JP2012214321A - ナノカーボン用分散剤およびナノカーボン分散液 - Google Patents
ナノカーボン用分散剤およびナノカーボン分散液 Download PDFInfo
- Publication number
- JP2012214321A JP2012214321A JP2011080089A JP2011080089A JP2012214321A JP 2012214321 A JP2012214321 A JP 2012214321A JP 2011080089 A JP2011080089 A JP 2011080089A JP 2011080089 A JP2011080089 A JP 2011080089A JP 2012214321 A JP2012214321 A JP 2012214321A
- Authority
- JP
- Japan
- Prior art keywords
- nanocarbon
- group
- cyclodextrin
- dispersant
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Carbon And Carbon Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
【解決手段】下記式(1)で表される化合物の少なくとも一種及びポリビニルピロリドンを含有するナノカーボン分散剤。
Ar‐X‐Y‐Z 式(1)
式中、Arは、アントラセン、ピレン等の多環式芳香族炭化水素基であり、Xは、炭素数1〜21の炭化水素基、又は直接結合を示し、Yは、O、NH、COO、CONH、又は直接結合を示し、Zはセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子の重合体、又は置換されていてもよいこれらの分子を示す。
【選択図】図1
Description
そこで、特許文献1にはナノカーボンの分散方法として、所定の液体とあらかじめ凍結乾燥処理を施したカーボンナノチューブ(以下「CNT」という。)との混合液を分散剤および硬球と共に容器に入れ、該容器を振動させる方法が記載され、特許文献2には、CNTを水性溶媒に分散させるための方法として、界面活性剤として特定のものを選択してなる方法であって、その分散時には超音波処理やビーズミル等が例示されているに過ぎない方法が記載され、特許文献3にはCNTに界面活性剤と水を加えて、超音波処理することにより分散液を得る方法が記載され、特許文献4には、CNTを水性溶媒と両親媒性を有するトリフェニレン誘導体を含む分散媒とを混合し、これに超音波処理を行ってCNTを水性溶媒に分散させることが記載されているように、CNTを分散媒に分散させるための各種の方法が知られている。
さらに非特許文献1には、クラウンエーテル部とピレン部を有する分子からなり、クラウンエーテル部をドナーとしピレン部をアクセプターとする化学センサーが記載されている。
ナノカーボン分散液を製造する方法については様々な方法が知られているものの、これらの方法は高温での分散安定性を向上させることを目的としたものではなく、実際に得られた分散液は高温での長期の安定性が不足するものであった。このような安定性のレベルでは、高温下においてナノカーボンが凝集し分散性が著しく低下するために、高温下にての実用に供することができなかった。
そこで、本発明は高温において長期間安定なナノカーボン分散液を得る方法を提供することを課題としている。
1.下記式(1)で表される化合物の少なくとも一種及びポリビニルピロリドンを含有するナノカーボン分散剤。
Ar‐X‐Y‐Z 式(1)
式中、Arは、アントラセン、ピレン等の多環式芳香族炭化水素基であり、Xは、炭素数1〜21の炭化水素基、又は直接結合を示し、YはO、NH、COO、CONH、又は直接結合を示し、Zはセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子、又は置換されていてもよいこれらの分子を示す。
2.前記Arが、ピレン基である、1記載のナノカーボン分散剤。
3.前記Xが、主鎖の炭素数が3のアルキル基である、1又は2記載のナノカーボン分散剤。
4.前記Yが、CONHである、1〜3のいずれかに記載のナノカーボン分散剤。
5.前記Zが、シクロデキストリンである、1〜4のいずれかに記載のナノカーボン分散剤。
6.1〜5のいずれかに記載のナノカーボン分散剤においてシクロデキストリンが互いに架橋してなるナノカーボン分散剤。
7.1〜5のいずれかに記載のナノカーボン分散剤に、エピクロロヒドリンを作用させて得られる、架橋型ナノカーボン分散剤。
8.1〜7のいずれかに記載のナノカーボン分散剤により分散されたナノカーボン分散液。
Ar‐X‐Y‐Z 式(1)
式中、Arは、アントラセン、ピレン等の多環式芳香族炭化水素基であり、Xは、炭素数1〜21の炭化水素基、又は直接結合を示し、Yは、O、NH、COO、CONH、又は直接結合を示し、Zはセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子を示す。
(ナノカーボン粒子)
本発明の分散剤により分散媒に分散されるナノカーボン粒子としては、フラーレン、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、グラフェン及びこれらの誘導体等からなる群から選ばれる少なくとも1種を使用することができる。
カーボンナノ粒子はフラーレンからなる粒子や、フラーレンがグラファイト層により被覆されたフラーレンナノオニオンである。
カーボンナノチューブは内部に金属等の原子を有するものでも良く、カップ状のカーボンが積層されたカップスタック型、カーボンナノチューブ内に炭素鎖が存在するカーボンナノワイヤ等でも良い。また、単層からなるものでも良く、2層以上の層からなるものでも良い。
カーボンナノホーンは一端部から他端部に向けてその径が連続的に大きくなる形状を有する形状であり、カーボンナノコイルは繊維状のカーボンがコイル形状を示している。
そして、本発明におけるナノカーボン粒子は、1nm〜10μm、好ましくは10〜500nmの径及び0.5μm〜1mm、好ましくは5〜500μmの長さの繊維状、又は0.5〜10nm、好ましくは2〜5nmの径の粒子状を呈している。
ナノカーボン粒子としては処理されないものでも良く、何らかの処理がされたものでもよいが、処理されたものであっても、その処理方法は本発明の分散剤による分散性向上効果を阻害しない処理方法であることが必要である。中でも未処理のナノカーボンを好ましく使用できる。
本発明は分散剤として、多環式芳香族炭化水素基を有するセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子誘導体及び/又はその重合体、及びポリビニルピロリドンを使用する。
多環式芳香族炭化水素基を有するセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子誘導体及び/又はその重合体として、具体的には、下記式(1)にて示す化合物である。
Ar‐X‐Y‐Z 式(1)
式中、Arは、アントラセン、ピレン等の多環式芳香族炭化水素基であり、Xは、炭素数1〜21の炭化水素基、又は直接結合を示し、Yは、O、NH、COO、CONH、又は直接結合を示し、Zはセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子を示す。
分散剤中の上記の式(1)で示す化合物とポリビニルピロリドンとの重量比は、式(1)で示す化合物:ポリビニルピロリドン=10:90〜90:10の範囲であり、好ましくは25:75〜75:25である。
好ましくは、炭素数が10まで、更に好ましくは炭素数が6までの炭化水素基である。炭素数が22以上であると、分散剤自体の疎水性が高くなりすぎ、水性媒体への分散性向上効果が低下する。
炭素数1〜21の炭化水素基としては特に限定されないが、1又は2以上の水素原子を他のアルキル、アリール基で置換してもよい脂肪族炭化水素基又は芳香族炭化水素基であり、その合計炭素数が1〜21である。
より具体的には、二重/三重結合を含んでもよい直鎖状または分岐状または環状の炭化水素基(アルキレン基、アルケニレン基、シクロアルキレン基、フェニレン基等)が挙げられる。
直鎖状アルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基、ノナデシレン基、エイコシレン基、ヘンエイコシレン基が挙げられる。直鎖状アルケニレン基としては、ミリストレイレン基、パルミトレイレン基、オレイレン基、リノレイレン基、リノレニレン基、アラキドニレン基、オクタデシジエニレン基が挙げられる。シクロアルキレン基としては、シクロペンチルメチレン基、シクロペンチルエチレン基、シクロペンチルプロピレン基、シクロペンチルブチレン基、シクロペンチルペンチレン基、シクロペンチルヘキシレン基、シクロペンチルヘプチレン基、シクロペンチルオクチレン基、シクロペンチルノニレン基、シクロペンチルデシレン基、シクロペンチルウンデシレン基、シクロペンチルドデシレン基、シクロペンチルトリデシレン基、シクロペンチルテトラデシレン基、シクロペンチルペンタデシレン基、シクロペンチルヘキサデシレン基、シクロヘキシルメチレン基、シクロヘキシルエチレン基、シクロヘキシルプロピレン基、シクロヘキシルブチレン基、シクロヘキシルペンチレン基、シクロヘキシルヘキシレン基、シクロヘキシルヘプチレン基、シクロヘキシルオクチレン基、シクロヘキシルノニレン基、シクロヘキシルデシレン基、シクロヘキシルウンデシレン基、シクロヘキシルドデシレン基、シクロヘキシルトリデシレン基、シクロヘキシルテトラデシレン基、シクロヘキシルペンタデシレン基が挙げられる。その他、アリール基としては、フェニルメチレン基、フェニルエチレン基、フェニルプロピレン基、フェニルブチレン基、フェニルペンチレン基、フェニルヘキシレン基、フェニルヘプチレン基、フェニルオクチレン基、フェニルノニレン基、フェニルデシレン基、フェニルウンデシレン基、フェニルドデシレン基、フェニルトリデシレン基、フェニルテトラデシレン基、フェニルペンタデシレン基、ナフチルメチレン基、ナフチルエチレン基、ナフチルプロピレン基、ナフチルブチレン基、ナフチルペンチレン基、ナフチルヘキシレン基、ナフチルヘプチレン基、ナフチルオクチレン基、ナフチルノニレン基、ナフチルデシレン基、ナフチルウンデシレン基が挙げられる。
(多環式芳香族炭化水素)
本発明における多環式芳香族炭化水素基としては、縮合環を含む2環以上のものであれば使用することができる。そして例えば、ナフタレン、フェナントレン、アントラセン、ベンゾピレン、ピレン、ナフタセン、トリフェニレン等の基を使用することが可能である。
多糖類としては、セルロース、デンプン、ペクチン、キチン、デキストリン等を採用することができ、中でもセルロースやデキストリンが好ましい。
生体高分子としては、生体を構成する蛋白質、DNA、RNA、多糖類等を使用することができる。また、生体高分子と類似する構造を有するポリペプチド等も使用することが可能である。
環状ホスト分子としては、以下に示すような各種のシクロデキストリン、クラウンエーテル、クリプタンド、シクロファン等を採用することができる。
これらの環状ホスト分子は単量体であっても良く2量体以上の重合体であっても良い。
前記シクロデキストリンは環状オリゴ糖であり、グルコースがα−1,4結合により環状に結合してなる化合物である。結合するグルコースの数により、α−、β−、γ−がある。
これらのホスト分子は、求めるナノカーボンの分散性や分散媒の種類に応じて選択することができるが好ましくはβ−シクロデキストリンの多量体である。
12−クラウン−4、15−クラウン−5、18−クラウン−6等のクラウンエーテルを使用することができる。
シクロファン チアシクロファン アザシクロファン
本発明において使用することができるポリビニルピロリドンとしては、重量平均分子量が5000〜500万、好ましくは1万〜300万、更に好ましくは2万〜160万である。これらのポリビニルピロリドンとして第一工業製薬(株)製の商品名; ピッツコール K−17L、 ピッツコール K−30、ピッツコール K−90、ピッツコール K−120等が挙げられ、これらを単独又は2種以上混合して使用てもよい。
本発明における上記式(1)で示される化合物は、以下の方法により合成される。
上記式(1)においてYがOである場合の本発明の分散剤は、例えば下記のようにシクロデキストリンエーテル化剤によるエーテル化により合成される。
シクロデキストリンのエーテル化剤としては、有利には末端に多環式芳香族炭化水素基を有する分岐状または非分岐状のC4〜C12−アルキルエポキシド、例えばω位に多環式芳香族炭化水素基を有する1−ヘキセンオキシド、1−オクテンオキシド、1−デセンオキシド、環状C6〜C10−エポキシド、例えばシクロヘキセンオキシドまたはシクロオクテンオキシドまたは分岐状または非分岐状のC4〜C12−アルキル−グリシジルエーテル、例えばn−ブチルグリシジルエーテル、n−ヘキシルグリシジルエーテル、n−オクチルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、またはC6〜C15−アリールまたはアラルキルグリシジルエーテル、例えばフェニルグリシジルエーテル、クレシルグリシジルエーテル、または上記の物質の混合物が使用される。
シクロデキストリンにニトロベンゼンスルホニルクロリドを反応させてノシル化シクロデキストリンを合成し、これにハロゲン原子を有する多環式芳香族炭化水素、あるいはハロゲン原子を有する炭化水素基により置換された多環式芳香族炭化水素を反応させて、多環式芳香族炭化水素又は多環式芳香族炭化水素基により置換された炭化水素と、シクロデキストリンがアミノ基により結合されてなる分散剤が合成される。
シクロデキストリンにp−トルエンスルホニルクロリドを反応させてトシル化シクロデキストリンを合成し、これにカルボキシ基を有する多環式芳香族炭化水素、あるいはカルボキシ基を有する炭化水素基により置換された多環式芳香族炭化水素を反応させて、多環式芳香族炭化水素又は多環式芳香族炭化水素基により置換された炭化水素と、シクロデキストリンがエステル基により結合されてなる分散剤が合成される。
アミノ化シクロデキストリン合成方法1
モノ-6-トシル-β-シクロデキストリンとアジ化ナトリウムを反応させ、モノ-6-アジド-6-デオキシ-β-シクロデキストリンを合成し、これをトリフェニルホスフィンと共にDMFに溶解し、アンモニア水を加え、モノ-6-アミノ-6-デオキシ-β-シクロデキストリンを合成する。
シクロデキストリンのD(+)-グルコピラノース単位を6〜16からなるシクロデキストリンの水酸基のうち少なくとも一つの水酸基が、スルホン酸エステル化されてなる公知方法で製造されたシクロデキストリン誘導体を、公知方法によりアミノ化合物と反応させることにより、スルホン酸エステル基をアミノ基に置換してアミノ化シクロデキストリンを合成する方法も採用できる。
いずれの方法によっても、合成した化合物はイオン交換樹脂を用いたカラムクロマトグラフィーで精製することが好ましい。
これらの方法により得たモノ-6-アミノ-6-デオキシ-β-シクロデキストリンやアミノ化シクロデキストリンとピレン酪酸とを、ジシクロヘキシルカルボジイミド(DCC)によるカップリング反応で縮合し、上記式(1)においてYがCONHである場合の本発明の分散剤を得る。
ここでは、環状ホスト化合物としてシクロデキストリン及びクラウンエーテルを例に示して、シクロデキストリン及びクラウンエーテルの重合体の合成方法を述べる。
シクロデキストリン重合体はエピクロロヒドリンを架橋剤として反応させて得られるが、他にジエポキシ化合物、ジイソシアネート、アクリルアミド誘導体等を架橋剤として使用できる。ただし、操作の容易さおよび得られたシクロデキストリン重合体の熱、アルカリ等に対する安定性を考慮するとエピクロロヒドリンが特に好ましい。
本発明におけるシクロデキストリン重合体はシクロデキストリン単位を2つ以上有する化合物である。本発明においては分散安定性を考慮して重合体中のシクロデキストリン単位の数は2〜5である。この範囲であれば、加熱下における分散安定性に優れるナノカーボン分散剤を得ることが可能となる。
クラウンエーテル重合体は、クラウンエーテルとジスルフィド結合を有する二官能性のアンモニウム塩とを、チオールの存在下でチオール・ジスルフィド交換反応によってロタキサン構造による結合で架橋する方法等により得ることができる。この場合においてもクラウンエーテルとジスルフィド結合を有する二官能性のアンモニウム塩の使用量の比によって、得られる重合体の分子量を調整することができる。
本発明にて使用できる分散媒としては、ナノカーボンと反応せずに、分散剤と共に安定した溶媒である。
具体的には、水、水溶性有機溶媒のいずれか一種、若しくは二種以上からなる混合溶媒でも良い。
該水溶性有機溶媒としては、アルコール類(メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ベンジルアルコールなど)、多価アルコール類(エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコールなど)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテルなど)、アミン類(エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミンなど)、アミド類(ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなど)、複素環類(2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノンなど)、スルホキシド類(ジメチルスルホキシドなど)、スルホン類(スルホランなど)、低級ケトン類(アセトン、メチルエチルケトンなど)、その他、テトラヒドロフラン、尿素、アセトニトリルなどを使用することができる。
本発明において、ナノカーボン粒子の分散性を損なわない限り、併用可能なその他の分散剤としては、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等の分散性向上作用を有する公知の分散剤を使用できる。
エステル基を有するポリマー、オリゴマーはエステル部分を加水分解してアニオン性官能基に変換して使用することも可能である。
本発明にて用いるナノカーボンとしては、単層のナノカーボン、多層のナノカーボンのいずれでも良く、分散液の用途に応じて選択することができる。またナノカーボンの製造方法に関しても特に制限されるものではなく、炭素含有ガスを触媒と接触させる熱分解法、炭素棒間にてアーク放電を発生させてなるアーク放電法、カーボンターゲットにレーザーを照射するレーザー蒸発法、金属微粒子の存在下で炭素源のガスを高温で反応させるCVD法、一酸化炭素を高圧下で分解するHiPco法等のいずれでも良い。
また、金属原子がドープされてなるナノカーボンであっても良い。
本発明における分散媒中のナノカーボンの濃度は、0.1〜10.0wt%であり、好ましくは0.3〜5.0wt%である。濃度が低すぎると分散されたナノカーボンを得る効率が悪く、高すぎるとナノカーボンの分散性が低下する。
本発明における分散液に配合が可能な他の成分としては、各種の水溶性樹脂や水分散性樹脂、タンパク質等の生体内の高分子等、ナノカーボン及び分散液の用途に応じて必要な成分を配合することが可能である。
ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸アルカリ金属塩等の水溶性樹脂、これらの水溶性樹脂を採用する場合には、他の分散剤を併用することも可能である。カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース類が好ましく、さらにカルボキシメチルセルロースが好ましい。これらの水溶性樹脂及び/又はセルロース類を採用した場合には、他の分散剤を併用することも可能である。
本発明の分散剤を用いて分散液を得るために使用可能な装置は、分散媒、分散剤及びナノカーボンを含有する混合物を十分に混合・分散できる装置であれば特に限定されない。
このような装置としては、例えばナノマイザー、アルティマイザー、超音波分散機などによるメディアを使用しない分散方法、ボールミル、サンドグラインダー、ダイノミル、スパイクミル、DCPミル、バスケットミル、ペイントコンディショナー、高速攪拌装置等が挙げられる。
中でも、好ましくは分散装置のなかでも超音波を用いてナノカーボンを分散する装置であり、超音波を分散媒中のナノカーボンに照射することによって、ナノカーボン粒子の凝集が破壊されて一次粒子の分散体となる。その状態において本発明の分散剤が該一次粒子に付着することにより、ナノカーボンが均一に分散される。この場合、複数種の周波数の超音波を照射することもできる。
これら上記のナノマイザー、ボールミル、超音波装置等の装置を使用し、周波数、メディア粒子径、時間、流量、回転数、圧、温度などの分散条件を適宜選択することにより、粒子径を調節することができ、また分散処理後の分散液をろ過、遠心分離等することによって粗大な粒子を除去して、粒子径を一定の範囲内とすることもできる。
モノ-6-トシル-β-シクロデキストリンとアジ化ナトリウムを反応させ、モノ-6-アジド-6-デオキシ-β-シクロデキストリンを合成する。
モノ-6-アジド-6-デオキシ-β-シクロデキストリンとトリフェニルホスフィンをDMFに溶解し、アンモニア水を加え、モノ-6-アミノ-6-デオキシ-β-シクロデキストリンを合成する。合成した化合物はイオン交換樹脂を用いたカラムクロマトグラフィーで精製することが好ましい。
モノ-6-アミノ-6-デオキシ-β-シクロデキストリンとピレン酪酸とをジシクロヘキシルカルボジイミド(DCC)によるカップリング反応で縮合して、ピレン化シクロデキストリンを得た。
分散剤としてポリビニルピロリドン(第一工業製薬、ピッツコールK−90)を用いた。イオン交換水にポリビニルピロリドンを溶解して1.5wt%の水溶液を得た。この水溶液に多層CNT(保土谷化学、MWNT−7)を1wt%となるように添加した。この溶液にホモミクサー(プライミクス株式会社、T.K.ホモミクサーHV)を用いて予備攪拌を4000rpmで10分間行った。この混合液を、周波数20kHz、振幅50μmのホーン型超音波装置(株式会社日本精機製作所 Model RUS-1200TCVP)とローラーポンプ(EYELA東京理化器械株式会社)を用いて100mL/minの流速で循環させながら、120分間連続的に超音波を照射し、CNTを分散させた。
分散剤として、上記ピレン化シクロデキストリンを重合してなるピレン化シクロデキストリン重合体を用いた。ピレン化シクロデキストリン重合体は、NaOH水溶液にピレン化シクロデキストリンを溶解し、ここにエピクロロヒドリンを添加し、室温で3時間攪拌した後、室温にて中和処理を行い、再沈殿を行って未反応物質を除去することにより得たものである。
イオン交換水にピレン化シクロデキストリン重合体を溶解して1.5wt%の水溶液を得た。この水溶液に多層CNTを1wt%となるように添加した。この溶液にホモミクサーを用いて予備攪拌を4000rpmで10分間行った。この混合液を、周波数20kHz、振幅50μmのホーン型超音波装置とローラーポンプを用いて100mL/minの流速で循環させながら、120分間連続的に超音波を照射し、CNTを分散させた。
分散剤として、上記ピレン化シクロデキストリンを重合してなるピレン化シクロデキストリン重合体と平均分子量が120万のポリビニルピロリドンからなる組成物を用いた。
ピレン化シクロデキストリン重合体は、NaOH水溶液にピレン化シクロデキストリンを溶解し、ここにエピクロロヒドリンを添加し、室温で3時間攪拌した後、室温にて中和処理を行い、再沈殿を行って未反応物質を除去することにより得たものである。
イオン交換水にピレン化シクロデキストリン重合体及び分子量が120万のポリビニルピロリドンを、重量比で2:1となるように溶解して1.5wt%の水溶液を得た。この水溶液に多層CNTを1wt%となるように添加した。この溶液にホモミクサーを用いて予備攪拌を4000rpmで10分間行った。この混合液を、周波数20kHz、振幅50μmのホーン型超音波装置とローラーポンプを用いて100mL/minの流速で循環させながら、120分間連続的に超音波を照射し、CNTを分散させた。
○:凝集・沈降なし
×:凝集・沈降あり
分散剤Polymer(比較例2):ピレン化シクロデキストリン重合体
分散剤Polymer/PVP(実施例1):ピレン化シクロデキストリン重合体とポリビニルピロリドンとの組合せ
比較例2による結果については、23℃〜40℃の温度下では、分散後120時間を経過しても沈殿や凝集が見られないものの、60℃では96時間を過ぎると沈殿や凝集が見られ、80℃では分散後24時間後の時点において凝集・沈殿が発生した。
実施例1による分散液は、23℃〜80℃の範囲のいずれの温度においても、分散後120時間経過しても凝集や沈殿は発生しなかった。
このような結果によれば、本発明の分散液は80℃までは長期間の安定性に優れ、凝集や沈殿を発生しないという性質を示すことが理解できる。また、100℃では48時間まで凝集や沈殿を発生せず、比較例1および2に比べ、高温での安定性が向上している。
本発明における分散剤を構成する上記式(1)で示される化合物とポリビニルピロリドンは、上記の比較例1及び2の結果からみて、それぞれが単独では十分な効果を発揮しないが、これらの化合物を併用することにより上記の実施例1に示すような顕著な効果を発揮することができる。
そして、本発明によれば、長期間の分散安定性や、高温下での安定性に優れる分散液を得るという効果を生じることが理解でき、このような効果は、比較例1及び2による効果よりも極めて優れていることは明らかである。
Claims (8)
- 下記式(1)で表される化合物の少なくとも一種、及びポリビニルピロリドンを含有するナノカーボン分散剤。
Ar‐X‐Y‐Z 式(1)
式中、Arは、アントラセン、ピレン等の多環式芳香族炭化水素基であり、Xは、炭素数1〜21の炭化水素基、又は直接結合を示し、YはO、NH、COO、CONH、又は直接結合を示し、Zはセルロース等の多糖類、DNA等の生体高分子又はクラウンエーテル、シクロデキストリン等の環状ホスト分子、又は置換されていてもよいこれらの分子を示す。 - 前記Arが、ピレン基である、請求項1記載のナノカーボン分散剤。
- 前記Xが、主鎖の炭素数が3のアルキル基である、請求項1又は2記載のナノカーボン分散剤。
- 前記Yが、CONHである、請求項1〜3のいずれかに記載のナノカーボン分散剤。
- 前記Zが、シクロデキストリンである、請求項1〜4のいずれかに記載のナノカーボン分散剤。
- 請求項1〜5のいずれかに記載のナノカーボン分散剤においてシクロデキストリンが互いに架橋してなるナノカーボン分散剤。
- 請求項1〜5のいずれかに記載のナノカーボン分散剤に、エピクロロヒドリンを作用させて得られる、架橋型ナノカーボン分散剤。
- 請求項1〜7のいずれかに記載のナノカーボン分散剤により分散されたナノカーボン分散液。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080089A JP5759771B2 (ja) | 2011-03-31 | 2011-03-31 | ナノカーボン用分散剤およびナノカーボン分散液 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011080089A JP5759771B2 (ja) | 2011-03-31 | 2011-03-31 | ナノカーボン用分散剤およびナノカーボン分散液 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012214321A true JP2012214321A (ja) | 2012-11-08 |
JP5759771B2 JP5759771B2 (ja) | 2015-08-05 |
Family
ID=47267548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011080089A Active JP5759771B2 (ja) | 2011-03-31 | 2011-03-31 | ナノカーボン用分散剤およびナノカーボン分散液 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5759771B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012245441A (ja) * | 2011-05-25 | 2012-12-13 | Nissan Chem Ind Ltd | カーボンナノチューブ分散剤 |
JP2020029471A (ja) * | 2018-08-20 | 2020-02-27 | 東洋インキScホールディングス株式会社 | カーボンナノチューブ分散液およびその利用 |
KR20210023760A (ko) * | 2019-08-21 | 2021-03-04 | 주식회사 엘지화학 | 탄소나노튜브 분산액, 이를 포함하는 음극 슬러리, 음극 및 리튬 이차 전지 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180207A (ja) * | 1997-09-02 | 1999-03-26 | Akihiko Ueno | シクロデキストリン誘導体 |
JP2004506530A (ja) * | 2000-08-24 | 2004-03-04 | ウィリアム・マーシュ・ライス・ユニバーシティ | ポリマー巻き付け単層カーボンナノチューブ |
JP2005154630A (ja) * | 2003-11-27 | 2005-06-16 | National Institute Of Advanced Industrial & Technology | カーボンナノチューブ分散極性有機溶媒 |
US20060223991A1 (en) * | 2005-03-31 | 2006-10-05 | Yuegang Zhang | Functionalization and separation of nanotubes and structures formed therby |
JP2007022873A (ja) * | 2005-07-20 | 2007-02-01 | National Institute Of Advanced Industrial & Technology | 水分散性蛋白質−カーボンナノチューブ複合体、その製造方法及びその用途 |
JP2007182363A (ja) * | 2005-03-24 | 2007-07-19 | Hokkaido Technology Licence Office Co Ltd | 微小カーボン分散物 |
JP2008024522A (ja) * | 2006-07-15 | 2008-02-07 | Toray Ind Inc | カーボンナノチューブ分散液、その製造方法およびそれを用いた導電性材料 |
WO2008036123A2 (en) * | 2006-04-26 | 2008-03-27 | Ohio University | Synthetic polymer surfactants for dispersing carbon nanotubes and methods of using the same |
JP2008254959A (ja) * | 2007-04-04 | 2008-10-23 | Pentel Corp | 多孔質炭素体及びその製造方法。 |
JP2009242556A (ja) * | 2008-03-31 | 2009-10-22 | Aomori Prefectural Industrial Technology Research Center | シクロデキストリン複合材料およびその製造方法 |
JP2010515779A (ja) * | 2006-10-11 | 2010-05-13 | ユニバーシティ オブ フロリダ リサーチ ファンデーション、インク. | ペンダントパイ相互作用性/結合性置換基を含有する電気活性ポリマー、そのカーボンナノチューブ複合体、およびその形成方法 |
-
2011
- 2011-03-31 JP JP2011080089A patent/JP5759771B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180207A (ja) * | 1997-09-02 | 1999-03-26 | Akihiko Ueno | シクロデキストリン誘導体 |
JP2004506530A (ja) * | 2000-08-24 | 2004-03-04 | ウィリアム・マーシュ・ライス・ユニバーシティ | ポリマー巻き付け単層カーボンナノチューブ |
JP2005154630A (ja) * | 2003-11-27 | 2005-06-16 | National Institute Of Advanced Industrial & Technology | カーボンナノチューブ分散極性有機溶媒 |
JP2007182363A (ja) * | 2005-03-24 | 2007-07-19 | Hokkaido Technology Licence Office Co Ltd | 微小カーボン分散物 |
US20060223991A1 (en) * | 2005-03-31 | 2006-10-05 | Yuegang Zhang | Functionalization and separation of nanotubes and structures formed therby |
JP2007022873A (ja) * | 2005-07-20 | 2007-02-01 | National Institute Of Advanced Industrial & Technology | 水分散性蛋白質−カーボンナノチューブ複合体、その製造方法及びその用途 |
WO2008036123A2 (en) * | 2006-04-26 | 2008-03-27 | Ohio University | Synthetic polymer surfactants for dispersing carbon nanotubes and methods of using the same |
JP2008024522A (ja) * | 2006-07-15 | 2008-02-07 | Toray Ind Inc | カーボンナノチューブ分散液、その製造方法およびそれを用いた導電性材料 |
JP2010515779A (ja) * | 2006-10-11 | 2010-05-13 | ユニバーシティ オブ フロリダ リサーチ ファンデーション、インク. | ペンダントパイ相互作用性/結合性置換基を含有する電気活性ポリマー、そのカーボンナノチューブ複合体、およびその形成方法 |
JP2008254959A (ja) * | 2007-04-04 | 2008-10-23 | Pentel Corp | 多孔質炭素体及びその製造方法。 |
JP2009242556A (ja) * | 2008-03-31 | 2009-10-22 | Aomori Prefectural Industrial Technology Research Center | シクロデキストリン複合材料およびその製造方法 |
Non-Patent Citations (3)
Title |
---|
M. NAYHOUSE ET SL.: "Strategy for High Concentration Nanodispersion of Single-Walled Carbon Nanotubes with Diameter Selec", J. PHYS. CHEM. C, JPN6014034566, pages 113 - 10044, ISSN: 0002876492 * |
Q. YANG ET AL.: "Functionalization of Multiwalled Carbon Nanotubes by Pyrene-Labeled Hydroxypropyl Cellulose", J. PHYS. CHEM. B, JPN6013057657, pages 112 - 12934, ISSN: 0002876494 * |
T. OGOSHI ET AL.: "Chemically-Responsive Sol-Gel Transition of Supramolecular Single-Walled Carbon Nanotubes (SWNTs) Hy", J. AM. CHEM. SOC., JPN6014034567, pages 129 - 4878, ISSN: 0002876493 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012245441A (ja) * | 2011-05-25 | 2012-12-13 | Nissan Chem Ind Ltd | カーボンナノチューブ分散剤 |
JP2020029471A (ja) * | 2018-08-20 | 2020-02-27 | 東洋インキScホールディングス株式会社 | カーボンナノチューブ分散液およびその利用 |
KR20210023760A (ko) * | 2019-08-21 | 2021-03-04 | 주식회사 엘지화학 | 탄소나노튜브 분산액, 이를 포함하는 음극 슬러리, 음극 및 리튬 이차 전지 |
KR102613804B1 (ko) | 2019-08-21 | 2023-12-15 | 주식회사 엘지에너지솔루션 | 탄소나노튜브 분산액, 이를 포함하는 음극 슬러리, 음극 및 리튬 이차 전지 |
Also Published As
Publication number | Publication date |
---|---|
JP5759771B2 (ja) | 2015-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mallakpour et al. | Preparation and characterization of chitosan-poly (vinyl alcohol) nanocomposite films embedded with functionalized multi-walled carbon nanotube | |
Lin et al. | Polymeric carbon nanocomposites from carbon nanotubes functionalized with matrix polymer | |
Li et al. | Triazole end-grafting on cellulose nanocrystals for water-redispersion improvement and reactive enhancement to nanocomposites | |
Hou et al. | Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites | |
Xue et al. | A systematic study of the effect of molecular weights of polyvinyl alcohol on polyvinyl alcohol–graphene oxide composite hydrogels | |
Kharisov et al. | The dispersion, solubilization and stabilization in “solution” of single-walled carbon nanotubes | |
JP5836797B2 (ja) | ナノカーボン用分散剤およびナノカーボン分散液 | |
Sharma et al. | Functional nanoparticles obtained from cellulose: Engineering the shape and size of 6-carboxycellulose | |
Shariatnia et al. | Hybrid cellulose nanocrystal-bonded carbon nanotubes/carbon fiber polymer composites for structural applications | |
Voisin et al. | 3d printing of strong lightweight cellular structures using polysaccharide-based composite foams | |
Mallakpour et al. | Ultrasonic-assisted biosurface modification of multi-walled carbon nanotubes with Thiamine and its influence on the properties of PVC/Tm-MWCNTs nanocomposite films | |
Abdolmaleki et al. | Microwave and ultrasound-assisted synthesis of poly (vinyl chloride)/riboflavin modified MWCNTs: Examination of thermal, mechanical and morphology properties | |
JP2006063307A (ja) | カーボンナノチューブ含有溶液、フィルムおよび繊維 | |
CN108744974B (zh) | 一种环糊精接枝纳米材料改性有机溶剂纳滤膜及其制备方法 | |
Famkar et al. | Effectively exerting the reinforcement of polyvinyl alcohol nanocomposite hydrogel via poly (dopamine) functionalized graphene oxide | |
Habibi | Functional biocompatible magnetite–cellulose nanocomposite fibrous networks: characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis | |
JP5759771B2 (ja) | ナノカーボン用分散剤およびナノカーボン分散液 | |
Shieh et al. | An investigation on dispersion of carbon nanotubes in chitosan aqueous solutions | |
Puoci et al. | Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drug‐delivery systems | |
Xia et al. | Polymer/carbon nanotube composite emulsion prepared through ultrasonically assisted in situ emulsion polymerization | |
Mallakpour et al. | Using sonochemistry for the production of poly (vinyl alcohol)/MWCNT–vitamin B 1 nanocomposites: exploration of morphology, thermal and mechanical properties | |
Mallakpour et al. | A facile and green method for the production of novel and potentially biocompatible poly (amide-imide)/ZrO2–poly (vinyl alcohol) nanocomposites containing trimellitylimido-l-leucine linkages | |
Mallakpour et al. | The influence of acid-treated multi-walled carbon nanotubes on the surface morphology and thermal properties of alanine-based poly (amide–imide)/MWCNT nanocomposites system | |
Chen et al. | Enhanced mechanical properties of novel chitosan nanocomposite fibers | |
JP5936861B2 (ja) | ナノカーボン用分散剤およびナノカーボン分散液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141003 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150217 Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5759771 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |