JP2014088893A - Rolling bearing and manufacturing method thereof - Google Patents

Rolling bearing and manufacturing method thereof Download PDF

Info

Publication number
JP2014088893A
JP2014088893A JP2012238231A JP2012238231A JP2014088893A JP 2014088893 A JP2014088893 A JP 2014088893A JP 2012238231 A JP2012238231 A JP 2012238231A JP 2012238231 A JP2012238231 A JP 2012238231A JP 2014088893 A JP2014088893 A JP 2014088893A
Authority
JP
Japan
Prior art keywords
rolling
bearing
raceway
steel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012238231A
Other languages
Japanese (ja)
Other versions
JP2014088893A5 (en
Inventor
Daisuke Watanuki
大輔 渡貫
Hideyuki Tobitaka
秀幸 飛鷹
Yukari Katayama
裕加里 片山
Kazuki Tamura
一輝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012238231A priority Critical patent/JP2014088893A/en
Priority to PCT/JP2013/071421 priority patent/WO2014069068A1/en
Priority to EP13852223.0A priority patent/EP2913548A4/en
Priority to CN201380056354.1A priority patent/CN105121877A/en
Priority to US14/439,016 priority patent/US9249476B2/en
Publication of JP2014088893A publication Critical patent/JP2014088893A/en
Publication of JP2014088893A5 publication Critical patent/JP2014088893A5/ja
Priority to US14/978,528 priority patent/US9394583B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress texture change type peeling due to immersion of hydrogen and surface origin type peeling based on existence of an impression, and to improve durability of a rolling bearing used under a severe environment while suppressing costs.SOLUTION: Surfaces of raceway surfaces of an outer ring raceway 5, inner ring raceways 6, 6 and the like are hardened by high-frequency hardening processing. A residual austenite amount of a surface layer part of each raceway 5, 6 is 12-40 vol.%, and hydrogen concentration in steel is 0.5 ppm or less. Surface origin type peeling is suppressed by securing the residual austenite amount, and texture change type peeling is suppressed by suppressing the hydrogen concentration in steel.

Description

本発明は、例えば風力発電機の増速機や主軸、或いは建設機械、産業用ロボット等の回転支持部に組み込まれる転がり軸受の様に、高荷重下で運転される転がり軸受及びその製造方法の改良に関する。
具体的には、組織変化(白色組織変化)や軌道面或いは転動面に存在する微小な圧痕に基づく剥離を抑えて、苛酷な環境下で使用される転がり軸受の耐久性向上を、コストを抑えつつ図るものである。
尚、本発明の対象となる転がり軸受には、玉軸受、円筒ころ軸受、円すいころ軸受、自動調心ころ軸受等の各種ラジアル転がり軸受の他、各種スラスト転がり軸受も含む。
The present invention relates to a rolling bearing that is operated under a high load, such as a rolling bearing incorporated in a rotation support part of a wind power generator, a main shaft, a construction machine, an industrial robot, or the like, and a method for manufacturing the same. Regarding improvement.
Specifically, it suppresses peeling due to structural changes (white structural changes) and minute indentations existing on the raceway surface or rolling surface, thereby improving the durability of rolling bearings used in harsh environments. It is intended to be suppressed.
Note that the rolling bearings that are the subject of the present invention include various radial rolling bearings such as ball bearings, cylindrical roller bearings, tapered roller bearings, and self-aligning roller bearings, as well as various thrust rolling bearings.

例えば風力発電機の回転支持部の如く、大きなラジアル荷重を受けた状態で運転される機械装置の回転支持部には円筒ころ軸受が、大きなラジアル荷重に加えてスラスト荷重が加わる用途には円すいころ軸受が、従来から広く使用されている。更に、大きなラジアル荷重を受ける状態で運転され、しかも、外輪の中心軸と内輪の中心軸とを厳密に一致させたままにする事が難しい条件下では、図1に示す様な自動調心ころ軸受1が使用されている。   For example, a cylindrical roller bearing is used for a rotation support part of a mechanical device that is operated under a large radial load, such as a rotation support part of a wind power generator, and a tapered roller is used for an application in which a thrust load is applied in addition to a large radial load. Bearings have been widely used in the past. Furthermore, under the condition that it is operated under a large radial load and it is difficult to keep the center axis of the outer ring and the center axis of the inner ring in exact alignment, the self-aligning roller as shown in FIG. A bearing 1 is used.

この自動調心ころ軸受1は、それぞれが円環状に形成されて互いに同心に配置された、それぞれが軌道輪である外輪2及び内輪3と、これら外輪2の内周面と内輪3の外周面との間に設けられた、それぞれが転動体である複数個の球面ころ4、4とを備える。これら各軸受構成部品2、3、4は、一般的には軸受鋼の如き鉄系合金等の、硬質金属により造るが、前記各球面ころ4、4等の転動体は、セラミックス製とする場合もある。前記外輪2の内周面は、この外輪2の中心軸上の点を曲率中心とする、部分球面状の外輪軌道5としている。又、前記内輪3の外周面には、複列の内輪軌道6、6を設けている。これら両内輪軌道6、6の母線形状は、前記各球面ころ4、4の中心軸に関して、前記外輪軌道5の母線形状と対称である。更に、前記各球面ころ4、4は、それぞれ保持器7、7により保持された状態で、前記外輪軌道5と前記両内輪軌道6、6との間に、転動自在に設けられている。   The self-aligning roller bearing 1 includes an outer ring 2 and an inner ring 3 that are each formed in an annular shape and arranged concentrically with each other, and an inner peripheral surface of the outer ring 2 and an outer peripheral surface of the inner ring 3. Are provided with a plurality of spherical rollers 4, 4 each of which is a rolling element. These bearing components 2, 3, and 4 are generally made of a hard metal such as an iron-based alloy such as bearing steel, but the rolling elements such as the spherical rollers 4 and 4 are made of ceramics. There is also. The inner peripheral surface of the outer ring 2 is a partially spherical outer ring raceway 5 having a point on the central axis of the outer ring 2 as the center of curvature. Further, double-row inner ring raceways 6 and 6 are provided on the outer peripheral surface of the inner ring 3. The generatrix shape of these inner ring raceways 6 and 6 is symmetrical with the generatrix shape of the outer ring raceway 5 with respect to the central axis of each of the spherical rollers 4 and 4. Further, the spherical rollers 4 and 4 are rotatably provided between the outer ring raceway 5 and the inner ring raceways 6 and 6 while being held by cages 7 and 7, respectively.

上述の様な自動調心ころ軸受1により、例えば風力発電機の主軸をハウジングに回転自在に支持するには、前記外輪2をこのハウジングに内嵌固定すると共に、前記内輪3を前記主軸に外嵌固定する。この状態でこの主軸は、前記外輪軌道5と前記両内輪軌道6、6との間での、前記各球面ころ4、4の転動に基づき、回転自在となる。前記主軸が撓む等により、前記外輪2の中心軸と内輪3の中心軸とがずれる(互いに傾斜する)と、前記各球面ころ4、4が前記外輪軌道5の幅方向に変位する事でこのずれを吸収する。この様な自動中心ころ軸受1の運転時には、前記各球面ころ4、4の転動面と、前記外輪軌道5や前記両内輪軌道6、6等の軌道面とは、狭い面積で大きな荷重を支承しつつ、滑りを伴いながら転がり接触する。尚、以下の説明では、これら各転がり接触する面を総称して表す場合、「転がり接触面」とする。   For example, in order to rotatably support the main shaft of the wind power generator in the housing by the self-aligning roller bearing 1 as described above, the outer ring 2 is fitted and fixed to the housing, and the inner ring 3 is externally attached to the main shaft. Fit and fix. In this state, the main shaft is rotatable based on the rolling of the spherical rollers 4, 4 between the outer ring raceway 5 and the inner ring raceways 6, 6. When the central axis of the outer ring 2 and the central axis of the inner ring 3 are shifted (inclined with each other) due to bending of the main shaft, the spherical rollers 4 and 4 are displaced in the width direction of the outer ring raceway 5. This shift is absorbed. During the operation of the automatic center roller bearing 1, the rolling surfaces of the spherical rollers 4 and 4 and the raceway surfaces of the outer ring raceway 5 and the inner ring raceways 6 and 6 are subjected to a large load in a small area. Rolling contact with sliding while supporting. In the following description, these rolling contact surfaces are collectively referred to as “rolling contact surfaces”.

以上の説明から分かる様に、自動調心ころ軸受1等の転がり軸受の内部に存在する転がり接触面には、高面圧が繰り返し作用し、しかも、高面圧作用時に転がり接触面の直下部分に剪断応力が作用する。この様な状態は、前記各軸受構成部品2、3、4にとって非常に厳しい使用条件であり、十分な潤滑条件下で、且つ、スキュー等を発生する事なく運転される正常運転下でも、転がり接触面の直下部分に金属疲労が生じ易い。特に、転動面に比べて曲率が小さく、前記高面圧の影響を強く受け易い、前記各軌道面の直下部分の金属疲労が著しくなり易い。   As can be seen from the above description, a high contact pressure acts repeatedly on the rolling contact surface existing in the rolling bearing such as the self-aligning roller bearing 1 or the like, and the portion directly below the rolling contact surface when the high contact pressure is applied. Shear stress acts on Such a state is a very severe use condition for each of the bearing components 2, 3, and 4 and is rolling even under a normal operation that is operated under a sufficiently lubricated condition and without causing a skew or the like. Metal fatigue tends to occur in the portion directly below the contact surface. In particular, the metal fatigue in the portion immediately below each track surface, which has a smaller curvature than the rolling surface and is easily affected by the high surface pressure, tends to be remarkable.

具体的には、十分な潤滑が行われている場合には、前記高面圧に基づく剪断応力が、前記各軸受構成部品を構成する金属材料の内部で転がり接触面の直下部分に存在する非金属介在物周りに集中し、当該部分で局部的に金属疲労が蓄積される。この様にして転がり接触面の直下部分に金属疲労が蓄積されると、当該部分に亀裂が発生し、更にこの亀裂が進展して表面に達し、内部起点型剥離と呼ばれる破損に至る。この様な内部起点型剥離により、転がり接触面が部分的に欠損すると、当該軸受構成部品を含む転がり軸受の正常な運転の継続を行えなくなる(転がり軸受が寿命に達する)。この様な内部起点型剥離は、上述した理由により、前記外輪軌道5や前記内輪軌道6、6等の軌道面部分で生じ易いが、前記各球面ころ4、4等の転動体の転動面でも生じ得る。何れにしても、上述の様な機構により破損が生じるまでの時間は、内部起点型剥離による転がり軸受の寿命と呼ばれる。   Specifically, when sufficient lubrication is performed, the shear stress based on the high surface pressure is present in the portion directly below the rolling contact surface inside the metal material constituting each bearing component. The metal fatigue concentrates around the metal inclusions and locally accumulates metal fatigue in the portion. When metal fatigue accumulates in the portion immediately below the rolling contact surface in this way, a crack is generated in the portion, and the crack further develops and reaches the surface, leading to a damage called internal origin type peeling. If the rolling contact surface is partially lost due to such an internal origin type separation, normal operation of the rolling bearing including the bearing component cannot be continued (the rolling bearing reaches the end of its life). Such internal origin type separation is likely to occur on the raceway surface portions of the outer ring raceway 5 and the inner ring raceways 6 and 6 for the reasons described above, but the rolling surfaces of the rolling elements such as the spherical rollers 4 and 4 and the like. But it can happen. In any case, the time until the breakage is caused by the mechanism as described above is called the life of the rolling bearing due to the internal origin type peeling.

一方、潤滑油(グリース中の基油を含む)の粘度や表面粗さの影響により、潤滑が不十分な場合は、前記各転がり接触面の表面部分が疲労を受ける場所となる。特に、硬質の異物をこれら各転がり接触面同士の間に噛み込む事により、これら各転がり接触面の表面部分に生じる圧痕の周りには、高い応力集中が生じ、当該部分で金属疲労が蓄積される。この様にして各転がり接触面の表面部分に応力集中が生じた場合も、上述した内部起点型剥離が生じる場合と同様に、金属疲労の蓄積から、亀裂の発生、進展が惹起されて、転がり接触面の剥離に至る。この様な機構により生じる破損は、表面起点型剥離と呼ばれる。   On the other hand, when the lubrication is insufficient due to the influence of the viscosity of the lubricating oil (including the base oil in the grease) and the surface roughness, the surface portions of the respective rolling contact surfaces are subjected to fatigue. In particular, when a hard foreign object is caught between these rolling contact surfaces, a high stress concentration is generated around the indentation generated on the surface portion of each rolling contact surface, and metal fatigue accumulates in that portion. The In this way, even when stress concentration occurs on the surface portion of each rolling contact surface, as in the case where the above-described internal origin type peeling occurs, the generation and development of cracks are caused from the accumulation of metal fatigue, and rolling occurs. It leads to peeling of the contact surface. Damage caused by such a mechanism is called surface-origin separation.

前述した内部起点型剥離にしても、上述した表面起点型剥離にしても、転がり接触面が剥離する態様であり、この様な剥離による破損を遅らせる(剥離寿命、即ち、転がり疲れ寿命を延ばす)為には、当該転がり接触面を備えた軸受構成部品を構成する金属材料の疲労強度自体を向上させる事が効果的である。そして、この金属材料の疲労強度を向上させる為に従来から、前記軸受構成部品を、炭素量の多い合金鋼、又は、浸炭処理或いは浸炭窒化処理により表面の炭素濃度を高くした合金鋼で造り、更に焼き入れ処理を施す事により、転がり接触面部分の硬度を高くする事が行なわれている。   Even if it is the above-mentioned internal origin type peeling or the above-mentioned surface origin type peeling, the rolling contact surface is peeled off, and the damage due to such peeling is delayed (extended peeling life, ie, rolling fatigue life is extended). For this purpose, it is effective to improve the fatigue strength itself of the metal material constituting the bearing component having the rolling contact surface. And conventionally, in order to improve the fatigue strength of this metal material, the bearing component is made of an alloy steel with a large amount of carbon, or an alloy steel whose surface carbon concentration is increased by carburizing or carbonitriding, Further, the hardness of the rolling contact surface portion is increased by performing a quenching process.

この様にして、転がり接触面部分の硬度を高くする事により、転がり接触面の表面部分や直下部分の金属疲労を抑える事により、軌道面や転動面に剥離を生じ難くして、軌道輪及び転動体から成る転がり軸受の寿命の延長を図れる。そして、転がり軸受の用途が一般的なものである限り、十分な耐久性を確保できる。但し、一部の産業機械用の転がり軸受は、大きな荷重を支持する場所に用いられる事が多く、又、損傷した転がり軸受の交換に要する手間や費用が嵩む為、剥離寿命(転がり疲れ寿命)の向上が大きな課題となっている。又、この様な産業機械用の転がり軸受は、温度、回転数(回転速度)、塵芥の如き異物混入等の面から、厳しい潤滑条件で使用される事が多い。この為、前記産業機械用の転がり軸受の軸受構成部品は、表面(軌道面、転動面)に疲労が蓄積され易い環境で使用される場合が多い。   In this way, by increasing the hardness of the rolling contact surface portion, by suppressing the metal fatigue of the surface portion of the rolling contact surface and the portion immediately below, it is difficult for the raceway surface and the rolling surface to peel off. In addition, the life of the rolling bearing composed of rolling elements can be extended. As long as the application of the rolling bearing is general, sufficient durability can be ensured. However, some rolling bearings for industrial machinery are often used in places that support large loads, and the labor and cost required to replace damaged rolling bearings increase, resulting in a peeling life (rolling fatigue life). Improvement has become a major issue. In addition, such rolling bearings for industrial machines are often used under severe lubrication conditions in terms of temperature, rotational speed (rotational speed), foreign matter contamination such as dust. For this reason, the bearing components of the rolling bearings for industrial machines are often used in an environment where fatigue is likely to accumulate on the surface (the raceway surface, the rolling surface).

この様な事情に対応して従来は、産業機械用の転がり軸受の耐久性を向上させるべく、軸受構成部品の耐久性を、表面疲労に対して更に向上させる事を主眼に行われてきた。例えば、特許文献1には、剥離起点の状態に着目し、残留オーステナイトと表面硬さとを規制する事で、異物噛み込みにより生じた圧痕周りの応力集中を緩和し、転がり接触面部分の疲労を低減する技術が記載されている。この様な技術により、運転条件が多少厳しい程度であれば、産業機械用の転がり軸受の耐久性を確保できる。   In response to such circumstances, conventionally, in order to improve the durability of rolling bearings for industrial machines, the main purpose has been to further improve the durability of bearing components against surface fatigue. For example, Patent Document 1 focuses on the state of the separation starting point and regulates the retained austenite and surface hardness to alleviate the stress concentration around the indentation caused by the biting of the foreign material, and fatigue the rolling contact surface portion. Techniques for reducing are described. With such a technique, the durability of the rolling bearing for industrial machinery can be ensured if the operating conditions are somewhat severe.

これに対して、例えば近年普及し始めている風力発電機の回転支持部に組み込まれて、過酷な条件下で運転される大型の転がり軸受では、軸受構成部品の内部で発生する組織変化に基づいて、比較的短時間の間に転がり接触面に剥離(早期剥離)が生じる場合がある事が知られる様になっている。この様な早期剥離に結び付く、軸受構成部品内部の組織変化が生じる原因に就いては、転がり軸受内部の転がり接触部に介在する潤滑油が、この転がり接触部の高い接触面圧や滑りによって分解されて水素を発生し、この水素が鋼中に浸入する事が原因であると考えられている。即ち、水素が転がり軸受部品を構成する鋼中に進入すると、水素脆性により鋼中の組織変化を促進し、疲労破壊により前記早期剥離に至るものと考えられている。又、この様な水素脆性に基づく組織変化は、水素の発生し易い、特殊な潤滑油の使用や、静電気の介在、水の混入等の要因によって加速されると考えられている。   On the other hand, for example, in a large-sized rolling bearing that is incorporated in a rotation support portion of a wind power generator that has begun to spread in recent years and is operated under severe conditions, it is based on a structural change that occurs inside the bearing component. It has been known that peeling (early peeling) may occur on the rolling contact surface in a relatively short time. As for the cause of the structural change inside the bearing components that leads to such early peeling, the lubricating oil intervening in the rolling contact part inside the rolling bearing is decomposed by the high contact surface pressure and slippage of this rolling contact part. It is thought that this is caused by the generation of hydrogen and the penetration of this hydrogen into the steel. That is, when hydrogen enters the steel constituting the rolling bearing part, it is considered that the structural change in the steel is promoted due to hydrogen embrittlement, and that the early peeling is caused by fatigue failure. In addition, it is considered that such a change in structure based on hydrogen embrittlement is accelerated by factors such as the use of special lubricants that are likely to generate hydrogen, the presence of static electricity, and the mixing of water.

そこで、上述の様な機構により発生する組織変化型剥離の発生を遅延させて、転がり軸受の転がり疲れ寿命を向上させる為に、潤滑剤の組成や、軸受構成部品を構成する合金鋼の組成を工夫する事が提案されている。例えば、特許文献2には、グリースに不動態化酸化剤を添加する事により転がり接触面に不動態酸化皮膜を形成して、このグリース中の基油の分解抑制と、鋼中への水素の浸入防止とを図り、転がり軸受の転がり疲れ寿命の延長を図る技術が記載されている。
又、特許文献3には、グリース中に導電性を有するカーボンブラックの粒子を混在させる事により1対の軌道輪間の電位差をなくして、前記グリース中の基油の分解、延いては水素の発生を抑制し、転がり軸受の転がり疲れ寿命の延長を図る技術が記載されている。
更に、特許文献4には、軸受構成部品を構成する合金鋼として、白色組織への組織変化を遅らせるCrを多く含ませたものを使用する事により、当該軸受構成部品を組み込んだ転がり軸受の転がり疲れ寿命の延長を図る技術が記載されている。
但し、特許文献2、3に記載されている様に、グリースの組成を工夫する技術は、転がり軸受の潤滑を、油浴や循環給油により行う場合には適用できない。又、合金鋼中にCrを多量に添加する技術は、高価な金属であるCrを多用する事に伴ってコストが嵩む事が避けられない。
Therefore, in order to delay the occurrence of the structure change type peeling generated by the mechanism as described above and improve the rolling fatigue life of the rolling bearing, the composition of the lubricant and the composition of the alloy steel constituting the bearing component are changed. It has been proposed to devise. For example, Patent Document 2 discloses that a passivating oxide film is formed on the rolling contact surface by adding a passivating oxidant to the grease, thereby suppressing the decomposition of the base oil in the grease and the hydrogen in the steel. A technique for preventing intrusion and extending the rolling fatigue life of a rolling bearing is described.
Further, in Patent Document 3, by mixing conductive carbon black particles in the grease, the potential difference between the pair of race rings is eliminated, so that the base oil in the grease is decomposed, and the hydrogen A technique is described that suppresses the occurrence and extends the rolling fatigue life of the rolling bearing.
Further, in Patent Document 4, rolling of a rolling bearing incorporating the bearing component is made by using a steel containing a large amount of Cr that delays the structural change to a white structure as an alloy steel constituting the bearing component. A technique for extending the fatigue life is described.
However, as described in Patent Documents 2 and 3, the technique of devising the grease composition cannot be applied when the rolling bearing is lubricated by an oil bath or circulating oil supply. In addition, the technique of adding a large amount of Cr into the alloy steel inevitably increases costs due to the heavy use of Cr, which is an expensive metal.

尚、以上の説明は、転がり軸受の稼働中に潤滑油の分解により発生した水素による、転がり疲れ寿命の劣化に就いて行った。これに対して、軸受構成部品を構成する合金鋼中への水素の浸入は、転がり軸受の稼動以前にも生じ得る事、そして、稼動以前に鋼中に浸入した水素によっても、当該転がり軸受の転がり疲れ寿命が短くなる事が報告されている。具体的には、転がり軸受の耐久性を知る為に行う転がり寿命試験を行うのに先立って、チオシアン酸等の化学反応を利用して前記合金鋼中に水素を浸入させた場合にも、転がり軸受の稼働に伴って発生した水素が合金鋼中に浸入した場合と同様の、白色組織変化を起点とした剥離が生じる事が報告されている。   The above explanation has been made on the deterioration of the rolling fatigue life due to hydrogen generated by the decomposition of the lubricating oil during operation of the rolling bearing. On the other hand, hydrogen intrusion into the alloy steel constituting the bearing component can occur before the rolling bearing is in operation, and hydrogen that has infiltrated into the steel before operation can also be affected by the rolling bearing. It has been reported that rolling fatigue life is shortened. Specifically, even when hydrogen is infiltrated into the alloy steel by using a chemical reaction such as thiocyanic acid prior to performing a rolling life test to know the durability of the rolling bearing, It has been reported that exfoliation starting from a change in white structure occurs, similar to the case where hydrogen generated with the operation of a bearing enters the alloy steel.

この様な報告から、水素が、軸受構成部材を構成する鋼材中に浸入すると、浸入時期に関係なく、当該軸受構成部品の耐久性が損なわれる事が分かる。ところで、水素は、鋼材製の軸受構成部品を硬化させる為に行う熱処理工程でも、この軸受構成部品を構成する鋼材中に浸入する可能性がある。即ち、軸受構成部品を構成する鋼材である、軸受鋼や浸炭鋼を硬化させる為の熱処理である焼き入れは、多くの場合、炭化水素と空気とを反応させる事により得られる、RXガス雰囲気中で行われる。このRXガスは、18〜25容量%のCOと、28〜40容量%のHとを含み、残りをN、CO等としたもので、COによる強い浸炭特性を有する。この為、前記熱処理工程をRXガス雰囲気中で行う事により、高温保持中に前記軸受構成部材を構成する鋼材の表面炭素量の低下を抑制する事ができる。 From such a report, it can be seen that when hydrogen enters the steel constituting the bearing component, the durability of the bearing component is impaired regardless of the entry time. By the way, hydrogen may enter into the steel material constituting the bearing component even in the heat treatment step performed to harden the steel bearing component. That is, quenching, which is a heat treatment for hardening bearing steel and carburized steel, which is a steel material constituting the bearing component, is often obtained by reacting hydrocarbons with air in an RX gas atmosphere. Done in This RX gas contains 18 to 25% by volume of CO and 28 to 40% by volume of H 2 , and the rest is N 2 , CO 2, etc., and has strong carburizing characteristics due to CO. For this reason, by performing the said heat treatment process in RX gas atmosphere, the fall of the surface carbon amount of the steel materials which comprise the said bearing structural member can be suppressed during high temperature holding | maintenance.

但し、RXガスには、上述の様にかなりの量の水素が含まれている。その一部が前記軸受構成部材を構成する鋼材中に浸入する可能性がある。そして、鋼材中に浸入した水素は、容易に移動する拡散性水素と、界面等にトラップされたまま移動しない非拡散性水素とに分かれ、このうちの拡散性水素が、鋼材中に白色組織を発生させる(悪影響を及ぼす)事が知られている。熱処理工程時に鋼材中に浸入する水素のうちの多くの部分は非拡散性水素であるが、拡散性水素が全く含まれない訳ではない。   However, the RX gas contains a considerable amount of hydrogen as described above. There is a possibility that a part of the steel penetrates into the steel material constituting the bearing component. The hydrogen that has penetrated into the steel material is divided into diffusible hydrogen that moves easily and non-diffusible hydrogen that does not move while trapped at the interface, etc. It is known to cause (has an adverse effect). Most of the hydrogen that penetrates into the steel during the heat treatment process is non-diffusible hydrogen, but it does not mean that diffusible hydrogen is not contained at all.

以上の事を考慮すれば、水素の存在に基づく軸受構成部品の耐久性低下を防止する為には、この軸受構成部品を熱処理する段階で、この熱処理として、この軸受構成部品を構成する鋼材中に水素が浸入しない様な手法を選択する事が望ましい。具体的には、熱処理の雰囲気から水素を除外する、真空焼き入れや大気焼き入れを採用する事が考えられる。但し、このうちの真空焼き入れは、雰囲気の調整に時間と設備とが必要でコストが嵩む為、工業的には好ましくない。又、大気焼き入れは、軸受構成部品の表面の炭素量が低下する為、この軸受構成部品の表面硬度を確保する面から不利であり、品質確保の面から好ましくない。   Considering the above, in order to prevent the deterioration of the durability of the bearing components due to the presence of hydrogen, in the stage of heat treatment of the bearing components, as the heat treatment, in the steel material constituting the bearing components It is desirable to select a method that does not allow hydrogen to enter. Specifically, it is conceivable to employ vacuum quenching or air quenching that excludes hydrogen from the heat treatment atmosphere. However, vacuum quenching among them is not industrially preferable because it requires time and equipment to adjust the atmosphere and costs increase. In addition, air quenching is disadvantageous from the viewpoint of ensuring the surface hardness of the bearing component because the carbon content on the surface of the bearing component is reduced, and is not preferable from the viewpoint of ensuring quality.

特開平5−25609号公報Japanese Patent Laid-Open No. 5-25609 特許第2878749号公報Japanese Patent No. 2878749 特開2002−327758号公報JP 2002-327758 A 特開2005−147352号公報JP 2005-147352 A

本発明は、上述の様な事情に鑑み、水素の浸入に伴う白色組織変化に基づく剥離、及び圧痕の存在に基づく表面起点型の剥離を抑えて、苛酷な環境下で使用される転がり軸受の耐久性向上を、コストを抑えつつ図れる、転がり軸受及びその製造方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention is a rolling bearing used in a harsh environment by suppressing separation based on white structure change due to hydrogen intrusion and surface-origin separation based on the presence of indentations. The invention has been invented to realize a rolling bearing and a method for manufacturing the same that can improve durability while reducing costs.

本発明の対象となる転がり軸受は、それぞれが円環状で互いに同心に配置され、互いに対向する面にそれぞれ軌道面を設けた1対の軌道輪と、これら両軌道面同士の間に転動自在に配置された複数個の転動体とを備える。
特に、本発明の転がり軸受に於いては、前記両軌道輪と前記各転動体との3種類の軸受構成部品のうちの少なくとも1種類の軸受構成部品(例えばラジアル転がり軸受の内輪の如く、転がり疲れ寿命確保の面から最も条件が厳しくなる部品、好ましくは1対の軌道輪、更に好ましくは総ての軸受構成部品)を、相手部材と転がり接触する、この転がり接触面から深さ100μmまでの範囲である表面層部分の残留オーステナイト量(残留γ)を12〜40容量%とすると共に、当該軸受部分の鋼中水素濃度を0.5ppm以下としている。尚、前記残留オーステナイト量を、好ましくは15〜40容量%、より好ましくは20〜40容量%とする。又、前記鋼中水素濃度を、好ましくは0.3ppm以下とする。
The rolling bearings that are the subject of the present invention are a pair of race rings, each of which is annular and concentrically arranged and provided with raceway surfaces facing each other, and can freely roll between these raceway surfaces. And a plurality of rolling elements arranged in the.
In particular, in the rolling bearing according to the present invention, at least one type of bearing component (e.g., an inner ring of a radial rolling bearing) out of the three types of bearing components of the raceway and the rolling elements. The parts whose conditions are most severe in terms of ensuring the fatigue life, preferably a pair of race rings, and more preferably all bearing components) are brought into rolling contact with the mating member. From the rolling contact surface to a depth of 100 μm The amount of retained austenite (residual γ) in the surface layer portion that is the range is set to 12 to 40% by volume, and the hydrogen concentration in the steel of the bearing portion is set to 0.5 ppm or less. The amount of retained austenite is preferably 15 to 40% by volume, more preferably 20 to 40% by volume. The hydrogen concentration in the steel is preferably 0.3 ppm or less.

この様な本発明の転がり軸受を実施する場合に好ましくは、請求項2に記載した発明の様に、前記表面層部分の残留オーステナイト量を12〜40容量%とすると共に、鋼中水素濃度を0.5ppm以下とする軸受構成部品を、前記両軌道輪のうちの少なくとも一方の軌道輪とする。そして、この軌道輪に設けた軌道面の表面を、高周波加熱による焼き入れ処理で硬化する。
又、請求項2に記載した転がり軸受を造るのに、請求項3に記載した製造方法の発明の様に、前記軌道面の表面を高周波加熱焼き入れ処理により硬化させる前に、軟窒化処理を施す事もできる。
或いは、請求項4に記載した製造方法の発明の様に、前記軌道面の表面を高周波加熱焼き入れ処理により硬化させる前に、800〜1000℃で浸炭窒化処理した後、750〜850℃の温度で窒素雰囲気中に所定時間(30分〜3時間程度)保持し、その後に、前記高周波焼き入れ処理を行う事もできる。尚、この保持時間が30分未満の場合には処理の効果が不十分となり、3時間を越えると脱炭等の不利益を生じ易くなる。
When implementing such a rolling bearing of the present invention, preferably, the amount of retained austenite of the surface layer portion is set to 12 to 40% by volume, and the hydrogen concentration in the steel is set as in the invention described in claim 2. A bearing component of 0.5 ppm or less is used as at least one of the two bearing rings. And the surface of the raceway surface provided in this raceway ring is hardened by the quenching process by high frequency heating.
Further, in order to manufacture the rolling bearing according to claim 2, the soft nitriding treatment is performed before the surface of the raceway surface is hardened by high-frequency heat quenching treatment as in the invention of the manufacturing method according to claim 3. Can also be applied.
Alternatively, as in the invention of the manufacturing method according to claim 4, before the surface of the raceway surface is hardened by induction heating and quenching, carbonitriding is performed at 800 to 1000 ° C., and then a temperature of 750 to 850 ° C. In the nitrogen atmosphere, it can be kept for a predetermined time (about 30 minutes to 3 hours), and then the induction hardening process can be performed. If the holding time is less than 30 minutes, the effect of the treatment is insufficient, and if it exceeds 3 hours, disadvantages such as decarburization are likely to occur.

上述の様に構成する本発明の転がり軸受及びその製造方法によれば、水素の浸入に伴う白色組織変化に基づく剥離、及び、圧痕の存在に基づく表面起点型の剥離を抑えて、苛酷な環境下で使用される転がり軸受の耐久性向上を、コストを抑えつつ図れる。
即ち、本発明の転がり軸受の場合には、耐久性確保の面から条件が厳しくなる軸受構成部品の鋼中水素濃度を0.5ppm以下と、極低く抑えている為、鋼中に水素が存在する事により生じる白色組織変化を抑えられる。この為、前述の様な機構により、白色組織変化を起点とする転がり接触面の剥離を抑えられる。前記軸受構成部品の鋼中水素濃度を、0.3ppm以下に抑えれば、前記白色組織変化を起点とする転がり接触面の剥離を、より十分に抑えられる。
According to the rolling bearing and the manufacturing method thereof of the present invention configured as described above, it is possible to suppress the peeling based on the change in white structure due to the penetration of hydrogen and the surface-origin type peeling based on the presence of the indentation, thereby causing a severe environment. It is possible to improve the durability of the rolling bearing used below while suppressing costs.
In other words, in the case of the rolling bearing according to the present invention, the hydrogen concentration in the steel of the bearing component, which is strict in terms of ensuring durability, is kept to a very low level of 0.5 ppm or less, so there is hydrogen in the steel The white tissue change caused by For this reason, peeling of the rolling contact surface starting from the change in white structure can be suppressed by the mechanism as described above. If the hydrogen concentration in the steel of the bearing component is suppressed to 0.3 ppm or less, peeling of the rolling contact surface starting from the white structure change can be more sufficiently suppressed.

又、前記軸受構成部品の表面層部分の残留オーステナイト量を12〜40容量%としている為、前記転がり接触面に、異物の噛み込み等により生じた圧痕の周りに発生する応力集中を抑制できて、前述した様な機構により生じる、表面起点型剥離を抑えられる。即ち、オーステナイトは圧痕の形状に影響し、圧痕縁への応力集中を緩和する。この為、この圧痕の周り部分での金属疲労の蓄積を抑える事ができ、当該部分を起点とする亀裂の発生を抑えて、前記表面起点型剥離を抑えられる。この様な効果は、残留オーステナイト量が12容量%未満の場合には十分に得られない。逆に、40容量%を超えると、前記表面起点型剥離を抑える効果が飽和するだけでなく、前記転がり接触面の硬度が低くなり過ぎ、別の理由で、この転がり接触面の転がり疲れ寿命が低下してしまう。本発明は、前記表面層部分の残留オーステナイト量を12〜40容量%、好ましくは15〜40容量%、より好ましくは20〜40容量%とする事により、何れの面からも、前記転がり接触面の転がり疲れ寿命を確保できる。   Further, since the amount of retained austenite in the surface layer portion of the bearing component is 12 to 40% by volume, it is possible to suppress the stress concentration generated around the indentation caused by foreign matter biting on the rolling contact surface. , Surface-origin type peeling caused by the mechanism as described above can be suppressed. In other words, austenite affects the shape of the indentation and relieves stress concentration on the indentation edge. For this reason, accumulation of metal fatigue in a portion around the indentation can be suppressed, and generation of cracks starting from the portion can be suppressed to suppress the surface starting type peeling. Such an effect cannot be sufficiently obtained when the amount of retained austenite is less than 12% by volume. On the contrary, if it exceeds 40% by volume, not only the effect of suppressing the surface-origin type peeling is saturated, but also the hardness of the rolling contact surface becomes too low, and for another reason, the rolling fatigue life of the rolling contact surface is reduced. It will decline. In the present invention, the amount of retained austenite in the surface layer portion is 12 to 40% by volume, preferably 15 to 40% by volume, more preferably 20 to 40% by volume, so that the rolling contact surface can be obtained from any surface. The rolling fatigue life can be secured.

特に、請求項2に記載した発明の様に、軌道輪の軌道面の表面を、高周波加熱により焼き入れ処理すれば、この軌道面に関する表面層部分の炭素低下量を抑え、この軌道面の硬さを確保しつつ、この表面層中への水素浸入を抑えられる。又、前記表面層部分の残留オーステナイト量も確保できる。この理由は、次の通りである。   In particular, as in the invention described in claim 2, if the surface of the raceway surface of the raceway is quenched by high frequency heating, the amount of carbon decrease in the surface layer portion related to this raceway surface is suppressed, and the hardness of this raceway surface is reduced. While ensuring the thickness, hydrogen intrusion into the surface layer can be suppressed. Moreover, the amount of retained austenite in the surface layer portion can be secured. The reason for this is as follows.

高周波加熱による焼き入れ処理は、誘導電流により前記軌道輪の表面部分を、この軌道輪の自己発熱を利用して焼き入れ処理に必要な温度にまで短時間で上昇させる熱処理法であり、大気中で行う。この様な高周波加熱は、自己発熱により、表面だけでなく表面層の内部に関しても直接加熱する為、加熱時間が短時間で済み、保持時間も特に必要ではない。従って、大気中で行っても、鋼材表面の炭素量低下は極僅かで、しかも極表面部分に止まる。この極表面部分は、熱処理後に行う研磨により除去される為、前記高周波加熱による焼き入れ処理を大気中で行っても、軌道輪の品質確保に関して、特に問題を生じる事はない。即ち、品質確保を考慮しても、外部から加熱する熱処理の様に、RXガス雰囲気中で行う必要はない。この為、軌道面を硬化させる為の熱処理に伴って、この軌道面の表面層部分に水素が浸入する事がなく、前述した様な、組織変化型剥離の発生を抑えられる。尚、高周波加熱の条件(高周波加熱コイルの出力、通電時間等)は、高周波加熱により焼き入れすべき軌道輪の仕様により適宜設定する。   The quenching treatment by high-frequency heating is a heat treatment method in which the surface portion of the raceway is raised by an induced current in a short time to the temperature required for the quenching treatment using the self-heating of the raceway, To do. Such high-frequency heating directly heats not only the surface but also the inside of the surface layer by self-heating, so that the heating time is short and the holding time is not particularly required. Therefore, even if it is performed in the atmosphere, the carbon content on the surface of the steel material is minimally reduced and stops at the extreme surface portion. Since this pole surface portion is removed by polishing performed after the heat treatment, there is no particular problem with respect to ensuring the quality of the raceway even if the quenching treatment by high-frequency heating is performed in the atmosphere. That is, even if quality assurance is taken into consideration, it is not necessary to carry out in an RX gas atmosphere as in the case of heat treatment heated from the outside. For this reason, hydrogen does not enter the surface layer portion of the raceway surface in accordance with the heat treatment for hardening the raceway surface, and the occurrence of the structure change type peeling as described above can be suppressed. The conditions for high-frequency heating (output of the high-frequency heating coil, energization time, etc.) are appropriately set according to the specifications of the raceway to be quenched by high-frequency heating.

又、高周波熱誘導加熱により軌道輪の軌道面に焼き入れ処理を施す場合、高周波誘導コイルを、硬化層を必要とするこの軌道面や嵌合面に対向する部分に配置する事で、この軌道面や嵌合面及びその表面層部分を、表面側から加熱する事ができる。又、前記高周波誘導コイルを軌道面に対向する部分にのみ配置する、或いはコア等の使用により電磁界分布を調節する等により、軌道面の表面層部分を選択的に高温にまで加熱する事もできる。従って、より高温に加熱する事で、単に硬化に必要なA1変態点よりも高い温度にまで加熱した場合に比べて、軌道面及び表面層部分に多量の残留オーステナイトを存在させられる。そして、この軌道面及びその表面層部分の残留オーステナイト量を高くする事で、前記表面起点型剥離を抑えられる。尚、転がり軸受の運転に伴って残留オーステナイトは、僅かずつ分解するが、分解に伴って体積が僅かに増加する。従って、軌道輪中の残留オーステナイトの総量を過剰に多くすると、長期間の使用を考慮した場合、当該軌道輪の寸法安定性を確保し難くなる。これに対して、高周波加熱により必要部分の残留オーステナイト量のみを高くする事で、軌道輪の寸法安定性を確保できる。   In addition, when quenching is performed on the raceway surface of the race ring by high-frequency heat induction heating, a high-frequency induction coil is disposed on a portion facing the raceway surface or the fitting surface that requires a hardened layer. A surface, a fitting surface, and its surface layer part can be heated from the surface side. In addition, the surface layer portion of the raceway surface may be selectively heated to a high temperature by arranging the high-frequency induction coil only in a portion facing the raceway surface, or adjusting the electromagnetic field distribution by using a core or the like. it can. Therefore, by heating to a higher temperature, a larger amount of retained austenite can be present on the raceway surface and the surface layer portion than when heating to a temperature higher than the A1 transformation point necessary for curing. And the said surface origin type | mold peeling can be suppressed by making the amount of retained austenites of this track surface and its surface layer part high. Incidentally, the retained austenite decomposes little by little with the operation of the rolling bearing, but the volume slightly increases with the decomposition. Therefore, if the total amount of retained austenite in the bearing ring is excessively increased, it is difficult to ensure the dimensional stability of the bearing ring when long-term use is considered. On the other hand, the dimensional stability of the bearing ring can be ensured by increasing only the amount of retained austenite in the necessary portion by high-frequency heating.

更に、請求項3、4に記載した発明の様に、高周波加熱焼き入れ処理前に軟窒化処理を施したり、高周波加熱焼き入れ処理前に、浸炭窒化後、窒素雰囲気中に保持したりする事により、前記軌道輪の軌道面の表面層部分の鋼中水素濃度を低く抑えたまま、残留オーステナイト量を、より確実に所望量に(十分に多く)できる。そして、組織変化型剥離の発生を抑えつつ、表面起点型剥離をより十分に抑えられる。
先ず、請求項3に記載した発明の場合には、軟窒化の処理温度は、550〜600℃程度と低く、処理時間も短い為、水素の浸入量を少なく抑えられ、組織変化型剥離に関する寿命を長くできる。又、軟窒化後の再加熱焼き入れに伴って残留オーステナイト量を多くできるので、表面起点型剥離に関する寿命を十分に長くできる。
又、請求項4に記載した発明の場合には、浸炭窒化処理に伴って鋼中に浸入した水素が、続けて行われる窒素雰囲気での処理で雰囲気中に脱離する為、残存する水素量を少なく抑えられ、組織変化型剥離に関する寿命を長くできる。又、窒化の効果で残留オーステナイト量を多くできるので、表面起点型剥離に関する寿命に関しても長くできる。尚、前記浸炭窒化処理を1000℃以下にする理由は、1000℃を越えると、Nの供給源であるアンモニアの分解が進み、処理時間が徒に長くなる為である。又、800℃以上とする理由は、800℃未満の場合にはCの拡散速度が遅くなり、十分な浸炭が行われない為である。
Further, as in the inventions described in claims 3 and 4, soft nitriding treatment may be performed before the induction heating and quenching treatment, or carbonitriding and holding in a nitrogen atmosphere before the induction heating and quenching treatment. As a result, the amount of retained austenite can be more reliably set to a desired amount (sufficiently) while the hydrogen concentration in the steel in the surface layer portion of the raceway surface of the raceway is kept low. And surface origin type peeling can be suppressed more fully, suppressing generation | occurrence | production of structure | tissue change type peeling.
First, in the case of the invention described in claim 3, the soft nitriding treatment temperature is as low as about 550 to 600 ° C. and the treatment time is short, so that the amount of hydrogen permeation can be kept small, and the lifetime related to the structure change type peeling. Can be long. Further, since the amount of retained austenite can be increased along with reheating and quenching after soft nitriding, the life relating to surface-origin separation can be sufficiently extended.
Further, in the case of the invention described in claim 4, since the hydrogen that has penetrated into the steel due to the carbonitriding process is desorbed into the atmosphere by the subsequent treatment in a nitrogen atmosphere, the amount of remaining hydrogen Can be reduced, and the life of the tissue change type peeling can be extended. Further, since the amount of retained austenite can be increased by the effect of nitriding, the life relating to surface-origin separation can also be increased. The reason why the carbonitriding process is set to 1000 ° C. or lower is that when the temperature exceeds 1000 ° C., the decomposition of ammonia, which is a supply source of N, progresses, and the processing time becomes longer. The reason why the temperature is 800 ° C. or higher is that when the temperature is lower than 800 ° C., the diffusion rate of C becomes slow and sufficient carburization is not performed.

本発明の対象となる転がり軸受の1例を示す、部分切断斜視図。The partial cut perspective view which shows an example of the rolling bearing used as the object of this invention. 本発明の効果を確認する為に行った実験の試料作成時の熱処理の6例を示す模式図。The schematic diagram which shows six examples of the heat processing at the time of sample preparation of the experiment conducted in order to confirm the effect of this invention. 軌道面の表面層中の鋼中水素濃度と組織剥離型寿命との関係を示すグラフ。The graph which shows the relationship between the hydrogen concentration in the steel in the surface layer of a raceway surface, and structure | tissue peeling type | mold lifetime. 同じく、残留オーステナイト量と表面剥離型寿命との関係を示すグラフ。Similarly, the graph which shows the relationship between the amount of retained austenite and surface peeling type | mold lifetime.

本発明の特徴は、軸受構成部品の鋼中水素濃度及びこの軸受構成部品の表層部分の残留オーステナイト量を適切に規制する事により、厳しい使用条件下でも転がり軸受の組織剥離型寿命及び表面剥離型寿命を十分に確保する点にある。図面に現れる転がり軸受の構造に関しては、前述の図1に示した構造を含め、従来から知られている各種転がり軸受と同様であるから、構造に関する図示並びに説明は省略する。   The feature of the present invention is that, by appropriately regulating the hydrogen concentration in the steel of the bearing component and the amount of retained austenite in the surface layer portion of this bearing component, the structure peeling type life and surface peeling type of the rolling bearing even under severe use conditions This is to ensure a sufficient life. The structure of the rolling bearing appearing in the drawings is the same as that of various conventionally known rolling bearings including the structure shown in FIG.

本発明の効果を確認する為に行なった実験に就いて説明する。この実験は、前述の図1に示す様な自動調心ころ軸受1を試料として使用した。そして、この自動調心ころ軸受1を構成する外輪2と内輪3と各球面ころ4、4とのうち、外輪2及び内輪3の鋼中水素濃度、外輪軌道5及び内輪軌道6、6の表面層部分の残留オーステナイト量が異なる7種類の試料を作成した。前記各球面ころ4、4に関しては、何れの試料に就いてもSUJ2製とし、全体を加熱後に焼き入れ油中に浸漬する、所謂ズブ焼き入れを施した。前記鋼中水素濃度及び残留オーステナイト量を異ならせる為に、前記外輪2及び内輪3を構成する合金鋼として高炭素クロム軸受鋼(SUJ2、JIS G 4805)とクロム鋼(SCr420、JIS G 4104)との2種類を使用すると共に、前記外輪軌道5及び内輪軌道6、6部分の熱処理方法として、図2の(A)〜(F)に示した6種類の方法を採用した。この図2は、横軸に経過時間を、縦軸に温度を、それぞれ表している。又、この図2中に記載した数値は処理温度を、その他の文字は処理雰囲気又は処理の種類を、それぞれ表している。   An experiment conducted for confirming the effect of the present invention will be described. In this experiment, a self-aligning roller bearing 1 as shown in FIG. 1 was used as a sample. Of the outer ring 2, the inner ring 3 and the spherical rollers 4, 4 constituting the self-aligning roller bearing 1, the hydrogen concentration in the steel of the outer ring 2 and the inner ring 3, the surfaces of the outer ring raceway 5 and the inner ring raceways 6, 6. Seven types of samples with different amounts of retained austenite in the layer portion were prepared. Regarding each of the spherical rollers 4 and 4, any sample was made of SUJ2, and the whole was heated and soaked in quenching oil after so-called quenching. In order to vary the hydrogen concentration in the steel and the amount of retained austenite, high-carbon chromium bearing steel (SUJ2, JIS G 4805) and chromium steel (SCr420, JIS G 4104) are used as alloy steels constituting the outer ring 2 and the inner ring 3. And the six types of methods shown in FIGS. 2A to 2F were employed as the heat treatment methods for the outer ring raceway 5 and the inner ring raceways 6 and 6. In FIG. 2, the horizontal axis represents elapsed time and the vertical axis represents temperature. Also, the numerical values described in FIG. 2 indicate the processing temperature, and other characters indicate the processing atmosphere or the type of processing.

これら6種類の熱処理方法のうち、(A)〜(C)の3種類は本発明の技術的範囲から外れるものである。このうちの(A)は、RXガス雰囲気中でA1変態点以上の温度に加熱してから急冷し、その後大気中で焼き戻し(160〜200℃で1〜3時間)を行う、所謂ズブ焼き処理である。又、(B)は一般的な浸炭処理、(C)は一般的な浸炭窒化処理で、カーボンポテンシャル値Cpを1.0〜1.4程度に規制した。   Of these six types of heat treatment methods, three types (A) to (C) are out of the technical scope of the present invention. Of these, (A) is a so-called submerged baking in which heating is performed at a temperature equal to or higher than the A1 transformation point in an RX gas atmosphere, followed by rapid cooling, followed by tempering in the atmosphere (at 160 to 200 ° C. for 1 to 3 hours). It is processing. Further, (B) is a general carburizing treatment, and (C) is a general carbonitriding treatment, and the carbon potential value Cp is regulated to about 1.0 to 1.4.

又、図2の(D)〜(F)の3種類は本発明の技術的範囲に属するもので、このうちの(D)は、高周波加熱により大気中で前記外輪軌道5及び内輪軌道6、6部分を急加熱した後、水により急冷してから大気中で焼き戻しを行った。焼き戻しの条件(180℃、2時間)は、6種類の熱処理で同じとした。
又、(E)は、請求項3に記載した発明に対応するもので、前記外輪軌道5及び内輪軌道6、6部分を高周波加熱焼き入れ処理により硬化させる前に、570℃、30分の軟窒化処理を施した。
更に、(F)は、請求項4に記載した発明に対応するもので、前記外輪軌道5及び内輪軌道6、6部分を高周波加熱焼き入れ処理により硬化させる前に、880℃で10時間の浸炭窒化処理した後、800℃の温度で窒素雰囲気中に1時間保持してから、前記高周波焼き入れ処理を行った。
Also, three types (D) to (F) in FIG. 2 belong to the technical scope of the present invention. Of these, (D) represents the outer ring raceway 5 and the inner ring raceway 6 in the atmosphere by high-frequency heating. After 6 portions were rapidly heated, they were quenched with water and then tempered in the air. The tempering conditions (180 ° C., 2 hours) were the same for the six types of heat treatment.
Further, (E) corresponds to the invention described in claim 3, and before the outer ring raceway 5 and the inner ring raceways 6 and 6 are hardened by high-frequency heating quenching, softening at 570 ° C. for 30 minutes. Nitriding treatment was performed.
Further, (F) corresponds to the invention described in claim 4, and carburizing at 880 ° C. for 10 hours before the outer ring raceway 5 and the inner ring raceways 6, 6 are hardened by high-frequency heat quenching treatment. After the nitriding treatment, it was kept in a nitrogen atmosphere at a temperature of 800 ° C. for 1 hour, and then the induction hardening treatment was performed.

上述の様な条件で作成した7種類の試料に就いて、それぞれ組織変化型剥離に関する転がり疲れ寿命と、表面起点型剥離に関する転がり疲れ寿命とを求めた。このうちの表面起点型剥離に関する転がり疲れ寿命の試験では、軌道面に人工圧痕を形成した。この人工圧痕は、内輪軌道6、6の幅方向中央部の周方向等間隔4箇所位置ずつに、ロックウェルBスケール用の鋼球圧子を9.8kNで押し付ける事により形成した。
各試料で共通する実験条件は、次の通りである。
自動調心ころ軸受1の呼び番号 : 22211
外径 : 100mm
内径 : 55mm
幅 : 25mm
基本動定格荷重Cr : 119000N
負荷荷重 : 35700N
潤滑条件 : VG68の潤滑油を強制循環
With respect to the seven types of samples prepared under the conditions as described above, the rolling fatigue life related to the structure change type peeling and the rolling fatigue life related to the surface origin type peeling were obtained. In these tests, artificial indentations were formed on the raceway surface in the rolling fatigue life test related to surface-origin type peeling. The artificial indentation was formed by pressing Rockwell B scale steel ball indenters at 9.8 kN at four circumferentially equidistant positions in the center in the width direction of the inner ring raceways 6 and 6.
The experimental conditions common to each sample are as follows.
Spherical roller bearing 1 part number: 22211
Outer diameter: 100mm
Inner diameter: 55mm
Width: 25mm
Basic dynamic load rating Cr: 119000N
Applied load: 35700N
Lubrication condition: Forced circulation of VG68 lubricant

以上の条件で行った実験の結果を、各試料の軌道面の表面層部分の水素濃度及び残留オーステナイト量と共に次の表1に記載し、更に、図3、4にも記載した。これら表1及び図3、4に記載した寿命比とは、組織変化型剥離、表面起点型剥離の何れに関しても、比較例1の寿命を1とした場合に於ける、それに対する比率である。又、表1中の熱処理の欄に記載したA〜Fは、それぞれ図2の(A)〜(F)に対応している。
尚、水素濃度を測定する為に、転がり疲れ寿命試験に供する自動調心ころ軸受1を構成する軌道輪(外輪2及び内輪3)を、同じ条件で余分に造り、当該軌道輪(主として内輪3)を切断して得た小片で測定した。即ち、熱処理によって水素は軌道表面から浸入する為、表面が含まれる部分を切り出して測定する必要がある。又、剥離寿命に影響するのは軌道面の応力負荷領域に存在する水素である為、軌道面を含む部分を測定する必要がある。そこで、前記余分に造った軌道輪の一部を、軌道面を含む状態で切断して得た小片に就いて、昇温脱離分析(TDS)により水素濃度を測定した。
The results of the experiment conducted under the above conditions are shown in the following Table 1 together with the hydrogen concentration and the amount of retained austenite on the surface layer portion of the raceway surface of each sample, and are also shown in FIGS. The life ratios described in Table 1 and FIGS. 3 and 4 are ratios with respect to the structure change type peeling and the surface origin type peeling when the life of Comparative Example 1 is 1. A to F described in the column of heat treatment in Table 1 correspond to (A) to (F) in FIG.
In order to measure the hydrogen concentration, extra bearing rings (outer ring 2 and inner ring 3) constituting the self-aligning roller bearing 1 used for the rolling fatigue life test are made under the same conditions, and the corresponding bearing ring (mainly the inner ring 3). ) Was measured with a small piece obtained by cutting. That is, since hydrogen penetrates from the surface of the orbit by heat treatment, it is necessary to cut out and measure the portion including the surface. Further, since it is hydrogen existing in the stress load region of the raceway that affects the peeling life, it is necessary to measure a portion including the raceway. Accordingly, the hydrogen concentration was measured by temperature programmed desorption analysis (TDS) on a small piece obtained by cutting a part of the extra ring raceway including the raceway surface.

Figure 2014088893
Figure 2014088893

この表1及び図3、4にその結果を示した試験から分かる様に、本発明によれば、組織変化型剥離、表面起点型剥離の何れに関しても抑える事ができて、厳しい条件下で使用される転がり軸受に関しても、十分な転がり疲れ寿命を確保できる。以下、各試料に就いて考察する。
先ず、比較例1の場合、水素濃度が高く、残留オーステナイト量が少ないので、組織変化型剥離、表面起点型剥離の何れに関しても寿命が短かった。
次に、比較例2、3は、残留オーステナイト量が多い事により、表面起点型剥離に関する寿命は比較例1よりも長くなったが、水素濃度が高い為、組織変化型剥離に関する寿命が短かった。
As can be seen from the test results shown in Table 1 and FIGS. 3 and 4, according to the present invention, it is possible to suppress both the structure change type peeling and the surface origin type peeling, and use under severe conditions. A sufficient rolling fatigue life can be secured with respect to the rolling bearing. Hereinafter, each sample will be considered.
First, in the case of Comparative Example 1, since the hydrogen concentration was high and the amount of retained austenite was small, the lifetime was short for both the structure change type peeling and the surface origin type peeling.
Next, Comparative Examples 2 and 3 have a longer life with respect to surface-origin type peeling than Comparative Example 1 due to a large amount of retained austenite, but due to the high hydrogen concentration, the life with respect to structure change-type peeling was short. .

これに対して、実施例1の場合には、高炭素の素材を直接高周波で加熱焼き入れ硬化する為、熱処理時にRXガスに曝らされる事が無く、水素濃度を低く抑えられる為、組織変化型剥離に関する寿命を長くできた。又、高周波で表面層部分を芯部よりも高温に加熱できる為、表面層部分の残留オーステナイト量を多くできて、表面起点型剥離に関する寿命も長くできた。
次に、実施例2の場合には、高炭素の素材に軟窒化を施した後に高周波で加熱焼き入れしている為、軟窒化の際に水素の浸入が発生するが、軟窒化の処理温度は低く、処理時間も比較例1〜3の焼き入れ処理の為の加熱時間に比較して短い。従って、水素の浸入量は、比較例1〜3の場合に比べて少なく抑えられ、組織変化型剥離に関する寿命を長くできる。又、軟窒化後の再加熱焼き入れ時に、窒素の表面マトリクスヘの固溶が起こる為、残留オーステナイト量を多くできて、表面起点型剥離に関する寿命を十分に長くできる。
更に、実施例3、4の場合には、素材に浸炭窒化処理を行う為、鋼中に水素が浸入するが、続けて行われる窒素雰囲気での処理で浸入した水素は雰囲気中に脱離する為、残存する水素量を少なく抑えられる。この為、前記比較例1〜3に比べて組織変化型剥離に関する寿命を長くできる。又、窒化の効果で残留オーステナイト量を多くできるので、表面起点型剥離に関する寿命に関しても長くできる。
On the other hand, in the case of Example 1, since the high carbon material is directly heat-hardened and hardened at high frequency, it is not exposed to RX gas during heat treatment, and the hydrogen concentration can be kept low. The lifespan of change-type peeling can be extended. Further, since the surface layer portion can be heated to a higher temperature than the core portion at a high frequency, the amount of retained austenite in the surface layer portion can be increased, and the life relating to the surface-origin type peeling can be extended.
Next, in the case of Example 2, since the high carbon material is soft-nitrided and then heat-quenched at a high frequency, hydrogen permeation occurs during soft nitriding. The processing time is short compared to the heating time for the quenching treatment in Comparative Examples 1 to 3. Therefore, the amount of hydrogen permeation can be reduced as compared with the cases of Comparative Examples 1 to 3, and the life regarding the structure change type separation can be extended. In addition, since solid solution of nitrogen in the surface matrix occurs during reheating and quenching after soft nitriding, the amount of retained austenite can be increased, and the life for surface-origin separation can be sufficiently prolonged.
Furthermore, in the case of Examples 3 and 4, since the carbonitriding process is performed on the material, hydrogen enters the steel, but the hydrogen that has entered through the subsequent treatment in the nitrogen atmosphere is desorbed into the atmosphere. Therefore, the amount of remaining hydrogen can be reduced. For this reason, the lifetime regarding a structure change type | mold peeling can be lengthened compared with the said Comparative Examples 1-3. Further, since the amount of retained austenite can be increased by the effect of nitriding, the life relating to surface-origin separation can also be increased.

本発明は、図示の様な自動調心ころ軸受により実施できるだけでなく、玉軸受、円筒ころ軸受、円すいころ軸受等の各種ラジアル転がり軸受、更には、各種スラスト転がり軸受により実施する事もできる。
又、残留オーステナイト量と鋼中水素濃度とを規制する軸受構成部品は、軌道輪とする事が、転がり軸受の寿命延長の面から効果的であるが、転動体とする事もできる。勿論、軌道輪及び転動体の総てに関して、残留オーステナイト量と鋼中水素濃度とを規制すれば、転がり軸受の寿命延長効果が最も優れたものとなる。
又、潤滑方式に関しては、油浴や循環給油により行う場合に適用して効果を得られる事は勿論であるが、グリースと組み合わせて実施する事もできる。この場合に、前述の特許文献2、3に記載した様な、水素の発生を抑える為の特殊なグリースと組み合わせれば、組織変化型剥離に関する寿命を、より一層向上させられる。
The present invention can be implemented not only by a self-aligning roller bearing as shown, but also by various radial rolling bearings such as ball bearings, cylindrical roller bearings, tapered roller bearings, and various thrust rolling bearings.
In addition, the bearing component that regulates the amount of retained austenite and the hydrogen concentration in the steel is effective from the standpoint of extending the life of the rolling bearing, although it can be a rolling element. Of course, if the amount of retained austenite and the hydrogen concentration in the steel are regulated for all of the races and rolling elements, the life extension effect of the rolling bearing becomes the most excellent.
In addition, the lubrication method can be applied in the case of using an oil bath or circulating oil supply to obtain an effect, but can also be implemented in combination with grease. In this case, when combined with a special grease for suppressing the generation of hydrogen as described in Patent Documents 2 and 3, the life related to the structure change type peeling can be further improved.

1:自動調心ころ軸受
2:外輪
3:内輪
4:球面ころ
5:外輪軌道
6:内輪軌道
7:保持器
1: Spherical roller bearing 2: Outer ring 3: Inner ring 4: Spherical roller 5: Outer ring raceway 6: Inner ring raceway 7: Cage

Claims (4)

それぞれが円環状で互いに同心に配置され、互いに対向する面にそれぞれ軌道面を設けた1対の軌道輪と、これら両軌道面同士の間に転動自在に配置された複数個の転動体とを備える転がり軸受に於いて、前記両軌道輪とこれら各転動体との3種類の軸受構成部品のうちの少なくとも1種類の軸受構成部品を、相手部材と転がり接触する表面層部分の残留オーステナイト量を12〜40容量%とすると共に、当該軸受構成部品の鋼中水素濃度を0.5ppm以下とした事を特徴とする転がり軸受。   A pair of race rings, each of which is annular and concentrically arranged, and provided with raceway surfaces on opposite surfaces, and a plurality of rolling elements arranged so as to be freely rollable between the raceway surfaces; The amount of retained austenite in the surface layer portion in rolling contact with the mating member of at least one of the three types of bearing components of the bearing rings and the rolling elements. Rolling bearing characterized in that the hydrogen concentration in the steel of the bearing component is 0.5 ppm or less. 前記表面層部分の残留オーステナイト量を12〜40容量%とすると共に、鋼中水素濃度を0.5ppm以下とする軸受構成部品が、前記両軌道輪のうちの少なくとも一方の軌道輪であり、この軌道輪に設けた軌道面の表面が、高周波加熱による焼き入れ処理で硬化されている、請求項1に記載した転がり軸受。   The bearing component in which the amount of retained austenite in the surface layer portion is 12 to 40% by volume and the hydrogen concentration in the steel is 0.5 ppm or less is at least one of the two bearing rings. The rolling bearing according to claim 1, wherein a surface of a raceway surface provided on the raceway is hardened by a quenching process by high frequency heating. 請求項2に記載した転がり軸受の製造方法であって、前記軌道面の表面を高周波加熱焼き入れ処理により硬化させる前に、軟窒化処理を施す事を特徴とする転がり軸受の製造方法。   3. The method of manufacturing a rolling bearing according to claim 2, wherein a soft nitriding treatment is performed before the surface of the raceway surface is hardened by a high-frequency heat quenching treatment. 請求項2に記載した転がり軸受の製造方法であって、前記軌道面の表面を高周波加熱焼き入れ処理により硬化させる前に、800〜1000℃で浸炭窒化処理した後、750〜850℃の温度で窒素雰囲気中に所定時間保持してから、前記高周波焼き入れ処理を行う事を特徴とする転がり軸受の製造方法。   The rolling bearing manufacturing method according to claim 2, wherein the surface of the raceway surface is carbonitrided at 800 to 1000 ° C before being hardened by induction heating and quenching, and then at a temperature of 750 to 850 ° C. A method of manufacturing a rolling bearing, wherein the induction hardening process is performed after holding in a nitrogen atmosphere for a predetermined time.
JP2012238231A 2012-10-29 2012-10-29 Rolling bearing and manufacturing method thereof Pending JP2014088893A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012238231A JP2014088893A (en) 2012-10-29 2012-10-29 Rolling bearing and manufacturing method thereof
PCT/JP2013/071421 WO2014069068A1 (en) 2012-10-29 2013-08-07 Rolling bearing
EP13852223.0A EP2913548A4 (en) 2012-10-29 2013-08-07 Rolling bearing
CN201380056354.1A CN105121877A (en) 2012-10-29 2013-08-07 Rolling bearing
US14/439,016 US9249476B2 (en) 2012-10-29 2013-08-07 Rolling bearing
US14/978,528 US9394583B2 (en) 2012-10-29 2015-12-22 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238231A JP2014088893A (en) 2012-10-29 2012-10-29 Rolling bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014088893A true JP2014088893A (en) 2014-05-15
JP2014088893A5 JP2014088893A5 (en) 2015-12-03

Family

ID=50790956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238231A Pending JP2014088893A (en) 2012-10-29 2012-10-29 Rolling bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2014088893A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196883A (en) * 2015-04-06 2016-11-24 ゼネラル・エレクトリック・カンパニイ Fan bearings for turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
CN113913597A (en) * 2021-07-16 2022-01-11 北京理工大学 Electric-magnetic-thermal-acoustic multi-field composite rolling strengthening method and device special for robot
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113213A (en) * 2003-10-08 2005-04-28 Ntn Corp Heat treatment system
JP2005133211A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2007046717A (en) * 2005-08-10 2007-02-22 Ntn Corp Rolling-contact shaft with joint claw

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113213A (en) * 2003-10-08 2005-04-28 Ntn Corp Heat treatment system
JP2005133211A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2007046717A (en) * 2005-08-10 2007-02-22 Ntn Corp Rolling-contact shaft with joint claw

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
JP2016196883A (en) * 2015-04-06 2016-11-24 ゼネラル・エレクトリック・カンパニイ Fan bearings for turbine engine
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
CN113913597A (en) * 2021-07-16 2022-01-11 北京理工大学 Electric-magnetic-thermal-acoustic multi-field composite rolling strengthening method and device special for robot
CN113913597B (en) * 2021-07-16 2023-05-09 北京理工大学 Electric-magnetic-thermal-acoustic multi-field composite rolling strengthening method and device special for robot
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Similar Documents

Publication Publication Date Title
JP2014088893A (en) Rolling bearing and manufacturing method thereof
JP4810157B2 (en) Rolling bearing
JP5168958B2 (en) Rolling shaft
JP2009221493A (en) Rolling bearing, method for manufacturing race ring
JP2010196107A (en) Roller bearing
JP5392099B2 (en) Rolling sliding member and manufacturing method thereof
JP2011208745A (en) Rolling bearing
JP5163183B2 (en) Rolling bearing
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2001336538A (en) Rolling bearing and its method of manufacture
JP2011174506A (en) Method for manufacturing thrust race of needle thrust bearing
JP5736937B2 (en) Rolling bearing
JP4968106B2 (en) Rolling bearing
JP2013160314A (en) Rolling bearing
JP2009204076A (en) Rolling bearing
JP2011190921A (en) Thrust roller bearing
JP2010031307A (en) Roller bearing
JP2006328514A (en) Rolling supporting device
JP2022148544A (en) bearing ring and shaft
JP2005337361A (en) Roller bearing
JP2009250371A (en) Rolling bearing for hydrogen gas compressor
JP6015251B2 (en) Rolling bearing
JP2005337362A (en) Full type roller bearing
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing
JP2006045591A (en) Tapered roller bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307