having the same dimensions shown in Table 1 was simulated and analyzed by a computer. This analysis method includes "performance analysis of four-point contact ball bearings" (Taniguchi, Aramaki,
Masada: The method described in Tribology Conference of the Japan Society of Tribology, Tribology Conference, Spring 1996, Tokyo).

【0021】ここで、解析対象となる軸受は外輪に静止
荷重がかかり、内輪回転で用いられるものとする。図4
に示すように、本発明の3点接触玉軸受Bでは、静止荷
重を受ける外輪13の軌道溝面13aを半径Reからな
る単一円弧状の断面形状とする一方で、回転荷重を受け
る内輪12の軌道溝面12aの断面形状を、玉14とレ
ストアングルβで接触するゴシックアーチ形状としてい
る。なお、本実施形態では内輪の軌道溝面12aにおけ
る玉14のレストアングルβを30゜とした。一方、比
較例の4点接触玉軸受Cでは、内外輪6,7の両者とも
に玉8とレストアングルβで接触するゴシックアーチ形
状とした。なお、各軸受A,B,Cの軌道溝面の表面粗
さは同一とした。
Here, it is assumed that the bearing to be analyzed applies a static load to the outer ring and is used for rotation of the inner ring. FIG.
As shown in the figure, in the three-point contact ball bearing B of the present invention, the raceway groove surface 13a of the outer ring 13 receiving a static load has a single arc-shaped cross-sectional shape having a radius Re, while the inner ring 12 receiving a rotational load. The cross-sectional shape of the raceway groove surface 12a is a Gothic arch shape that comes into contact with the ball 14 at a rest angle β. In this embodiment, the rest angle β of the ball 14 on the raceway groove surface 12a of the inner race is set to 30 °. On the other hand, the four-point contact ball bearing C of the comparative example had a gothic arch shape in which both the inner and outer rings 6 and 7 contact the ball 8 at a rest angle β. The surface roughness of the raceway grooves of the bearings A, B, and C was the same.

【0022】表2に各シミュレーション解析に用いた運
転条件を示す。上記の各軸受A,B,Cに対し、解析1
では純ラジアル荷重を負荷し、解析2では純アキシアル
荷重を負荷した。内輪の回転数は解析1,2ともに1000
0rpmとした。
Table 2 shows the operating conditions used for each simulation analysis. Analysis 1 for each of the above bearings A, B, C
In Example 2, a pure radial load was applied, and in Analysis 2, a pure axial load was applied. The rotation speed of the inner ring is 1000 for both analysis 1 and 2.
0 rpm was set.

【0023】シミュレーション解析結果を図6に示す。
図6のグラフの横軸は、純ラジアル荷重下の解析1によ
る玉と外輪軌道面の接触点におけるPV値の最大値を示
している。図5に示すように、玉と軌道輪との接触点
は、実際には表面の弾性変形によりヘルツの弾性接触理
論に基づき楕円形で表される領域(図中にて斜線領域)
となる。すなわち、二次曲面同士の点接触の場合は、幾
何学的条件から相互接触部は楕円形状となり、転動体荷
重をQとした場合に、その最大接触圧力PmaxはQ
1/3 に比例し、その弾性変位量δはQ2/3 に比例する。
FIG. 6 shows the results of the simulation analysis.
The horizontal axis of the graph in FIG. 6 indicates the maximum value of the PV value at the contact point between the ball and the outer raceway surface according to the analysis 1 under the pure radial load. As shown in FIG. 5, the contact point between the ball and the bearing ring is actually represented by an elliptical area based on the elastic contact theory of Hertz due to the elastic deformation of the surface (the hatched area in the figure).
Becomes That is, in the case of point contact between quadratic surfaces, the mutual contact portion has an elliptical shape due to geometrical conditions, and when the rolling element load is Q, the maximum contact pressure Pmax is Q
Proportional to 1/3, its elastic displacement δ is proportional to Q 2/3.

【0024】PV値は、この接触面内の面圧Pとすべり
速度Vとの積である。解析1,2では、各玉と外輪との
接触面内において、PV値を計算しており、ここではそ
の最大値を示している。PV値はすべりによる発熱や摩
耗の指標として広く用いられている。このPV値に表面
間のすべり摩擦係数μを乗じたμPV値は、単位面積・
単位時間当たりのすべりによる摩擦損失を与える。ま
た、軸受鋼を使用した4点接触玉軸受Cの場合は、本解
析によるPV値が1.5〜2.0GPam/sを越えると、静
止荷重を受ける軌道輪では局所的な摩耗につながること
が、実験結果から得られている。
The PV value is the product of the surface pressure P in the contact surface and the slip speed V. In the analyzes 1 and 2, the PV value is calculated in the contact surface between each ball and the outer ring, and the maximum value is shown here. The PV value is widely used as an index of heat generation and wear due to slip. The μPV value obtained by multiplying this PV value by the coefficient of sliding friction μ between surfaces is given by
Gives friction loss due to sliding per unit time. In the case of a four-point contact ball bearing C using bearing steel, if the PV value in this analysis exceeds 1.5 to 2.0 GPam / s, local wear may occur on the bearing ring that receives a static load. Is obtained from the experimental results.

【0025】内外輪の軌道みぞ曲率半径をともに50.
5%としたものと、52%としたものについて解析をそ
れぞれ行った。各々について、本発明による3点接触玉
軸受Bの純ラジアル荷重下の外輪最大PV値は、4点接
触玉軸受Cに比べて小さく、深みぞ玉軸受Aとほぼ同等
であった。4点接触玉軸受Cの外輪最大PV値は、1.
5GPam/sを越えており、外輪軌道面に局所的な摩耗を生
じる危険性がある。しかし、3点接触玉軸受BのPV値
は、軌道みぞ曲率半径が50. 5%のときでも、およそ
1.1GPam/sにすぎないので、外輪13に偏摩耗が生じ
る可能性は小さい。
The radius of curvature of the raceway grooves of the inner and outer rings is 50.
The analysis was performed for each of 5% and 52%. In each case, the outer ring maximum PV value of the three-point contact ball bearing B according to the present invention under a pure radial load was smaller than that of the four-point contact ball bearing C, and was substantially equal to that of the deep groove ball bearing A. The outer ring maximum PV value of the four-point contact ball bearing C is:
It exceeds 5 GPam / s, and there is a risk of causing local wear on the outer raceway surface. However, the PV value of the three-point contact ball bearing B is only about 1.1 GPam / s even when the radius of curvature of the raceway groove is 50.5%, so that the possibility of uneven wear of the outer ring 13 is small.

【0026】図6及び図8に示すグラフの縦軸は、純ア
キシアル荷重下の解析2による軸受の軸方向変位であ
る。ここでアキシアル変位は、軸受の内部すきまによる
軸方向の移動量と、荷重によって玉や軌道が弾性変形す
ることによる変位とを含んでいる。図から明らかなよう
に、本発明の3点接触玉軸受Bのアキシアル変位は、4
点接触玉軸受Cよりは大きいが、深みぞ玉軸受Aに比
べ、40〜50%小さい。また、本発明の3点接触玉軸
受Bは、深みぞ玉軸受Aに比べて位置決めの効果が高い
ことを示している。
The vertical axis of the graphs shown in FIGS. 6 and 8 is the axial displacement of the bearing according to Analysis 2 under pure axial load. Here, the axial displacement includes an axial movement amount due to the internal clearance of the bearing, and a displacement due to elastic deformation of the ball or the track due to a load. As is clear from the figure, the axial displacement of the three-point contact ball bearing B of the present invention is 4
It is larger than the point contact ball bearing C, but 40 to 50% smaller than the deep groove ball bearing A. Further, the three-point contact ball bearing B of the present invention shows that the positioning effect is higher than that of the deep groove ball bearing A.

【0027】なお、上記の解析では、軸受A,B,Cの
いずれも一般的な深みぞ玉軸受6308に玉数を一致させて
いる。しかし、玉14と内輪12が2点で接触するタイ
プの3点接触玉軸受Bや、4点接触玉軸受Cは、中心軸
に垂直な平面で2分割された内輪をもつ場合がある。こ
のような3点接触玉軸受Bや4点接触玉軸受Cは、同サ
イズの一般的な深みぞ玉軸受Aに比べて組立てが容易で
あることから、玉数を増やすことが容易である。玉数が
増えることにより、玉1個当たりの荷重が減り、軌道輪
との接触点の面圧や、軸受の弾性変形量が減少する。本
発明の3点接触玉軸受Bでも、玉数を増やすことによ
り、ラジアル荷重下のPV値、アキシアル荷重下のアキ
シアル変位とも、図6に示したものより減少し、さらに
優れた特性をもつ軸受を供することができる。(実施例
2)第1実施例と同様の解析手法を用いて、上記の3点
接触玉軸受Bについて軸受特性に及ぼす外輪みぞ曲率半
径の影響を調べた。内輪12のみぞ曲率半径は玉径Da
の52%とした。その他の軸受の諸元は表1に示す通り
である。
In the above analysis, the number of balls in each of the bearings A, B, and C is the same as that of a general deep groove ball bearing 6308. However, a three-point contact ball bearing B or a four-point contact ball bearing C of a type in which the ball 14 and the inner ring 12 contact at two points may have an inner ring divided into two by a plane perpendicular to the central axis. Such a three-point contact ball bearing B or a four-point contact ball bearing C is easier to assemble than a general deep groove ball bearing A of the same size, and therefore it is easy to increase the number of balls. As the number of balls increases, the load per ball decreases, and the surface pressure at the point of contact with the race and the amount of elastic deformation of the bearing decrease. Also in the three-point contact ball bearing B of the present invention, by increasing the number of balls, the PV value under the radial load and the axial displacement under the axial load are reduced as compared with those shown in FIG. Can be provided. (Embodiment 2) Using the same analysis method as in the first embodiment, the effect of the outer ring groove radius of curvature on the bearing characteristics of the above-mentioned three-point contact ball bearing B was examined. Groove radius of inner ring 12 is ball diameter Da
Of 52%. The specifications of the other bearings are as shown in Table 1.

【0028】図7に表2の解析1による結果を示す。横
軸は外輪のみぞ曲率半径Reを玉径Daに対する比率で
表示している。縦軸は純ラジアル荷重下の運転におい
て、玉と外輪軌道面の接触点におけるPV値の最大値を
示している。みぞ曲率半径が大きいほど外輪の最大PV
値は小さく、過大な発熱や摩耗の危険性が低いことを表
している。上述の通り、PV値が1.5GPam/sを越える
と、静止荷重を受ける外輪13の局所的な摩耗が発生し
得る。従って、図7より、本実施例で外輪軌道面13a
の偏摩耗を防止するためには、外輪のみぞ曲率半径Re
は玉径Daの50.3%以上でなければならない。製造
上あるいは運転上の誤差を考慮し、外輪軌道のPV値を
1.0GPam/s以下に抑えるためには、さらに好ましくは
外輪のみぞ曲率半径Reは玉径Daの50. 5%以上で
あることがよい。
FIG. 7 shows the results of analysis 1 in Table 2. The abscissa indicates the radius of curvature Re of the outer ring as a ratio to the ball diameter Da. The vertical axis indicates the maximum value of the PV value at the contact point between the ball and the outer raceway surface during operation under a pure radial load. The larger the radius of curvature of the groove, the greater the maximum PV of the outer ring
The values are small, indicating a low risk of excessive heat generation and wear. As described above, when the PV value exceeds 1.5 GPam / s, local wear of the outer ring 13 that receives a static load may occur. Therefore, as shown in FIG.
In order to prevent uneven wear of the outer ring, only the outer ring has a radius of curvature Re.
Must be 50.3% or more of the ball diameter Da. In order to suppress the PV value of the outer ring raceway to 1.0 GPam / s or less in consideration of manufacturing or operation errors, it is more preferable that the outer ring groove has a curvature radius Re of at least 50.5% of the ball diameter Da. Good.

【0029】図8に表2の解析2による結果を示す。こ
こで、縦軸は純アキシアル荷重下の軸受のアキシアル変
位である。外輪13のみぞ曲率半径Reが小さいほどア
キシアル変位が小さく、位置決め性能に優れていること
を表している。ここで、グラフ上の破線は、標準的な深
みぞ玉軸受6308のアキシアル変位を示す。この図より明
らかなように、本発明による3点接触玉軸受Bでは、外
輪みぞ曲率半径Reが玉径Daの53%以下のとき、標
準的な深みぞ玉軸受6308に比べ、アキシアル変位が小さ
くなるという利点がある。
FIG. 8 shows the results of analysis 2 in Table 2. Here, the vertical axis represents the axial displacement of the bearing under a pure axial load. The smaller the radius of curvature Re of the outer ring 13 is, the smaller the axial displacement is, indicating that the positioning performance is excellent. Here, the broken line on the graph indicates the axial displacement of the standard deep groove ball bearing 6308. As is apparent from this figure, in the three-point contact ball bearing B according to the present invention, when the outer ring groove radius of curvature Re is 53% or less of the ball diameter Da, the axial displacement is smaller than that of the standard deep groove ball bearing 6308. There is an advantage that it becomes.

【0030】以上の実施例では、外輪が静止荷重を受
け、内輪が回転する場合について本発明の3点接触玉軸
受の効果について示した。内輪静止荷重、外輪回転荷重
のときには、軌道断面が単一円弧からなる内輪と、断面
が単一円弧形状でない2つの軌道をもつ外輪を有する3
点接触玉軸受を用いることにより、軌道輪と玉との接触
点においてスピン運動によるすべりが小さく、偏摩耗を
低減することができ、かつ、アキシャル剛性を大きくす
ることができるという効果が得られる。
In the above embodiment, the effect of the three-point contact ball bearing of the present invention has been shown in the case where the outer ring receives a static load and the inner ring rotates. In the case of an inner ring stationary load and an outer ring rotational load, the inner race has an inner race whose cross section is a single circular arc and an outer race having two races whose cross section is not a single circular arc.
By using the point contact ball bearing, there is obtained an effect that slip due to spin motion is small at a contact point between the bearing ring and the ball, uneven wear can be reduced, and axial rigidity can be increased.

【0031】本発明による3点接触玉軸受Bでは、回転
荷重を受ける軌道輪と玉との接触点ではすべりが大きい
が、これらの軌道や玉の表面では、最大荷重を受ける位
置が変化するため、特定の部位が偏摩耗する可能性は低
い。しかし、長期の運転を行ううちに、玉や軌道の表面
が全体的に摩耗してくることが考えられる。従って、好
ましくは鋼材表面に窒化処理を行い、耐摩耗性を高め
る。また静止荷重を受ける軌道輪についても、すべりが
小さいとはいえ偏摩耗防止の観点から、また潤滑油中の
ごみによる摩耗を防止する意味から、同様の耐摩耗性の
材料を使用することが好ましい。
In the three-point contact ball bearing B according to the present invention, the slip is large at the contact point between the bearing ring and the ball which receives the rotational load, but the position where the maximum load is applied changes on the surface of the raceway and the ball. However, the possibility of uneven wear of a specific part is low. However, it is conceivable that the surfaces of the balls and the raceway are worn out as a whole during the long-term operation. Therefore, preferably, the surface of the steel material is subjected to a nitriding treatment to enhance wear resistance. Also, for the bearing ring subjected to a static load, it is preferable to use the same wear-resistant material from the viewpoint of preventing uneven wear although the slip is small and from the viewpoint of preventing wear due to dust in the lubricating oil. .

【0032】このような3点接触玉軸受Bは、軸方向の
位置決めのために用いられるが、4点接触玉軸受Cの適
用が難しいラジアル荷重の大きい荷重条件下で使用する
ことが可能である。定常運転時にラジアル荷重を支持す
る用途はもちろん、起動時などに一時的に大きなラジア
ル荷重を受ける用途についても、本発明の3点接触玉軸
受Bは有効である。
Such a three-point contact ball bearing B is used for positioning in the axial direction, but can be used under a large radial load condition where it is difficult to apply the four-point contact ball bearing C. . The three-point contact ball bearing B of the present invention is effective not only for applications in which a radial load is supported during a steady operation but also applications in which a large radial load is temporarily applied at the time of starting or the like.

【0033】このような用途の一例として、自動車など
に用いられる、金属などのベルトを使用した無段変速機
において、ベルトをかけるプーリ軸の荷重を支持する軸
受が挙げられる。また、自動車などに用いられるトロイ
ダル型の無段変速機において、ラジアル荷重を受けなが
ら軸の位置決めを行う軸受としても使用できる。
An example of such an application is a bearing for supporting a load of a pulley shaft on which a belt is applied in a continuously variable transmission using a belt made of metal or the like, which is used in an automobile or the like. Further, in a toroidal-type continuously variable transmission used for automobiles and the like, it can be used as a bearing for positioning a shaft while receiving a radial load.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】(実施例3)次に、図9〜図11を参照し
ながら第3の実施例として本発明の3点接触玉軸受を電
磁クラッチに用いる場合について説明する。
(Embodiment 3) Next, a case where the three-point contact ball bearing of the present invention is used for an electromagnetic clutch will be described as a third embodiment with reference to FIGS.

【0037】電磁クラッチ31は車両走行用エンジンに
発生する回転動力を冷凍サイクルのコンプレッサに伝達
したり遮断したりするものである。電磁クラッチ用軸受
36にはベルト荷重が軸面中央から変位する箇所に作用
するため、傾きを伴う軸方向変位量を極力抑えることが
要求される。
The electromagnetic clutch 31 transmits or shuts off the rotational power generated in the vehicle running engine to the compressor of the refrigeration cycle. Since the belt load acts on the electromagnetic clutch bearing 36 at a position where the belt load is displaced from the center of the shaft surface, it is required to minimize the amount of axial displacement accompanied by the inclination.

【0038】電磁クラッチ31は、コンプレッサハウジ
ング40に固定されるステータ32と、このステータ3
2内に収容された電磁コイル33と、エンジンの回転動
力を伝える多段式Vベルト41が巻き掛けられたプーリ
34と、このプーリ34が外周に取り付けられたロータ
35と、このロータ35を回転可能に支持する3点接触
玉軸受36と、電磁コイル33の発生する磁力によって
ロータ35に吸引されるアーマチュア37と、このアー
マチュア37の回転動力をコンプレッサ(図示しない)
に伝える単一あるいは複数の部材からなるアーマチュア
支持部38とコンプレッサ軸39と、を備えている。
The electromagnetic clutch 31 includes a stator 32 fixed to the compressor housing 40 and the stator 3
2, a pulley 34 around which a multi-stage V-belt 41 for transmitting the rotational power of the engine is wound, a rotor 35 around which the pulley 34 is mounted, and a rotatable rotor 35 Three-point contact ball bearing 36, an armature 37 attracted to the rotor 35 by a magnetic force generated by the electromagnetic coil 33, and a rotary power of the armature 37 (not shown).
And a compressor shaft 39 composed of a single or a plurality of members to be transmitted to the armature.

【0039】ロータ35は、磁性体金属製(例えば鉄
製)であり、断面略コ字型を呈しており、アーマチュア
37の反対側を向く凹所35aを有する。この凹所35
aにはステータ32が収容されている。
The rotor 35 is made of a magnetic metal (for example, iron), has a substantially U-shaped cross section, and has a recess 35 a facing the opposite side of the armature 37. This recess 35
The stator 32 is accommodated in a.

【0040】単列の3点接触玉軸受36がロータ35と
コンプレッサハウジング40との間に嵌め込まれてい
る。この玉軸受36によりロータ35はコンプレッサハ
ウジング40に対して回転自在に支持されている。な
お、玉軸受36の外輪13はロータ35の内周に嵌め合
い接触し、玉軸受36の内輪12はコンプレッサハウジ
ング40のハブ外周に嵌め合い接触している。
A single-row three-point contact ball bearing 36 is fitted between the rotor 35 and the compressor housing 40. The rotor 35 is rotatably supported by the ball bearing 36 with respect to the compressor housing 40. The outer ring 13 of the ball bearing 36 fits and contacts the inner circumference of the rotor 35, and the inner ring 12 of the ball bearing 36 fits and contacts the outer circumference of the hub of the compressor housing 40.

【0041】ロータ35の外周には多段式のVベルト4
1が掛け渡されるプーリ34が溶接等の接合技術により
固着されている。このプーリ34は、エンジンの回転を
Vベルト41を介して常に受け、固着されたロータ35
とともに回転するようになっている。
On the outer periphery of the rotor 35, a multi-stage V belt 4
The pulley 34 around which the belt 1 is wound is fixed by a joining technique such as welding. The pulley 34 always receives the rotation of the engine via the V-belt 41 and the fixed rotor 35
It rotates with it.

【0042】玉軸受36とプーリ34とは、できるだけ
電磁クラッチ31をコンパクトにするために、通常は軸
方向に位置がずれている。Vベルト41の張力によって
生じるラジアル荷重は、プーリ34と玉軸受36とが軸
方向に位置ずれしているために、傾きを伴うモーメント
荷重として玉軸受36に作用する。したがって、玉軸受
36の外輪13と内輪12との間に相対的な傾きが生じ
てしまい、外輪13に嵌合されたロータ35に傾きを伴
う軸方向変位が生じる。
The ball bearing 36 and the pulley 34 are usually displaced in the axial direction in order to make the electromagnetic clutch 31 as compact as possible. The radial load generated by the tension of the V-belt 41 acts on the ball bearing 36 as a moment load with a tilt because the pulley 34 and the ball bearing 36 are displaced in the axial direction. Therefore, a relative inclination occurs between the outer ring 13 and the inner ring 12 of the ball bearing 36, and an axial displacement accompanied by an inclination occurs in the rotor 35 fitted to the outer ring 13.

【0043】ここで、電磁コイル33の通電が停止して
いる場合に、ロータ35とアーマチュア37との間には
所定の隙間g(例えば0.5mm)が存在するように設
計される。この隙間gは、各種部材の寸法許容差あるい
は、取り付け誤差を見込んで決められる。ここで、隙間
gをあまり大きくすると、電磁コイル33による磁力も
大きくしなければならないので、これらを見込んだ最小
の値になるように隙間gは設定される。
Here, the design is such that a predetermined gap g (for example, 0.5 mm) exists between the rotor 35 and the armature 37 when the energization of the electromagnetic coil 33 is stopped. The gap g is determined in consideration of dimensional tolerances of various members or mounting errors. Here, if the gap g is too large, the magnetic force by the electromagnetic coil 33 must also be increased. Therefore, the gap g is set to a minimum value that allows for these.

【0044】上述の理由により軸受36の傾きに伴う軸
方向変位量を極力抑えるために、従来は電磁クラッチの
ロータ35の支持に供する軸受として複列の玉軸受が用
いられている。複列の玉軸受を用いると、ロータ35の
傾きが小さくなり、ロータ35とアーマチュア37とが
接触し、電磁クラッチが損傷するのを防いでいる。しか
し、複列の玉軸受は幅寸法が大きい(幅広)ため、電磁
クラッチのコンパクト化を困難とし、また電磁クラッチ
のコンパクト化に伴うコスト低減を困難としている。
In order to minimize the axial displacement caused by the inclination of the bearing 36 for the above-described reason, a double-row ball bearing is conventionally used as a bearing for supporting the rotor 35 of the electromagnetic clutch. When the double row ball bearings are used, the inclination of the rotor 35 is reduced, and the rotor 35 and the armature 37 are in contact with each other, thereby preventing the electromagnetic clutch from being damaged. However, double-row ball bearings have a large width (wide width), which makes it difficult to reduce the size of the electromagnetic clutch, and also makes it difficult to reduce costs associated with the reduction in size of the electromagnetic clutch.

【0045】これに対して本実施例の3点接触玉軸受3
6では、軸方向の最大変位量を小さく抑え、かつ、電磁
クラッチ31のコンパクト化とコスト低減を実現するこ
とができる。表3に示す計算条件を用いて外輪13の外
径面の軸方向最大変位量をコンピュータシミュレーショ
ン演算して得た結果を示す。
On the other hand, the three-point contact ball bearing 3 of the present embodiment
In 6, the maximum displacement in the axial direction can be kept small, and the electromagnetic clutch 31 can be made compact and cost-effective. The results obtained by performing a computer simulation calculation of the maximum axial displacement of the outer diameter surface of the outer race 13 using the calculation conditions shown in Table 3 are shown.

【0046】表3では、2点接触する軌道輪12のみぞ
曲率半径を玉径の52%に固定し、単一円弧の軌道輪1
3のみぞ曲率半径を変化させた。その計算結果を図10
に示す。図10は、横軸に玉径Daに対する外輪のみぞ
曲率半径Reの比率(百分率)をとり、縦軸に外輪の軸
方向最大変位量(mm)をとって両者の関係につき調べ
た結果を示す特性線図である。図中にて特性線Aは3点
接触玉軸受における両者の相関を表わす。ちなみに従来
の複列玉軸受では軸方向最大変位量は0.09mm程度
になる。部品精度および組立て精度を向上させることに
より、軸方向最大変位量としては従来の90%程度大き
い0.17mm程度以下までは許容することができ、こ
の許容値を満足するためには、単一円弧軌道輪のみぞ曲
率半径Reを玉径Daの53.3%以下にしなければな
らない。また、好ましくは部品精度や組立て精度を変え
ることなく、コンパクト化を実現するために単一円弧軌
道輪のみぞ曲率半径を玉直径Daの51.9%以下と
し、軸方向最大変位量を0125mm以下とする。
In Table 3, the radius of curvature of the raceway ring 12 contacting at two points is fixed to 52% of the ball diameter, and the raceway ring 1 having a single arc is formed.
The radius of curvature of each of the three grooves was changed. The calculation result is shown in FIG.
Shown in FIG. 10 shows the result of examining the relationship between the outer diameter of the outer ring and the radius of curvature Re of the outer ring with respect to the ball diameter Da (percentage) on the horizontal axis, and the maximum axial displacement (mm) of the outer ring on the vertical axis. FIG. 6 is a characteristic diagram. In the figure, a characteristic line A represents a correlation between the two in the three-point contact ball bearing. Incidentally, in the conventional double-row ball bearing, the maximum axial displacement is about 0.09 mm. By improving the component accuracy and the assembly accuracy, the maximum axial displacement can be reduced to about 0.17 mm or less, which is about 90% larger than in the past. In order to satisfy this allowable value, a single arc is required. The radius of curvature Re of the race of the bearing ring must be 53.3% or less of the ball diameter Da. In addition, preferably, in order to realize compactness without changing the precision of parts and the precision of assembly, the radius of curvature of the groove of the single arc raceway is set to 51.9% or less of the ball diameter Da, and the maximum axial displacement is 0125 mm or less. And

【0047】さらに好ましくは軸方向最大変位量を0.
1mm以下に抑え、従来の複列玉軸受と同等程度にする
ためには、単一円弧軌道輪のみぞ曲率半径Reを玉径の
51.2%以下にすることが必要である。なお、みぞ曲
率半径Reの最小値は、理論上玉径Daの50%である
が、図7で述べたようにPV値が上昇し、摩耗の危険性
が高いため玉径Daの50.3%以上とする。さらに製
造上あるいは運転上の誤差を考慮すると、玉径Daの5
0.5%以上であることが好ましい。
More preferably, the maximum displacement in the axial direction is set to 0.
In order to suppress the diameter to 1 mm or less and to make it about the same as a conventional double row ball bearing, it is necessary to set the radius of curvature Re of the single circular raceway ring to 51.2% or less of the ball diameter. The minimum value of the groove curvature radius Re is theoretically 50% of the ball diameter Da. However, as described in FIG. 7, the PV value increases and the risk of abrasion is high. % Or more. Further, considering the manufacturing or operation error, the diameter of the ball
It is preferably at least 0.5%.

【0048】[0048]

【表3】 [Table 3]

【0049】以上の結果より、3点接触玉軸受は、電磁
クラッチの場合のようにモーメント荷重が作用する場合
にも軸方向変位量を抑えることができる。なお、電磁ク
ラッチ用軸受の場合、静止輪である内輪みぞを単一円弧
形状にしても回転輪である外輪みぞを単一円弧形状にし
ても軸方向最大変位量は変わらないためどちらでもよ
い。しかし、電磁クラッチ用軸受の場合、内輪での面圧
が高く内輪軌道面での剥離が発生するため、内輪荷重を
2個所に分散できる3点接触玉軸受にすると寿命が延び
るので好ましい。また、電磁クラッチ用軸受においても
偏摩耗を抑える観点から、鋼材に窒化処理を行い、耐摩
耗性を高めることが好ましい。
From the above results, the three-point contact ball bearing can suppress the amount of axial displacement even when a moment load acts like an electromagnetic clutch. In the case of a bearing for an electromagnetic clutch, the axial maximum displacement amount in the single arc shape outer ring groove even if the inner ring groove which is stationary ring into a single arc shape is rotating ring may be either because it does not change. However, in the case of a bearing for an electromagnetic clutch, since the surface pressure on the inner ring is high and separation occurs on the inner ring raceway surface, it is preferable to use a three-point contact ball bearing capable of dispersing the inner ring load in two places because the life is extended. Also, from the viewpoint of suppressing uneven wear in the electromagnetic clutch bearing, it is preferable to increase the wear resistance by performing nitriding treatment on the steel material.

【0050】また、剛性を上げ、外輪の軸方向最大変位
量を減らす観点から、転動体に鋼よりヤング率の大きな
窒化珪素あるいは炭化珪素等のセラミックスを使用する
のが好ましい。図11は、横軸に玉径Daに対する外輪
のみぞ曲率半径Reの比率(百分率)をとり、縦軸に外
輪の軸方向最大変位量(mm)をとって両者の関係につ
き調べた結果を示す特性線図である。図中にて特性線B
は転動体に鋼球を用いた結果を、特性線Cは転動体にセ
ラミックス球(窒化珪素)を用いた結果をそれぞれ示
す。図から明らかなように、転動体を窒化珪素セラミッ
クにすると、軸受の傾き剛性がさらに高まるので、軸受
36の傾きに伴う軸方向変位量をさらに低減でき、これ
によって設計の自由度も高くなる。
From the viewpoint of increasing the rigidity and reducing the maximum axial displacement of the outer ring, it is preferable to use ceramics such as silicon nitride or silicon carbide having a higher Young's modulus than steel for the rolling elements. FIG. 11 shows the results of an examination of the relationship between the outer ring and the radius of curvature Re of the outer ring with respect to the ball diameter Da (percentage) on the horizontal axis and the maximum axial displacement (mm) of the outer ring on the vertical axis. FIG. 6 is a characteristic diagram. Characteristic line B in the figure
Shows the results using steel balls for the rolling elements, and the characteristic line C shows the results using ceramic balls (silicon nitride) for the rolling elements. As is clear from the figure, when the rolling elements are made of silicon nitride ceramic, the inclination rigidity of the bearing is further increased, so that the amount of axial displacement accompanying the inclination of the bearing 36 can be further reduced, thereby increasing the degree of freedom in design.

【0051】[0051]

【発明の効果】本発明によれば、第1の軌道輪を軸平行
断面が単一円弧形状とし、第2の軌道輪を軸平行断面が
単一円弧形状でなく、かつ、転動体と2点で接触する2
つの軌道を有し、第1の軌道輪のみぞ曲率半径が転動体
直径の50. 3%以上、53.3%以下のものとするこ
とにより、偏摩耗を低減し、かつ、アキシアル変位は深
溝玉軸受より小さく、アキシアル剛性を大きくすること
ができる。
According to the present invention, the first race has a single circular arc-parallel cross-section parallel to the axis, and the second race has a non-circular cross-section parallel to the axis. Touch at point 2
The first race has a groove having a radius of curvature of not less than 50.3% and not more than 53.3% of the diameter of the rolling element, thereby reducing uneven wear and reducing axial displacement. It is smaller than a ball bearing and can increase axial rigidity.

【0052】また、本発明の3点接触玉軸受では、軸方
向の位置決め機能を有しながら、ラジアル荷重を負荷し
たときにも発熱や摩耗が少なくなる。
In the three-point contact ball bearing of the present invention, heat generation and wear are reduced even when a radial load is applied, while having the axial positioning function.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の深みぞ玉軸受の一例を示す断面図。FIG. 1 is a sectional view showing an example of a conventional deep groove ball bearing.

【図2】従来の4点接触玉軸受の一例を示す断面図。FIG. 2 is a sectional view showing an example of a conventional four-point contact ball bearing.

【図3】本発明の実施形態に係る3点接触玉軸受を示す
断面図。
FIG. 3 is a sectional view showing a three-point contact ball bearing according to the embodiment of the present invention.

【図4】本発明の実施形態に係る3点接触玉軸受の一部
を示す拡大断面図。
FIG. 4 is an enlarged sectional view showing a part of the three-point contact ball bearing according to the embodiment of the present invention.

【図5】玉と軌道溝面との弾性接触を説明するための模
式図。
FIG. 5 is a schematic diagram for explaining elastic contact between a ball and a raceway groove surface.

【図6】深みぞ玉軸受、3点接触玉軸受、4点接触玉軸
受のそれぞれについて、純ラジアル荷重下の外輪軌道面
におけるPV値の最大値と、純アキシアル荷重下のアキ
シアル変位との関係を計算機によって解析した結果を示
すシミュレート解析図。
FIG. 6 shows the relationship between the maximum PV value on the outer ring raceway surface under a pure radial load and the axial displacement under a pure axial load for each of a deep groove ball bearing, a three-point contact ball bearing, and a four-point contact ball bearing. FIG. 4 is a simulation analysis diagram showing a result of analyzing by using a computer.

【図7】3点接触玉軸受の外輪みぞ曲率半径と純ラジア
ル荷重下の外輪軌道面におけるPV値の最大値との関係
を計算機によって解析した結果を示すシミュレート解析
図。
FIG. 7 is a simulation analysis diagram showing a result of analyzing by a computer the relationship between the radius of curvature of the outer ring groove of the three-point contact ball bearing and the maximum value of the PV value on the outer ring raceway surface under pure radial load.

【図8】3点接触玉軸受の外輪みぞ曲率半径と純アキシ
アル荷重下のアキシアル変位との関係を計算機によって
解析した結果を示すシミュレート解析図である。
FIG. 8 is a simulation analysis diagram showing a result of analyzing, by a computer, a relationship between a radius of curvature of an outer ring groove of a three-point contact ball bearing and an axial displacement under a pure axial load.

【図9】本発明の実施形態に係る3点接触玉軸受を用い
た電磁クラッチを示す概略断面図。
FIG. 9 is a schematic sectional view showing an electromagnetic clutch using the three-point contact ball bearing according to the embodiment of the present invention.

【図10】本発明の3点接触玉軸受を電磁クラッチに適
用した場合について、外輪外径面の軸方向最大変位量と
単一円弧軌道輪のみぞ曲率半径の関係を計算機によって
解析した結果を示すシミュレーション解析図。
FIG. 10 shows the results of analyzing the relationship between the maximum axial displacement of the outer surface of the outer ring and the radius of curvature of the single circular raceway ring by a computer when the three-point contact ball bearing of the present invention is applied to an electromagnetic clutch. FIG.

【図11】本発明の3点接触玉軸受を電磁クラッチに適
用した場合について、鋼球とセラミック球(窒化珪素)
での外輪外径面の軸方向最大変位量と単一円弧軌道輪の
みぞ曲率半径の関係の差を計算機によって解析した結果
を示すシミュレーション解析図。
FIG. 11 shows steel balls and ceramic balls (silicon nitride) when the three-point contact ball bearing of the present invention is applied to an electromagnetic clutch.
The simulation analysis figure which showed the result of having analyzed by computer the difference of the relationship between the axial maximum displacement amount of the outer diameter surface of an outer ring, and the groove radius of a single circular-arc raceway.

【符号の説明】[Explanation of symbols]

12…内輪(第2の軌道輪)、12a…軌道溝面、13
…外輪(第1の軌道輪)、13a…軌道溝面、14…玉
(転動体)、A…深みぞ玉軸受、B…3点接触玉軸受、
C…4点接触玉軸受、β…レストアングル、31…電磁
クラッチ、32…ステータ、33…電磁コイル、34…
プーリ、35…ロータ、36…電磁クラッチ用3点接触
玉軸受、37…アーマチュア、38…アーマチュア支持
部、39…コンプレッサ軸、40…コンプレッサハウジ
ング(電磁クラッチ用軸受の内輪支持部)。
12 inner ring (second race), 12a raceway groove surface, 13
... outer ring (first race), 13a ... raceway surface, 14 ... ball (rolling element), A ... deep groove ball bearing, B ... three-point contact ball bearing,
C: 4-point contact ball bearing, β: rest angle, 31: electromagnetic clutch, 32: stator, 33: electromagnetic coil, 34 ...
Pulley, 35 ... rotor, 36 ... three-point contact ball bearing for electromagnetic clutch, 37 ... armature, 38 ... armature support part, 39 ... compressor shaft, 40 ... compressor housing (inner ring support part of bearing for electromagnetic clutch).

フロントページの続き (72)発明者 石黒 博 神奈川県藤沢市鵠沼神明一丁目5番50号 日本精工株式会社内Continuation of the front page (72) Inventor Hiroshi Ishiguro 1-5-50 Kugenuma Shinmei, Fujisawa-shi, Kanagawa Nippon Seiko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単一円弧形状の軌道を有する第1の軌道
輪と、軸平行断面が単一円弧形状でなく、かつ、転動体
と2点で接触する軌道を有する第2の軌道輪とを具備す
る3点接触玉軸受において、単一円弧形状を有する第1
の軌道輪の軌道みぞ曲率半径が転動体の玉直径の50.
3%以上、53.3%以下であることを特徴とする3点
接触玉軸受。
A first orbital ring having a single arc-shaped orbit, and a second orbital ring having an orbital section whose axis-parallel cross section is not a single arc and which contacts the rolling element at two points. A three-point contact ball bearing having a single circular arc shape.
The raceway radius of curvature of the raceway of No. 50 is the ball diameter of the rolling element.
A three-point contact ball bearing having a ratio of 3% or more and 53.3% or less.
JP31211098A 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing Expired - Fee Related JP3736149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31211098A JP3736149B2 (en) 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-305844 1997-11-07
JP30584497 1997-11-07
JP31211098A JP3736149B2 (en) 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing

Publications (2)

Publication Number Publication Date
JPH11210766A true JPH11210766A (en) 1999-08-03
JP3736149B2 JP3736149B2 (en) 2006-01-18

Family

ID=26564475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31211098A Expired - Fee Related JP3736149B2 (en) 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing

Country Status (1)

Country Link
JP (1) JP3736149B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339958A (en) * 2001-05-11 2002-11-27 Nsk Ltd Pulley rotation supporting device
WO2003025409A1 (en) * 2001-09-18 2003-03-27 Nsk Ltd. Pulley rotatingly supporting device
US6659649B2 (en) 2001-01-30 2003-12-09 Nsk Ltd. Rotation support apparatus for compressor pulley
WO2004038242A1 (en) * 2002-10-18 2004-05-06 Ina-Schaeffler Kg Helical rotary compressor
EP1471270A1 (en) * 2002-01-31 2004-10-27 Nsk Ltd., Automobile engine accessory pulley bearing
US7325974B2 (en) * 2001-09-18 2008-02-05 Nsk Ltd. Pulley rotation support apparatus
US7435006B2 (en) 2002-02-12 2008-10-14 Nsk Ltd. Pulley bearing for engine auxiliares
US7448806B2 (en) * 2002-02-20 2008-11-11 Nsk Ltd. Rotation support device for compressor pulley
JP2013185701A (en) * 2012-03-12 2013-09-19 Ntn Corp Rolling bearing
JP2014530333A (en) * 2011-10-10 2014-11-17 ゼネラル・エレクトリック・カンパニイ Dynamic lubrication bearing and dynamic lubrication method of bearing
JP2015059645A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Rolling bearing
CN105673705A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel asymmetric V-shaped inner ring bearing structure
CN105673704A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel bearing with inner ring being in arc and conical shape and outer ring being arc rolling track
CN105673702A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel ball bearing with outer ring being V-shaped rolling track and inner ring being arc-shaped rolling track
CN105805167A (en) * 2016-04-20 2016-07-27 哈尔滨理工大学 Novel bearing with inner-ring conical ball track and outer-ring arc-shaped ball track
CN106065899A (en) * 2015-04-23 2016-11-02 斯凯孚公司 Rolling bearing, high-speed bearing device and compressor
CN110131306A (en) * 2018-02-09 2019-08-16 舍弗勒技术股份两合公司 Rolling bearing and its Jing Quan
CN115013443A (en) * 2022-06-24 2022-09-06 重庆市新超力轴承有限公司 Low-friction bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110603182B (en) 2017-01-20 2022-11-22 北极星工业有限公司 Method for diagnosing continuously variable transmission

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659649B2 (en) 2001-01-30 2003-12-09 Nsk Ltd. Rotation support apparatus for compressor pulley
US6793397B2 (en) 2001-01-30 2004-09-21 Nsk Ltd. Rotation support apparatus for compressor pulley
JP2002339958A (en) * 2001-05-11 2002-11-27 Nsk Ltd Pulley rotation supporting device
JP4736235B2 (en) * 2001-05-11 2011-07-27 日本精工株式会社 Rotation support device for pulley
WO2003025409A1 (en) * 2001-09-18 2003-03-27 Nsk Ltd. Pulley rotatingly supporting device
US7325974B2 (en) * 2001-09-18 2008-02-05 Nsk Ltd. Pulley rotation support apparatus
EP1471270A1 (en) * 2002-01-31 2004-10-27 Nsk Ltd., Automobile engine accessory pulley bearing
EP1471270A4 (en) * 2002-01-31 2005-08-10 Nsk Ltd Automobile engine accessory pulley bearing
US7163341B2 (en) 2002-01-31 2007-01-16 Nsk Ltd. Bearing to be used for pulley in auxiliary device for engine
US7435006B2 (en) 2002-02-12 2008-10-14 Nsk Ltd. Pulley bearing for engine auxiliares
US7448806B2 (en) * 2002-02-20 2008-11-11 Nsk Ltd. Rotation support device for compressor pulley
WO2004038242A1 (en) * 2002-10-18 2004-05-06 Ina-Schaeffler Kg Helical rotary compressor
JP2014530333A (en) * 2011-10-10 2014-11-17 ゼネラル・エレクトリック・カンパニイ Dynamic lubrication bearing and dynamic lubrication method of bearing
JP2013185701A (en) * 2012-03-12 2013-09-19 Ntn Corp Rolling bearing
JP2015059645A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Rolling bearing
CN106065899A (en) * 2015-04-23 2016-11-02 斯凯孚公司 Rolling bearing, high-speed bearing device and compressor
CN105673705A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel asymmetric V-shaped inner ring bearing structure
CN105673704A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel bearing with inner ring being in arc and conical shape and outer ring being arc rolling track
CN105673702A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel ball bearing with outer ring being V-shaped rolling track and inner ring being arc-shaped rolling track
CN105805167A (en) * 2016-04-20 2016-07-27 哈尔滨理工大学 Novel bearing with inner-ring conical ball track and outer-ring arc-shaped ball track
CN110131306A (en) * 2018-02-09 2019-08-16 舍弗勒技术股份两合公司 Rolling bearing and its Jing Quan
CN115013443A (en) * 2022-06-24 2022-09-06 重庆市新超力轴承有限公司 Low-friction bearing

Also Published As

Publication number Publication date
JP3736149B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
JP3736149B2 (en) Electromagnetic clutch with 3-point contact ball bearing
JP2001208081A (en) Single row deep groove radial ball bearing
US5540575A (en) High speed rotating apparatus having face-to-face angular contact ball bearings
WO2003071142A1 (en) Rotation support device for compressor pulley
US6273230B1 (en) Ball bearing and electromagnetic clutch having the same
JPH02271106A (en) Sliding bearing device
JPH09291942A (en) Radial rolling bearing
JP2000120668A (en) Bearing for electromagnetic clutch
JP4085235B2 (en) Single row ball bearings for pulley support
JP3733160B2 (en) Magnetic bearing device
JP3289711B2 (en) Cylindrical roller bearing
JP2003247556A (en) Multi-point contact ball bearing and pulley for automobiles
JP2002250338A (en) Thrust bearing device
JP4058601B2 (en) Single row bearing for pulley support
JP3252588B2 (en) Ball bearing device
JP2000055055A5 (en)
JP2006077814A (en) Spindle rotation support device for machine tool
JPH10103348A (en) Low friction torque thrust ball bearing
JP2587897Y2 (en) Rolling bearing
JP3815054B2 (en) Thrust ball bearing
JP3823375B2 (en) Rolling bearing
JP2003021149A (en) Rotary support device for pulley for compressor
EP0138984A1 (en) Bearing system
JP3557264B2 (en) Idler pulley
JP2002339958A (en) Pulley rotation supporting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees